文档库 最新最全的文档下载
当前位置:文档库 › Submerged Macrophyte Responses to Reduced

Submerged Macrophyte Responses to Reduced

R E S E A R C H A R T I C L E

Submerged Macrophyte Responses to Reduced Phosphorus Concentrations in Two Peri-Urban Lakes Sabine Hilt,1,2Klaus Van de Weyer,3Antje K¨o hler,4and Ingrid Chorus5

Abstract

Eutrophication of two urban temperate dimictic lakes in Berlin(Germany),smaller Schlachtensee(0.4km2)and larger Lake Tegel(3km2),caused total phosphorus(TP) concentrations up to800μg/L and a complete loss of their diverse submerged vegetation in the1960s due to poor light conditions.Phosphorus stripping of their in?ow began in the1980s and caused a pronounced decline of their epilimnetic TP concentrations,eventually leading to reduced phytoplankton biomass and turbidity.Despite increased light availability,recovery of abundance as well as species diversity of submerged macrophytes was delayed by more than a decade,especially in the smaller lake.Slow oxidization of sapropelic sediment unsuitable for macro-phyte growth,periphyton shading,herbivory,and/or lack of a viable seed bank were potential hampering factors. The present submerged vegetation,however,may already support mechanisms positively in?uencing water trans-parency such as providing habitat to enhance the ratio of piscivorous to planktivorous?sh.Characeae meadows,typ-ical for both lakes during their former mesotrophic state, so far only reoccurred in smaller Schlachtensee.Neither species composition nor abundance reversed back to the macrophyte community present in the nineteenth century. Although TP concentrations may decline further and some rare species have been detected,reassembly of this plant community will most probably not occur because many submerged macrophyte species have become rare through-out northwest Europe.

Key words:Characeae,eutrophication,lake restoration, macrophytes,phosphorus,phytoplankton,recolonization, shallow lakes,species diversity.

Introduction

Submerged macrophytes play a central role in aquatic ecosys-tems due to their numerous functions in nutrient and organic matter turnover and the provision of spatial variability,shel-ter,food,and spawning grounds(Carpenter&Lodge1986). In shallow lakes,submerged macrophytes are the key struc-ture for stabilizing the clear-water state(Scheffer et al.1993), but their importance is also increasingly recognized for deep lakes(Genkai-Kato&Carpenter2005;Sass et al.2006).The majority of shallow lakes in temperate regions lost their sub-merged vegetation during the previous century(Sand-Jensen et al.2000)and deep lakes also suffered from declines in macrophyte abundance and diversity(K¨o rner2002).A reduc-tion of the biodiversity and biomass production of submerged macrophytes not only results in habitat destruction for aquatic 1Leibniz-Institute of Freshwater Ecology and Inland Fisheries,M¨u ggelseedamm 301,12587Berlin,Germany

2Address correspondence to S.Hilt,email hilt@igb-berlin.de

3lanaplan,Lobbericher Str.5,41334Nettetal,Germany

4Senate Department for Health,Environment and Consumer Protection,Division for Water Management,Br¨u ckenstr.6,10179Berlin,Germany

5German Federal Environmental Agency,Corrensplatz1,14195Berlin,Germany

?2009Society for Ecological Restoration International

doi:10.1111/j.1526-100X.2009.00577.x animals but also in substantial changes in the food web as well as in the carbon and nutrient balance(Carpenter&Lodge 1986).

During the past10–30years,major efforts have been undertaken to improve the ecological quality of lakes by combating external nutrient loading,sometimes in combination with additional internal restoration measures(Jeppesen et al. 2005).Remediation of eutrophication is often perceived chie?y in terms of controlling phosphorus and thus biomass(van der Molen et al.1998),and most studies describing lake responses to reductions in nutrient loading have focused on nutrients and phytoplankton.To date,pronounced declines of phytoplankton biomass are increasingly being observed in response to the reduction of nutrient concentrations,and an increasing number of lakes has therefore recently become clearer.Reoligotrophication of lakes,however,was often not followed by a recolonization with submerged vegetation, indicating a delayed response(Jeppesen et al.2005).Better insight into plant responses during recovery from excessive nutrient loading is therefore important.Special attention needs to be given to the recovery of species diversity.Reestablished plant populations of poor diversity may be vulnerable to collapse(Moss et al.1996),whereas a diverse macrophyte assemblage may be inherently more stable—in the sense of a multi-species insurance policy against disturbances such as herbivory(Yachi&Loreau1999).

452Restoration Ecology Vol.18,No.S2,pp.452–461NOVEMBER2010

Phosphorus Concentrations in Two Peri-Urban Lakes

Here,we analyze how a lake restoration measure that sub-stantially reduced the external phosphorus(P)loading and in lake P concentrations affected the recovery of submerged vege-tation in two eutrophic urban lakes in Berlin(Germany).Both lakes had a high water transparency and were rich in sub-merged macrophytes during the nineteenth century but almost completely lost these when eutrophication during the late 1960s dramatically reduced their water transparency(Sukopp &Brande1996).The installation of phosphorus elimination water treatment plants(PEP)at the in?ows of both lakes in the1980s resulted in a decline in P loading by a fac-tor of40–100(Schauser et al.2006).Accompanying studies mainly focused on the response of lake nutrient concentra-tions and phytoplankton development(Gervais1991;Klein &Chorus1991;Chorus&Schlag1993;Schauser et al. 2006).Here,we report the outcomes of surveys of submerged macrophyte abundance and diversity conducted in both lakes about20years after the beginning of P load reduction and 10–15years after the response of phytoplankton to?nd out whether their macrophyte development is showing indication of recovery,that is,reversal back to the communities that prevailed during the previous mesotrophic state of the lakes. Methods

Study Sites

Schlachtensee(lat52?26.506’N,long13?12.919’E)is a small, elongated lake(Fig.1;Table1)and part of the Grunewald lake chain in the southwest of Berlin(Germany)which had been highly fed by the eutrophic River Havel since the early twentieth century.It has rather steep shorelines covered by trees and a walking path around the entire lake located within a few meters of the shore.Intensive recreational use—both by people and by their dogs—causes substantial shoreline erosion.At the beginning of the twentieth century, the lake contained an abundant aquatic?ora with,for instance, broad-leaved pondweed(Potamogeton natans),water soldier (Stratiotes aloides),and milfoil(Myriophyllum)species that totally disappeared,probably in the1960s(Machatzi&Steiof 1991).

Lake Tegel(lat52?34.748’N,long13?15.511’E)is a larger, more wind-exposed lake(Fig.2;Table1)situated in the north-west of Berlin(Germany),a densely populated area.The major in?ows are the Nordgraben and the Tegeler Flie?, and at the western edge the lake has several connections to the River Havel(Fig.2),and depending on discharge, this river acts as outlet or in?ow(Schauser&Chorus2009). Since1880,sewage?elds drained into Lake Tegel,and this caused massive eutrophication,including summer cyanobacte-ria blooms.Subsequently,a number of submerged macrophyte species disappeared,especially the dense Characeae meadows that were present when Secchi depths still ranged between 8and10m(Sukopp&Brande1996).Since the beginning of the twentieth century,shining pondweed(Potamogeton lucens),hornwort(Ceratophyllum),and Myriophyllum(mil-foil)species have dominated(Gothan1910in Sukopp unpub-lished data).Since1962,submerged macrophytes had com-pletely disappeared from Lake Tegel(Sukopp unpublished data).Also,after1965,a strong decline of the reed belt has been recorded(Sukopp&Markstein1981).As a conse-quence,the?sh community changed with a decline in pike (Esox lucius),tench(Tinca tinca),gudgeon(Gobio gobio),and weather?sh(Misgurnus fossilis),and an increase in pikeperch (Sander lucioperca)(Grosch

1978).

Figure1.Morphology of Lake Schlachtensee and distribution of submerged macrophytes in2005.

NOVEMBER2010Restoration Ecology453

Phosphorus Concentrations in Two Peri-Urban Lakes

Table1.Hydromorphological characteristics of Lake Tegel and Schlacht-ensee(from Schauser et al.2006).

Schlachtensee Lake Tegel Area(km2)0.42 3.06 Mean depth(m) 4.6 6.6 Maximum depth(m)9.616

V olume(million m3) 1.9724.6 Retention time(days)22070

Both lakes are affected by treated sewage,stormwater?ows, over?ows from the combined sewer system,and by recreation. In addition,Lake Tegel is used as a reservoir for drinking water extracted via bank?ltration,with wells surrounding three-fourths of the lakeshore,and the littoral is affected by waves from power boating.In the1970s,total phosphorus(TP) concentrations in both lakes ranged up to800μg/L.

As each lake is fed by one major in?ow,the approach to restoring these lakes was to construct water treatment plants to eliminate more than95%of the P from these in?ows.At Schlachtensee,the phosphorus elimination plant(PEP)went into operation in late1981,which reduced TP concentrations of the in?ow to8–10μg TP/L.At Lake Tegel,PEP out?ow concentrations were reduced to20μg TP/L after the plant went into operation in late1985(Figs.1&2).In Lake Tegel, internal P loading is higher due to a quite high P release rate in absolute terms when compared with Schlachtensee. Nevertheless,the internal P load will probably not delay the recovery of Lake Tegel substantially,as the release potential of P stored in the sediment is low in relation to the release rate and the short water retention time.In Schlachtensee,sediment P release will last longer than in Lake Tegel because the release potential of the sediment is higher in comparison to the release rate,and the water retention time is longer(Schauser et al. 2006;Schauser&Chorus2009).

At both lakes,measures are increasingly being taken to protect parts of the littoral zone from physical destruction by people and boats,that is,fencing and barriers against wave action.A further measure at Lake Tegel is aeration:15aerators were installed in the late1970s,originally to counteract oxygen de?ciency,which at times reached up to3m https://www.wendangku.net/doc/ab18591151.html,ter,their operation was continued in order to oxidize the substantial ammonium load from treated sewage,and since the mid-1990s they are operated only for a few weeks in summer to maintain hypolimnetic oxygen concentrations at a level well above1mg/L.In Lake Tegel,elevated nitrate concentrations resulted from the treated sewage input of ammonium,which was nitri?ed in the lake through arti?cial aeration.In1992, sewage treatment introduced a nitri?cation step.In both cases, this nitrate contributed to keeping the sediment oxidized. Nitrate loading,however,was decreased between1997and 2001due to the stepwise introduction of denitri?cation at the major wastewater treatment plant discharging into the in?ow of Lake Tegel(Schauser et al.2006).

Nutrient Concentrations and Secchi Depths

Water samples from Lake Tegel(since1984),River Havel (since1990),and Schlachtensee(since1980)were taken monthly by pumping water into pre-treated glass bottles,at both lakes from depth pro?les at intervals of1–3m.TP

and

Figure2.River Havel bypasses the lake with several connections to the lake,acting mostly as out?ow and at times as in?ow.

454Restoration Ecology NOVEMBER2010

Phosphorus Concentrations in Two Peri-Urban Lakes

nitrate–nitrogen concentrations were determined according to ISO6878and DIN-EN ISO10304-1/2(Schauser et al. 2006).For the lakes,mean monthly epilimnion concentrations were calculated from depth pro?le data.Secchi depths were recorded at minimum monthly intervals in Lake Tegel(since 1956),in the River Havel(since1955),and in Schlachtensee (since1981).

Mapping of Submerged Macrophytes

Submerged macrophytes were mapped in July,in2005for Schlachtensee,and in2007for Lake Tegel,from a boat using a bathyscope(cone-shaped device with transparent Perspex bottom)and a rake.In Schlachtensee,the complete littoral zone was investigated during a2-day survey.Species were determined following Krause(1997)for charophytes and Rothmaler(2002)and van de Weyer and Schmidt(2007) for angiosperms and mosses.In Lake Tegel,seven transects of about20m width were investigated from a boat and nine transects of the same width were mapped by diving (Fig.2).Abundance of species in Lake Tegel was estimated in three depth zones:0–1,1–2,and2–4m based on a?ve-degree scale(1:very rare;2:rare;3:common;4:frequent; and5:abundant)and maximum colonization depths were recorded.Macrophyte abundance data were transformed into so-called plant quantity using the function y=x3(y,plant quantity and x,macrophyte abundance)to re?ect the three-dimensional development of aquatic plants.This method is used to assess macrophytes in German lakes for the implementation of the Water Framework Directive of the European Community(Schaumburg et al.2004).

Results

Nutrient Concentrations and Light Availability

The TP content of both lakes decreased strongly in response to restoration:in Schlachtensee from around600μg TP/L(mean summer epilimnion concentration)in1981to20–30g TP/L between1986and1995and further to10–20μg TP/L between 1996and2005and in Lake Tegel from around700μg TP/L in 1984to30–180μg TP/L between1986and1995and further to30–50μg TP/L between1996and2005(Fig.3).TP data for the River Havel are available only since the1990s,and in this time span they showed little change,that is,summer means were about150μg TP/L from1990to2005(Fig.3). In Schlachtensee,transparency data are not available for the period before the PEP started operating in late1981. During the?rst3years after PEP installation,transparency remained low,that is,with summer(May–August)mean Sec-chi disc readings of0.5–1.2m,until1985,when transparency abruptly increased to a summer mean of2.4m(Fig.4)after phytoplankton biomass had abruptly dropped together with a switch in species composition from cyanobacterial domi-nance to much more diverse associations(Chorus in prepa-ration).In the following years,mean summer transparency increased further,ranging between3and4m from1986

to Figure3.Mean summer TP concentrations(May–August)in the epilimnion of Lake Tegel(0–8m),River Havel,and Schlachtensee

(0–5m)since

1980.

Figure4.Mean summer(May–August)Secchi depths in Lake Tegel, River Havel,and Schlachtensee,between1955and2006.

1995and between4and5m from1996to2006(Fig.4). Mean summer transparency from1985(after the sudden Secchi depth increase)to2006was signi?cantly inversely correlated with mean summer epilimnion TP concentrations(Pearson, p=0.01,r=?0.544,n=21)(Fig.5).

In Lake Tegel,mean summer transparency decreased from 1.3–1.8m in the1950s to0.7–1m between1974and 1983(Fig.4).Some increase was recorded in1984with a summer mean of1.3m,and means increased further after the PEP went into operation in late1985.The increase of summer transparency to means of up to2m by1991 is not paralleled by a decrease in phytoplankton biomass (data not shown)and remains to be explained.The further increase of summer means to levels consistently between 2and3m since1994,however,is clearly related to a decrease of phytoplankton biomass(Schauser&Chorus2009). Mean summer transparency(May–August)between1984

NOVEMBER2010Restoration Ecology455

Phosphorus Concentrations in Two Peri-Urban

Lakes

Figure5.Mean summer(May–August)epilimnion TP concentrations and Secchi depths in Lake Tegel(1984–2006)and Schlachtensee (1981–2006),chronologically

connected.

Figure6.Winter(January–February)nitrate–nitrogen concentrations in Lake Tegel,River Havel,and Lake Schlachtensee since1974(dashed line:threshold level below which optimum macrophyte species richness occurs according to James et al.[2005]).

and2006was signi?cantly inversely correlated with mean summer epilimnetic TP concentrations(Pearson,p=0.004, r=?0.574,n=23)(Fig.5).Transparency in the River Havel,to which Lake Tegel is multiply connected(Fig.2), remained low(0.5–0.9m)throughout these decades(Fig.4), re?ecting likely levels of transparency in these lakes without the restoration measures.

Winter nitrate–nitrogen concentrations(January and Febru-ary)were about one order of magnitude higher in Lake Tegel (4.1±0.5mg NO3–N/L)when compared with Schlacht-ensee(0.76±0.1mg NO3–N/L)during the last decade (1996–2005)(Fig.

6).Figure7.Maximum colonization depth and species number of submerged macrophytes in16transects(Fig.2)of the protected western shore,islands,bays,and the exposed eastern shore of Lake Tegel in 2007.

Macrophyte Abundance and Colonization Depth

Maximum colonization depth of submerged macrophytes recorded in2005in Schlachtensee was2.7m.Except for the very shallow areas shaded by bank trees,areas colonized by reed stands,and those used for bathing,the littoral between 1and2.7m depth was almost completely covered with sub-merged plants.This resulted in20%coverage of the total lake area(Fig.1).

Maximum colonization depths of submerged macrophytes in Lake Tegel varied between1.0and3.7m(Fig.7).The mean maximum colonization depth of16transects was2.30m (±0.18standard error),but signi?cant differences occurred between the wind-protected western shore(3.00±0.19m, n=6)and the wind-exposed eastern shore(1.48±0.12m, n=4)(Mann–Whitney U test,p<0.001)(Fig.7).Some littoral areas were not colonized by submerged macrophytes (in front of sheet pile walls at the northeastern shore and in the southwestern region close to the in?uence of turbid water from the River Havel).

Macrophyte Species Richness and Community

Composition

Our mapping in2005revealed the presence of?ve species of submerged macrophytes in Schlachtensee(Table2,Fig.8). Two of these species had already been detected in stud-ies before macrophytes disappeared in the1960s(Table2). Plant stands in Schlachtensee are dominated by the low-growing holly leaved pondweed(Najas marina subsp.inter-media),whereas the tall Eurasian water-milfoil(Myriophyllum spicatum)and the low-growing opposite stonewort(Chara contraria)showed a lower abundance(Fig.1,Table2). Sago pondweed(Potamogeton pectinatus)and slender-leaved pondweed(Potamogeton berchtoldii)only occurred in small, low-growing forms.

456Restoration Ecology NOVEMBER2010

Phosphorus Concentrations in Two Peri-Urban Lakes Table2.Submerged macrophyte species recorded in Schlachtensee(2005)and Lake Tegel(2007),earlier records and last occurrence of species(data from Ascherson1864;Bolle1865;Holtz1903;Machatzi&Steiof1991;Sukopp&Brande1996,Rijksherbarium Leiden(L),Herbarium of the Botanic Garden and Botanical Museum Berlin(B)).

Schlachtensee Lake Tegel

Earlier Records/Presence Earlier Records/Presence Species Last Recorded in2005Last Recorded in2007 Angiosperms Callitriche brutia var.hamulata—X

C.hermaphroditica1904

Ceratophyllum demersum1910/?X

C.submersum—X

Elodea canadensis1865/?X

E.nuttallii?X

Myriophyllum spicatum1910/?X1824,1910/?X

Najas marina s.l.1824/?X1824/1923X

N.minor1838X

Potamogeton acutifolius1841

P.berchtoldii—X—

https://www.wendangku.net/doc/ab18591151.html,pressus1864

P.crispus1991—

P.friesii1859

P.lucens1910/?

P.natans1904/?

P.x nitens1864/1913(B)

P.nodosus—X

P.obtusifolius1864/1911(B)X

P.pectinatus—X1864/?X

P.perfoliatus1864,1903(B)/1962X

P.praelongus1859

P.pusillus—X

Sagittaria sagittifolia—X

Sparganium emersum—X

Stratiotes aloides1904/?

Zannichellia palustris1859/1990

Characeans Chara contraria—X1811

C.globularis1892(L)

C.tomentosa1808,1818,1828,1892/1941

C.vulgaris1832

Nitella mucronata1951X

Nitellopsis obtusa1914

Mosses Fontinalis antipyretica1900X Ricciocarpos natans1914

Brown algae Pleurocladia lacustris1893

Sum652417

?=unknown.

Seventeen submerged macrophyte species were mapped in Lake Tegel in2007,with a clear dominance of the large angiosperms P.pectinatus and M.spicatum,which occurred in12and11of the16investigated transects(Table2,Fig.8). Najas marina subsp.intermedia and Ceratophyllum demersum were also abundant at nine transects.All other species only occurred at a few or even only one transect(nine species)in Lake Tegel(Fig.8).Potamogeton pectinatus and N.marina subsp.intermedia were more abundant in the shallower areas down to2m depth,whereas M.spicatum also occurred at high abundances in the2–4m depth zone and C.demersum was most often found in this deeper zone(Fig.8).Each transect in Lake Tegel was only colonized by1–5different species, except for one transect with13different species(Fig.7).This transect also showed the highest maximum coloniza-tion depth(Fig.7).Species number was signi?cantly corre-lated with maximum colonization depth in Lake Tegel(Pear-son,p=0.001,r=0.735).A large number of submerged macrophyte species(14)that had been found in the nine-teenth and early twentieth century have not yet reappeared (Tables2&3).

Discussion

Light Availability for Macrophyte Growth

The installation of PEPs at the lake inlets resulted in a pronounced reduction of summer TP concentrations in the

NOVEMBER2010Restoration Ecology457

Phosphorus Concentrations in Two Peri-Urban

Lakes

Figure8.Sum of abundance of submerged macrophyte species (estimated based on a?ve-degree scale with1:very rare;2:rare;3: common;4:frequent;and5:abundant)along16transects(number of transects with occurrence of each species in brackets)in three depth zones in Lake Tegel in2007.

epilimnion of both lakes,but TP concentrations in Lake Tegel are still in?uenced by the external TP load of River Havel and some internal P load(Schauser et al.2006).Thus,while TP concentrations in Lake Tegel still remain about twice as high as those in Schlachtensee,they are nonetheless10-to 40-fold lower than in the years prior to PEP operation.In both lakes,pronounced P-limitation of phytoplankton biomass began only after TP concentrations declined below50–60μg TP/L(Chorus&Wesseler1988;Schauser&Chorus2009). The smaller Schlachtensee reacted rather abruptly with a sudden Secchi depth increase in1985(four years after PEP installation)and a subsequent gradual increase,whereas a more gradual increase of Secchi depths and some years with a relapse to low Secchi depths(e.g.,1990)were recorded in Lake Tegel after PEP installation.Assuming a constant or also declining impact of periphyton(the complex matrix of algae,cyanobacteria,microbes,and detritus that grows on submerged surfaces)that may substantially contribute to macrophyte shading(Roberts et al.2003),light conditions for submerged macrophyte growth thus improved in both lakes. The improvement was faster and stronger in the smaller Schlachtensee.Macrophyte Abundance and Colonization Depth

In Schlachtensee,Machatzi and Steiof(1991)found almost no

submerged macrophytes in1991,10years after the installation

of the PEP and5–6years after the lake had abruptly become

substantially clearer,with summer mean Secchi disc readings

in the range of3–4m.In Lake Tegel,scarce macrophyte

stands were?rst recorded again in1988(3years after PEP

installation),with maximum colonization depth only down

to 1.5m in1990(Ripl1991).By1988,transparency had

increased only slightly,with summer means still less than2m,

and phytoplankton had not yet responded to the decline in TP.

The observed difference in plant responses to reduced turbid-

ity between the investigated lakes can potentially be explained

by differences in the depth distribution of sapropelic sedi-

ments unsuitable for macrophyte development.In the1980s,

it covered even the shallower areas in Schlachtensee(Cho-

rus unpublished data),and this lake is shallower,smaller,

and more wind-protected than Lake Tegel.In addition,in

Lake Tegel the gradually increased oxidization of the sediment

after several years of aeration may have improved substrate

chemistry and/or texture.Barko and Smart(1986)observed

strong declines in macrophyte growth with increasing sediment

organic matter content,but found that sediment density rather

than organic matter content was most in?uential in regulating

macrophyte growth.A slow response of macrophyte recolo-

nization after TP reduction has often been observed in both

shallow and deep lakes(Jeppesen et al.2005).In addition to

light attenuation by the water column and substrate conditions,

other parameters such as grazing pressure and epiphyte shading

are potential reasons for a delayed recolonization of lakes with

submerged macrophytes.Especially during the recolonization

phase after oligotrophication,the submerged vegetation is sus-

ceptible to damage by naturally occurring?sh and waterfowl

assemblages(Marklund et al.2002).In Lake Schlachtensee,

Potamogeton pectinatus leaves showed signs of?sh herbivory comparable to those found in Lake M¨u ggelsee(Berlin,Ger-

many)by K¨o rner and Dugdale(2003).Exclosure experiments,

however,are required to assess the impact of herbivory.Epi-

phyton shading is potentially regulated by a trophic cascade

from?sh feeding on scraping invertebrates(Jones&Sayer

2003).

Theoretical depth limits of submerged macrophytes in lakes

with Secchi disc transparencies(z s)<4m can be calculated

as z c=K+a×z s(Middelboe&Markager1997).The actual values in Schlachtensee are much lower for both charophytes

and angiosperms,whereas those in Lake Tegel are higher

for both,at least at some transects in the lake.Maximum

Table3.Theoretical maximum depth limits(z c)of submerged macrophytes estimated from z c=K+a×z s(Middelboe&Markager1997,z s:Secchi depths of2006)and observed(in2007)in Schlachtensee and Lake Tegel(m).

z c Schlachtensee z c Lake Tegel

a K Theoretical Observed Theoretical Observed Charophytes 1.190.17 5.6 2.3 3.8 3.7 Caulescent angiosperms0.950.37 4.7 1.9 3.3 3.7 Rosette-type angiosperms0.380.88 2.6— 2.0—

458Restoration Ecology NOVEMBER2010

Phosphorus Concentrations in Two Peri-Urban Lakes

colonization depths of submerged macrophytes in Lake Tegel, however,showed a strong variation.This might be caused by factors in?uencing the macrophyte colonization depth such as boat-induced and wind-augmented waves(Schutten et al.2004).The maximum colonization depth of macrophytes at the wind-exposed eastern shore of Lake Tegel(due to the prevailing westerly winds in the Berlin region)was signi?cantly lower than that of the protected western shore. The mean maximum colonization depth(2.3m)of the16 investigated transects in Lake Tegel,however,reasonably re?ected the mean summer Secchi transparency.A potential reason for the low maximum colonization depth despite high transparencies in Schlachtensee might be shading by riparian trees and periphyton and/or the occurrence of sapropelic sediments in deeper areas.In Lake M¨u ggelsee,macrophyte recolonization during reoligotrophication was found to be severely hampered by epiphyton shading(Roberts et al.2003), and submerged plants did not reach their expected maximum colonization depth(K¨o rner2001).

A positive feedback between submerged macrophytes and turbidity has yet only been described for shallow lakes of homogeneous depth,where a major part of the water body can be occupied by plants(Scheffer et al.1993).Empirical studies in deep lakes,however,suggest that lower plant cov-erage may also contribute to a stabilization of clear conditions during the vegetation period(Hilt unpublished data).Differ-ent macrophyte-centered mechanisms may be involved such as nutrient uptake by rootless species and epiphyton,preven-tion of resuspension and phosphorus release from the sedi-ment,increased sedimentation,excretion of allelochemicals, provision of shelter for zooplankton,and structural habitat for pike(Scheffer et al.1993).In the lakes investigated in this study,changes in the?sh community such as a decreasing abundance of pikeperch and an increasing abundance of pike were observed(C.Wolter personal communication).Due to the lower interest of the local commercial?shery in pike than in pikeperch,these changes point to an increasing ratio of pis-civorous to planktivorous?sh.This may result in a release of zooplankton from predation by planktivorous?sh and thus increased grazing on phytoplankton leading to higher water transparency(Jeppesen et al.1990).An increasing in?uence of plants on turbidiy further improving growth conditions for submerged macrophytes is expected in both lakes with increas-ing plant abundance.

Macrophyte Species Richness and Community

Composition

Submerged plant richness is a key element in determining the ecological quality of freshwater systems(James et al.2005). Species composition at a given site is determined by the multi-factorial in?uence of historical,environmental,and biological factors and is,therefore,a complex ecological question to evaluate(Vestergaard&Sand-Jensen2000).The relationship between the trophic state of lakes and their species richness of submerged macrophytes is unimodal,and a maximum num-ber is observed under mesotrophic conditions(R?rslett1991;Vestergaard&Sand-Jensen2000).Jeppesen et al.(2000) found on average11.7species in Danish lakes with summer TP concentrations of0–0.05mg/L and a signi?cant decline in species richness of submerged macrophytes with increasing TP concentrations.

The reference state for both lakes we investigated is mesotrophic(Mathes et al.2002),and the in?uence of the PEPs is thus expected to result in increasing macrophyte species richness.Although complete mappings during recent decades after the installation of the PEPs are lacking,a signi?cant increase in species richness can be concluded for both lakes based on the?ndings of Machatzi and Steiof (1991)who found no macrophytes in Schlachtensee in1991 and Ripl(1991)who observed only P.pectinatus and horned pondweed(Zannichellia palustris)in Lake Tegel in1990. However,despite a similar reduction in TP concentrations, submerged macrophyte species diversity was low(5species) in Schlachtensee and high(17species,but only3–5species are abundant)in Lake Tegel.This is surprising,particularly for Schlachtensee where this low species number was recorded 25years after the installation of the PEP and20years after phytoplankton had started to decline in reaction to reduced TP concentrations.Jeppesen et al.(2005)stated that internal TP loading from lake sediments causes a delay in lake recovery by10–15years until a new equilibrium for TP is reached. James et al.(2005)propose that elevated winter nitrate concentrations may be more relevant than TP for reduced macrophyte species diversity—however,our lakes showed an inverse pattern with the more diverse Lake Tegel having higher winter nitrate–nitrogen concentrations than Schlachtensee. Vestergaard and Sand-Jensen(2000)found that mean species richness per lake increased signi?cantly with increas-ing Secchi depth.This was supported by our?ndings in both lakes.The strong increase in species richness accom-panying greater transparency can be accounted for by the combined effect of higher colonized area and higher habi-tat richness along gradients of deeper macrophyte growth. Increasing macrophyte species richness with increasing lake surface area in transparent lakes(R?rslett1991;Vestergaard &Sand-Jensen2000)is a potential reason for the higher species diversity in larger Lake Tegel when compared with the clearer,but smaller Schlachtensee.Survey intensity,how-ever,may also be an issue,as no diving was carried out in Schlachtensee when compared with Lake Tegel.The dynamics of macrophyte recolonization are not only driven by environ-mental changes but also by parallel changes in neighboring lakes and rivers serving as species pools for recruitment.In Lake Tegel,species richness in2007was highest at one tran-sect close to the in?ow of the brook Tegeler Flie?.However, only four species(Ceratophyllum demersum,Elodea canaden-sis,P.pectinatus,and Sparganium emersum)of Lake Tegel can also be found in this brook(K¨o stler2007),indicating of rather limited importance for the recolonization of Lake Tegel.The same holds for River Havel that is only colonized by a few P.pectinatus stands in the Berlin area(Hilt unpub-lished data).Although propagules seem to be able to survive rather long periods in the sediment(De Winton et al.2000),

NOVEMBER2010Restoration Ecology459

Phosphorus Concentrations in Two Peri-Urban Lakes

the reestablishment of species from a seed bank seems unlikely for some of the species in Lake Tegel,as they had last been recorded between45and169years ago.The origin of recruit-ment is especially unknown for Najas minor,a species that was supposed extinct in Berlin and the surrounding federal state Brandenburg(Ristow et al.2006).

Complete mappings of species diversity before the impact of strong anthropogenic eutrophication during the last century are not available for both lakes,but especially the data present for Lake Tegel point at a complete change of the present community composition when compared with that of the mesotrophic conditions in the nineteenth century.The accumulation of P,N,and organic matter during the decades of strong anthropogenic eutrophication in the last century will presumably prevent a shift back to these mesotrophic communities in the near future.Although we expect a further stabilization of current TP levels in Lake Tegel and a slight decline in Schlachtensee,a return of especially the diverse Characean vegetation into Lake Tegel is not likely.Most species of Characeae are very rare or even extinct in Berlin at present(Kusber et al.2004).In general,many common species of freshwater macrophyte?ora meanwhile occur quite rarely in northwestern Europe,and this hampers reassembly of the previous submerged aquatic communities(Sand-Jensen et al.2000).

A potential management measure to remediate the potential lack of dispersal corridors into the urban Schlachtensee and Lake Tegel for many submerged macrophyte species would be transplanting desired macrophyte species as,for instance,suggested under certain circumstances for urban stream rehabilitation(Larned et al.2006),reservoirs(Smart et al.1998),or shallow lakes(Hilt et al.2006).However,this runs the potential risk of transferring?sh parasites,pathogens, or other undesired species,and is thus not recommended for these intensively used urban lakes.

Conclusions

Lake recovery from heavy eutrophication by means of sub-stantial TP-load reduction—as achieved by the PEPs in Berlin—seems to occur as a sequence of reactions of ecosys-tem components.First,TP concentrations in the water need to be reduced down to levels which effectively reducing phy-toplankton biomass.This results in increasing transparencies, opening a“window of opportunity”for submerged macrophyte recolonization.Increases in plant abundance and species diver-sity,however,may be delayed by more than a decade even if nutrient concentrations typical for the mesotrophic state can be achieved rapidly in the epilimnion.In this phase,a lack of viable seed banks or dispersal units for recruitment in sur-rounding waters is probably hampering macrophyte recovery. In addition,a delay may potentially result from sediment con-ditions that became unsuitable for macrophyte growth during hypertrophic periods.Macrophyte recovery in such lakes may require a few more years of patience rather than management measures that risk introducing new problems.Reassembly of the original submerged aquatic communities,however,will often not occur.Increasing macrophyte abundance is expected to result in a positive feedback on turbidity.

Implications for Practice

?Phosphorus elimination from a major in?ow can effec-tively reduce TP concentrations in lakes,eventually resulting in increased water transparencies necessary for submerged macrophyte recolonization.

?The response of submerged macrophytes to increased water transparency may be delayed by more than

a decade.Public communication of the restoration

approach and predictions of expected results should inform about this expectation.

?Additional measures in?uencing sediment conditions such as aerators or nitrate supporting oxidization may potentially shorten the delay in macrophyte recoloniza-tion,but more research is required to provide evidence for this process.

?We recommend patience rather than transplanting macro-phytes to increase species diversity and/or achieve reoc-currence of Characeae meadows in formerly mesotrophic lakes.

Acknowledgments

We thank Martina Wagner for her help during the macrophyte survey in Schlachtensee,Gerhard Wiegleb for determination of Potamogeton berchtoldii from Schlachtensee,Uwe Raabe for determination of Chara contraria from Schlachtensee, Gertraud Schlag and Inke Schauser for data management and Brian B¨o hmer,and Linda Gerull and Patrick Tigges for their kind assistance during macrophyte mapping in Lake Tegel.

LITERATURE CITED

Ascherson,P.1864.Flora der Provinz Brandenburg,der Altmark und des Herzogthums Magdeburg.Spezial?ora von Berlin.A.Hirschwald,Berlin, 1–871.

Barko,J.W.,and R.M.Smart.1986.Sediment-related mechanism of growth limitation in submersed macrophytes.Ecology67:1328–1340.

Bolle,C.1865.Eine Wasserp?anze mehr in der Mark.Verhandlungen des Botanischen Vereins der Provinz Brandenburg7:1–15.

Carpenter,S.R.,and D.M.Lodge.1986.Effects of submerged macrophytes on ecosystem processes.Aquatic Botany16:341–370.

Chorus,I.,and G.Schlag.1993.Importance of intermediate disturbances for the species composition and diversity of phytoplankton in two very different Berlin lakes.Hydrobiologia249:67–92.

Chorus,I.,and E.Wesseler.1988.Response of the phytoplankton community to therapy measures in a highly eutrophic urban lake(Schlachtensee, Berlin).Verhandlungen der internationalen Vereinigung f¨u r theoretische und angewandte Limnologie23:719–728.

De Winton,M.,J.S.Clayton,and P.D.Champion.2000.Seedling emergence from seed banks of15New Zealand lakes with contrasting vegetation histories.Aquatic Botany66:181–194.

Genkai-Kato,M.,and S.R.Carpenter.2005.Eutrophication due to phospho-rus recycling in relation to lake morphometry,temperature,and macro-phytes.Ecology86:210–219.

460Restoration Ecology NOVEMBER2010

Phosphorus Concentrations in Two Peri-Urban Lakes

Gervais,F.1991.Which factors controlled seasonal and spatial distribution of phytoplankton species in Schlachtensee(Berlin,F.R.G.).Archiv f¨u r Hydrobiologie121:43–65.

Grosch,U.A.1978.Die Bedeutung der Ufervegetation f¨u r Fisch und Fis-cherei,dargestellt am Beispiel Berlins.Arbeiten des deutschen Fis-chereiverbandes25:1–11.

Hilt,S., E.M.Gross,M.Hupfer,H.Morscheid,J.M¨a hlmann, A.Melzer, et al.2006.Restoration of submerged vegetation in shallow eutrophic lakes—guideline and state of the art in Germany.Limnologica 36:155–171.

Holtz,L.1903.Characeen.Kryptogamen?ora der Mark Brandenburg. James,C.,J.Fisher,V.Rusell,S.Collings,and B.Moss.2005.Nitrate availability and hydrophyte species richness in shallow lakes.Freshwater Biology50:1049–1063.

Jeppesen,E.,M.S?ndergaard,J.P.Jensen,K.Havens,O.Anneville, L.Carvalho,et https://www.wendangku.net/doc/ab18591151.html,ke responses to reduced nutrient loading—an analysis of contemporary data from35European and North American long term studies.Freshwater Biology50:1747–1771.

Jeppesen,E.,J.P.Jensen,P.Kristensen,M.S?ndergaard, E.Mortensen, O.Sortkj?r,and K.Orlik.1990.Fish manipulation as a lake restoration tool in shallow,eutrophic,temperate lakes2:threshold levels,long-term stability and conclusions.Hydrobiologia408/409:217–227. Jeppesen,E.,J.P.Jensen,M.S?ndergaard,https://www.wendangku.net/doc/ab18591151.html,uridsen,and https://www.wendangku.net/doc/ab18591151.html,ndkildehus.

2000.Trophic structure,species richness and biodiversity in Dan-ish lakes:changes along a phosphorus gradient.Freshwater Biology 45:201–218.

Jones,J.I.,and C.Sayer.2003.Does?sh-invertebrate-periphyton cascade precipitate plant loss in shallow lakes?Ecology84:2155–2167. Klein,G.,and I.Chorus.1991.Nutrient balances and phytoplankton dynam-ics in Schlachtensee during oligotrophication.Verhandlungen der inter-nationalen Vereinigung f¨u r theoretische und angewandte Limnologie 23:873–878.

K¨o rner,S.2001.Development of submerged macrophytes in shallow Lake M¨u ggelsee(Berlin,Germany)before and after its switch to the phytoplankton-dominated state.Archiv f¨u r Hydrobiologie152:395–409. K¨o rner,S.2002.Loss of submerged macrophytes in shallow lakes in north-eastern Germany.International Review of Hydrobiology87:375–384. K¨o rner,S.,and T.Dugdale.2003.Is roach herbivory preventing re-colonization of a shallow lake with submerged macrophytes?Hydro-biologia506–509:497–500.

K¨o stler,H.2007.Aufarbeitung von Makrophyten-Erhebungen im Tegeler Flie?aus dem Zeitraum2002–2005gem¨a?den V orgaben nach Wasser-rahmenrichtlinie und Bewertung nach dem LAWA-Bewertungsverfahren PHYLIB.Unpublished report for the Senate of Berlin.

Krause,W.1997.Charales(Charophyceae).in H.Ettl,G.G¨a rtner,H.Heynig, and D.Mollenhauer,editors.S¨u?wasser?ora von Mitteleuropa18.G.

Fischer,Jena,Stuttgart,L¨u beck,Ulm.

Kusber,W.-H.,U.Raabe,C.Bl¨u mel,U.Geissler,and R.Jahn.2004.Mittel-und langfristige Trends der Characeen-V orkommen in Berlin.Rostocker Meeresbiologische Beitr¨a ge13:127–138.

Larned,S.T.,A.M.Suren,M.Flanagan,B.J.F.Biggs,and T.Riis.2006.

Macrophytes in urban stream rehabilitation:establishment,ecological effects,and public perception.Restoration Ecology14:429–440. Machatzi,B.,and K.Steiof.1991.P?ege-und Entwicklungskonzept Gro?e Grunewaldseenrinne.Senatsverwaltung f¨u r Stadtentwicklung und Umweltschutz.

Marklund,O.,H.Sandsten,L.-A.Hansson,and I.Blindow.2002.Effects of waterfowl and?sh on submerged vegetation and macroinvertebrates.

Freshwater Biology47:2049–2059.

Mathes,J.,G.Plambeck,and J.Schaumburg.2002.Das Typisierungssystem f¨u r stehende Gew¨a sser in Deutschland mit Wasser?¨a chen ab0.5km2 zur Umsetzung der Wasserrahmenrichtlinie.Aktuelle Reihe BTU Cottbus 5:15–24.Middelboe,A.L.,and S.Markager.1997.Depth limits and minimum light requirements of freshwater macrophytes.Freshwater Biology 37:553–568.

Moss,B.,J.Madgwick,and G.Phillips.1996.A guide to the restoration of nutrient-enriched shallow lakes.Environment Agency,Broads Authority &European Union Life Programme,Norwich.

Ripl,W.1991.Limnologische Begleitstudie zur Entlastung des Tegeler Sees.

Report for the Senate of Berlin.

Ristow,M., A.Herrmann,H.Illig,H.-C.Kl¨a ge,G.Klemm,V.Kummer,

B.Machatzi,S.R¨a tzel,R.Schwarz,and F.Zimmermann.2006.Liste

und Rote Liste der etablierten Gef¨a?p?anzen Brandenburgs.Naturschutz und Landschaftsp?ege15:3–163.

Roberts,E.,J.Kroker,S.K¨o rner,and A.Nicklisch.2003.The role of periphyton during the re-colonization of a shallow lake with submerged macrophytes.Hydrobiologia506–509:525–530.

R?rslett,B.1991.Principal determinants of aquatic macrophyte richness in northern European lakes.Aquatic Botany39:173–193.

Rothmaler,W.2002.Exkursions?ora von Deutschland.Band4: Gef¨a?p?anzen.Kritischer Band9.Au?.,Heidelberg,Berlin.

Sand-Jensen,K.,T.Riis,O.Vestergaard,and https://www.wendangku.net/doc/ab18591151.html,rsen.2000.Macrophyte decline in Danish lakes and streams over the last100years.Journal of Ecology88:1030–1040.

Sass,G.G.,C.M.Gille,J.T.Hinke,and J.F.Kitchell.2006.Whole-lake in?uences of littoral structural complexity and prey body morphology on ?sh predator–prey interactions.Ecology of Freshwater Fish15:301–308. Schaumburg,J., C.Schranz,G.Hofmann,D.Stelzer,S.Schneider,and U.Schmedtje.2004.Macrophytes and phytobenthos as indicators of ecological status in German lakes—a contribution to the implementation of the Water Framework Directive.Limnologica34:302–314. Schauser,I.,and I.Chorus.2009.Water and phosphorus mass balance of Lake Tegel and Schlachtensee—a modelling approach.Water Research 43:1788–1800.

Schauser,I.,J.Lewandowsky,and I.Chorus.2006.Effects of nitrate on phosphorus release:comparison of two Berlin lakes.Acta hydrochimica et hydrobiologia34:325–332.

Scheffer,M.,S.H.Hosper,M.-L.Meijer,B.Moss,and E.Jeppesen.1993.

Alternative equilibria in shallow lakes.Trends in Ecology and Evolution 8:275–279.

Schutten,J.,J.Dainty,and A.J.Davy.2004.Wave-induced hydraulic forces on submerged aquatic plants in shallow lakes.Annals of Botany 93:333–341.

Smart,R.M.,G.O.Dick,and R.D.Doyle.1998.Techniques for establishing native aquatic plants.Journal of Aquatic Plant Management36:44–49. Sukopp,H.,and A.Brande.1996.Historische Floren-und Faunen-ver¨a nderungen im Tegeler See(Berlin)und deren Ursachen.UBA-Texte 74:51–63.

Sukopp,H.,and B.Markstein.1981.Ver¨a nderungen von R¨o hrichtbest¨a nden und–p?anzen als Indikatoren von Gew¨a ssernutzungen,dargestellt am Beispiel der Havel in Berlin(West).Limnologica13:459–471.

Van der Molen,D.T.,R.Portielje,W.T.De Nobel,and P.C.M.Boers.1998.

Nitrogen in Dutch freshwater lakes:trends and targets.Environmental Pollution102:553–557.

Van de Weyer,K.,and C.Schmidt.2007.Bestimmungsschl¨u ssel f¨u r die aquatischen Makrophyten(Gef¨a?p?anzen,Armleuchteralgen und Moose) in Deutschland.Ministerium f¨u r L¨a ndliche Entwicklung,Umwelt und Verbraucherschutz Brandenburg.

Vestergaard,O.,and K.Sand-Jensen.2000.Aquatic macrophyte richness in Danish lakes in relation to alkalinity,transparency,and lake area.

Canadian Journal of Fisheries and Aquatic Sciences57:2022–2031. Yachi,S.,and M.Loreau.1999.Biodiversity and ecosystem productivity in a?uctuating environment:the insurance hypothesis.Proceedings of the National Academy of Sciences of the United Sates of America 96:1463–1468.

NOVEMBER2010Restoration Ecology461

最新The_Monster课文翻译

Deems Taylor: The Monster 怪才他身材矮小,头却很大,与他的身材很不相称——是个满脸病容的矮子。他神经兮兮,有皮肤病,贴身穿比丝绸粗糙一点的任何衣服都会使他痛苦不堪。而且他还是个夸大妄想狂。他是个极其自负的怪人。除非事情与自己有关,否则他从来不屑对世界或世人瞧上一眼。对他来说,他不仅是世界上最重要的人物,而且在他眼里,他是惟一活在世界上的人。他认为自己是世界上最伟大的戏剧家之一、最伟大的思想家之一、最伟大的作曲家之一。听听他的谈话,仿佛他就是集莎士比亚、贝多芬、柏拉图三人于一身。想要听到他的高论十分容易,他是世上最能使人筋疲力竭的健谈者之一。同他度过一个夜晚,就是听他一个人滔滔不绝地说上一晚。有时,他才华横溢;有时,他又令人极其厌烦。但无论是妙趣横生还是枯燥无味,他的谈话只有一个主题:他自己,他自己的所思所为。他狂妄地认为自己总是正确的。任何人在最无足轻重的问题上露出丝毫的异议,都会激得他的强烈谴责。他可能会一连好几个小时滔滔不绝,千方百计地证明自己如何如何正确。有了这种使人耗尽心力的雄辩本事,听者最后都被他弄得头昏脑涨,耳朵发聋,为了图个清静,只好同意他的说法。他从来不会觉得,对于跟他接触的人来说,他和他的所作所为并不是使人产生强烈兴趣而为之倾倒的事情。他几乎对世间的任何领域都有自己的理

论,包括素食主义、戏剧、政治以及音乐。为了证实这些理论,他写小册子、写信、写书……文字成千上万,连篇累牍。他不仅写了,还出版了这些东西——所需费用通常由别人支付——而他会坐下来大声读给朋友和家人听,一读就是好几个小时。他写歌剧,但往往是刚有个故事梗概,他就邀请——或者更确切说是召集——一群朋友到家里,高声念给大家听。不是为了获得批评,而是为了获得称赞。整部剧的歌词写好后,朋友们还得再去听他高声朗读全剧。然后他就拿去发表,有时几年后才为歌词谱曲。他也像作曲家一样弹钢琴,但要多糟有多糟。然而,他却要坐在钢琴前,面对包括他那个时代最杰出的钢琴家在内的聚会人群,一小时接一小时地给他们演奏,不用说,都是他自己的作品。他有一副作曲家的嗓子,但他会把著名的歌唱家请到自己家里,为他们演唱自己的作品,还要扮演剧中所有的角色。他的情绪犹如六岁儿童,极易波动。心情不好时,他要么用力跺脚,口出狂言,要么陷入极度的忧郁,阴沉地说要去东方当和尚,了此残生。十分钟后,假如有什么事情使他高兴了,他就会冲出门去,绕着花园跑个不停,或者在沙发上跳上跳下或拿大顶。他会因爱犬死了而极度悲痛,也会残忍无情到使罗马皇帝也不寒而栗。他几乎没有丝毫责任感。他似乎不仅没有养活自己的能力,也从没想到过有这个义务。他深信这个世界应该给他一条活路。为了支持这一信念,他

新版人教版高中语文课本的目录。

必修一阅读鉴赏第一单元1.*沁园春?长沙……………………………………毛泽东3 2.诗两首雨巷…………………………………………戴望舒6 再别康桥………………………………………徐志摩8 3.大堰河--我的保姆………………………………艾青10 第二单元4.烛之武退秦师………………………………….《左传》16 5.荆轲刺秦王………………………………….《战国策》18 6.*鸿门宴……………………………………..司马迁22 第三单元7.记念刘和珍君……………………………………鲁迅27 8.小狗包弟……………………………………….巴金32 9.*记梁任公先生的一次演讲…………………………梁实秋36 第四单元10.短新闻两篇别了,“不列颠尼亚”…………………………周婷杨兴39 奥斯维辛没有什么新闻…………………………罗森塔尔41 11.包身工………………………………………..夏衍44 12.*飞向太空的航程……………………….贾永曹智白瑞雪52 必修二阅读鉴赏第一单元1.荷塘月色…………………………………..朱自清2.故都的秋…………………………………..郁达夫3.*囚绿记…………………………………..陆蠡第二单元4.《诗经》两首氓采薇5.离骚………………………………………屈原6.*《孔雀东南飞》(并序) 7.*诗三首涉江采芙蓉《古诗十九首》短歌行……………………………………曹操归园田居(其一)…………………………..陶渊明第三单元8.兰亭集序……………………………………王羲之9.赤壁赋……………………………………..苏轼10.*游褒禅山记………………………………王安石第四单元11.就任北京大学校长之演说……………………..蔡元培12.我有一个梦想………………………………马丁?路德?金1 3.*在马克思墓前的讲话…………………………恩格斯第三册阅读鉴赏第一单元1.林黛玉进贾府………………………………….曹雪芹2.祝福………………………………………..鲁迅3. *老人与海…………………………………….海明威第二单元4.蜀道难……………………………………….李白5.杜甫诗三首秋兴八首(其一) 咏怀古迹(其三) 登高6.琵琶行(并序)………………………………..白居易7.*李商隐诗两首锦瑟马嵬(其二) 第三单元8.寡人之于国也…………………………………《孟子》9.劝学……………………………………….《荀子》10.*过秦论…………………………………….贾谊11.*师说………………………………………韩愈第四单元12.动物游戏之谜………………………………..周立明13.宇宙的边疆………………………………….卡尔?萨根14.*凤蝶外传……………………………………董纯才15.*一名物理学家的教育历程……………………….加来道雄第四册阅读鉴赏第一单元1.窦娥冤………………………………………..关汉卿2.雷雨………………………………………….曹禹3.*哈姆莱特……………………………………莎士比亚第二单元4.柳永词两首望海潮(东南形胜) 雨霖铃(寒蝉凄切) 5.苏轼词两首念奴娇?赤壁怀古定风波(莫听穿林打叶声) 6.辛弃疾词两首水龙吟?登建康赏心亭永遇乐?京口北固亭怀古7.*李清照词两首醉花阴(薄雾浓云愁永昼) 声声慢(寻寻觅觅) 第三单元8.拿来主义……………………………………….鲁迅9.父母与孩子之间的爱……………………………..弗罗姆10.*短文三篇热爱生

英美文学专业开题报告

英美文学专业开题报告 引导语:各民族的文学中都有许多惊险、恐怖的故事,但似乎没有哪一种文学像英美文学那样不仅创作出数量众多、质量优秀的恐怖文学作品,而且还形成了一个持续发展、影响广泛的哥特传统。以下 是的为大家找到的英美文学专业开题报告。希望能够帮助到大家! 论文题目theApplicationandInnovation 一、选题的意义和研究现状 1.选题的目的、理论意义和现实意义长时期以来,人们视艾米莉?勃朗特为英国文学中的“斯芬克斯”。关于她本人和她的作品都有很多难解之谜,许多评论家从不同的角度、采用不同的方法去研究,得出了不同的结论,因而往往是旧谜刚解,新谜又出,解谜热潮似永无休止。 本文立足于欧美文学中的哥特传统研究《呼啸山庄》的创作源泉,指出艾米莉?勃朗特在主题、人物形象、环境刻画、意象及情节构造等方面都借鉴了哥特传统,同时凭借其超乎寻常的想象力,将现实 与超现实融为一体,给陈旧的形式注入了激烈情感、心理深度和新鲜 活力,达到了哥特形式与激情内容的完美统一,使《呼啸山庄》既超越了哥特体裁的“黑色浪漫主义”,又超越了维多利亚时代的“现实主义”,从而展现出独具一格、经久不衰的艺术魅力。 2.与选题相关的国内外研究和发展概况 各民族的文学中都有许多惊险、恐怖的故事,但似乎没有哪一种文学像英美文学那样不仅创作出数量众多、质量优秀的恐怖文学作品,而且还形成了一个持续发展、影响广泛的哥特传统

(Gothictradition)。哥特文学现在已经成为英美文学研究中的一个重要领域。对哥特文学的认真研究开始于20世纪二三十年代,到70年代以后,由于新的学术思潮和文学批评观念的影响,该研究出现了前所未有而且日趋高涨的热潮。 根据在国际互联网上的搜索,到2000年9月为止,英美等国的学者除发表了大量关于哥特文学的论文外,还至少出版专著达184部,其中1970年以后为126部,仅90年代就达59部,几乎占总数的三分之一。当然,近年来哥特文学研究的状况不仅在于研究成果迅速增加,更重要的是它在深度和广度方面都大为拓展,并且把哥特传统同英美乃至欧洲的历史、社会、文化和文学的总体发展结合起来。 二、研究方案 1.研究的基本内容及预期的结果(大纲)研究的基本内容:本文立足于欧美文学中的哥特传统研究《呼啸山庄》的创作源泉,指出艾米莉?勃朗特在主题、人物形象、环境刻画、意象及情节构造等方面都借鉴了哥特传统,同时凭借其超乎寻常的想象力,将现实与超现实融为一体,给陈旧的形式注入了激烈情感、心理深度和新鲜活力,达到了哥特形式与激情内容的完美统一,使《呼啸山庄》既超越了哥特体裁的“黑色浪漫主义”,又超越了维多利亚时代的“现实主义”,从而展现出独具一格、经久不衰的艺术魅力。 预期的结果(大纲): 1.ASurveyofGothic1.1DefinitionofGothic 1.2theOriginofGothicNovels

初中语文古文赏析曹操《短歌行》赏析(林庚)

教育资料 《短歌行》 《短歌行》赏析(林庚) 曹操这一首《短歌行》是建安时代杰出的名作,它代表着人生的两面,一方面是人生的忧患,一方面是人生的欢乐。而所谓两面也就是人生的全面。整个的人生中自然含有一个生活的态度,这就具体地表现在成为《楚辞》与《诗经》传统的产儿。它一方面不失为《楚辞》中永恒的追求,一方面不失为一个平实的生活表现,因而也就为建安诗坛铺平了道路。 这首诗从“对酒当歌,人生几何”到“但为君故,沉吟至今”,充分表现着《楚辞》里的哀怨。一方面是人生的无常,一方面是永恒的渴望。而“呦呦鹿鸣”以下四句却是尽情的欢乐。你不晓得何以由哀怨这一端忽然会走到欢乐那一端去,转折得天衣无缝,仿佛本来就该是这么一回事似的。这才是真正的人生的感受。这一段如是,下一段也如是。“明明如月,何时可掇?忧从中来,不可断绝。越陌度阡,枉用相存。契阔谈宴,心念旧恩。月明星稀,乌鹊南飞。绕树三匝,何枝可依。”缠绵的情调,把你又带回更深的哀怨中去。但“山不厌高,海不厌深”,终于走入“周公吐哺,天下归心”的结论。上下两段是一个章法,但是你并不觉得重复,你只觉得卷在悲哀与欢乐的旋涡中,不知道什么时候悲哀没有了,变成欢乐,也不知道什么时候欢乐没有了,又变成悲哀,这岂不是一个整个的人生吗?把整个的人生表现在一个刹那的感觉上,又都归于一个最实在的生活上。“我有嘉宾,鼓瑟吹笙”,不正是当时的情景吗?“周公吐哺,天下归心”,不正是当时的信心吗? “青青子衿”到“鼓瑟吹笙”两段连贯之妙,古今无二。《诗经》中现成的句法一变而有了《楚辞》的精神,全在“沉吟至今”的点窜,那是“青青子衿”的更深的解释,《诗经》与《楚辞》因此才有了更深的默契,从《楚辞》又回到《诗经》,这样与《鹿鸣》之诗乃打成一片,这是一个完满的行程,也便是人生旅程的意义。“月明星稀”何以会变成“山不厌高,海不厌深”?几乎更不可解。莫非由于“明月出天山”,“海上生明月”吗?古辞说:“枯桑知天风,海水知天寒”,枯桑何以知天风,因为它高;海水何以知天寒,因为它深。唐人诗“一叶落知天下秋”,我们对于宇宙万有正应该有一个“知”字。然则既然是山,岂可不高?既然是海,岂可不深呢?“并刀如水,吴盐胜雪”,既是刀,就应该雪亮;既是盐,就应该雪白,那么就不必问山与海了。 山海之情,成为漫漫旅程的归宿,这不但是乌鹊南飞,且成为人生的思慕。山既尽其高,海既尽其深。人在其中乃有一颗赤子的心。孟子主尽性,因此养成他浩然之气。天下所以归心,我们乃不觉得是一个夸张。 .

完善版美国文学期末重点

2014 Final Exam Study Guide for American Literature Class Plan of Final Exam 1.Best Choice Question 10% 2.True or False Question 10% 3.Definition 10% 4.Give Brief Answers to Questions 30% 5.Critical Comments 40% American Literature Review Poe’s Poetic Ideas; Major Ideas in Emerson’s “Nature”; Whitman’s Style; Formal Features of Dickinson’s Poetry; Analysis of “Miniver Cheevy” by Edwin Arlington Robinson; Comment on “Stopping by Woods on a Snowy Evening” by Robert Frost; Naturalistic reading of Sister Carrie by Theodore Dreiser; The Theme and Techniques in Eliot’s “The Waste Land”; Theme and Technique in The Great Gatsby by Fitzgerald; Comment on Hemingway’s style and theme in A Farewell to Arms; Analysis of “Dry September” by William Faulkner; Literary terms: Transcendentalism American Naturalism The Lost Generation The Jazz Age Free Verse The Iceberg Analogy

高中语文文言文曹操《短歌行(对酒当歌)》原文、翻译、赏析

曹操《短歌行【对酒当歌】》原文、翻译、赏析译文 原文 面对美酒应该高歌,人生短促日月如梭。对酒当歌,人生几何? 好比晨露转瞬即逝,失去的时日实在太多!譬如朝露,去日苦多。 席上歌声激昂慷慨,忧郁长久填满心窝。慨当以慷,忧思难忘。 靠什么来排解忧闷?唯有狂饮方可解脱。何以解忧?唯有杜康。 那穿着青领(周代学士的服装)的学子哟,你们令我朝夕思慕。青青子衿,悠悠我心。 正是因为你们的缘故,我一直低唱着《子衿》歌。但为君故,沉吟至今。 阳光下鹿群呦呦欢鸣,悠然自得啃食在绿坡。呦呦鹿鸣,食野之苹。 一旦四方贤才光临舍下,我将奏瑟吹笙宴请宾客。我有嘉宾,鼓瑟吹笙。 当空悬挂的皓月哟,你运转着,永不停止;明明如月,何时可掇? 我久蓄于怀的忧愤哟,突然喷涌而出汇成长河。忧从中来,不可断绝。 远方宾客踏着田间小路,一个个屈驾前来探望我。越陌度阡,枉用相存。 彼此久别重逢谈心宴饮,争着将往日的情谊诉说。契阔谈讌,心念旧恩。 明月升起,星星闪烁,一群寻巢乌鹊向南飞去。月明星稀,乌鹊南飞。 绕树飞了三周却没敛绕树三匝,何枝

翅,哪里才有它们栖身之 所? 可依? 高山不辞土石才见巍 峨,大海不弃涓流才见壮阔。(比喻用人要“唯才是举”,多多益善。)山不厌高,水不厌深。 只有像周公那样礼待贤 才(周公见到贤才,吐出口 中正在咀嚼的食物,马上接 待。《史记》载周公自谓: “一沐三握发,一饭三吐哺, 犹恐失天下之贤。”),才 能使天下人心都归向我。 周公吐哺,天 赏析 曹操是汉末杰出的政治家、军事家和文学家,他雅好诗章,好作乐府歌辞,今存诗22首,全是乐府诗。曹操的乐府诗多描写他本人的政治主张和统一天下的雄心壮志。如他的《短歌行》,充分表达了诗人求贤若渴以及统一天下的壮志。 《短歌行》是政治性很强的诗作,主要是为曹操当时所实行的政治路线和政策策略服务的,但是作者将政治内容和意义完全熔铸在浓郁的抒情意境之中,全诗充分发挥了诗歌创作的特长,准确而巧妙地运用了比兴手法,寓理于情,以情感人。诗歌无论在思想内容还是在艺术上都取得了极高的成就,语言质朴,立意深远,气势充沛。这首带有建安时代"志深比长""梗概多气"的时代特色的《短歌行》,读后不觉思接千载,荡气回肠,受到强烈的感染。 对酒当歌,人生几何? 譬如朝露,去日苦多。 慨当以慷,幽思难忘。 何以解忧,唯有杜康。 青青子衿,悠悠我心。 但为君故,沈吟至今。 呦呦鹿鸣,食野之苹。 我有嘉宾,鼓瑟吹笙。 明明如月,何时可掇? 忧从中来,不可断绝。 越陌度阡,枉用相存。 契阔谈,心念旧恩。 月明星稀,乌鹊南飞, 绕树三匝,何枝可依? 山不厌高,海不厌深, 周公吐哺,天下归心。 《短歌行》是汉乐府的旧题,属于《相和歌?平调曲》。这就是说它本来是一个乐曲的名称,这种乐曲怎么唱法,现在当然是不知道了。但乐府《相和歌?平调曲》中除了《短歌行》还有《长歌行》,唐代吴兢《乐府古题要解》引证古诗“长歌正激烈”,魏文帝曹丕《燕歌行》“短歌微吟不能长”和晋代傅玄《艳歌行》“咄来长歌续短歌”等句,认为“长歌”、“短

外国文学名著鉴赏期末论文

外国文学名著鉴赏期末论文院—系:数学学院 科目:外国文学名著鉴赏(期末论文)班级: 08级数学与应用数学A班 姓名:沈铁 学号: 200805050149 上课时段:周五晚十、十一节课

奋斗了,才有出路 ——读《鲁宾逊漂游记》有感小说《鲁宾逊漂游记》一直深受人们的喜爱。读完这篇小说,使我对人生应该有自己的一个奋斗历程而受益匪浅。当一个人已经处于绝境的时候,还能够满怀信心的去面对和挑战生活,实在是一种可贵的精神。他使我认识到,人无论何时何地,不管遇到多大的困难,都不能被困难所吓倒,我们要勇敢的面对困难,克服困难,始终保持一种积极向上、乐观的心态去面对。在当今社会只有努力去奋斗,才会有自己的出路! 其实现在的很多人都是那些遇到困难就退缩,不敢勇敢的去面对它。不仅如此,现在很多人都是独生子女,很多家长视子女为掌上明珠,不要说是冒险了,就连小小的家务活也不让孩子做,天天总是说:“我的小宝贝啊,你读好书就行了,其它的爸爸妈妈做就可以了。”读书固然重要,但生活中的小事也不能忽略。想一想,在荒无人烟的孤岛上,如果你连家务活都不会做,你能在那里生存吗?读完这部著作后,我不禁反问自己:“如果我像书中的鲁宾逊那样在大海遭到风暴,我能向他那样与风暴搏斗,最后逃离荒岛得救吗?恐怕我早已经被大海所淹没;如果我漂流到孤岛,能活几天?我又能干些什么?我会劈柴吗?会打猎做饭吗?我连洗洗自己的衣服还笨手笨脚的。”我们应该学习鲁宾逊这种不怕困难的精神,无论何时何地都有坚持地活下去,哪怕只有一线希望也要坚持到底,决不能放弃!我们要像鲁宾

逊那样有志气、有毅力、爱劳动,凭自己的双手创造财富,创造奇迹,取得最后的胜利。这样的例子在我们的生活中屡见不鲜。 《史记》的作者司马迁含冤入狱,可它依然在狱中完成《史记》一书,他之所以能完成此书,靠的也是他心中那顽强的毅力,永不放弃的不断努力的精神。著名作家爱迪生从小就生活在一个贫困的家庭中,可是他从小就表现出了科学方面的天赋。长大后爱迪生着力于电灯的发明与研究,他经过了九百多次的失败,可它依然没有放弃,不断努力,最后终于在第一千次实验中取得了成功。 鲁宾逊在岛上生活了二十八年,他面对了各种各样的困难和挫折,克服了许多常人无法想象的困难,自己动手,丰衣足食,以惊人的毅力,顽强的活了下来。他自从大船失事后,找了一些木材,在岛上盖了一间房屋,为防止野兽,还在房子周围打了木桩,来到荒岛,面对着的首要的就是吃的问题,船上的东西吃完以后,鲁宾逊开始打猎,有时可能会饿肚子,一是他决定播种,几年后他终于可以吃到自己的劳动成果,其实学习也是这样,也有这样一个循序渐进的过程,现在的社会,竞争无处不在,我们要懂得只有付出才会有收获,要勇于付出,在战胜困难的同时不断取得好成绩。要知道只有付出,才会有收获。鲁宾逊在失败后总结教训,终于成果;磨粮食没有石磨,他就用木头代替;没有筛子,就用围巾。鲁宾逊在荒岛上解决了自己的生存难题,面对人生挫折,鲁宾逊的所作所为充分显示了他坚毅的性格和顽强的精神。同样我们在学习上也可以做一些创新,养成一种创新精神,把鲁宾逊在荒岛,不畏艰险,不怕失败挫折,艰苦奋斗的精

高中外研社英语选修六Module5课文Frankenstein's Monster

Frankenstein's Monster Part 1 The story of Frankenstein Frankenstein is a young scientist/ from Geneva, in Switzerland. While studying at university, he discovers the secret of how to give life/ to lifeless matter. Using bones from dead bodies, he creates a creature/ that resembles a human being/ and gives it life. The creature, which is unusually large/ and strong, is extremely ugly, and terrifies all those/ who see it. However, the monster, who has learnt to speak, is intelligent/ and has human emotions. Lonely and unhappy, he begins to hate his creator, Frankenstein. When Frankenstein refuses to create a wife/ for him, the monster murders Frankenstein's brother, his best friend Clerval, and finally, Frankenstein's wife Elizabeth. The scientist chases the creature/ to the Arctic/ in order to destroy him, but he dies there. At the end of the story, the monster disappears into the ice/ and snow/ to end his own life. Part 2 Extract from Frankenstein It was on a cold November night/ that I saw my creation/ for the first time. Feeling very anxious, I prepared the equipment/ that would give life/ to the thing/ that lay at my feet. It was already one/ in the morning/ and the rain/ fell against the window. My candle was almost burnt out when, by its tiny light,I saw the yellow eye of the creature open. It breathed hard, and moved its arms and legs. How can I describe my emotions/ when I saw this happen? How can I describe the monster who I had worked/ so hard/ to create? I had tried to make him beautiful. Beautiful! He was the ugliest thing/ I had ever seen! You could see the veins/ beneath his yellow skin. His hair was black/ and his teeth were white. But these things contrasted horribly with his yellow eyes, his wrinkled yellow skin and black lips. I had worked/ for nearly two years/ with one aim only, to give life to a lifeless body. For this/ I had not slept, I had destroyed my health. I had wanted it more than anything/ in the world. But now/ I had finished, the beauty of the dream vanished, and horror and disgust/ filled my heart. Now/ my only thoughts were, "I wish I had not created this creature, I wish I was on the other side of the world, I wish I could disappear!” When he turned to look at me, I felt unable to stay in the same room as him. I rushed out, and /for a long time/ I walked up and down my bedroom. At last/ I threw myself on the bed/ in my clothes, trying to find a few moments of sleep. But although I slept, I had terrible dreams. I dreamt I saw my fiancée/ walking in the streets of our town. She looked well/ and happy/ but as I kissed her lips,they became pale, as if she were dead. Her face changed and I thought/ I held the body of my dead mother/ in my arms. I woke, shaking with fear. At that same moment,I saw the creature/ that I had created. He was standing/by my bed/ and watching me. His

人教版高中语文必修必背课文精编WORD版

人教版高中语文必修必背课文精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

必修1 沁园春·长沙(全文)毛泽东 独立寒秋, 湘江北去, 橘子洲头。 看万山红遍, 层林尽染, 漫江碧透, 百舸争流。 鹰击长空, 鱼翔浅底, 万类霜天竞自由。 怅寥廓, 问苍茫大地, 谁主沉浮。 携来百侣曾游, 忆往昔峥嵘岁月稠。

恰同学少年, 风华正茂, 书生意气, 挥斥方遒。 指点江山, 激扬文字, 粪土当年万户侯。 曾记否, 到中流击水, 浪遏飞舟。 雨巷(全文)戴望舒撑着油纸伞,独自 彷徨在悠长、悠长 又寂寥的雨巷, 我希望逢着 一个丁香一样地

结着愁怨的姑娘。 她是有 丁香一样的颜色, 丁香一样的芬芳, 丁香一样的忧愁, 在雨中哀怨, 哀怨又彷徨; 她彷徨在这寂寥的雨巷,撑着油纸伞 像我一样, 像我一样地 默默彳亍着 冷漠、凄清,又惆怅。她默默地走近, 走近,又投出 太息一般的眼光

她飘过 像梦一般地, 像梦一般地凄婉迷茫。像梦中飘过 一枝丁香地, 我身旁飘过这个女郎;她默默地远了,远了,到了颓圮的篱墙, 走尽这雨巷。 在雨的哀曲里, 消了她的颜色, 散了她的芬芳, 消散了,甚至她的 太息般的眼光 丁香般的惆怅。 撑着油纸伞,独自

彷徨在悠长、悠长 又寂寥的雨巷, 我希望飘过 一个丁香一样地 结着愁怨的姑娘。 再别康桥(全文)徐志摩 轻轻的我走了,正如我轻轻的来; 我轻轻的招手,作别西天的云彩。 那河畔的金柳,是夕阳中的新娘; 波光里的艳影,在我的心头荡漾。 软泥上的青荇,油油的在水底招摇; 在康河的柔波里,我甘心做一条水草! 那榆荫下的一潭,不是清泉, 是天上虹揉碎在浮藻间,沉淀着彩虹似的梦。寻梦?撑一支长篙,向青草更青处漫溯, 满载一船星辉,在星辉斑斓里放歌。

高中英语选修课:英语文学欣赏 Sister Carrie 学生版讲义资料

Chapter III WEE QUESTION OF FORTUNE--FOUR-FIFTY A WEEK Once across the river and into the wholesale district, she glanced about her for some likely door at which to apply. As she contemplated the wide windows and imposing signs, she became conscious of being gazed upon and understood for what she was--a wage-seeker. She had never done this thing before, and lacked courage. To avoid a certain indefinable shame she felt at being caught spying about for a position, she quickened her steps and assumed an air of indifference supposedly common to one upon an errand. In this way she passed many manufacturing and wholesale houses without once glancing in. At last, after several blocks of walking, she felt that this would not do, and began to look about again, though without relaxing her pace. A little way on she saw a great door which, for some reason, attracted her attention. It was ornamented by a small brass sign, and seemed to be the entrance to a vast hive of six or seven floors. "Perhaps," she thought, "They may want some one," and crossed over to enter. When she came within a score of feet of the desired goal, she saw through the window a young man in a grey checked suit. That he had anything to do with the concern, she could not tell, but because he happened to be looking in her direction her weakening heart misgave her and she hurried by, too overcome with shame to enter. Over the way stood a great six- story structure, labelled Storm and King, which she viewed with rising hope. It was a wholesale dry goods concern and employed women. She could see them moving about now and then upon the upper floors. This place she decided to enter, no matter what. She crossed over and walked directly toward the entrance. As she did so, two men came out and paused in the door. A telegraph messenger in blue dashed past her and up the few steps that led to the entrance and disappeared. Several pedestrians out of the hurrying throng which filled the sidewalks passed about her as she paused, hesitating. She looked helplessly around, and then, seeing herself observed, retreated. It was too difficult a task. She could not go past them. So severe a defeat told sadly upon her nerves. Her feet carried her mechanically forward, every foot of her progress being a satisfactory portion of a flight which she gladly made. Block after block passed by. Upon streetlamps at the various corners she read names such as Madison, Monroe, La Salle, Clark, Dearborn, State, and still she went, her feet beginning to tire upon the broad stone flagging. She was pleased in part that the streets were bright and clean. The morning sun, shining down with steadily increasing warmth, made the shady side of the streets pleasantly cool. She looked at the blue sky overhead with more realisation of its charm than had ever come to her before. Her cowardice began to trouble her in a way. She turned back, resolving to hunt up Storm and King and enter. On the way, she encountered a great wholesale shoe company, through the broad plate windows of which she saw an enclosed executive

曹操《短歌行》其二翻译及赏析

曹操《短歌行》其二翻译及赏析 引导语:曹操(155—220),字孟德,小名阿瞒,《短歌行 二首》 是曹操以乐府古题创作的两首诗, 第一首诗表达了作者求贤若渴的心 态,第二首诗主要是曹操向内外臣僚及天下表明心迹。 短歌行 其二 曹操 周西伯昌,怀此圣德。 三分天下,而有其二。 修奉贡献,臣节不隆。 崇侯谗之,是以拘系。 后见赦原,赐之斧钺,得使征伐。 为仲尼所称,达及德行, 犹奉事殷,论叙其美。 齐桓之功,为霸之首。 九合诸侯,一匡天下。 一匡天下,不以兵车。 正而不谲,其德传称。 孔子所叹,并称夷吾,民受其恩。 赐与庙胙,命无下拜。 小白不敢尔,天威在颜咫尺。 晋文亦霸,躬奉天王。 受赐圭瓒,钜鬯彤弓, 卢弓矢千,虎贲三百人。 威服诸侯,师之所尊。 八方闻之,名亚齐桓。 翻译 姬昌受封为西伯,具有神智和美德。殷朝土地为三份,他有其中两分。 整治贡品来进奉,不失臣子的职责。只因为崇侯进谗言,而受冤拘禁。 后因为送礼而赦免, 受赐斧钺征伐的权利。 他被孔丘称赞, 品德高尚地位显。 始终臣服殷朝帝王,美名后世流传遍。齐桓公拥周建立功业,存亡继绝为霸 首。

聚合诸侯捍卫中原,匡正天下功业千秋。号令诸侯以匡周室,主要靠的不是 武力。 行为磊落不欺诈,美德流传于身后。孔子赞美齐桓公,也称赞管仲。 百姓深受恩惠,天子赐肉与桓公,命其无拜来接受。桓公称小白不敢,天子 威严就在咫尺前。 晋文公继承来称霸,亲身尊奉周天王。周天子赏赐丰厚,仪式隆重。 接受玉器和美酒,弓矢武士三百名。晋文公声望镇诸侯,从其风者受尊重。 威名八方全传遍,名声仅次于齐桓公。佯称周王巡狩,招其天子到河阳,因 此大众议论纷纷。 赏析 《短歌行》 (“周西伯昌”)主要是曹操向内外臣僚及天下表明心 迹,当他翦灭群凶之际,功高震主之时,正所谓“君子终日乾乾,夕惕若 厉”者,但东吴孙权却瞅准时机竟上表大说天命而称臣,意在促曹操代汉 而使其失去“挟天子以令诸侯”之号召, 故曹操机敏地认识到“ 是儿欲据吾著炉上郁!”故曹操运筹谋略而赋此《短歌行 ·周西伯 昌》。 西伯姬昌在纣朝三分天下有其二的大好形势下, 犹能奉事殷纣, 故孔子盛称 “周之德, 其可谓至德也已矣。 ”但纣王亲信崇侯虎仍不免在纣王前 还要谗毁文王,并拘系于羑里。曹操举此史实,意在表明自己正在克心效法先圣 西伯姬昌,并肯定他的所作所为,谨慎惕惧,向来无愧于献帝之所赏。 并大谈西伯姬昌、齐桓公、晋文公皆曾受命“专使征伐”。而当 今天下时势与当年的西伯、齐桓、晋文之际颇相类似,天子如命他“专使 征伐”以讨不臣,乃英明之举。但他亦效西伯之德,重齐桓之功,戒晋文 之诈。然故作谦恭之辞耳,又谁知岂无更讨封赏之意乎 ?不然建安十八年(公元 213 年)五月献帝下诏曰《册魏公九锡文》,其文曰“朕闻先王并建明德, 胙之以土,分之以民,崇其宠章,备其礼物,所以藩卫王室、左右厥世也。其在 周成,管、蔡不静,惩难念功,乃使邵康公赐齐太公履,东至于海,西至于河, 南至于穆陵,北至于无棣,五侯九伯,实得征之。 世祚太师,以表东海。爰及襄王,亦有楚人不供王职,又命晋文登为侯伯, 锡以二辂、虎贲、斧钺、禾巨 鬯、弓矢,大启南阳,世作盟主。故周室之不坏, 系二国是赖。”又“今以冀州之河东、河内、魏郡、赵国、中山、常 山,巨鹿、安平、甘陵、平原凡十郡,封君为魏公。锡君玄土,苴以白茅,爰契 尔龟。”又“加君九锡,其敬听朕命。” 观汉献帝下诏《册魏公九锡文》全篇,尽叙其功,以为其功高于伊、周,而 其奖却低于齐、晋,故赐爵赐土,又加九锡,奖励空前。但曹操被奖愈高,心内 愈忧。故曹操在曾早在五十六岁写的《让县自明本志令》中谓“或者人见 孤强盛, 又性不信天命之事, 恐私心相评, 言有不逊之志, 妄相忖度, 每用耿耿。

2008年浙师大《外国文学名著鉴赏》期末考试答案

(一)文学常识 一、古希腊罗马 1.(1)宙斯(罗马神话称为朱庇特),希腊神话中最高的天神,掌管雷电云雨,是人和神的主宰。 (2)阿波罗,希腊神话中宙斯的儿子,主管光明、青春、音乐、诗歌等,常以手持弓箭的少年形象出现。 (3)雅典那,希腊神话中的智慧女神,雅典城邦的保护神。 (4)潘多拉,希腊神话中的第一个女人,貌美性诈。私自打开了宙斯送她的一只盒子,里面装的疾病、疯狂、罪恶、嫉妒等祸患,一齐飞出,只有希望留在盒底,人间因此充满灾难。“潘多拉的盒子”成为“祸灾的来源”的同义语。 (5)普罗米修斯,希腊神话中造福人间的神。盗取天火带到人间,并传授给人类多种手艺,触怒宙斯,被锁在高加索山崖,受神鹰啄食,是一个反抗强暴、不惜为人类牺牲一切的英雄。 (6)斯芬克司,希腊神话中的狮身女怪。常叫过路行人猜谜,猜不出即将行人杀害;后因谜底被俄底浦斯道破,即自杀。后常喻“谜”一样的人物。与埃及狮身人面像同名。 2.荷马,古希腊盲诗人。主要作品有《伊利亚特》和《奥德赛》,被称为荷马史诗。《伊利亚特》叙述十年特洛伊战争。《奥德赛》写特洛伊战争结束后,希腊英雄奥德赛历险回乡的故事。马克思称赞它“显示出永久的魅力”。 3.埃斯库罗斯,古希腊悲剧之父,代表作《被缚的普罗米修斯》。6.阿里斯托芬,古希腊“喜剧之父”代表作《阿卡奈人》。 4.索福克勒斯,古希腊重要悲剧作家,代表作《俄狄浦斯王》。5.欧里庇得斯,古希腊重要悲剧作家,代表作《美狄亚》。 二、中世纪文学 但丁,意大利人,伟大诗人,文艺复兴的先驱。恩格斯称他是“中世纪的最后一位诗人,同时又是新时代的最初一位诗人”。主要作品有叙事长诗《神曲》,由地狱、炼狱、天堂三部分组成。《神曲》以幻想形式,写但丁迷路,被人导引神游三界。在地狱中见到贪官污吏等受着惩罚,在净界中见到贪色贪财等较轻罪人,在天堂里见到殉道者等高贵的灵魂。 三、文艺复兴时期 1.薄迦丘意大利人短篇小说家,著有《十日谈》拉伯雷,法国人,著《巨人传》塞万提斯,西班牙人,著《堂?吉诃德》。 2.莎士比亚,16-17世纪文艺复兴时期英国伟大的剧作家和诗人,主要作品有四大悲剧——《哈姆雷特》、《奥赛罗》《麦克白》、《李尔王》,另有悲剧《罗密欧与朱丽叶》等,喜剧有《威尼斯商人》《第十二夜》《皆大欢喜》等,历史剧有《理查二世》、《亨利四世》等。马克思称之为“人类最伟大的戏剧天才”。 四、17世纪古典主义 9.笛福,17-18世纪英国著名小说家,被誉为“英国和欧洲小说之父”,主要作品《鲁滨逊漂流记》,是英国第一部现实主义长篇小说。10.弥尔顿,17世纪英国诗人,代表作:长诗《失乐园》,《失乐园》,表现了资产阶级清教徒的革命理想和英雄气概。 25.拉伯雷,16世纪法国作家,代表作:长篇小说《巨人传》。 26.莫里哀,法国17世纪古典主义文学最重要的作家,法国古典主义喜剧的创建者,主要作品为《伪君子》《悭吝人》(主人公叫阿巴公)等喜剧。 五、18世纪启蒙运动 1)歌德,德国文学最高成就的代表者。主要作品有书信体小说《少年维特之烦恼》,诗剧《浮士德》。 11.斯威夫特,18世纪英国作家,代表作:《格列佛游记》,以荒诞的情节讽刺了英国现实。 12.亨利·菲尔丁,18世纪英国作家,代表作:《汤姆·琼斯》。 六、19世纪浪漫主义 (1拜伦, 19世纪初期英国伟大的浪漫主义诗人,代表作为诗体小说《唐璜》通过青年贵族唐璜的种种经历,抨击欧洲反动的封建势力。《恰尔德。哈洛尔游记》 (2雨果,伟大作家,欧洲19世纪浪漫主义文学最卓越的代表。主要作品有长篇小说《巴黎圣母院》、《悲惨世界》、《笑面人》、《九三年》等。《悲惨世界》写的是失业短工冉阿让因偷吃一片面包被抓进监狱,后改名换姓,当上企业主和市长,但终不能摆脱迫害的故事。《巴黎圣母院》 弃儿伽西莫多,在一个偶然的场合被副主教克洛德.孚罗洛收养为义子,长大后有让他当上了巴黎圣母院的敲钟人。他虽然十分丑陋而且有多种残疾,心灵却异常高尚纯洁。 长年流浪街头的波希米亚姑娘拉.爱斯梅拉达,能歌善舞,天真貌美而心地淳厚。青年贫诗人尔比埃尔.甘果瓦偶然同她相遇,并在一个更偶然的场合成了她名义上的丈夫。很有名望的副教主本来一向专心于"圣职",忽然有一天欣赏到波希米亚姑娘的歌舞,忧千方百计要把她据为己有,对她进行了种种威胁甚至陷害,同时还为此不惜玩弄卑鄙手段,去欺骗利用他的义子伽西莫多和学生甘果瓦。眼看无论如何也实现不了占有爱斯梅拉达的罪恶企图,最后竟亲手把那可爱的少女送上了绞刑架。 另一方面,伽西莫多私下也爱慕着波希米亚姑娘。她遭到陷害,被伽西莫多巧计救出,在圣母院一间密室里避难,敲钟人用十分纯朴和真诚的感情去安慰她,保护她。当她再次处于危急中时,敲钟人为了援助她,表现出非凡的英勇和机智。而当他无意中发现自己的"义父"和"恩人"远望着高挂在绞刑架上的波希米亚姑娘而发出恶魔般的狞笑时,伽西莫多立即对那个伪善者下了最后的判决,亲手把克洛德.孚罗洛从高耸入云的钟塔上推下,使他摔的粉身碎骨。 (3司汤达,批判现实主义作家。代表作《红与黑》,写的是不满封建制度的平民青年于连,千方百计向上爬,最终被送上断头台的故事。“红”是将军服色,指“入军界”的道路;“黑”是主教服色,指当神父、主教的道路。 14.雪莱,19世纪积极浪漫主义诗人,欧洲文学史上最早歌颂空想社会主义的诗人之一,主要作品为诗剧《解放了的普罗米修斯》,抒情诗《西风颂》等。 15.托马斯·哈代,19世纪英国作家,代表作:长篇小说《德伯家的苔丝》。 16.萨克雷,19世纪英国作家,代表作:《名利场》 17.盖斯凯尔夫人,19世纪英国作家,代表作:《玛丽·巴顿》。 18.夏洛蒂?勃朗特,19世纪英国女作家,代表作:长篇小说《简?爱》19艾米丽?勃朗特,19世纪英国女作家,夏洛蒂?勃朗特之妹,代表作:长篇小说《呼啸山庄》。 20.狄更斯,19世纪英国批判现实主义文学的重要代表,主要作品为长篇小说《大卫?科波菲尔》、《艰难时世》《双城记》《雾都孤儿》。21.柯南道尔,19世纪英国著名侦探小说家,代表作品侦探小说集《福尔摩斯探案》是世界上最著名的侦探小说。 七、19世纪现实主义 1、巴尔扎克,19世纪上半叶法国和欧洲批判现实主义文学的杰出代表。主要作品有《人间喜剧》,包括《高老头》、《欧也妮·葛朗台》、《贝姨》、《邦斯舅舅》等。《人间喜剧》是世界文学中规模最宏伟的创作之一,也是人类思维劳动最辉煌的成果之一。马克思称其“提供了一部法国社会特别是巴黎上流社会的卓越的现实主义历史”。

相关文档
相关文档 最新文档