文档库 最新最全的文档下载
当前位置:文档库 › 无取向硅钢热轧板的织构_张正贵

无取向硅钢热轧板的织构_张正贵

无取向硅钢热轧板的织构_张正贵
无取向硅钢热轧板的织构_张正贵

 第42卷 第6期 2007年6月

钢铁

Iron and Steel

 Vol.42,No.6

J une 2007

无取向硅钢热轧板的织构

张正贵1,2, 祝晓波3, 刘沿东1, 李炳南3, 王 福1

(1.东北大学材料与冶金学院,辽宁沈阳110004; 2.沈阳大学机械工程学院,辽宁沈阳110044;

3.武汉钢铁(集团)公司技术中心,湖北武汉430080)

摘 要:选用不同硅含量的工业用无取向硅钢热轧板作为研究对象,采用X 射线衍射Schulz 背反射法对热轧板进行了分层织构测量。结果表明,高硅热轧板表层织构以(1-10)[001]为主,并有少量(3-31)[55-

3],板中心部位以

(001)[11-0]为主;低硅热轧板表层含有少量的(1-10)[1-1-1]、(1-10)[2-2-1]和(5-51)[111-],而板中心部位主要为(001)[11-0]织构,但强度比高硅热轧板低;织构沿厚度方向的分布具有一定的规律性,即表层附近织构以(1-10)[001]为

主,中心处织构以(001)[11-

0]为主,只是强度有差异;热轧温度变化时,织构的强弱有明显的变化,热轧温度对不同硅含量热轧板织构的影响是不同的。关键词:无取向硅钢;热轧;织构

中图分类号:T G132.2 文献标识码:A 文章编号:04492749X (2007)0620074204

Study on T exture of Non 2Oriented H ot 2Rolled E lectrical Steel

ZHAN G Zheng 2gui 1,2, ZHU Xiao 2bo 3, L IU Yan 2dong 1, L I Bing 2nan 3, WAN G Fu 1

(1.School of Materials and Metallurgy ,Northeastern University ,Shenyang 110004,Liaoning ,China ;2.School of Mechanical Engineering ,Shenyang University ,Shenyang 110044,Liaoning ,China ;3.Technology Center of Wuhan Iron and Steel (Group )Co.,Wuhan 430080,Hubei ,China )

Abstract :The stratified texture measurement on industrial non 2oriented hot 2rolled electric steel with various silicon content was conducted by using X 2ray diff raction 2Schulz back 2side reflection.The results show that the texture of top layer of hot 2rolled higher silicon electrical steel sheet is dominated by (1-10)[001]with trace (3-31)[55-

3]texture and in the center there is mainly (001)[11-0].There is small amount of (1-10)[1-1-1]、

(1-10)[2-2-1]and (5-51)[111-]texture is the top layer of hot 2rolled low silicon electrical steel sheet ,while the center is mainly (001)[11-0],but the intensity is lower than that of high silicon electric steel.Thus The texture distribution in the thickness direction for both high and low silicon electrical steel sheets follows some pattern ,ie.,in the top layer there is mainly (110)[001]and in the center there is mainly (001)[11-0],but the intensity is different.There is a significant change of texture intensity with the temperature change of hot rolling.The effect of hot rolling temperature on texture of hot 2rolled e 2lectric steel with different silicon content is different.K ey w ords :non 2oriented silicon steel ;hot 2rolling ;texture

基金项目:国家高技术研究发展计划项目(2003AA331080)

作者简介:张正贵(19642),男,博士生,副教授; E 2m ail :zhzgsy @https://www.wendangku.net/doc/af18731605.html, ; 修订日期:2006209205

硅钢片是电力、电子和军事工业不可缺少的重要软磁合金,亦是产量最大的金属功能材料,主要用作各种电机、发电机和变压器的铁芯。它的生产工艺复杂,制造技术严格,国外的生产技术都以专利形式加以保护,视为企业的生命。电工硅钢板的制造技术和产品质量是衡量一个国家特殊钢生产和科技发展水平的重要标志之一。

为了降低电能在铁芯中的损耗以及减小设备的体积和重量,希望硅钢片的磁导率高,铁损低。减小厚度和改善织构是降低铁损的有效途径[1]。硅钢是晶体材料,其中各个晶体学方向上的磁性能是不同的。因此,如果能制备出有明显各向异性的织构材

料,将性能优异的晶体学方向转置到最需要的方向上,既可以保持金属材料原有的全部优点,又可以使所有需要的性能得到显著的提高。硅钢的[001]方向是易磁化方向[2],通过优化工艺过程的办法获得[001]方向的择优取向是获得高质量硅钢片的有效

途径。对于用于旋转电磁场的软磁硅钢,使相应的无取向电工钢板具有强的{hk0}面平行轧面的纤维织构,而〈001〉方向在轧面中呈360°均匀分布,从而使电磁场在旋转过程中始终可以利用钢板较好的软磁性能[3]。目前冷形变织构和再结晶织构研究得比较多[4],而对热轧硅钢织构的研究却很少,热轧硅钢织构对后续工艺过程织构的形成有重要影响,是硅

第6期张正贵等:无取向硅钢热轧板的织构

钢制造的关键技术。如何控制硅钢织构的形成及织构的演变、相应机理的研究是今后的热点。笔者以工业无取向硅钢热轧板为研究对象,研究了热轧硅钢板织构沿厚度的变化及织构的演变过程以及硅含量和温度对热轧硅钢织构的影响规律。

1 试验方法

试验采用厚2.2mm的工业无取向硅钢热轧板,主要生产工艺流程为电磁搅拌连铸、热轧(1150~1280℃加热,终轧温度800~880℃,卷取温度550~650℃)[5]。硅含量(质量分数,%)分别是310%和0.8%。用线切割切成20mm×18mm 的矩形样品,分层测织构,测量点距表面的距离用S 表示,S=0、0.2、0.4、0.6、0.8、1.1mm。在P H IL2 IPS的X‘Pert的X射线衍射仪上,采用Schulz背射法测量样品各层的{110}、{200}和{112}3张不完整极图(α=0~70°)。以二步法[6]求算ODF,用角度间隔为5°的恒<截面图来表示。根据ODF理论[7]进行织构的反极图定量分析,即给出某一{hkl}⊥ND或〈uv w〉∥RD的织构组分在Euler空间10°范围内的晶粒体积分数。

2 试验结果及讨论

2.1 织构沿板厚方向的分布

2.1.1 高硅热轧板

Si的质量分数为3.0%的热轧板沿板厚方向上各层织构的ODF如图1所示。表层织构主要为(1-10)[001],并有少量(3-31)[55-3]织构,随距表面距离的增加,(1-10)[001]织构不断减弱,而(001) [11-0]织构不断增强。

金属在塑性变形过程中,因受到外界热和力学条件的限制,各晶粒取向会相对外力发生转动,从而形成形变织构[4]。表层和中心部位织构组分的不同,主要受温度和变形量的影响。由于硅钢的导热系数随硅含量的增加而降低,硅钢在平行于板面和垂直于板面的热传导系数也不同[8]。表层和中心部位的温度不一致,中心部位温度较高。轧制时,变形区存在着不均匀的材料流动。在表层,轧辊先使之产生强烈的前滑,局部变形速度大。在接近变形区出口处,带钢中心部分才获得大的流动速度[9]。在带钢热轧过程中,表层主要是通过剪切发生变形,而横截面的其它部分则受到压缩[9]。这说明变形方式和变形量对织构有重要的影响,

从而造成表面下约

(a)S=0mm; (b)S=0.2mm; (c)S=0.4mm;

(d)S=0.6mm; (e)S=0.8mm; (f)S=1.1mm

图1 织构沿板厚方向的变化(<=0°) Fig.1 ODFs constant

0.5mm处织构类型的改变,由剪切织构转变为轧制织构。表层以高斯织构{110}〈001〉组分为主,中心部位以{001}〈110〉为主要织构组分。

2.1.2 低硅热轧板

Si的质量分数为0.8%的热轧板沿板厚方向上各层织构的ODF如图2所示。表层没有明显的织构组分,随着距表面距离的增加,出现了(1-10) [1-1-3]织构和(5-51)[66-5]织构组分,在距表面0.4 mm处出现了明显的(1-10)[001]织构组分,但在距表面0.6mm处(1-10)[001]织构组分基本消失,而主要为反高斯织构{001}〈110〉组分,并有少量(1-11)[01-1]织构组分出现。从表层到中心部位,织构组分完全不同。

高、低硅热轧板的共同点是中心部位反高斯织构{001}〈110〉组分很强,

但从表层到中心部位织构

(a)S=0mm; (b)S=0.2mm; (c)S=0.4mm;

(d)S=0.6mm; (e)S=0.8mm; (f)S=1.1mm

图2 织构沿板厚方向的变化(<=45°) Fig.2 ODFs constant

?

5

7

?

钢 铁第42卷

组分的变化明显不同。2.2 热轧温度对织构的影响

图3为硅的质量分数为3.0%的热轧板头部和尾部的高斯织构{110}〈001〉与反高斯织构{100}〈011〉的强度沿板厚方向的变化。从图中可以看出,热轧温度对硅钢织构有很大的影响。如图3(a )所示,在头部,自表面到深0.4mm 处,{110}〈001〉织构强度高,而从深0.6mm 到中心部位,{110}〈001〉织构强度已经趋于零,头部{110}〈001〉织构强度明显高于尾部{110}〈001〉织构强度。从图3(b )中可以看出,尾部从表层开始已经出现反高斯织构,中心部位强度最大。在头部的表层附近未发现反高斯织构,而从深约0.5mm 处,开始出现反高斯织构组分,并且中心部位的强度最大。尾部从表层到深014mm 处只有少量的高斯织构出现,强度很弱,而反高斯织构较强,这与头部的织构组分具有明显的区别。在同一轧制工艺下,头部形成较强的高斯织构{110}〈001〉,而尾部对应处却变为反高斯织构{001}〈011〉。除温度因素外,其它因素是相同的。因此,热轧终轧温度的高低对织构的影响是较大的。

对此有必要进一步确定。

图4为硅的质量分数为0.8%的热轧板头部和

尾部的高斯织构{110}〈001〉与反高斯织构{100}〈011〉的强度沿板厚方向的变化。头部和尾部对应部位的织构类型基本一致,在表层附近区域,有(1-10)[1-1-3]织构、(1-10)[1-1-1]织构、(1-10)[1-1-8]织

构、

(5-51)[66-5]织构等,但没有一种明显的织构组分。从图4(a )可以看出,{110}〈001〉织构组分较弱,强度很低。由图4(b )可看出,在表层,头部和尾部都未出现反高斯织构,从距离表面0.6mm 处已经出现较强的反高斯织构,中心部位的反高斯织构最强。中心部位附近主要为反高斯织构{100}〈011〉

组分,另外有少量的(1-11)[01-1]织构组分。尾部织构的强度稍弱于头部,这说明温度对低碳低硅冷轧无取向硅钢织构的影响不是很明显。低碳低硅冷轧无取向硅钢卷取前的热轧带中沉淀析出的第二相粒子主要是(Al ,Si )N ,终轧温度对其影响不大,它在卷取过程中逐渐粗化[9]。

温度对热轧织构的影响与硅的含量有关,不同硅含量其影响规律是不同的

图3 {110}〈001〉织构(a)和{100}〈011〉织构(b)的强度沿板厚方向的变化

Fig.3 Change of {110}〈001〉and {100}〈011〉intensity in thickness

direction

图4 {110}〈001〉织构(a)和{100}〈011〉织构(b)的强度沿板厚方向的变化

Fig.4 Change of {110}〈001〉and {100}〈011〉intensity in thickness direction

?

67?

第6期张正贵等:无取向硅钢热轧板的织构

2.3 硅含量对织构的影响

图5为不同硅含量钢板的(100)、(110)的轧面反极图的定量计算结果,表示{100}、{110}面织构体积分数沿板厚方向的变化。在不同的硅含量下,表层的{110}面织构组分的体积分数较高,硅含量较高者该组分的体积分数较大。在中心部位,{100}面织

构组分的体积分数较高。图6为硅含量对高斯和反高斯织构强度的影响,硅含量高时,表层高斯织构{110}〈001〉组分和中心区域反高斯织构{100}〈011〉组分均比低硅钢板的强度高。硅有利于高斯织构和反高斯织构的形成

图5 硅含量对{100}和{110}面织构的影响

Fig.5 E ffect of silicon content on {100}and

{110}

图6 硅含量对{110}〈001〉织构(a)和{100}〈011〉织构(b)的影响

Fig.6 E ffect of silicon content on {110}〈001〉and {100}〈011〉

3 结论

(1)在距表面不同的距离处,热轧板的织构组

分是不同的,中心部位附近反高斯织构{001}〈110〉

很强,而高斯织构{110}〈001〉只在表层附近存在。

(2)同一板材头部和尾部仅热轧温度有差别,其它条件相同,但头、尾的织构组分差别很大。在高硅含量下,尾部表层出现较高强度的反高斯织构。

(3)在相同的部位,高硅钢板的反高斯织构{001}〈110〉和高斯织构{110}〈001〉均比低硅钢板的

强度高。

参考文献:

[1] Kubota T ,Fujikura M ,U shigami Y.Recent Progress and Fu 2

ture Trend on Grain 2Oriented Silicon Steel [J ].J Magn Magn Mmater ,2000,2152216(2):39273.

[2] 杨觉先.金属塑性变形物理基础[M ].北京:冶金工业出版社,

1988.

[3] 毛卫民,余永宁.金属材料各向异性的开发研究[J ].金属学热

处理学报,1997,18(1)::952100.(MAO Wei 2min ,YU Y ong 2

ning.The Study on Anisotropy of Metals[J ].J of Heat Treat 2ment of Metallography ,1997,18(1):952100.)

[4] 张新明,李赛毅.金属材料织构的研究及其发展[J ].中国科学

基金,1995,(3):26230.(ZHAN G Xin 2ming ,L I Sai 2yi.The

Research and Development of Metal Texture[J ].The Science Foundation of China ,1995,(3):26230.)

[5] 殷瑞钰.钢的质量现代进展(下篇)[M ].北京:冶金工业出版

社,1995.

[6] L IAN G Z ,XU J ,WAN G F.Determination of ODF of Poly 2

crystalline Materials From Incomplete Pole Figures [A ].Na 2gashima S eds.Proc 6t h Int Conf on Textures of Materials [C].Tokyo :ISI J ,1981.1259-1265.

[7] 梁志德,徐家桢,王 福.织构材料的三维取向分析技术2ODF

分析[M ].沈阳:东北工学院出版社,1986.

[8] 何忠治.电工钢(上册)[M ].北京:冶金工业出版社,1997.[9] Meyer L.带钢轧制过程中材料性能的优化[M ].赵 辉译.

北京:冶金工业出版社,1996.

?

77?

无取向硅钢片生产技术要点

无取向硅钢片生产技术要点 一、无取向硅钢片生产技术要点 首先要求钢水纯净,经真空处理后碳含量降至0.01~0.005%,氧<0.005%,保护浇铸成厚板坯,低温热送,加热到1100~1200℃,保温3~4h,使AlN粗化,若轧机能力强,最好是1050~1100℃加热,防止铸坯中较粗的AlN、MnS析出物再固溶,使热轧及退火后晶粒细化,组分增多,磁性变坏。终轧温度要高些,以防止晶粒变粗,铁损降低。 对无取向的Si>1.7%的硅钢,由于变形抗力显著提高,导热性降低,并且连铸后柱状晶粗大,产品表面易产生瓦垅状缺陷,铸坯易产生内、外裂纹,故需慢热慢冷,加热温度也可略高一些,达1 200℃。这更便于热轧而且使终轧温度提高,热轧板晶粒粗化,可改善磁性。加热到1200℃,Mn S不会固溶,而AlN可能部分固溶,但由于钢中碳含量降低(如<0.01%,至0.004%),可使AlN固溶度明显减小,亦即使固溶温度提高。则≤1200℃加热仍可使AlN粗化,P15降低。通常开轧温度1180±20℃,终轧温度850±20℃。应注意含Si<1.7%或Si<2.5%而C>0.01%的硅钢在约1 000℃时存在明显的α+γ两相区,热轧塑性显著降低,γ相与α相变形抗力之差易引起不均匀变形,使板形不好,易出现裂边,成材率下降。故应尽量降低碳含量,使热轧精轧基本处于α相区或避开α+γ两相区,C≤0.003%的1.5%Si钢,热轧时由于γ相数量减少,也不裂边。碳量低,以后退火也不需要脱碳。 二、无取向硅钢片和取向硅钢片的关系: 1、二者都是冷轧硅钢片,但含硅量不同。冷轧无取向硅钢片含硅量0.5%-3.0%,冷轧取向硅钢片含硅量在3.0%以上。 2、生产工艺及性能的不同:无取向硅钢片较取向硅钢片工艺要求相对较低。 无取向硅钢片是将钢坯或连铸坯热轧成厚度约2.3mm带卷。制造低硅产品时,热轧带卷酸洗后一次冷轧到0.5mm厚。制造高硅产品时,热轧带酸洗后(或先经800~850℃常化后再酸洗),冷轧到0.55或0.37mm厚,在氢氮混合气氛连续炉中850℃退火,再经6~10%小压下率冷轧到0.50或0.35mm厚。这个小压下率的冷轧可使退火时晶粒长大,铁损降低。这两种冷轧板都在20%氢氮混合气氛下连续炉中850℃最终退火,然后涂磷酸盐加铬酸盐的绝缘膜。经冷轧至成品厚度,供应态多为0.35mm和0.5mm厚的钢带。冷轧无取向硅钢的Bs高于取向硅钢。 取向硅钢片要求钢中氧化物夹杂含量低,并必须含有C0.03~0.05%和抑制剂(第二相弥散质点或晶界偏析元素)。抑制剂的作用是阻止初次再结晶晶粒长大和促进二次再结晶的发展,从而获得高的(110)[001]取向。抑制剂本身对磁性有害,所以在完成抑制作用后,须经高温净化退火。采用第二相抑制剂时,板坯加热温度必须提高到使原来粗大第二相质点固溶,随后热轧或常化时再以细小质点析出,以便增强抑制作用。冷轧成品厚度为0.28、0.30或0.35mm。冷轧取向薄硅钢带是将0.30或0.35mm厚的取向硅钢带,再经酸洗、冷轧和退火制成。与冷轧无取向硅钢相比,取向硅钢要比无取向硅钢铁损低很多,磁性具有强烈的

取向硅钢工艺大师的作品

取向硅钢——工艺大师的作品 工艺品,即通过手工或机器将原料或半成品加工而成的产品,是对一组价值艺术品的总称。工艺品来源于生活,却又创造了高于生活的价值。它是人民智慧的结晶,充分体现了人类的创造性和艺术性,是人类的无价之宝。然而,大 多数人一提到工艺品一定会联想到,木雕、竹雕、唐三彩、刺绣等,但是在特殊钢行业中也有一种产品被称作工艺品,那就是取向硅钢。 为什么说取向硅钢被称为工艺品呢?1、这是因为 取向硅钢制备工艺非常精细准确,合金成分的严格控制,MnS/AlN抑制剂粒子的尺寸、分布、数量的准确控制,特别是织构或晶粒取向的控制达到了极致的水平。在特定的工艺下,使230 mm厚的连铸坯中3个晶区(表层细晶区、 柱状晶区、中心粗大等轴晶区)的不均匀组织(材料科学基础 中称其为组织不均匀性,此外还有物理不均匀性(指缩孔)和 成分不均匀性(指偏析)),变为最终0.3 mm厚的近 100%Goss(称高斯或戈斯)取向{110}等轴晶,如下图(图中的{200}极图显示晶粒的取向分布,即所有晶粒{200}面法线的 极射投影,看上去像个冬天下雪后堆出的有面部表情的雪人),这需要每道工序的严格控制。

2、再者就是取向硅钢的“技术秘密”:要使取向硅钢具有近100%的Goss取向晶粒,就要通过非常缓慢的二次再结晶过程(也称晶粒异常长大)。Goss织构的获取是目前惟一的通过二次再结晶获得有利织构的例子,一般二次再结晶的发生都不是人们所希望的。异常长大的发生主要靠一次再结晶后有利的初次织构,即强的{111}织构,极少量的Goss取向晶粒作为种子,和钉扎力合适的第二相粒子“密切配合”,以及合适均匀的晶粒尺寸。若Goss种子晶粒位向不准,或数目过多,或钉扎用的MnS/AlN粒子含量过多或过少,尺寸不合适都得不到非常锋锐的Goss织构。 理想的二次再结晶还要靠理想的一次再结晶,合适的一次再结晶晶粒尺寸要靠合适的一次再结晶退火温度和时间。而合适的一次再结晶织构要靠合适的冷轧压下量,即87%的压下量。进一步的细节是热轧时表层剪切织构的形成与控制、中心层平面应变压缩时轧制织构的形成、87%冷轧时特定强度的{111}织构的形成、形变晶粒内部剪切带内Goss 亚晶的保留、退火后强{111}织构的形成。二次再结晶时Goss 晶粒择优长大先吃掉尺寸较小的{111}晶粒,再陆续吃掉尺寸较大的{114}及相关取向晶粒,见下图b~e,简言之就是{100}

宝钢无取向硅钢片钢带化学成分分析

宝山钢铁股份有限公司企业标准 全工艺冷轧无取向电工钢带 (Q/BQB 480-2009 代替Q/BQB480-2007) 1 范围 本标准规定了公称厚度为0.35mm,0.50mm和0.65mm全工艺冷轧无取向电工钢带的定义、分类和代号、尺寸、外形、重量、磁特性等技术要求、检验和试验、包装、标志及检验文件等。 本标准适用于宝山钢铁股份公司生产的、用于磁路结构的、以最终退火状态交货的全工艺冷轧无取向电工钢带(以下简称钢带)。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 2791-1995 胶粘剂T剥离强度试验方法挠性材料对挠性材料 GB/T 3102.5-1993 电学和磁学的量和单位 GB/T 3655-2008 用爱泼斯坦方圈测量电工钢片(带)磁性能的方法 GB/T 8170-2008 数值修约规则与极限数值的表示和判定 GB/T 9637-2001 电工术语磁性材料与元件 GB/T 13789-2008 用单片测试仪测量电工钢片(带)磁性能的方法 GB/T 19289-2003 电工钢片(带)的密度、电阻率和叠装系数的测量方法 Q/BQB 400 冷轧产品的包装、标志及检验文件 Q/BQB 401 冷连轧钢板及钢带的尺寸、外形、重量及允许偏差 3 术语和定义 3.1 铁损(比总损耗)iron loss ( specific total loss) 铁损是指在交变磁场下磁化试样时,消耗在试样上的无效电能。在给定频率和最大磁感应强度进行磁化的情况下,铁损用符号P(10Bm/f)表示,单位为W/kg。 例:P15/50表示在最大磁感应强度为1.5T、频率为50Hz时,单位kg试样的铁损。 3.2 磁化特性(磁感应强度)magnetic polarization(magnetic flux density) 磁化特性通常用正常磁化曲线上,对应于给定磁场强度的磁感应强度(磁极化强度)来表示。磁感应强度的符号为B(0.01H),单位为T(特

包钢无取向硅钢生产线生产工艺解析

包钢无取向硅钢生产线生产工艺解析 硅钢是指含硅量在0. 5% ~ 4. 5% 左右的硅铁合金,是电力、电子和军事行业不可缺少的重要软磁合金,被称为钢铁产品中的“艺术品”。 经过对包钢薄板厂20万t硅钢生产工艺的探索与总结,钢板清洗质量、退火炉退火温度、涂覆膜厚度等因素,是影响硅钢成品性能的关键因素.优化前清洗段的清洗质量是降低炉辊结瘤概率的有效手段.保证退火炉的退火温度在750~950℃是细化钢板晶粒,调整组织,消除组织缺陷的核心工艺.涂覆膜均匀、厚度合理,保证在3.2~3.5 g/m2,是确保硅钢片免受各种腐蚀介质的侵蚀的重要措施。 1、硅钢生产工序 铁水预脱硫处理→转炉冶炼→RH 处理→薄板坯连铸连轧→酸洗→冷轧→连续退火→涂层→卷取( 取样检验) →包装出厂 在硅钢生产末段,即退火、涂层段,是直接决定硅钢成品的性能好坏及成品等级的阶段,如何管控好相应的工艺变得尤为重要。 2、退火涂层工艺解析 2.1 前清洗段 硅钢生产线主要控制的是退火与涂层两部分。然而,在冷轧原料进入退火炉退火前,由于生产环境的不同,硅钢原料表面不可避免的包含一些污染物,这些污物主要包括:轧制过程中残留的乳化液、润滑油和铁粉,以及在冷硬卷存放过程中产生的锈和落上的尘土。因此,必须对板带进行清洗,否则将严重影响最终成品表面质量,从而影响成品等级。 硅钢生产线在退火炉前专门设置了前清洗段,并且针对不同性质的杂质,设计不同种类的清洗介质,做到对症下药,有的放矢。 硅钢线前清洗段的清洗结构与清洗原因如下所述:前清洗段的布置结构依次为:碱浸洗段、碱刷洗段、电解清洗段、水刷洗段、水浸洗段、水漂洗段。各段针对不同性质的杂质,分类清洗,主要清洗原理是: (1) 乳化液、润滑油:利用清洗液中NaOH的皂化反应初步去除板面上植物性油脂,在利用活性剂成分初步去除板面上的矿物性油脂。结合刷洗和电解清洗深层次去除钢带表面的油脂。 (2) 铁粉:利用刷洗初步去除钢带外层的铁粉,利用电解清洗深层次去除钢带表面的铁粉。 (3) 锈:钢带表面的粘附的铁锈颗粒可以经刷洗去除。 (4) 尘土:可经脱脂清洗去除。 (5) 经过前清洗段对板带各种类型的冲洗,原板污物绝大多数已经清洗干净,能够满足后续生产工艺的要求。 2.2 连续退火 退火是一种金属热处理工艺,指的是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却。目的是降低硬度,改善切削加工性;消除残余应力,稳定尺寸,减少变形与裂

国内外冷轧无取向硅钢牌号对照表

国内外冷轧无取向硅钢牌号对照表 ID thickne ss,mm Russia(俄罗斯)Germany(德国)China(中国)Japan(日本)USA(美国)U.K.(英国)South Korea(南韩)Japan(日本)Japan(日本)Europe(欧洲)GOST 21427.2DIN 46400 .1GB/T 2521JIS C-2552AISI,ASTM A -667BS601.P.1KS C -2510NSC KSC EN 10106 grade P1,5B2500 grade P1,5B2500 grade P1,5B5000 grade P1,5B5000 grade P1,5 grade P1,5KS POSKO P1,5 grade P1,5 grade P1,5 grade P1,5B5000 W/kg,not more Tl, not less W/kg,not more Tl, not less W/kg,not more  W/kg,not more Tl, not less W/kg,not more W/kg,not more grade W/kg,not more W/kg,not more W/kg,not more W/kg,not more  1 0.35 35H210 2.1 2 235 -35A 2.35 1.4935W230 2.3 1.635A230 2.3 1.6 35H230 2.335RM230 2.3M235-35A 2.35 1.6 32413 2.5 1.5V250 -35A 2.5 1.4935W250 2.5 1.635A250 2.5 1.6M15 36F145 2.53GRADE250 2.5 PN-09 2.5335H250 2.535RM250 2.5M250-35A 2.5 1.6 4 GRADE265 2.65SE13C PN-10 2.65 52412 2.7 1.5V270 -35A 2.7 1.4935W270 2.7 1.635A270 2.7 1.6M19 36F158 2.75 35H270 2.735RM270 2.7M270-35A 2.7 1.6 6 GRADE280 2.8 7 M22 36F168 2.93 PN-11 2.93 824113 1.5V300 -35A3 1.49 35A3003 1.6 GRADE3003 35H300335RM3003 9 35W3003 1.6 M27 36F180 3.13GRADE315 3.15SE15C PN-12 3.1 M300-35A3 1.6 10 V330 -35A 3.3 1.49 M36 36F190 3.31GRADE335 3.35 M330-35A 3.3 1.6 11 35W360 3.6 1.6135A360 3.6 1.61 SE18C PN-14 3.636H360 3.635RM360 3.6 12 35W440 4.4 1.6435A440 4.4 1.64 SE23C PN-18 4.435H440 4.435RM440 4.4 13 35W4004 1.62 SE26C PN-205 14 SE29C PN-23 5.5 1 0.5 50W230 2.3 1.6 50H230 2.3 2 V250 -50A 2.5 1.4950W250 2.5 1.6 50H250 2.550RM250 2.5M250-50A 2.5 1.6 32414 2.7 1.49V270 -50A 2.7 1.4950W270 2.7 1.650A270 2.7 1.6 50H270 2.750RM270 2.7M270-50A 2.7 1.6 42413 2.9 1.5V290 -50A 2.9 1.4950W290 2.9 1.650A290 2.9 1.6M15 47F168 2.93 PN-09 2.950H290 2.950RM290 2.9M290-50A 2.9 1.6 52412 3.1 1.5V310 -50A 3.1 1.4950W310 3.1 1.650A310 3.1 1.6M19 47F174 3.03 SE13C PN-10 3.150H310 3.150RM310 3.1M310-50A 3.1 1.6 6 M22 47F185 3.22 PN-11 3.22 7 V330 -50A 3.3 1.4950W330 3.3 1.6 M27 47F190 3.31 M330-50A 3.3 1.6 8 V350 -50A 3.5 1.550W350 3.5 1.650A350 3.5 1.6 GRADE355 3.55 50H350 3.550RM350 3.5M350-50A 3.5 1.6 92411 2.6 1.49 M36 47F205 3.57 SE15C PN-12 3.6 102312 3.8 1.58 1122164 1.6V400 -50A4 1.5150W4004 1.6150A4004 1.61M43 47F230 4.01GRADE4004SE18C PN-14450H400450RM4004M400-50A4 1.63 122215 4.5 1.64 GRADE450 4.5 13 V470 -50A 4.7 1.5250W470 4.7 1.6250A470 4.7 1.62 SE23C PN-18 4.750H470 4.750RM470 4.7M470-50A 4.7 1.64 142214 4.8 1.62 1522135 1.65 GRADE5005 1622125 1.6 17 V530 -50A 5.3 1.5450W540 5.4 1.65 M45 47F305 5.31 SE26C PN-20 5.4 M530-50A 5.3 1.65 182211 5.5 1.56 1921126 1.62V600 -50A6 1.55 50A6006 1.65M47 47F400 6.96 SE29C PN-23 6.2 2021117 1.6V700 -50A7 1.5850W6006 1.6550A7007 1.68 50H600650RM6006M600-50A6 1.66 212013 6.5 1.65 50W7007 1.68 50H700750RM7007M700-50A7 1.69 2220127 1.62 2320118 1.6V800 -50A8 1.58 50A8008 1.6847F4758.27 S-30PN-308 24 940-50SG9.4 1.5850W8008 1.68 50H800850RM8008M800-50A8 1.7 25 100-50SG11 1.58 50A100010 1.69 S-40PN-4010.5 M940-50A9.4 1.62 26 50W100010 1.6950A130013 1.69 S-50PN-501350H10001050RM100010 27 50W130013 1.69

硅钢片基本知识

五金知识:矽钢片 -------------------------------------------------------------------------------- 来源: 发布日期: 电工用硅钢薄板俗称矽钢片或硅钢片。顾名思义,它是含硅高达0.8%-4.8%的电工硅钢,经热、冷轧制成。一般厚度在1mm以下,故称薄板。硅钢片广义讲属板材类,由于它的特殊用途而独立一分支。 电工用硅钢薄板具有优良的电磁性能,是电力、电讯和仪表工业中不可缺少的重要磁性材料。 (1)硅钢片的分类 A、硅钢片按其含硅量不同可分为低硅和高硅两种。低硅片含硅2.8%以下,它具有一定机械强度,主要用于制造电机,俗称电机硅钢片;高硅片含硅量为 2.8%-4.8%,它具有磁性好,但较脆,主要用于制造变压器铁芯,俗称变压器硅钢片。两者在实际使用中并无严格界限,常用高硅片制造大型电机。 B、按生产加工工艺可分热轧和冷轧两种,冷轧又可分晶粒无取向和晶粒取向两种。冷轧片厚度均匀、表面质量好、磁性较高,因此,随着工业发展,热轧片有被冷轧片取代之趋势(我国已经明确要求停止使用热轧硅钢片,也就是前期所说的"以冷代热")。 (2)硅钢片性能指标 A、铁损低。质量的最重要指标,世界各国都以铁损值划分牌号,铁损越低,牌号越高,质量也高。 B、磁感应强度高。在相同磁场下能获得较高磁感的硅钢片,用它制造的电机或变压器铁芯的体积和重量较小,相对而言可节省硅钢片、铜线和绝缘材料等。 C、叠装系数高。硅钢片表面光滑,平整和厚度均匀,制造铁芯的叠装系数提高。 D、冲片性好。对制造小型、微型电机铁芯,这点更重要。 E、表面对绝缘膜的附着性和焊接性良好。 F、磁时效 G、硅钢片须经退火和酸洗后交货。 (一)电工用热轧硅钢薄板(GB5212-85) 电工用热轧硅钢薄板以含碳损低的硅铁软磁合金作材质,经热轧成厚度小于1mm的薄板。电工用热轧硅钢薄板也称热轧硅钢片。 热轧硅钢片按其合硅量可分为低硅(Si≤2.8%)和高硅(Si≤4.8%)两种钢片。 (二)电工用冷轧硅钢薄板(GB2521-88)

硅钢生产流程

鞍钢冷轧硅钢厂简介 发布时间:2010-03-12 关键词:鞍钢,冷轧,硅钢,厂简,介 鞍钢冷轧硅钢工程是经国家批准的鞍钢“十五”规划的重点技改项目,该工程于2003年6月18日正式开工,2004年7月19日第一条连退机组热负荷试车并生产出第一卷合格冷硅钢卷。2005年3月30日4条硅钢连退生产线、1条酸轧联合机组已全部建成。该工程的建成添补了鞍钢此类生产的空白,为鞍钢“建精品基地,创世界品牌”奠定了总要基础。 鞍钢冷轧硅钢厂正式成立于2004年7月,该厂主要设备有1条酸洗轧机组联合机组,4条电工钢连续退火涂层机组,4条切边重卷机组,2条包装机组等,厂房占地面积173240m3,设计年生产量为100万吨,其中80万吨为中、底牌号无取向硅钢,20万吨冷硬卷。 酸轧联合机组可生产后、700-1380mm宽的电工钢板和冷轧板,连续退火涂层机组可生产厚、700-1280mm宽的电工钢产品,产品质量、成材率、能耗、劳动生产率、环保等各项技术指标达到国内先进水平,有些指标达到了国际先进水平。产品能够满足中小型电机、家用电器等需要,具有尺寸精度高、磁特性好、性能稳定、绝缘性强等特点,是钢铁行业深加工的优质板材。 鞍钢冷轧硅钢厂整体装备水平达到国际先进水平,是我国自主集成和建设的具有一流水平的冷轧硅钢生产线。 鞍钢冷轧无取向硅钢生产流程图

酸洗-轧机联合机组硅钢连退涂层机组 硅钢连退涂层机组包装机组

包装机组磨辊间可供产品牌号、规格及主要用途 产品特性: 1.产品性能稳定:制造工艺先进、钢质纯净、磁性稳定。 2.尺寸精度高:表面光滑、厚度均匀,同板差小,使用于连续高速冲床使用。 3.加工性能优良:冲片性和焊接性能良好便于剪切和冲压。 4.产品规格齐全,满足不同生产要求。 5.产品图层性能稳定,符合环保要求。 牌号及性能

硅钢片性能及牌号对照

矽钢片的好坏取决于矽钢片的材质和加工工艺,EI型矽钢片的加工工艺最重要。它直接影响 变压器的质量,加工工艺中的冲压方法,退火方法最重要,同一材质的矽钢片冲压毛刺小的 与毛刺大的制作的变压器性能差7%,同一材质的矽钢片退后(氮气保护退火)与不退火的矽钢片制作的变压器性能相差7-10% 国内常用的H系列编号,是沿用70年代-90年代的日本新日铁的标号。而现在正规厂家都按照新的标号标示。 旧标号新标号性能相当材料我知道的批发价格{退火片要贵1000-2000米/吨} H12 50H270 50WW270 B50A270 21000元 H14 50H310 50WW310 B50A310 15800元 H18 50H470 50WW470,B50A470 14000元 H23 50H600 50WW600,B50A600 12600元 H30 50H700 50WW700,B50A700 11000元 H40 50H800 50WW800,B50A800 9600元 H50 50H1000 50WW1000, B50A1000 8500元 H60 50H1300 50WW1300,B50A1300 8000元 从工艺上说,Z系列均为冷轧有取向高含硅量,H系列一般是冷轧无取向中高含硅量, H型无取向性钢片也有0.35MM的薄片。但是产量很少,一般用于要求较高的场合。 无取向硅钢片常用的有下列几种: H50 H23 H18 H14 H12 比重 7.85 7.75 7.65 7.65 7.65 铁损P1.5/50HZ≤13 6.2 4.7 4.0 3.6 磁通密度B50≥ 1.69 1.66 1.64 1.61 1.6 按温升来说H18低于H23,H23低于H50 按空载电流则相反。 另外同一牌号有白片黑片之分,黑片{退火片}性能优于白片。另外同一牌号铁芯尺寸不同性能也不同。 有取向硅钢带常用的牌号有 Z11 Z10

无取向硅钢片

无取向硅钢片 硅钢俗称矽钢片或硅钢片,是电力、电子和军事工业不可缺少的含碳极低的硅铁软磁合金,亦是产量最大的金属功能材料,其产量约占世界钢材产量的1%,它是含硅0.8,-4.8,的硅铁合金,经热、冷轧成厚度在1mm以下的硅钢薄板。加入硅可提高铁的电阻率和最大磁导率,降低矫顽力、铁芯损耗(铁损)和磁时效,主要用作各种电机、发电机和变压器的铁芯。 一、硅钢片分类: A、硅钢片按其含硅量不同可分为低硅和高硅两种。低硅片含硅2.8,以下,它具有一定机械强度,主要用于制造电机,俗称电机硅钢片;高硅片含硅量为2.8,-4.8,,它具有磁性好,但较脆,主要用于制造变压器铁芯,俗称变压器硅钢片。两者在实际使用中并无严格界限,常用高硅片制造大型电机。 B、按生产加工工艺可分热轧和冷轧两种,冷轧又可分晶粒无取向和晶粒取向两种。冷轧片厚度均匀、表面质量好、磁性较高,因此,随着工业发展,热轧片有被冷轧片取代之趋势(我国已经明确要求停止使用热轧硅钢片,也就是前期所说的:以冷代热:)。 二、无取向硅钢片的定义: 无取向硅钢片是按照一定生产工艺,形成无取向性变形织构结晶结构的硅钢片。 三、无取向硅钢片和取向硅钢片的关系: 1、二者都是冷轧硅钢片,但含硅量不同。冷轧无取向硅钢片含硅量0.5%- 3.0%,冷轧取向硅钢片含硅量在3.0%以上。 2、生产工艺及性能的不同:无取向硅钢片较取向硅钢片工艺要求相对较低。

无取向硅钢片是将钢坯或连铸坯热轧成厚度约2.3mm带卷。制造低硅产品时,热轧带卷酸洗后一次冷轧到 0.5mm厚。制造高硅产品时,热轧带酸洗后(或先经800,850?常化后再酸洗),冷轧到0.55或0.37mm厚,在氢氮混合气氛连续炉中850?退火,再经6,10,小压下率冷轧到0.50或0.35mm厚。这个小压下率的冷轧可使退火时晶粒长大,铁损降低。这两种冷轧板都在20,氢氮混合气氛下连续炉中850?最终退火,然后涂磷酸盐加铬酸盐的绝缘膜。经冷轧至成品厚度,供应态多为0.35mm 和0.5mm厚的钢带。冷轧无取向硅钢的Bs高于取向硅钢。 取向硅钢片要求钢中氧化物夹杂含量低,并必须含有C0.03,0.05,和抑制剂(第二相弥散质点或晶界偏析元素)。抑制剂的作用是阻止初次再结晶晶粒长大和促进二次再结晶的发展,从而获得高的(110)[001]取向。抑制剂本身对磁性有害,所以在完成抑制作用后,须经高温净化退火。采用第二相抑制剂时,板坯加热温度必须提高到使原来粗大第二相质点固溶,随后热轧或常化时再以细小质点析出,以便增强抑制作用。冷轧成品厚度为0.28、0.30或0.35mm。冷轧取向薄硅钢带是将0.30或0.35mm厚的取向硅钢带,再经酸洗、冷轧和 退火制成。与冷轧无取向硅钢相比,取向硅钢要比无取向硅钢铁损低很多,磁性具有强烈的方向性;在易磁化的轧制方向上具有优越的高磁导率与低损耗特性。取向钢带在轧制方向的铁损仅为横向的1/3,磁导率之比为6:1,其铁损约为热轧带的1/2,磁导率为后者的2.5倍。 3、性能及用途:由于二者性能特点不同,在使用方向上存在差异冷轧无取向硅钢片最主要的用途是用于发电机制造,故又称冷轧电机硅钢。冷轧取向硅钢带最主要的用途是用于变压器制造,所以又称冷轧变压器硅钢。 (1)硅钢片性能指标: A、铁损低。质量的最重要指标,世界各国都以铁损值划分牌号,铁损越低,牌号越高,质量也高。

硅钢基础知识

硅钢带的生产 1903年美国和德国首先生产了热轧硅钢。美国阿姆柯钢公司于1935年开始生产冷轧 取向硅钢,20世纪40年代初生产无取向硅钢。50年代主要工业发达国家陆续引进阿姆柯技术专利。70年代前,世界约80%取向硅钢都按此专利生产。1968年日本新日铁正式生 产高磁感取向硅钢(Hi-B钢)。从1971年开始,美国等6个国家引进了日本Hi—B钢专利。从1968年开始,日本在冷轧电工钢产品质量、制造技术和装备、开发新产品和新技术、科研和测试技术各方面都远超过美国,处于领先地位。 我国太原钢铁(集团)公司于1954年首先生产热轧硅钢。1957年钢铁研究总院研制成功 冷轧取向硅钢,到1973年已掌握阿姆柯技术专利要点。1974年武汉钢铁(集团)公司从日本新日铁引进冷轧硅钢制造装备和专利,1979年正式生产11个牌号的冷轧取向及无取向硅钢。 4.1电工钢的分类及性能 4.1.1电工钢的分类 电工钢按其成分分为低碳低硅(碳含量很低,硅的质量分数小于0.5%)电工钢和硅钢 两类;按最终加工成形的方法分为热轧硅钢和冷轧硅钢两大类;按其磁各向异性分为取向电工钢和无取向电工钢。 热轧硅钢板均系无取向硅钢,硅钢的磁各向异性是在冷轧后通过二次再结晶过程发展 而成的,因此只有冷轧电工钢才有取向与无取向之分。由于产品的用途不同对磁各向异性的要求不同。在旋转状态下工作的电机要求电工钢磁各向同性,用无取向电工钢制造;变压器在静止状态下工作,要求沿一个方向磁化(轧制方向),用冷轧取向硅钢制造,因此取向硅钢又称变压器钢。 我国电工用热轧硅钢薄板的国家标准号为GB5212—85;从20世纪60年代开始,主要 工业发达国家陆续停止了热轧硅钢板的生产。 我国冷轧晶粒取向、无取向磁性钢带(片)的国家标准号为GB2521—1996。 标准中的牌号表示方法为:以字母W表示无取向钢带(片);以字母Q表示取向钢带(片);以字母G表示取向钢中的高磁感材料。 在一些资料、书籍中,称普通取向硅钢为GO钢,高磁感取向硅钢为Hi-B钢, 电工钢分类见表3—1。 4.1.2电工钢的性能要求 4.1.2.1磁性能 电工钢是以其铁损和磁感应强度作为产品磁性保证值的。用户对电工钢的磁性能要求 如下: (1) 低的铁损。铁损(尸t)是由磁滞损耗(Ph)、涡流损耗(Pe)和反常损耗(Pa)三部分组成的。铁损低可节省大量电力、延长电机和变压器工作时间并简化冷却装置。因电工钢的铁损造成的电量损失占一个国家年发电量的2.5%一4.5%,其中变压器约占50%,小电机占30%,镇流器占15%。因此,各国生产电工钢板总是千方百计地降低铁损,并以铁损作为考核产品磁性能的最重要的指标,按铁损值作为划分牌号的依据。 (2) 高的磁感应强度。磁感应强度高,铁芯激磁电流(空载电流)降低,导线电阻引起的 铜损和铁芯铁损降低,可节省电能。当电机或变压器容量不变时,磁感应强度高可使铁芯体积缩小和质量减轻,节省电工钢板、导线等的用量,并使铁芯铁损和制造成本降低,有利于

冷轧无取向硅钢性能指标检测方法汇编(第一版)汇总

冷轧无取向硅钢性能指标检测方法及性能指标控制管理制度汇编

目录 第一部分冷轧无取向硅钢性能指标控制管理制度 1、冷轧无取向硅钢磁性能指标控制管理制度-----------------------------2 2、冷轧无取向硅钢叠装系数指标控制管理制度--------------------------10 3、冷轧无取向硅钢反复弯曲指标控制管理制度--------------------------12 4、冷轧无取向硅钢力学性能指标控制管理制度--------------------------15 5、冷轧无取向硅钢硬度指标控制管理制度------------------------------21 第二部分附录 1、GB/T 228.1-2010 金属材料拉伸试验第1部分:室温试验方法 2、GB/T 235-1999 金属材料厚度等于或小于3mm薄板或薄带反复弯曲试验方法 3、GB/T 3655-2008 用爱泼斯坦方圈测量电工钢片(带)磁性能的方法 4、GB/T 13789-2008 用单片测试仪测量电工钢片(带)磁性能的方法 5、GB/T 19289-2003 电工钢片(带)的密度、电阻率和叠装系数的测量方法 6、GB/T 230.1-2009 金属材料洛氏硬度试验第1部分:试验方法 7、GB/T 231.1-2009 金属材料布氏硬度试验第1部分:试验方法 8、GB/T 4340-2009 金属材料维氏硬度试验第1部分:试验方法

冷轧无取向硅钢磁性能指标控制管理制度 一、目的 磁性是判定所有硅钢产品牌号以及订货和交货的依据。产品磁性应满足国家标准中规定的相应牌号及订货合同中规定的磁性水平。为了对硅钢片的磁性进行有效监控,现制定本管理制度。 二、用爱泼斯坦方圈测量磁性能的标准方法(用于实验料) 依据GB/T 3655-2008提供的用爱泼斯坦方圈测量电工钢片(带)磁性能的方法如下: 1、装置 25cm 爱泼斯坦方圈由四个线圈组成,它形成一个空载的变压器。爱泼斯坦方圈应包含一个用于空气磁通补偿的互感线圈。支撑线圈的绕组骨架由硬的绝缘材料制成,如酚醛树脂纸板。绕组骨架具有矩形横截面,其内部宽度为32mm ,推荐高度约为10mm 。 线圈安放在一个绝缘的无磁性的底板上,形成一个方框(见图1)。由样片的内缘形成的正方形边长为 图1 标准25cm 爱泼斯坦方圈 四个线圈中的每一个都应有2个绕组:初级绕组(外层,磁化绕组)、次级绕组(内层,感应电压绕组)。 。 mm 2201 0-

硅钢片取向和无取向

电工用硅钢薄板俗称矽钢片或硅钢片。顾名思义,它是含硅高达0.8%-4.8%的电工硅钢,经热、冷轧制成。一般厚度在1mm以下,故称薄板。硅钢片广义讲属板材类,由于它的特殊用途而独立一分支。 电工用硅钢薄板具有优良的电磁性能,是电力、电讯和仪表工业中不可缺少的重要磁性材料。 (1)硅钢片的分类 A、硅钢片按其含硅量不同可分为低硅和高硅两种。低硅片含硅2.8%以下,它具有一定机械强度,主要用于制造电机,俗称电机硅钢片;高硅片含硅量为2.8%-4.8%,它具有磁性好,但较脆,主要用于制造变压器铁芯,俗称变压器硅钢片。两者在实际使用中并无严格界限,常用高硅片制造大型电机。 B、按生产加工工艺可分热轧和冷轧两种,冷轧又可分晶粒无取向和晶粒取向两种。冷轧片厚度均匀、表面质量好、磁性较高,因此,随着工业发展,热轧片有被冷轧片取代之趋势(我国已经明确要求停止使用热轧硅钢片,也就是前期所说的"以冷代热")。 (2)硅钢片性能指标 A、铁损低。质量的最重要指标,世界各国都以铁损值划分牌号,铁损越低,牌号越高,质量也高。 B、磁感应强度高。在相同磁场下能获得较高磁感的硅钢片,用它制造的电机或变压器铁芯的体积和重量较小,相对而言可节省硅钢片、铜线和绝缘材料等。 C、叠装系数高。硅钢片表面光滑,平整和厚度均匀,制造铁芯的叠装系数提高。 D、冲片性好。对制造小型、微型电机铁芯,这点更重要。 E、表面对绝缘膜的附着性和焊接性良好。 F、磁时效现象小 G、硅钢片须经退火和酸洗后交货。 (一)电工用热轧硅钢薄板(GB5212-85) 电工用热轧硅钢薄板以含碳损低的硅铁软磁合金作材质,经热轧成厚度小于1mm的薄板。电工用热轧硅钢薄板也称热轧硅钢片。 热轧硅钢片按其合硅量可分为低硅(Si≤2.8%)和高硅(Si≤4.8%)两种钢片。 (二)电工用冷轧硅钢薄板(GB2521-88) 用含硅0.8%-4.8%的电工硅钢为材质,经冷轧而成。 冷轧硅钢片分晶粒无取向和晶粒取向两种钢带。冷轧电工钢带具有表面平整、厚度均匀、叠装系数高、冲片性好等特点,且比热轧电工钢带磁感高、铁损低。用冷带代替热轧带制造电机或变压器,其重量和体积可减少0%-25%。若用冷轧取向带,性能更佳,用它代替热轧带或低档次冷轧带,可减少变压器电能消耗量45%-50%,且变压器工作性能更可靠。 用于制造电机和变压器。通常,晶粒无取向冷轧带用作电机或焊接变压器等的状态;晶粒取向冷轧带用作电源变压器、脉冲变压器和磁放大器等的铁芯。 钢板规格尺寸:厚度为0.35、0.50、0.65mm,宽度为800-1000mm,长度为≤2.0m。(三)家电用热轧硅钢薄板(GBH46002-90) 家电用热轧硅钢薄板的牌号以J(家)D(电)R(热轧)表示,即JDR。JDR后数字为铁损值*100,横线后数字为钢板厚度(mm)*100。家电用热轧硅钢片对电磁性能要求可稍低一点,铁损值(P15/50)最低值为5.40W/kg。一般不经配洗交货。 用于各种电风扇、洗衣机、吸尘器、抽油烟机等家用电器的微分电机等。 顾名思义取向硅钢对取向有要求它铁损低用于制造大型变压器,无取向硅钢对取向有没要求它铁损较高用于制造中小电机铁芯定转子,两者区别在硅的含量取向硅钢要比无取向硅钢高很多.

无取向硅钢的生产工艺及性能

无取向硅钢的生产工艺及性能 摘要:无取向硅钢俗是电力、电子和军事工业不可或缺的含碳极低的硅铁软磁 合金,它属于铁磁性物质。本文介绍了无取向硅钢在我国近些年的发展现状并对 未来的发展趋势做了展望。介绍了无取向硅钢的生产工艺流程以及无取向硅钢的 性能要求,同时分析了影响无取向硅钢的主要因素。 关键词:无取向硅钢;生产工艺;性能 1无取向硅钢简介 硅钢俗称矽钢片或硅钢片,是电力、电子和军事工业不可或缺的含碳极低的 硅铁软磁合金,主要用作各种电机、发电机和变压器的铁芯。无取向硅钢是含碳 很低的硅铁合金。在形变和退火后的钢板中其晶粒呈无规则取向分布。 2 生产工艺 冷轧无取向硅钢制造工艺流程[1]为:冶炼→真空处理→连铸→热轧→常化→ 冷轧→退火→绝缘涂层 2.1 冶炼 在冶炼过程中,随着硅含量提高,钢水温度升高,出钢温度约降低10℃,因 为真空处理后加入硅铁量多,钢水温度升高。连铸法浇筑时间长,出钢温度比铸 模法约高20℃。 2.2 真空处理 沸腾钢水经真空处理,通过碳和氧的化学反应同时进行脱碳和脱氧,使碳降 到0.005%以下,氧降到0.005%以下。 2.3 连铸 硅钢的连铸采用连铸+电磁搅拌技术,经电磁搅拌后等轴晶占55%~70%,这 样能有效的减轻了表面缺陷。 2.4 热轧 铸坯装炉前在大于150℃进行表面清理,然后放在保温坑中保温和缓冷。铸 坯在加热炉中要缓慢加热,特别是在700~800℃以下更是如此。 2.5 常化 大于2%Si钢采用一次冷轧工艺时,热轧板必须常化,主要目的是使热轧板组 织更均匀,使再结晶晶粒增多,防止瓦状缺陷。同时使晶粒和析出物粗化,磁性 明显提高。 2.6 退火 退火是把钢加热到一定温度后保温一段时间再缓慢冷却的工艺操作。冷轧中 间退火的目的主要是使受到高度冷加工硬化的金属重新软化。二次冷轧法的中间 退火温度一般为830~870℃。随Si+Al量增高,温度增高。最终退火制度为 850~860℃。最好采用干燥气氛退火,以防形成内氧化层和内氮化层。 2.8 绝缘涂层 绝缘涂层主要采用半有机涂层。无机涂层的层间电阻高,叠片系数也较高, 耐热性和焊接性好,而冲片性较差。半有机涂层冲片性好,绝缘性、耐热性和焊 接性则较低。 3.性能要求 3.1铁芯损耗低 电工钢铁损低,既可以节省大量电能,又可以延长电机寿命,简化冷却装置。 3.1.2磁感应强度高

无取向硅钢简介

龙源期刊网 https://www.wendangku.net/doc/af18731605.html, 无取向硅钢简介 作者:苏晓瞳 来源:《科学与财富》2018年第03期 摘要:无取向硅钢是电力、电器工业上重要的软磁材料,主要用于制造各类电动机、发动机等设备的铁芯。 关键词:电工钢;磁极化;多功能材料 1.电工钢简介 硅钢也称电磁钢或电工钢,是指含硅为0.5~4.5%,成品含碳量低于0.03%的硅合金钢。因其具有特殊的性能,即导磁率高、矫顽力低、电阻系数大、磁滞损失小,主要用于制作各种发电机、电动机的铁芯、变压器、继电器以及各种电工仪表等,是国家电力、电子和军事工业不可缺少的重要软磁合金,也是产量最大的金属功能材料,对电力工业发展、电器产品制造、科研、国防建设、能源节约等有着重要意义。 硅钢的生产集冶金工艺、金属物理、磁学、化学、检测等多项技术于一体,特别是取向硅钢的制造工艺和设备复杂,成分控制严格,制造工序长,影响性能的因素多,而且生产工艺保密性强,因此常把取向硅钢的产品质量看作是衡量一个国家特殊钢制造技术水平的重要标志,并称取向硅钢为特殊钢中“艺术品”。 电工钢板按硅含量不同可分为低硅和高硅两种。低硅片含硅2.8%以下,具有一定机械强度,主要用于制造电机,俗称电机硅钢片;高硅片含硅量为2.8%~4.8%,它磁性好,但较脆,主要用于制造变压器铁芯,俗称变压器硅钢片,两者在实际使用中并无严格界限,常用高硅片制造大型电机;按生产加工工艺,电工钢可分热轧和冷轧两种,热轧硅钢能耗大,产品质量差,国家己规定限时淘汰。冷轧电工钢板又可分无取向和取向两种,如表1.1所示。其中无取向硅钢主要被用作旋转电机如马达和发电机的铁芯,取向硅钢主要用于中、高频电机和变压器及脉冲变压器[1]。 太原钢铁公司于1954年正式生产硅含量为1~2%的热轧低硅钢板,同时又试制出硅含量为3~4%用于变压器铁芯的高硅钢板。随后在鞍钢第二薄板厂也生产出用于电机、变压器铁芯的热轧硅钢片。 此外还有一些特殊用途的电工钢板,如0.15mm和0.20mm厚3%Si冷轧无取向硅钢薄带和0.025、0.05及0.1mm厚3%Si冷轧取向硅钢薄带,用作中、高频电机和变压器以及脉冲变压器等;继电器和电力开关用的0.7mm厚3%Si高强度冷轧无取向硅钢板;新型高转速电机转子用高强度冷轧电工钢板;医用核磁共振断层扫捞仪等磁屏蔽和高能加速器电磁铁用的低碳电工钢热轧厚板和冷轧板;高频电机和变压器以及磁屏蔽用的4.5%~6.5%Si高硅钢板等。

取向硅钢简介

22:33 2011-5-5 上1380℃ 1380℃~1370℃ >1360±10℃ 3.5~4h 下1370℃ 1370℃~1360℃ 加热温度如果过低,在炉时间短MnS、AlN则不能充分固溶。加热温度过高,在炉时间过长则铸坯表面熔化造成炉渣很厚需停炉清渣影响产量和炉子寿命,而且由于晶粒粗大,成品出现线晶使磁性降低。 2.2.4.3 高温轧制工艺 高温轧制工艺的作用不仅要获得需要的板厚和板形,还要在热轧过程中能析出均匀细小的MnS质点,尽量少析出AlN。 GO钢MnS在1160℃时析出速度最快,析出的最低温度为950℃,故GO钢在粗轧时采取大压下量高速轧制,确保进精轧机前切头处温度为1160℃±10℃, 若高于1160℃应停留一段时间再进入精轧机,若低于1160℃±10℃则应提高在精轧机的轧制速度,确保终轧温度在960℃±20℃,GO钢在热连轧过程中要进行喷水冷却,喷水量应按终轧温度为960±20℃控制,钢带在出精轧机后在辊道上进行层流冷却。

Hi—B钢由于含Mn、S比GO钢高,故MnS开始析出的温度也高,约在1200℃析出MnS,但这时AlN析出量很少,为了确保进精轧时铸坯温度比GO钢高,带头大于1190℃,尾大于1140℃,Hi—B 钢加热温度比GO钢更高,粗轧时时间要短,即采用高速大压下量轧制。Hi—B在热轧时很重要的一点是要控制AlN在高温尽量少析出,所以钢带在精轧机内通过的时间要短,为此精轧要采取高速轧制,喷水量要大,以便提高钢带冷却速度,将终轧温度控制在970±20℃,热轧后钢带在辊道进行层流冷却。 2.2.4.4 低温卷取工艺 GO钢卷取温度为570±20℃,如此低的卷取温度的作用是使Fe3C以细小弥散的质点析出,使之能起到阻止冷轧退火后初次再结晶晶粒长大、促进二次再结晶的作用。 Hi—B的卷取温度比GO钢还低,其目的和作用除同于GO钢外,另一个原因是Hi—B钢含Al较高,为防止因卷取温度高Al氧化后难以酸洗而考虑的。 2.2.4.5 Hi—B钢热轧卷常化处理 Hi—B钢在热轧卷取后550℃~300℃析出的细小AlN是不稳定的,起不到抑制初次再结晶晶粒长大和促进二次再结晶发展的作用,故Hi—B钢热轧卷常化处理的目的在于通过常化处理加热使热轧卷取后析出的细小不稳定的AlN重新固溶,然后通过急冷效应使AlN 重新析出来,其质点尺寸为300~1000A0,这种形态的AlN较稳定,能够强烈地阻止初次晶粒长大。

硅钢片基础知识全集

冷轧晶粒取向、无取向磁性钢带标准 1、范围 本标准规定了晶粒取向、无取向磁性钢带(片)的牌号、磁特性、尺寸、外形、力学性能、工艺特性和检验方法等。 本标准适用于磁路结构中使用的、带有绝缘涂层的全工艺冷轧取向和无取向磁性钢带(片)。 2、引用标准 下列标准包含的条文,通过在本标准中引用而构成为本标准的条文。在标准出版时,所示版本均为有效。所有标准都会修订,使用本标准 和各方应探讨使用下列标准最新版本的可能性。 228-87 金属拉伸试验方法 235-88 金属反复弯曲试验方法(厚度等于或小于3薄板及带材) 247-87 钢板和钢带验收、包装、标志及质量证明书的一般规定 2522-88 电工钢片(带)层间电阻、涂层附着性、迭装系数测试方法 3076-82 金属薄板(带)拉伸试验方法 3655-92 电工钢片(带)磁、电和物理性能测量方法 6397-86 金属拉伸试验试样 13789-92 单片电工钢片(带)磁性能测量方法 3、定义和牌号表示方法 3.1定义 3.1.1标准比总铁损 当磁感应强度随时间按正弦规律变化,其峰值为某一标定值,变化频率为某一标定频率时,单位质量的铁芯在温度20℃时所有消耗的功率定为标准比总铁损(简称标准铁损或铁损),单位为 3.1.2标准磁感应强度 温度为20℃,铁芯试样从退磁状态,在标定频率下磁感应强度按正弦规律变化,当交流磁场的峰值达到某一标定值时,铁芯试样磁感的峰值为标准磁感强度(简称磁感应强度或磁感),单位为T 3.1.3弯曲次数 弯曲次数是用肉眼观察到基体金属上第一次出现裂纹前反复弯曲的次数,它代表了材料的延展性。

3.2牌号表示方法 4、分类 本标准中的磁性钢带(片)分为取向和无取向两大类,每类按最大铁损和材料的公称厚度分成不同牌号。 5、技术要求 5.1磁特性 5.1.1磁感 取向钢在800交变磁场(峰值),频率为50时,规定的最小磁感值B800(峰值)应符合表1的规定 无取向钢在5000交变磁场(峰值),频率为50时,规定的最小磁感值B5000(峰值)应符合表2的规定 5.1.2铁损 取向钢在磁感为1.7T、频率为50时,规定的最大铁损P1.7应符合表1的规定。无取向钢在磁咸为1.5T、频率为50时,规定的最大铁损P1.5应符合表2的规定 表1、取向钢磁特性的工艺特性

相关文档
相关文档 最新文档