文档库 最新最全的文档下载
当前位置:文档库 › 数电实验5 冒险与竞争(含仿真图)

数电实验5 冒险与竞争(含仿真图)

数电实验5 冒险与竞争(含仿真图)
数电实验5 冒险与竞争(含仿真图)

实验五组合电路中的竞争与冒险

一、实验目的

1、观察组合电路中的竞争与冒险现象。

2、了解消除竞争与冒险现象的方法。

二、实验仪器及器件

1、实验箱、万用表、示波器。

2、74LS00X

3、74LS20X1、330PF 电容X1。

三、实验预习

1、复习与组合逻辑电路竞争与冒险有关内容。

2、画出用74LS00 实现实验内容中F 函数的逻辑图。

3、写出F 的真值表。

4、找出变量B、D 变化过程中产生险象时,其他变量的组合。

四、实验原理

1、竞争冒险现象及其成因

对于组合逻辑电路,输出仅取决于输入信号的取值组合,但这仅是指电路的

稳定解而言,没有涉及电路的暂态过程。实际上,在组合逻辑电路中信号的传输

可能通过不同的路径而汇合到某一门的输入端上。由于门电路的传输延迟,各路

信号对于汇合点会有一定的时差。这种现象称为竞争。如果竞争现象的存在不会

使电路产生错误的输出,则成为非临界竞争;若果使电路的输出产生了错误输出,则称为临界竞争,通常称为逻辑冒险现象。一般说来,在组合逻辑电路中,如果

有两个或两个以上的信号参差地加到同一门的输入端,在门的输出端得到稳定的

输出之前,可能出现短暂的,不是原设计要求的错误输出,其形状是一个宽度仅

为时差的窄脉冲,通常称为尖峰脉冲或毛刺。

2、检查竞争冒险现象的方法

在输入变量每次只有一个改变状态的简单情况下,可以通过逻辑函数式判断

组合逻辑电路中是否有竞争冒险存在。

如果输出端门电路的两个输入信号 A 和 A 是输入变量A 经过两个不同的传输途径而来的,那么当输入变量的状态发生突变时输出端便有可能产生尖峰脉

冲。因此,只要输出端的逻辑函数在一定条件下化简成

Y=A+A 或Y=AA

则可判断存在竞争冒险

3、消除竞争冒险现象的方法

(1)接入滤波电路

在输出端并接入一个很小的滤波电容Cf,足可把尖峰脉冲的幅度削弱至门

电路的阈值电压以下。

(2)引入选通脉冲。

对输出引进选通脉冲,避开现象。

(3)修改逻辑设计。

在逻辑函数化简选择乘积项时,按照判断组合电路是否存在竞争冒险的方

法,选择使逻辑函数不会使逻辑函数产生竞争冒险的乘积项。也可采用增加冗余

项方法。

选择消除险象的方法应根据具体情况而定。

组合逻辑电路的险象是一个重要的实际问题。当设计出一个组合电路,安装

后应首先进行静态测试,也就是用逻辑开关按真值表依次改变输入量,验证其逻

辑功能。然后再进行动态测试,观察是否存在冒险。如果电路存在险象,但不影

响下一级电路的正常工作,就不必采取消除险象的措施;如果影响下一级电路的

正常工作,就要分析险象的原因,然后根据不同的情况采取措施加以消除。

五、实验内容

实现函数F=AB+BCD+ACD,并假定,输入只有原变量即无反变量入。

1、画出逻辑图,使易于观察电路的竞争冒险现象。

2、列出真值表。

3、静态测试,即按真值表验证其逻辑功能。

4、观察变量 A 变化过程中的险象:即取B=C=D=1,得F=A+A,A 改接函数

发生器的连续脉冲源,使工作频率尽可能高。观察是否出现险象,如有,请测出

毛刺的幅度和宽度(中值宽度)。

5、使 F 再经过一级反相器,检查险象是否影响下一级电路的正常工作?

6、在 F 端并接一只330PF 电容,还会影响下一级电路的正常工作吗?

7、分别观察变量B、D 变化过程中产生的险象。

8、用加冗余项法消除 A 变化过程中产生的险象。此时允许使用74LS20(二4输入与

非门)

六、实验报告

1、画出逻辑图,记录静态验证结果。

2、写出实验观察冒险现象的方法、步骤、记录现象的波形,叙述所采用的消除现象的

方法,记录实验结果,并加以总结。

模电仿真实验 共射极单管放大器

仿真实验报告册 仿真实验课程名称:模拟电子技术实验仿真仿真实验项目名称:共射极单管放大器 仿真类型(填■):(基础■、综合□、设计□) 院系:专业班级: 姓名:学号: 指导老师:完成时间: 成绩:

一、实验目的 (1)掌握放大器静态工作点的调试方法,熟悉静态工作点对放大器性能的影响。 (2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 (3)熟悉低频电子线路实验设备,进一步掌握常用电子仪器的使用方法。 二、实验设备及材料 函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。 三、实验原理 电阻分压式共射极单管放大器电路如图所示。它的偏置电路采用(R W +R 1)和R 2组成的分压电路,发射极接有电阻R 4(R E ),稳定放大器的静态工作点。在放大器的输入端加入输入微小的正弦信号U i ,经过放大在输出端即有与U i 相位相反,幅值被放大了的输出信号U o ,从而实现了电压放大。 在图电路中,当流过偏置电阻R 1和R 2的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式进行估算(其中U CC 为电源电压): CC 21W 2 BQ ≈ U R R R R U ++ (3-2-1) C 4 BE B EQ ≈I R U U I -= (3-2-2) )(43C CC CEQ R R I U U +=- (3-2-3) 电压放大倍数 be L 3u ||=r R R β A - (3-2-4) 输入电阻 be 21W i ||||)(r R R R R += (3-2-5) 图 共射极单管放大器

模电仿真实验报告。

模拟电路仿真实验报告 张斌杰生物医学工程141班 MUltiSim软件使用 一、实验目的 1、掌握MUltiSim软件的基本操作和分析方法。 二、实验内容 1、场效应管放大电路设计与仿真 2、仪器放大器设计与仿真 3、逻辑电平信号检测电路设计与仿真 4、三极管Beta值分选电路设计与仿真 5、宽带放大电路设计与仿真 三、MUItiSim软件介绍 MUItiSim是美国国家仪器(NI)有限公司推出的以WindOWS为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。工程师们可以使用MUItiSinl交互式地搭建电路原理图,并对电路进行仿真。MUltiSiIn提炼了SPICE 仿真的复杂内容,这样工程师无需懂得深入的SPlCE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过MUItiSiIn和,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到和测试这样一个完整的综合设计流程。 实验名称:

仪器放大器设计与仿真 二、实验目的 1、 掌握仪器放大器的设计方法 2、 理解仪器放大器对共模信号的抑制能力 3、 熟悉仪器放大器的调试功能 4、 掌握虚拟仪器库中关于测试模拟电路仪器的使用方法,如示波器,毫伏 表信 号发生器等虚拟仪器的使用 三、设计实验电路图: 四、测量实验结果: 出为差模放大为399mvo 五、实验心得: 应用MUIti S im 首先要准备好器件的PSPiCe 模型,这是最重要的,没有这个 东西免谈,当然SPiCe 高手除外。下面就可以利用MUItiSinl 的元件向导功 能制作 差模分别输入信号InW 第二条线与第三条线: 共模输入2mv 的的电压,输出为2mv 的电压。 第一条线输

数字电路仿真实验报告

数字逻辑与CPU 仿真实验报告 姓名: 班级: 学号:

仿真实验 摘要:Multisim是Interactive Image Technologies公司推出的以Windows为基础的仿真工具,具有丰富的仿真分析能力。本次仿真实验便是基于Multisim软件平台对数字逻辑电路的深入研究,包括了对组合逻辑电路、时序逻辑电路中各集成元件的功能仿真与验证、对各电路的功能分析以及自行设计等等。 一、组合逻辑电路的分析与设计 1、实验目的 (1)掌握用逻辑转换器进行逻辑电路分析与设计的方法。 (2)熟悉数字逻辑功能的显示方法以及单刀双掷开关的应用。 (3)熟悉字信号发生器、逻辑分析仪的使用方法。 2、实验内容和步骤 (1)采用逻辑分析仪进行四舍五入电路的设计 ①运行Multisim,新建一个电路文件,保存为四舍五入电路设计。 ②在仪表工具栏中跳出逻辑变换器XLC1。 图1-1 逻辑变换器以及其面板 ③双击图标XLC1,其出现面板如图1-1所示 ④依次点击输入变量,并分别列出实现四舍五入功能所对应的输出状态(点击输出依 次得到0、1、x状态)。 ⑤点击右侧不同的按钮,得到输出变量与输入变量之间的函数关系式、简化的表达式、 电路图及非门实现的逻辑电路。 ⑥记录不同的转换结果。

(2)分析图1-2所示代码转换电路的逻辑功能 ①运行Multisim,新建一个电路文件,保存为代码转换电路。 ②从元器件库中选取所需元器件,放置在电路工作区。 ?从TTL工具栏选取74LS83D放置在电路图编辑窗口中。 ?从Source库取电源Vcc和数字地。 ?从Indictors库选取字符显示器。 ?从Basic库Switch按钮选取单刀双掷开关SPD1,双击开关,开关的键盘控制设 置改为A。后面同理,分别改为B、C、D。 图1-2 代码转换电路 ③将元件连接成图1-2所示的电路。 ④闭合仿真开关,分别按键盘A、B、C、D改变输入变量状态,将显示器件的结果填 入表1-1中。 ⑤说明该电路的逻辑功能。 表1-1 代码转换电路输入输出对应表

数电仿真实验报告

数电仿真Multisim 实 验 报 告 班级: 学号:

姓名: 学院: 实验一组合逻辑电路设计与分析 一、实验目的 1、掌握组合逻辑电路的特点 2、利用逻辑转换仪对组合逻辑电路进行分析与设计 二、实验原理 组合逻辑电路是一种重要的数字逻辑电路:特点是任何时候的输出仅仅取决于同一时刻的输入信号的取值组合。 根据电路确定功能,是分析组合逻辑电路的过程,其步骤如下:组合逻辑电路→推导→逻辑表达式→化简→最简表达式→列表→真值表→分析→确定电路功能。 根据要求求解电路,是设计组合逻辑电路的过程,其步骤如下:问题提出→分析→真值表→归纳→逻辑表达式→化简变换→逻辑图。 逻辑转换仪是Multisim中常用的数字逻辑电路分析和设计仪器。 三、仿真例题 1、利用逻辑转换仪对已知逻辑电路进行分析 电路图如下: 图待分析逻辑电路 分析结果如下:

图逻辑分析仪输出结果 2、根据要求利用逻辑转换仪进行逻辑电路设计 问题:有一火灾报警系统,设有烟感、温感和紫外线三种类型的火灾探测器。为了防止误报警,只有当其中的两种或两种以上的探测器发出火灾探测信号时,报警系统才产生报警控制信号,试设计报警控制信号的电路。 利用逻辑分析仪分析: 图经分析得到的真值表和表达式 则可以得到如下电路图:

A B C 14 13 10 912 11 8 图 最终得到的逻辑电路图 四、思考题 1、设计一个四人表决电路,即如果3人或3人以上同意,则通过;否则被否决。用与非门实现。 解:用ABCD 分别表示四人的表决结果,1表示同意,0表示不同意。则利用逻辑分析仪可以输入如下真值表,并得到如下表达式: L=ACD+ABD+ABC+BCD 图 逻辑分析仪得到的真值表和表达式 得到如下电路图:

数电仿真实验报告

数字电子技术仿真 实验报告 班级: 姓名: 学号:

实验一组合逻辑电路设计与分析 一、实验目的 1.掌握组合逻辑电路的特点; 2.利用逻辑转换仪对组合逻辑电路进行分析与设计。 二、实验原理 组合逻辑电路是一种重要的、也是基本的数字逻辑电路,其特点是:任意时刻电路的输出仅取决于同一时刻输入信号的取值组合。 对于给定的逻辑电路图,我们可以先由此推导出逻辑表达式,化简后,由所得最简表达式列出真值表,在此基础上分析确定电路的功能,这也即是逻辑电路的分析过程。 对于组合逻辑电路的设计,一般遵循下面原则,由所给题目抽象出便于分析设计的问题,通过这些问题,分析推导出真值表,由此归纳出其逻辑表达式,再对其化简变换,最终得到所需逻辑图,完成了组合逻辑电路的设计过程。 逻辑转换仪是在Multisim软件中常用的数字逻辑电路设计和分析的仪器,使用方便、简洁。 三、实验电路及步骤 1.利用逻辑转换仪对已知逻辑电路进行分析。 (1)按图1-1连接电路。 图1-1 待分析的逻辑电路 (2)通过逻辑转换仪,得到下图1-2所示结果。 由图可看到,所得表达式为:输出为Y, D'+ABCD CD'+ABC' AB' + D C' BCD'+AB' A' + D BC' A'+ CD B' D'+A' C' B' A' Y

图1-5 经分析得到的真值表和表达式 (3)分析电路。观察真值表,我们发现:当输入变量A、B、C、D中1的个数为奇数时,输出为0;当其为偶数时,输出为1。因此,我们说,这是一个四输入的奇偶校验电路。 2.根据要求,利用逻辑转换仪进行逻辑电路的设计。 问题提出:有一火灾报警系统,设有烟感、温感和紫外线三种类型不同的火灾推测器。为了防止误报警,只有当其中有两种或两种以上的探测器发出火灾探测信号时,报警系统才会产生报警控制信号,试设计报警控制信号的电路。 具体步骤如下: (1)分析问题:探测器发出的火灾探测信号有两种情况,一是有火灾报警(可用“1”表示),一是没有火灾报警(可用“0”来表示),当有两种或两种以上报警器发出报警时,我们定义此时确有警报情况(用“1”表示),其余以“0”表示。由此,借助于逻辑转换仪面板,我们绘出如图1-3所示真值表。 图1-3 经分析得到的真值表

模电仿真实验1

实验1:EWB仿真软件练习 ——晶体三极管放大电路特性研究 一、实验内容 1. 创建如图1.1所示的实验电路,并为元器件标识,参数设置。 2. 测量静态工作点I BQ、I CQ、U CEQ,用示波器测量电压放大倍数U A,用波特图仪测量频率特性,测量通频带BW。 3. 调节Rp1、Rp2 ,用示波器观察因工作点的改变而引起的输出波形失真。重新调节Rp1、Rp2恢复原值,使波形失真消除。 4.利用参数扫描功能,分析Co从0.1μF到100μF变化时对f1的影响。 二、仿真实验 1. 创建电路, 给电路中的全部元器件按图要求标识,参数设置,然后单击Circuit/Schematic Options出现对话框,在“Display”选项框内,勾选“Show Notes”,这时EWB 自动给各节点编号,并显示在电路图上。 图1.1 晶体三极管放大电路特性研究实验电路 2. 给虚拟仪器设置参数 电压表 Mode:DC Resistance:100MΩ(考虑三级管输入电阻较高,为减小误差取高内阻)

电流表 Mode:DC Resistance:取默认值1nΩ 函数发生器 波形:正弦波 Frequency:1KHz Duty cycle:50% Amplitude:50mV Offset:0 示波器 Time base:0.50ms/div “X/T”显示方式 Channel A:50mV/div y position:0.00 “AC”工作方式 Channel B:500mV/div y position:0.00 “AC”工作方式 Trigger:“Auto”方式 Channel A 输入线设为黑色,Channel B输入线设为红色,则输入信号波形为黑色,输出信号波形为红色。 波特图仪 幅频特性 Vertical: log F:60dB I:0dB Horizontal: log F:1GHz I:1Hz 相频特性 Vertical: log F:360度 I: -360度 Horizontal: log F: 1GHz I: 1Hz 3. 单击“O/I”开关,运行电路,再单击“Parse”按钮,暂停运行。 ⑴. 从电压表、电流表读出静态工作点的值为: I B=19.76μA I C=2.064mA V CE=V C-V E=9.940V-1.102V=8.838V ⑵. 双击示波器图标,打开示波器面板,单击“Expand“扩展面板,观察到波形如图1.2,拖拽读数指针,测得: U A=V OP—P / V IP—P =-1.3674V / 98.196mV=-13.9 图1.2 输入输出电压波形

数电仿真实验报告

实验一:组合逻辑电路设计与分析 一、实验目的 (1)掌握组合逻辑电路的特点; (2)利用组合逻辑转换仪对组合逻辑电路进行分析。 二、实验原理 组合逻辑电路是一种重要的数字逻辑电路:特点是任何时刻的输出仅仅取决于同一时刻的输入信号的取值组合。根据电路的特定功能,分析组合逻辑电路的过程。 三、实验电路及步骤 (1)利用逻辑转换仪对已知电路进行分析 实验连接图如下: U1A 74LS136D U1B 74LS136D U1C 74LS136D U2A 74LS04D U2B 74LS04D U2C 74LS04D XLC1 A B 真值表和逻辑表达式如下: (2)根据要求利用逻辑转换仪进行逻辑电路分析。 问题的提出:火灾报警器只有在烟感、温感和紫外线三种不同类型的火灾探测器中两种或两种以上的探测器发出火灾探测信号时,报警系统才产生报警控制信号。

四、思考题 (1)设计一个四人表决电路。如果3人或者3人以上同意,则通过;反之,则被否决。用与非门实现。 (2)利用逻辑转换仪对下图所示逻辑电路进行分析 五、实验体会

实验二:编码器、译码器电路仿真实验 一、 实验目的 (1)掌握编码器、译码器的工作原理。 (2)常见编码器、译码器的作用。 二、 实验原理 数字信号不仅可以用来表示数,还可以用来表示各种指令和信息。通过编码和译码来实现。 (1)编码是指在选定的一系列二进制数码中,赋予每个二进制数码以某一固定含义。能完成编码功能的电路统称为编码器。 (2)译码是编码的逆过程,将输入的每个二进制代码赋予的含义翻译出来,给出相应的输出信号。 U1 74LS148D A 0 9 A 17A 26G S 14 D 313D 41D 52D 212D 111D 0 10 D 74D 63 E I 5E O 15 U2 74LS138D Y 0 15 Y 114Y 213Y 312Y 411Y 510Y 69Y 77A 1 B 2 C 3G 1 6~G 2A 4~G 2B 5 图2-1 编码器74LS148D 和译码器74LS138D 三、实验电路 (1)8-3线优先编码器 实验电路图如下:

proteus数电仿真电路应用

p r o t e u s数电仿真电路 应用 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

实验9 555定时器应用电路设计 一、实验目的: 1.了解555定时器的工作原理。 2.学会分析555电路所构成的几种应用电路工作原理。 3.熟悉掌握EDA软件工具Multisim的设计仿真测试应用。 二、实验设备及材料: 仿真计算机及软件Proteus 。 附:集成电路555管脚排列图 三、实验原理: 555电路是一种常见的集模拟与数字功能于一体的集成电路。只要适当配接少量 的元件,即可构成时基振荡、单稳触发等脉冲产生和变换的电路,其内部原理图如图 1所示,其中(1)脚接地,(2)脚触发输入,(3)脚输出,(4)脚复位,(5)脚控制电压, (6)脚阈值输入,(7)脚放电端,(8)脚电源。 图1 555集成电路功能如表1所示。 表1: 注:1.(5)脚通过小电容接地。 2.*栏对CMOS 555电路略有不同。 图2是555振荡电路,从理论上我们可以得出: 振荡周期: C R R T ?+=)2(7.021 (1) 高电平宽度: C R R t W ?+=)(7.021 ..........................…….....2 占空比: q =2 1212R R R R ++............................................…......3 图2 图3 图3为555单稳触发电路,我们可以得出(3)脚输出高电平宽度为: RC t W 1.1= (4) 四、计算机仿真实验内容及步骤、结果: 1. 时基振荡发生器: (1). 单击电子仿真软Proteus 基本界面左侧左列真实元件工具条按钮,然后 点击图4中所示的P 按钮,会弹出图5所示的对话框,在对话框keywords 中输入 ne555就可以找到555器件了 图4 图5 低* × × 低 导通

模拟电子线路multisim仿真实验报告

MULTISIM 仿真实验报告

实验一单级放大电路 一、实验目的 1、熟悉multisim软件的使用方法 2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。 3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共 射级电路的特性。 二、虚拟实验仪器及器材 双踪示波器信号发生器交流毫伏表数字万用表 三、实验步骤 1.仿真电路图 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 1 R7 5.1kΩ 9 XMM1 6 E级对地电压25.静态数据仿真

仿真数据(对地数据)单位;V计算数据单位;V 基级集电极发射级Vbe Vce RP 2.834 6.126 2.2040.63 3.92210k 26.动态仿真一 1.单击仪表工具栏的第四个,放置如图,并连接电路。 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 R7 5.1kΩ XSC1 A B Ext Trig + + _ _+_ 6 1 9

2.双击示波器,得到如下波形 5.他们的相位相差180度。 27.动态仿真二 1.删除负载电阻R6 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 XSC1 A B Ext Trig + + _ _+_ 6 1 9 2.重启仿真。

电路仿真实验报告

本科实验报告 实验名称:电路仿真 实验1 叠加定理的验证 1.原理图编辑: 分别调出接地符、电阻R1、R2、R3、R4,直流电压源、直流电流源,电流表电压表(Group:Indicators, Family:VOLTMETER 或

AMMETER)注意电流表和电压表的参考方向),并按上图连接; 2. 设置电路参数: 电阻R1=R2=R3=R4=1Ω,直流电压源V1为12V,直流电流源 I1为10A。 3.实验步骤: 1)、点击运行按钮记录电压表电流表的值U1和I1; 2)、点击停止按钮记录,将直流电压源的电压值设置为0V,再次点击运行按钮记录电压表电流表的值U2和I2; 3)、点击停止按钮记录,将直流电压源的电压值设置为12V,将直流电流源的电流值设置为0A,再次点击运行按钮记录电压表电流表的值U3和I3; 4.根据叠加电路分析原理,每一元件的电流或电压可以看成是每一个独立源单独作用于电路时,在该元件上产生的电流或电压的代数和。 所以,正常情况下应有U1=U2+U3,I1=I2+I3; 经实验仿真: 当电压源和电流源共同作用时,U1=-1.6V I1=6.8A. 当电压源短路即设为0V,电流源作用时,U2=-4V I2=2A 当电压源作用,电流源断路即设为0A时,U3=2.4V I3=4.8A

所以有U1=U2+U3=-4+2.4=-1.6V I1=I2+I3=2+4.8=6.8A 验证了原理 实验2 并联谐振电路仿真 2.原理图编辑: 分别调出接地符、电阻R1、R2,电容C1,电感L1,信号源V1,按上图连接并修改按照例如修改电路的网络标号; 3.设置电路参数: 电阻R1=10Ω,电阻R2=2KΩ,电感L1=2.5mH,电容C1=40uF。信号源V1设置为AC=5v,Voff=0,Freqence=500Hz。 4.分析参数设置: AC分析:频率范围1HZ—100MHZ,纵坐标为10倍频程,扫描点数为10,观察输出节点为Vout响应。 TRAN分析:分析5个周期输出节点为Vout的时域响应。 实验结果: 要求将实验分析的数据保存 (包括图形和数据),并验证结果是否正确,最后提交实验报告时需要将实验结果附在实验报告后。 根据并联谐振电路原理,谐振时节点out电压最大且谐振频率为w0=1/LC=1000 10,f0=w0/2 =503.29Hz 谐振时节点out电压 * 理论值由分压公式得u=2000/(2000+10)*5=4.9751V.

模电实验报告

模拟电子技术基础实验报告 姓名:蒋钊哲 学号:2014300446 日期:2015.12.21

实验1:单极共射放大器 实验目的: 对于单极共射放大电路,进行静态工作点与输入电阻输出电阻的测量。 实验原理: 静态工作点的测量是指在接通电源电压后放大器输入端不加信号(通过隔直电容将输入端接地)时,测量晶体管集电极电流I CQ和管压降V CEQ。其中集电极电流有两种测量方法。 直接法:将万用表传到集电极回路中。 间接法:用万用表先测出R C两端的电压,再求出R C两端的压降,根据已知的R E的阻值,计算I CQ。 输出波底失真为饱和失真,输出波顶失真为截止失真。 电压放大倍数即输出电压与输入电压之比。 输入电阻是从输入端看进去的等效电阻,输入电阻一般用间接法进行测量。 输出电阻是从输出端看进去的等效电阻,输出电阻也用间接法进行测量。 实验电路:

实验仪器: (1)双路直流稳压电源一台。 (2)函数信号发生器一台。 (3)示波器一台。 (4)毫伏表一台。 (5)万用表一台。 (6)三极管一个。 (7)电阻各种组织若干。 (8)电解电容10uF两个,100uF一个。 (9)模拟电路试验箱一个。

实验结果: 经软件模拟与实验测试,在误差允许范围内,结果基本一致。

实验2:共射放大器的幅频相频 实验目的: 测量放大电路的频率特性。 实验原理: 放大器的实际信号是由许多频率不同的谐波组成的,只有当放大器对不同频率的放大能力相同时,放大的信号才不失真。但实际上,放大器的交流放大电路含有耦合电容、旁路电容、分布电容和晶体管极间电容等电抗原件,即使得放大倍数与信号的频率有关,此关系为频率特性。 放大器的幅频特性是指放大器的电压放大倍数与输入信号的频率之间的关系。在一端频率范围内,曲线平坦,放大倍数基本不变,叫作中频区。在中频段以外的频率放大倍数都会变化,放大倍数左右下降到0.707倍时,对应的低频和高频频率分别对应下限频率和上限频率。 通频带为: f BW=f H-f L 实验电路:

模电PSPICE仿真实验报告

实验一晶体三极管共射放大电路 实验目的 1、 学习共射放大电路的参数选取方法。 2、 学习放大电路静态工作点的测量与调整,了解静态工作点对放大电路性能的影响。 3、 学习放大电路的电压放大倍数和最大不失真输出电压的分析方法 4、 学习放大电路数输入、输出电阻的测试方法以及频率特性的分析方法。 、实验内容 确定并调整放大电路的静态工作点。 为了稳定静态工作点,必须满足的两个条件 条件一: 条件二: I 1>>I BQ V>>V BE I I =(5~10)I B V B =3~5V R E 由 V B V BE V B 再选定 I EQ I CQ 计算出Re R b2 I I ,由 V B V B I I (5~10)I B Q 计算出 m - Vcc V B R b1 再由 V CC V B (5~10)I BQ 计算出 Ri

Time 从输出波形可以看出没有出现失真,故静态工作点设置的合适。 改变电路参数: V1 12Vdc Rc 此时得到波形为: 400mV 200mV 0V -200mV 450us 500us 75k 3k 4.372V R2 50k Q1 Q2N2222 Re 2.2k C2 T 一 6.984V 10uF 彳Ce 100uF

2.0 V -4.0V 0s 50us 100us 口V(C2:2) V(C1:1) 150us 200us 250us 300us 350us 400us 450us 500us Time 此时出现饱和失真。 当RL开路时(设RL=1MEG Q)时: V1 输出波形为:

4.0V -4.0V 出现饱和失真 二、实验心得 这个实验我做了很长时间,主要是耗在静态工作点的调试上面。按照估计算出的Rb1、Rb2、Re的值带入电路进行分析时,电路出现失真,根据其失真的情况需要不停的调 节Rb1、Rb2和Re的值是电路输出不失真。 实验二差分放大电路 -、实验目的 1、学习差分放大电路的设计方法 2、学习差分放大电路静态工作的测试和调整方法 3、学习差分放大电路差模和共模性能指标的测试方法 二、实验内容 1. 测量差分放大电路的静态工作点,并调整到合适的数值。

实验一 典型环节的电路模拟与数字仿真实验

实验一典型环节的电路模拟与数字仿真实验 一实验目的 通过实验熟悉各种典型环节传递函数及其特性,掌握电路模拟和数字仿真研究方法。 二实验内容 1.设计各种典型环节的模拟电路。 2.编制获得各种典型环节阶跃特性的数字仿真程序。 3.完成各种典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。 4.运行所编制的程序,完成典型环节阶跃特性的数字仿真研究,并与电路模拟研究的结果作比较。 三实验步骤 1.熟悉实验设备,设计并连接各种典型环节的模拟电路; 2.利用实验设备完成各典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响; 3.用MATLAB编写计算各典型环节阶跃特性的数字仿真研究,并与电路模拟测试结果作比较。分析实验结果,完成实验报告。 四实验结果 1.积分环节模拟电路、阶跃响应

仿真结果: 2.比例积分环节模拟电路、阶跃响应 仿真结果:

3.比例微分环节模拟电路、阶跃响应 仿真结果: 4.惯性环节模拟电路、阶跃响应

仿真结果: 5.实验结果分析: 积分环节的传递函数为G=1/Ts(T为积分时间常数),惯性环节的传递函数为G=1/(Ts+1)(T为惯性环节时间常数)。 当时间常数T趋近于无穷小,惯性环节可视为比例环节, 当时间常数T趋近于无穷大,惯性环节可视为积分环节。

实验二典型系统动态性能和稳定性分析的电路模拟与数 字仿真研究 一实验目的 1.学习和掌握动态性能指标的测试方法。 2.研究典型系统参数对系统动态性能和稳定性的影响。 二实验内容 1.观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。 三实验步骤 1.熟悉实验设备,设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路; 2.利用实验设备观测该二阶系统模拟电路的阶跃特性,并测出其超调量和调节时间; 3.二阶系统模拟电路的参数观测参数对系统的动态性能的影响; 4.分析结果,完成实验报告。 四实验结果 典型二阶系统 仿真结果:1)过阻尼

模电仿真实验报告。

模电仿真实验报告。

————————————————————————————————作者:————————————————————————————————日期:

模拟电路仿真实验报告 张斌杰生物医学工程141班学号6103414032 Multisim软件使用 一、实验目的 1、掌握Multisim软件的基本操作和分析方法。 二、实验内容 1、场效应管放大电路设计与仿真 2、仪器放大器设计与仿真 3、逻辑电平信号检测电路设计与仿真 4、三极管Beta值分选电路设计与仿真 5、宽带放大电路设计与仿真 三、Multisim软件介绍 Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。工程师们可以使用Multisim交互式地搭建电路原理图,并对电路进行仿真。Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。 一、实验名称: 仪器放大器设计与仿真 二、实验目的 1、掌握仪器放大器的设计方法 2、理解仪器放大器对共模信号的抑制能力 3、熟悉仪器放大器的调试功能 4、掌握虚拟仪器库中关于测试模拟电路仪器的使用方法,如示波器,毫伏表信 号发生器等虚拟仪器的使用 三、设计实验电路图:

电路仿真实验报告

实验1 叠加定理的验证 一、电路图 二、实验步骤 1.原理图编辑: 分别调出接地符、电阻R1、R2、R3、R4,直流电压源、直流电流源,电流表电压表(注意电流表和电压表的参考方向),并按上图连接; 2.设置电路参数: 电阻R1=R2=R3=R4=1Ω,直流电压源V1为12V,直流电流源 I1为 10A。 3.实验步骤:

1)、点击运行按钮记录电压表电流表的值U1和I1; 2)、点击停止按钮记录,将直流电压源的电压值设置为0V,再次点击运行按钮记录电压表电流表的值U2和I2; 3)、点击停止按钮记录,将直流电压源的电压值设置为12V,将直流电流源的电流值设置为0A,再次点击运行按钮记录电压表电流表的值U3和I3; 根据电路分析原理,解释三者是什么关系?并在实验报告中验证原理。 三、实验数据: 电压电流U/V I/A 第一组12V 10A 6.800 -1.600 第二组0V 10A 2.000 -4.000 第三组12V 0A 4.800 2.400 四、实验数据处理: U2 + U3 = 2.000V + 4.800V = 6.800V = U3 I2 + I3 = (-4.000A) + 2.400A= -1.600A = I1 五、实验结论: 由电路分析叠加原理知:由线性电路、线性受控源及独立源组成的电路中,每一元件的电流或电压可以看成是每一个独立源单独作用

时,在该元件上产生的的电流或电压的代数和。 本次实验中,第一组各数据等于第二组与第三组各对应实验数据之和,与叠加原理吻合,验证了叠加原理的正确性,即每一元件的电流或电压可以看成是每一个独立源单独作用时,在该元件上产生的的电流或电压的代数和。

数电仿真实验

实验一:数字逻辑电路创建 1、创建数字逻辑电路 (1)在元器件库中单击TTL,再单击74STD,选中非门7404N芯片,单击OK确认。这时会出现下图所示窗口,给窗口表示7404N这个芯片里有六个功能完全相同的非门,可以选用Section A 、B、C 、D、E、F六个非门中的任何一个。单击任何一个即可选定一个非门,若不用时单击Cancel。 (2)同理,在元器件库中单击TTL,再单击74STD,选中或门7432N和非门7400N芯片。 (3)在仪器库中单击Logic converter(逻辑转换仪),这时会出现一个仪器,拖到指定位置点击即可。 (4)输入信号接逻辑转换仪的输入端A,B,C,…,输出信号接逻辑转换仪的输出端—(OUT)。连接电路如下图所示。

2、用逻辑转换仪得到电路真值表 双击逻辑转换仪,再点击,则电路转 换到真值表,得到电路真值表如下图所示。 3、用逻辑转换仪对电路直接进行逻辑函数的化简以得出最简表达式 表转换到最简表达式,得到电路的最简表达式。

4. 用逻辑转换仪得到与非门构成的电路 双击逻辑转换仪,再点击,则表达式转换 到与非门,得到用与非门构成的电路。如下图所示。

实验二:用7490N构成一个8421BCD码十进制计数器 一:原理 计数输入端INA接外来时钟,将计数输入端INB和QA相连,QD为高位输出,QA 为低位输出,则构成8421BCD码计数器。由7490N的功能可知:R01、R02两个置零输入端同时接高电平1(VCC)时,计数器清零;R91、R92两个置9输入端同时接高电平1(VCC)时,计数器置9。构成十进制计数器时,将R01、R02、R91、R92全接低电平。 二:创建电路 1、在元器件库中单击TTL,再单击74STD,选中计数器7490N。 2、取方波信号作为时钟计数输入。双击信号发生器图标,设置电压V2为5V,频率为 0.1kHz。 3、在元器件库中单击显示器件选中带译码的七段LED数码管U4,管脚4接QD,管 脚3接QC,管脚2接QB,管脚1接QA。 7490N构成的8421BCD码十进制计数器电路如下图: 三:观测输出 1、启动仿真开关,数码管循环显示0,1,2,3,4,5,6,7,8,9。调整计数脉冲频 率,可改变数码管显示速度。 2、也可以用逻辑分析仪测试电路的输出波形来验证分析结果。逻辑分析仪测试的电路 的输出波形下图所示,

电力电子仿真仿真实验报告

目录 实验一:常用电力电子器件特性测试 ......................... 错误!未定义书签。(一)实验目的:.................................... 错误!未定义书签。掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性;错误!未定义书签。 掌握各器件的参数设置方法,以及对触发信号的要求。 ....... 错误!未定义书签。(二)实验原理......................................... 错误!未定义书签。(三)实验内容......................................... 错误!未定义书签。(四)实验过程与结果分析 ............................... 错误!未定义书签。 1.仿真系统 .......................................... 错误!未定义书签。 2.仿真参数 .......................................... 错误!未定义书签。 3.仿真波形与分析 .................................... 错误!未定义书签。 4.结论.............................................. 错误!未定义书签。实验二:可控整流电路 ..................................... 错误!未定义书签。(一)实验目的......................................... 错误!未定义书签。(二)实验原理......................................... 错误!未定义书签。(三)实验内容......................................... 错误!未定义书签。(四)实验过程与结果分析 ............................... 错误!未定义书签。 1.单相桥式全控整流电路仿真系统,下面先以触发角为0度,负载为纯电阻负载为例................................................. 错误!未定义书签。

模拟电子线路multisim仿真实验报告

MULTISIM 仿真实验报告 实验一单级放大电路 一、实验目的 1、熟悉multisim软件的使用方法 2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。 3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了

解共射级电路的特性。 二、虚拟实验仪器及器材 双踪示波器信号发生器交流毫伏表数字万用表 三、实验步骤 1.仿真电路图 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 1 R7 5.1kΩ 9 XMM1 6 E级对地电压25.静态数据仿真

仿真数据(对地数据)单位;V计算数据单位;V 基级集电极发射级Vbe Vce RP 10k 26.动态仿真一 1.单击仪表工具栏的第四个,放置如图,并连接电路。 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 R7 5.1kΩ XSC1 A B Ext Trig + + _ _+_ 6 1 9

2.双击示波器,得到如下波形 5.他们的相位相差180度。 27.动态仿真二 1.删除负载电阻R6 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 XSC1 A B Ext Trig + + _ _+_ 6 1 9 2.重启仿真。

数电仿真实验报告

实验一 :组合逻辑电路设计与分析 一、 实验目的 (1) 掌握组合逻辑电路的特点; (2) 利用组合逻辑转换仪对组合逻辑电路进行分析。 二、 实验原理 组合逻辑电路是一种重要的数字逻辑电路:特点是任何时刻的输出仅仅取决于同一时刻的输入信号的取值组合。根据电路的特定功能,分析组合逻辑电路的过程。 三、 实验电路及步骤 (1) 利用逻辑转换仪对已知电路进行分析 实验连接图如下: U1A 74LS136D U1B 74LS136D U1C 74LS136D U2A 74LS04D U2B 74LS04D U2C 74LS04D XLC1 A B 真值表和逻辑表达式如下: (2) 根据要求利用逻辑转换仪进行逻辑电路分析。 问题的提出:火灾报警器只有在烟感、温感和紫外线三种不同类型的火灾探测器中两种或两种以上的探测器发出火灾探测信号时,报警系统才产生报警控制信号。

四、 思考题 (1) 设计一个四人表决电路。如果3人或者3人以上同意,则通过;反之,则被否 决。用与非门实现。 (2) 利用逻辑转换仪对下图所示逻辑电路进行分析 U1A 74LS04D U2A 74LS00D U1B 74LS04D U1C 74LS04D U2B 74LS00D U3A 74LS10D U3B 74LS10D 2 4 XLC1 A B 1 3 5 6 7 8 9 10 五、实验体会

实验二:编码器、译码器电路仿真实验 一、 实验目的 (1)掌握编码器、译码器的工作原理。 (2)常见编码器、译码器的作用。 二、 实验原理 数字信号不仅可以用来表示数,还可以用来表示各种指令和信息。通过编码和译码来实现。 (1)编码是指在选定的一系列二进制数码中,赋予每个二进制数码以某一固定含义。能完成编码功能的电路统称为编码器。 (2)译码是编码的逆过程,将输入的每个二进制代码赋予的含义翻译出来,给出相应的输出信号。 U1 74LS148D A 0 9 A 17A 26G S 14 D 313D 41D 52D 212D 111D 0 10 D 74D 63 E I 5E O 15 U2 74LS138D Y 0 15 Y 114Y 213Y 312Y 411Y 510Y 69Y 77A 1 B 2 C 3G 1 6~G 2A 4~G 2B 5 图2-1 编码器74LS148D 和译码器74LS138D 三、实验电路 (1)8-3线优先编码器 实验电路图如下:

模电实验报告直流稳压电源设计.

模拟电路仿真实验 实验报告 班级: 学号: 姓名:

集成直流稳压电源的设计 一、实验目的 1. 学习用变压器,整流二极管,滤波电容及集成稳压器设计直流稳压电源。 2. 掌握直流稳压电路的调试及主要技术指标的测试方法。 3. 利用仿真实验,深入理解整流滤波的原理。 二、设计指标与要求 设计指标:设计两个电路: (1)电路一:同时输出V 12±电压,A I o 8.0max =。 (2)电路二:V V 9~3o ++=连续可调,A I 8.0max o =。 (3)两者的性能指标:mV V p 5op ≤?-。,3 105-?≤U S 。 三、实验原理与分析 直流稳压电源的基本原理 直流稳压电源一般由电源变压器T 、整流滤波电路及稳压电路所组成。 基本框图如下。各部分作用: 1. 电源变压器T 的作用是将220V 的交流电压变换成整流滤波电路所需要的交流电压U i 。 变压器副边与原边的功率比为P 2/P 1=n ,式中n 是变压器的效率。 2. 整流电路:整流电路将交流电压U i 变换成脉动的直流电压。再经滤波电路滤除较大的波 纹成分,输出波纹较小的直流电压U 1。常用的整流滤波电路有全波整流滤波、桥式整流滤波等。 3. 滤波电路: 整流 电路 U i U o 滤波 电路 稳压 电路 电源 变压器 ~ 直流稳压电源的原理框图和波形变换

各滤波电路C 满足R L -C=(3~5)T/2,式中T 为输入交流信号周期,R L 为整流滤波电路的等效负载电阻。 4. 稳压电路: 常用的稳压电路有两种形式:一是稳压管稳压电路,二是串联型稳压电路。二者的工作原理有所不同。稳压管稳压电路其工作原理是利用稳压管两端的电压稍有变化,会引起其电流有较大变化这一特点,通过调节与稳压管串联的限流电阻上的压降来达到稳定输出电压的目的。它一般适用于负载电流变化较小的场合。串联型稳压电路是利用电压串联负反馈的原理来调节输出电压的。集成稳压电源事实上是串联稳压电源的集成化。实验中为简化电路,我们选择集成稳压器(三端稳压器)作为电路的稳压部分。集成稳压器的W7800系列输出正电压5V 、6V 、9V 、12V 、15V 、18V 、24V ,输出电流为1.5A (W7800)、0.5A (W78M00)、0.1A (W78L00);W7900系列输出负电压-5V 、-6V 、-9V 、-12V 、-15V 、-18V 、-24V ,输出电流为1.5A (W7900)、0.5A (W79M00)、0.1A (W79L00)。 四、计算机仿真部分 1、半波整流电路 仿真电路图如图所示。

相关文档