文档库 最新最全的文档下载
当前位置:文档库 › 压电陶瓷为动力源的压电马达与驱动器

压电陶瓷为动力源的压电马达与驱动器

压电陶瓷为动力源的压电马达与驱动器
压电陶瓷为动力源的压电马达与驱动器

压电超声波换能器原理

超声波换能器 一种能把高频电能转化为机械能的装置。由材料的压电效应将电信号转换为机械振动。超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,而自身消耗很少的一部分功率。 超声波换能器,要解决的技术问题是设计一种作用距离大、频带宽的超声波换能器。 换能器由外壳、匹配层、压电陶瓷圆盘换能器、背衬、引出电缆和Cymbal阵列接收器组成。压电陶瓷圆盘换能器采用厚度方向极化的PZT-5压电材料制成,Cymbal阵列接收器由8~16只Cymbal换能器、两个金属圆环和橡胶垫圈组成。本发明的作用距离大于35m,频带宽度达到10kHz,能检测高速移动的远距离目标。 压电陶瓷超声换能器工作原理 压电陶瓷是一种功能性陶瓷,所谓功能性陶瓷就是对光,电,等物理量比较敏感的陶瓷。压电陶瓷对光和压力比较敏感,对压电陶瓷施加一个外力,压电陶瓷表面会产生电荷,这就是压电陶瓷的正压电效应,是一个将机械能转化为电能的过程;对压电陶瓷外加一个电场,压电陶瓷会发生微小的形变,这就是压电陶瓷的逆压电效应,是一个将电能转化为机械能的过程。利用逆压电效应,可以把高频电压转化为高频率的振动,从而产生了超声波。 超声波换能器是将电能转换成机械能(超声波)的器件,其中最成熟可靠的是以压电效应实现电能与声能相互转换的器件,称为压电换能器。这种夹心换能器在负荷变化时产生稳定的超声波,是获得功率超声波驱动源的最基本最主要的方法。[1] 将非电能量转换成电能量,不需要外电源,称换能器,也称有源传感器,换能器是超声波设备的核心器件,其特性参数决定整个设备的性能。 现在用的超声波换能器,除了磁致伸缩结构以外就是常用的用前后盖板夹紧压电陶瓷的“朗之万”换能器,超声波就是通过换能器将高频电能转换为机械振动。换能器的特性取决与选材和制作工艺,同样尺寸外形的换能器的性能和使用寿命是千差万别的。 我们主要生产大功率超声波换能器,应用与超声波塑料焊接机、超声波金属焊接机、各种手持式超声波工具、连续工作的超声波乳化均质器、雾化器、超声波雕刻机等超声波焊接设备。磁致伸缩 磁致伸缩有镍片换能器和铁氧体换能器。 铁氧体换能器的电声转换效率比较低,使用一、二年后效率下降,甚至几乎丧失电声转换能力。 镍片换能器的工艺复杂,价格昂贵,所以很少使用。 压电晶体 最成熟可靠的是以压电效应实现电能与声能相互转换的器件,称为压电换能器。 压电效应将电信号转换为机械振动。这种换能器电声转换效率高,原材料价格便宜,制作方便,也不容易老化。 常用的材料有石英晶体、钛酸钡和锆钛酸铅。 石英晶体的伸缩量太小,3000V电压才产生0.01um以下的变形。 钛酸钡的压电效应比石英晶体大20-30倍,但效率和机械强度不如石英晶体。 锆钛酸铅具有二者的优点,可用作超声波清洗,探伤和小功率超声波加工的换能器。 压电换能器的应用十分广泛,它按应用的行业分为工业、农业、交通运输、生活、医疗及军事等。 按实现的作用分为超声波加工、超声波清洗、超声波探测以及超声波雾化等。 编辑本段外形分类

压电陶瓷材料及应用

压电陶瓷材料及应用 一、概述 1.1电介质 电介质材料的研究与发展成为一个工业领域和学科领域,是在20世纪随着电气工业的发展而形成的。国际上电介质学科是在20世纪20年代至30年代形成的,具有标志性的事件是:电气及电子工程师学会(IEEE)在1920年开始召开国际绝缘介质会议,以后又建立了相应的分会(IEEE Dielectric and Electrical Insulation Society)。美国MIT建立了以Hippel教授为首的绝缘研究室。苏联列宁格勒工学院建立了电气绝缘与电缆技术专业,莫斯科工学院建立了电介质与半导体专业。特别是德国德拜教授在20世纪30年代由于研究了电介质的极化和损耗特性与其分子结构关系获得了诺贝尔奖,奠定了电介质物理学科的基础。随着电器和电子工程的发展,形成了研究电介质极化、损耗、电导、击穿为中心内容的电介质物理学科。 我国电介质领域的发展是在1952年第一个五年计划制定和实行以来,电力工业和相应的电工制造业得到迅速发展,这些校、院、所、首先在我国开展了有关电介质特性的研究和人才的培养,并开出了“电介质物理”、“电介质化学”等关键专业课程,西安交大于上海交大、哈尔滨工大等院校一道为我国培养了数千名绝缘电介质专业人才,促进了我国工程电介质的发展。80年代初中国电工技术学会又建立了工程电介质专业委员会。 近年来,随着电子技术、空间技术、激光技术、计算机技术等新技术的兴起以及基础理论和测试技术的发展,人们创造各种性能的功能陶瓷介质。主要有: (1)、电子功能陶瓷如高温高压绝缘陶瓷、高导热绝缘陶瓷、低热膨胀陶瓷、半导体陶瓷、超导陶瓷、导电陶瓷等。 (2)、化学功能陶瓷如各种传感器、化学泵等。 (3)、电光陶瓷和光学陶瓷如铁电、压电、热电陶瓷、透光陶瓷、光色陶瓷、玻璃光纤等。(电介质物理——邓宏)

压电陶瓷电特性测试与分析

摘要:通过对压电陶瓷器件进行阻抗测试可得到压电振子等效电路模型参数与谐振频率。通过对压电陶瓷器件电容值、温度稳定性、绝缘电阻、介质耐电压等电性能参数进行测量与分析后可知:压电陶瓷器件电特性符合一般电容器特点,所用连接线材在较低频率下寄生电容不明显,在常温下工作较稳定,厚度较厚的产品绝缘性和可靠性指标较好。 关键词:压电陶瓷;等效电路模型;电特性;可靠性 0 引言 压电陶瓷(Piezoelectric Ceramics,PZT)受到微小外力作用时,能把机械能变成电能,当加上电压时,又会把电能变成机械能。它通常由几种氧化物或碳酸盐在烧结过程中发生固相反应而形成,其制造工艺与普通的电子陶瓷相似。与其他压电材料相比,具有化学性质稳定,易于掺杂、方便塑形的特点[1],已被广泛应用到与人们生活息息相关的许多领域,遍及工业、军事、医疗卫生、日常生活等。利用铁电陶瓷的高介电常数可制作大容量的陶瓷电容器;利用其压电性可制作各种压电器件;利用其热释电性可制作人体红外探测器;通过适当工艺制成的透明铁电陶瓷具有电控光特性,利用它可制作存贮,显示或开关用的电控光特性器件。通过物理或化学方法制备的PZT、PLZT等铁电薄膜,在电光器件、非挥发性铁电存储器件等有重要用途[2-5]。 为了保护生态环境,欧盟成员国已规定自2006年7月1日起,所有在欧盟市场上出售的电子电气产品设备全部禁止使用铅、水银、镉、六价铬等物质。我国对生态环境的保护也是相当重视的。因此,近年来对无铅压电陶瓷进行了重点发展和开发。但无铅压电陶瓷性能相对于PZT陶瓷来说,总体性能还是不足以与PZT陶瓷相比。因此,当前乃至今后一段时间内压电陶瓷首选仍将是以PZT为基的陶瓷。 本文将应用逆压电效应以压电陶瓷蜂鸣片为例进行阻抗测试、电容值、绝缘电阻、介质耐电压等电性能参数进行测量与分析。 1 测量参数和实验方法依据 目前我国现有的关于压电陶瓷材料的测试标准主要有以下: GB/T 3389-2008 压电陶瓷材料性能测试方法 GB/T 6427-1999 压电陶瓷振子频率温度稳定性的测试方法 GB/T 16304-1996 压电陶瓷电场应变特性测试方法 GB 11387-89 压电陶瓷材料静态弯曲强度试验方法 GB 11320-89 压电陶瓷材料性能方法(低机械品质因数压电陶瓷材料性能的测试)

压电陶瓷测量原理

压电陶瓷及其测量原理 近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。 (一)压电陶瓷的主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。 (2)压电陶瓷的主要参数 1、介质损耗 介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗是异相分量与同相分量的比值,如图 1 所示,C I 为同相分量,R I 为异相分量,C I 与总电流 I 的夹角为δ,其正切值为 CR I I C R ωδ1 tan == 其中ω 为交变电场的角频率,R 为损耗电阻,C 为介质电容。

图 1 交流电路中电压-电流矢量图(有损耗时) 2、机械品质因数 机械品质因数是描述压电陶瓷在机械振动时,材料内部能量消耗程度的一个参数,它也是衡量压电陶瓷材料性能的一个重要参数。机械品质因数越大,能量的损耗越小。产生能量损耗的原因在于材料的内部摩擦。机械品质因数m Q 的定义为: π2 的机械能 谐振时振子每周所损失能谐振时振子储存的机械?=m Q 机械品质因数可根据等效电路计算而得 11 1 11 R L C R Q s s m ωω= = 式中1R 为等效电阻(Ω),s ω 为串联谐振角频率(Hz ),1C 为振子谐振时的等效电容(F ),1L 为振子谐振时的等效电感。m Q 与其它参数之间的关系将在后续详细推导。 不同的压电器件对压电陶瓷材料的m Q 值的要求不同,在大多数的场合下(包括声波测井的压电陶瓷探头),压电陶瓷器件要求压电陶瓷的m Q 值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外的电荷。其产生的电荷与施加的应力成比例,对于压力和张力来说,其符号是相反的,电位移 D (单位面积的电荷)和应力σ 的关系表达式为:dr A Q D == 式中 Q 为产生的电荷(C ),A 为电极的面积(m 2),d 为压电应变常数(C/N )。 在逆压电效应中,施加电场 E 时将成比例地产生应变 S ,所产生的应变 S 是膨胀还是收缩,取决于样品的极化方向。

(工艺技术)压电陶瓷的压电原理与制作工艺

压电陶瓷的压电原理与制作工艺 1.压电陶瓷的用途 随着高新技术的不断发展,对材料提出了一系列新的要求。而压电陶瓷作为一种新型的功能材料占有重要的地位,其应用也日益广泛。压电陶瓷的主要应用领域举例如表1所示。

2.压电陶瓷的压电原理 2.1 压电现象与压电效应 在压电陶瓷打火瓷柱垂直于电极面上施加压力,它会产生形变,同时还会产生高压放电。在压电蜂鸣器电极上施加声频交变电压信号,它会产生形变,同时还会发出声响。归纳这些类似现象,可得到正、逆压电效应的概念,即:压电陶瓷因受力形变而产生电的效应,称为正压电效应。压电陶瓷因加电压而产生形变的效应,称为逆压电效应。2.2 压电陶瓷的内部结构 材料学知识告诉我们,任何材料的性质是由其内部结构决定的,因而要了解压电陶瓷的压电原理,明白压电效应产生的原因,首先必须知道压电陶瓷的内部结构。 2.2.1 压电陶瓷是多晶体 用现代仪器分析表征压电陶瓷结构,可以得到以下几点认识: (1)压电陶瓷由一颗颗小晶粒无规则“镶嵌”而成,如图1所示。 图1 BSPT压电陶瓷样品断面SEM照片 (2)每个小晶粒微观上是由原子或离子有规则排列成晶格,可看为一粒小单晶,如图2所示。 图2 原子在空间规则排列而成晶格示意图 (3)每个小晶粒内还具有铁电畴组织,如图3所示。

图3 PZT陶瓷中电畴结构的电子显微镜照片 (4)整体看来,晶粒与晶粒的晶格方向不一定相同,排列是混乱而无规则的,如图4所示。这样的结构,我们称其为多晶体。 图4 压电陶瓷晶粒的晶格取向示意图 2.2.2 压电陶瓷的晶胞结构与自发极化 (1)晶胞结构 目前应用最广泛的压电陶瓷是钙钛矿(CaTiO3)型结构,如PbTiO3、BaTiO3、K x Na1-x NbO3、Pb(Zr x Ti1-x)O3等。 该类材料的化学通式为ABO3。式中A的电价数为1或2,B的电价为4或5价。其晶胞(晶格中的结构单元)结构如图5所示。 图5 钙钛矿型的晶胞结构

压电陶瓷的特性及应用举例

压电陶瓷的特性及应用举例 芯明天压电陶瓷以PZT锆钛酸铅材料为主,主要利用压电陶瓷的逆压电效应,即通过对压电陶瓷施加电场,压电陶瓷产生纳米级精度的致动位移。 芯明天压电陶瓷 Δ压电效应 压电效应可分为正压电效应和逆压电效应。正压电效应是指压电陶瓷受到特定方向外力的作用时,在压电陶瓷的正负极上产生相反的电荷,当外力撤去后,又缓慢恢复到不带电的状态;逆压电效应是指在对压电陶瓷的极化方向上施加电压,压电陶瓷会随之发生形变位移,电场撤去后,形变会随之消失。

Δ纳米级分辨率 压电陶瓷的形变量非常小,一般都小于1%,虽然形变量非常小,但可通过改变电场强度非常精确地控制形变量。 压电陶瓷是高精度致动器,它的分辨率可达原子尺度。在实际使用中,压电陶瓷的分辨率通常受到产生电场的驱动控制器的噪声和稳定性的限制。 Δ大出力 压电陶瓷产生的最大出力大小取决于压电陶瓷的截面积,对于小尺寸的压电陶瓷,出力通常达到数百牛顿的范围,而对于大尺寸的压电陶瓷,出力可达几万牛顿。

Δ响应时间快

压电陶瓷过程控制规范

过程控制规范 HFDZ-TSD-824-035 压电陶瓷过程控制规范 2016-05-25发布 2016-05-31 实施 无锡市惠丰电子有限公司

前言 本规范制定过程中参照了汽车压电陶瓷产品的性能要求、汽车压电陶瓷产品试验方法、GB/T 3389-2008《压电陶瓷材料性能测试方法》。 本规范按GB/T1.1-2009《标准化工作导则第1部分:标准的结构和编写规则》的要求进行编制。 本规范由无锡市惠丰电子有限公司技术部提出。 本规范由无锡市惠丰电子有限公司公司批准执行。 本规范主要起草人:田德辉、谭永光、王宝 压电陶瓷产品过程控制规范

1 范围 本规范规定了HFDZ-TSD-824-035压电陶瓷产品(以下简称陶瓷产品)的术语和定义的要求、试验方法、检验规则及标志、包装、运输、贮存等。 2 规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版本均不适用于本规范。然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 2. 1压电陶瓷基体材料组成 2.2压电陶瓷粉料性能检验要求 2.3压电陶瓷产品粉料料浆颗粒度测试方法 2.4压电陶瓷产品粉料松装密度测试方法 2.5压电陶瓷产品银层拉拔力测试方法 2.6压电陶瓷产品银层百格试验方法 2.7压电陶瓷产品银层厚度检验方法 2.8压电陶瓷产品银层微观结构 2.8压电陶瓷产品温度系数产品测试方法 2.9压电陶瓷表面能测试标准 2.10压电陶瓷产品跌落试验标准 2.11压电陶瓷产品外观缺损标准 2.12压电陶瓷产品高、低温测试标准 2.13压电陶瓷产品跌落试验标准 2.14压电陶瓷清洁度测定一般规定(JB/T9058-1999) 2.15压电陶瓷产品性能出厂要求 2.16压电陶瓷产品外观要求 2.17压电陶瓷包装要求 2.18压电陶瓷产品标签或条形码要求 2.19压电陶瓷产品运输或贮存要求 3 术语和定义 3.1 稳定状态 是压电陶瓷的性能达到稳定的出货状态。在此状态下,压电陶瓷的性能符合客户及出厂的要求。 3.2额定工况 是标定和检验压电陶瓷片在稳定状态下电性能转换的能力的条件。

压电陶瓷性能参数解析

压电陶瓷性能参数解析 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

在机械自由条件下,测得的介电常数称为自由介电常数,在εT表示,上角标T表示机械自由条件。在机械夹持条件下,测得的介电常数称为夹持介电常数,以εS表示,上角标S表示机械夹持条件。由于在机械自由条件下存在由形变而产生的附加电场,而在机械受夹条件下则没有这种效应,因而在两种条件下测得的介电常数数值是不同的。 根据上面所述,沿3方向极化的压电陶瓷具有四个介电常数,即ε11T,ε33T,ε11S,ε11S。 (2)介质损耗 介质损耗是包括压电陶瓷在内的任何介质材料所 具有的重要品质指标之一。在交变电场下,介质 所积蓄的电荷有两部分:一种为有功部分(同 相),由电导过程所引起的;一种为无功部分 (异相),是由介质弛豫过程所引起的。介质损 耗的异相分量与同相分量的比值如图1-1所示, Ic为同相分量,IR为异相分量,Ic与总电流I 的夹角为δ,其正切值为 (1-4) 式中,ω为交变电场的角频率,R为损耗电阻,C为介质电容。由式(1-4)可以看出,I R大时,tanδ也大;I R小时tanδ也小。通常用 tanδ来表示的介质损耗,称为介质损耗正切值或损耗因子,或者就叫做介质损耗。 处于静电场中的介质损耗来源于介质中的电导过程。处于交变电场中的介质损耗,来源于电导过程和极化驰豫所引起的介质损耗。此外,具有铁电性的压电陶瓷的介质损耗,还与畴壁的运动过程有关,但情况比较复杂,因此,在此不予详述。 (3)弹性常数 压电陶瓷是一种弹性体,它服从胡克定律:“在弹性限度范围内,应力与应变成正比”。设应力为T,加于截面积A的压电陶瓷片上,其所产生的

压电陶瓷及其应用

压电陶瓷及其应用 一. 概述 压电陶瓷是一种具有压电效应的多晶体,由于它的生产工艺与陶瓷的生产工艺相似(原料粉碎、成型、高温烧结)因而得名。 某些各向异性的晶体,在机械力作用下,产生形变,使带电粒子发生相对位移,从而在晶体表面出现正负束缚电荷,这种现象称为压电效应。晶体的这种性质称为压电性。压电性是J·居里和P·居里兄弟于1880年发现的。几个月后他们又用实验验证了逆压电效应、即给晶体施加电压时,晶体会产生几何形变。 1940年以前,只知道有两类铁电体(在某温度范围内不仅具有自发极化,而且自发极化强度的发向能因外场强作用而重新取向的晶体):一类是罗息盐和某些关系密切的酒石酸盐;一类是磷酸二氢钾盐和它的同品型物。前者在常温下有压电性,技术上有使用价值,但有易溶解的缺点;后者要在低温(低于—14 C)下才有压电性,工程使用价值不大。 1942-1945年间发现钛酸钡(BaTiO)具有异常高的介电常数,不久又发现它具有压电性,BaTi O压电陶瓷的发现是压电材料的一个飞跃。这以前只有压电单晶材料,此后出现了压电多晶材料——压电陶瓷,并获得广泛应用。1947年美国用BaTiO陶瓷制造留声机用拾音器,日本比美国晚用两年。BaTiO存在压电性比罗息盐弱和压电性随温度变化比石英晶体大的缺点。 1954年美国B·贾菲等人发现了压电PbZrO-PbTiO(PZT)固溶体系统,这是一个划时代大事,使在BaTiO时代不能制作的器件成为可能。此后又研制出PLZT透明压电陶瓷,使压电陶瓷的应用扩展到光学领域。

迄今,压电陶瓷的应用,上至宇宙开发,下至家庭生活极其广泛。 我国对压电陶瓷的研究始于五十年代末期,比国外晚10年左右,目前在压电陶瓷的试制、工业生产等方面都已有相当雄厚力量,有不少材料已达到或接近国际水平。 二. 压电陶瓷压电性的物理机制 压电陶瓷是一种多晶体,它的压电性可由晶体的压电性来解释,晶体在机械力作用下,总的电偶极矩(极化)发生变化,从而呈现压电现象、因此压电性与极化,形变等有密切关系。 1. 极化的微观机理 极化状态是电场对电介质的荷电质点产生相对位移的作用力与电荷间互相吸引力的暂时平衡统一的状态。极化机理主要有三种。 (1)电子位移极化——电介质的原子或离子在电场力作用下,带正电原子核与壳层电子的负电荷中心出现不重合。 (2)离子位移极化——电介质正、负离子在电场力作用下发生相对位移,从而产生电偶极矩。 (3)取向极化——组成电介质的有极分子,有一定的本征(固有)电矩,由于热运动,取向无序,总电矩为零,当外加电场时,电偶极矩沿电场方向排列,出现宏观电偶极矩。 对于各向异性晶体,极化强度与电场存在有如下关系 m,n=1,2,3 式中为极化率,或用电位移写成:

压电陶瓷测量原理

压电陶瓷及其测量原理 近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。 (一)压电陶瓷的主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。 (2)压电陶瓷的主要参数 1、介质损耗 介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗是异相分量与同相分量的比值,如图 1 所示,C I 为同相分量,R I 为异相分量,C I 与总电流 I 的夹角为δ,其正切值为CR I I C R ωδ1tan == 其中ω 为交变电场的角频率,R 为损耗电阻,C 为介质电容。

图 1 交流电路中电压-电流矢量图(有损耗时) 2、机械品质因数 机械品质因数是描述压电陶瓷在机械振动时,材料内部能量消耗程度的一个参数,它也是衡量压电陶瓷材料性能的一个重要参数。机械品质因数越大,能量的损耗越小。产生能量损耗的原因在于材料的内部摩擦。机械品质因数m Q 的定义为: 机械品质因数可根据等效电路计算而得 式中1R 为等效电阻(Ω),s ω 为串联谐振角频率(Hz ),1C 为振子谐振时的等效电容(F ),1L 为振子谐振时的等效电感。m Q 与其它参数之间的关系将在后续详细推导。 不同的压电器件对压电陶瓷材料的m Q 值的要求不同,在大多数的场合下(包括声波测井的压电陶瓷探头),压电陶瓷器件要求压电陶瓷的m Q 值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外的电荷。其产生的电荷与施加的应力成比例,对于压力和张力来说,其符号是相反的,电位移 D (单位面积的电荷)和应力σ 的关系表达式为:dr A Q D == 式中 Q 为产生的电荷(C ),A 为电极的面积(m2),d 为压电应变常数(C/N )。 在逆压电效应中,施加电场 E 时将成比例地产生应变 S ,所产生的应变 S 是膨胀还是收缩,取决于样品的极化方向。 S=dE 两式中的压电应变常数 d 在数值上是相同的,即E S D d ==σ 另一个常用的压电常数是压电电压常数 g ,它表示应力与所产生的电场的关系,或应变与所引起的电位移的关系。常数 g 与 d 之间有如下关系: εd g = 式中ε为介电系数。在声波测井仪器中,压电换能器希望具有较高的压电应变常数和压电电压常数,以便能发射较大能量的声波并且具有较高的接受灵敏度。 4、机电耦合系数 当用机械能加压或者充电的方法把能量加到压电材料上时,由于压电效应和逆压电效应,机械能(或电能)中的一部分要转换成电能(或机械能)。这种转换的强弱用机电耦合系数 k 来表示,它是

振动与压电陶瓷实验

压电陶瓷特性及振动的干涉测量 具有压电效应的材料叫压电材料,可将电能转换成机械能,也能将机械能转换成电能,它包括压电单晶、压电陶瓷、压电薄膜和压电高分子材料等。压电陶瓷制造工艺简单,成本低,而且具有较高的力学性能和稳定的压电性能,是当前市场上最主要的压电材料,可实现能量转换、传感、驱动、频率控制等功能。由压电陶瓷制成的各种压电振子、压电电声器件、压电超声换能器、压电点火器、压电马达、压电变压器、压电传感器等在信息、激光、导航和生物等高技术领域得到了非常广泛的应用。本实验通过迈克尔逊干涉方法测量压电陶瓷的压电常数及其振动的频率响应特性。 【实验目的】 1.了解压电材料的压电特性; 2.掌握用迈克尔逊干涉方法测量微小位移。 3. 测量压电陶瓷的压电常数。 4. 观察研究压电陶瓷的振动的频率响应特性。 【实验原理】 1. 压电效应 压电陶瓷是一种多晶体,它的压电性可由晶体的压电性来解释。晶体在机械力作用下,总的电偶极矩(极化)发生变化,从而呈现压电现象,因此压电陶瓷的压电性与极化、形变等有密切关系。 (1)正压电效应 压电晶体在外力作用下发生形变时,正、负电荷中心发生相对位移,在某些相对应的面上产生异号电荷,出现极化强度。对于各向异性晶体,对晶体施加应力j T 时,晶体将在X ,Y ,Z 三个方向出现与j T 成正比的极化强度, 即: j mj m T d P =, 式中mj d 称为压电陶瓷的 压电应力常数。 (2)逆压电效应 当给压电晶体施加一电场E 时,不仅产生了极化,同时还产生形变S ,这种由电场产生形变的现象称为逆压电效应,又称电致伸缩效应。这是由于晶体受电场作用时,在晶体内部产生了应力(压电应力),通过应力作用产生压电应变。存在如下关系n ni i E d S =,式中ni d 称为压电应变常数 ,对于正和逆压电效应来讲,d 在数值上是相同的。压电晶体的压电形变有厚度变形型、长度变形型、厚度切变型等基本形式。当对压电晶体施加交变电场时,晶体将随之在某个方向发生机械振动。在不同频率区间压电陶瓷阻抗性质(阻性、感性、容性)不同,对某一特定形状的压电陶瓷元件,在某一频率处(谐振频率),呈现出阻抗最小值,当外电场频率等于谐振频率时,陶瓷片产生机械谐振,振幅最大;而在另一频率处(反谐振频率),呈现出阻抗最大值。

压电陶瓷变压器及其应用

压电陶瓷变压器及其应用 压电陶瓷变压器是用铁电陶瓷材料经烧结和高压极化等工艺制成的一种新型电子变压器,其结构和工作原理与电磁绕线式等传统变压器是截然不同的。 人们对压电陶瓷变压器的研究始于20世纪50年代中后期。美国的Rosen于1956年阐述了压电陶瓷变压器的基本原理,并制备出长条形单片压电陶瓷变压器。由于当时的这种变压器采用的是压电性能差和居里温度低的钛酸钡(BaTiO3)材料,功率太小,成本也太高,并且工艺不成熟,因而未能引起人们的重视。在20世纪60年代到70年代初,关于压电陶瓷材料的研究取得了一些进展,在70年代压电陶瓷变压器发展成为一种新型的电子陶瓷变压器,并在80年代被推广应用到电视机、雷达终端显示器等的高压电源领域。这一时期,人们对与压电陶瓷变压器相关的最熟悉的产品就是压电陶瓷蜂鸣器和点火棒。进入90年代中期后,随着信息产业的迅猛发展及电子产品朝轻、薄、短、小方向发展的趋势,使得压电陶瓷变压器技术与产业得到长足进步和发展。 1、压电陶瓷变压器的结构与工作原理 压电变压器的工作原理基于压电材料的压电效应。压电效应是法国的P?Curie和J?Curie兄弟在1880年研究铁电性和晶体对称性的关系时发现的一种物理现象。除了单晶体外,压电陶瓷多晶体和某些非晶固体等也具有压电效应。 压电效应分正和逆两种类型。 正压电效应是指在压电体上加一个机械应力时,会使压电体极化并在一定的表面形成电荷的效应。压电陶瓷棒就是利用正压电效应工作的,给压电棒加上机械压力,在点火棒两端即有高压产生。 逆压电效应是指在压电体上有一个外加电场时,晶体会发生形变和振动,这一现象就是逆压电效应。压电陶瓷蜂鸣器就是利用逆压电效应工作的,给压电陶瓷片加上电压信号,将会使陶瓷片振动并发出声音。 压电陶瓷变压器是利用同一压电陶瓷并同时利用正压电效应和逆压电效应来工作的,即完成电能——机械能和机械能——电能的两次能量转换。 压电陶瓷变压器所使用的压电陶瓷材料除了BaTiO3外,还有PZT系压电陶瓷、三元系压电陶瓷(如铌镁钴钛酸铅系、铌锌锆钛酸铅系、碲锰锆钛酸铅系、锑锰锆钛铅酸系等)及四元系压电陶瓷[如Pb(Sn1/3 Nb2/3)A (Zn1/3 Nb2/3)B TiCZrdO3)等]。 最简单同时也是最为常用的压电陶瓷变压器是长条形单片压电陶瓷变压器(即Rosen型压电变压器),其结构如图1所示。

压电陶瓷测量原理

压电陶瓷及其测量原理 近年来,压电陶瓷得研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济与尖端技术得各个方面中,成为不可或缺得现代化工业材料之一。由于压电材料得各向异性,每一项性能参数在不同得方向所表现出得数值不同,这就使得压电陶瓷材料得性能参数比一般各向同性得介质材料多得多。同时,压电陶瓷得众多得性能参数也就是它广泛应用得重要基础。 (一)压电陶瓷得主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心得晶体上施加压力、张力或切向力时,则发生与应力成比例得介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例得变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体就是否出现压电效应由构成晶体得原子与离子得排列方式,即晶体得对称性所决定。在声波测井仪器中,发射探头利用得就是正压电效应,接收探头利用得就是逆压电效应。 (2)压电陶瓷得主要参数 1、介质损耗 介质损耗就是包括压电陶瓷在内得任何电介质得重要品质指标之一。在交变电场下,电介质所积蓄得电荷有两种分量:一种就是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗就是异相分量与同相分量得比值,如图1 所示,为同相分量,为异相分量,与总电流I 得夹角为,其正切值为其中ω为交变电场得角频率,R 为损耗电阻,C 为介质电容。

图1 交流电路中电压电流矢量图(有损耗时) 2、机械品质因数 机械品质因数就是描述压电陶瓷在机械振动时,材料内部能量消耗程度得一个参数,它也就是衡量压电陶瓷材料性能得一个重要参数。机械品质因数越大,能量得损耗越小。产生能量损耗得原因在于材料得内部摩擦。机械品质因数得定义为: 机械品质因数可根据等效电路计算而得 式中为等效电阻(Ω), 为串联谐振角频率(Hz), 为振子谐振时得等效电容(F),为振子谐振时得等效电感。与其它参数之间得关系将在后续详细推导。 不同得压电器件对压电陶瓷材料得值得要求不同,在大多数得场合下(包括声波测井得压电陶瓷探头),压电陶瓷器件要求压电陶瓷得值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外得电荷。其产生得电荷与施加得应力成比例,对于压力与张力来说,其符号就是相反得,电位移D(单位面积得电荷)与应力得关系表达式为: 式中Q 为产生得电荷(C),A 为电极得面积(m2),d 为压电应变常数(C/N)。在逆压电效应中,施加电场 E 时将成比例地产生应变S,所产生得应变S 就是膨胀还就是收缩,取决于样品得极化方向。 S=dE 两式中得压电应变常数d 在数值上就是相同得,即 另一个常用得压电常数就是压电电压常数g,它表示应力与所产生得电场得关系,或应变与所引起得电位移得关系。常数g 与 d 之间有如下关系: 式中为介电系数。在声波测井仪器中,压电换能器希望具有较高得压电应变常数与压电电压常数,以便能发射较大能量得声波并且具有较高得接受灵敏度。 4、机电耦合系数 当用机械能加压或者充电得方法把能量加到压电材料上时,由于压电效应与逆压电效应,机械能(或电能)中得一部分要转换成电能(或机械能)。这种转换得强弱用机电耦合系数k 来表示,它就是一个量纲为一得量。机电耦合系数就是综合反映压电材料性能得参数,它表示压

压电陶瓷特性分析(一) 压电效应

压电陶瓷特性分析(一) 压电效应 压电效应是1880年由居里兄弟在α石英晶体上首先发现的。它是反映压电晶体的弹性和介电性相互耦合作用的,当压电晶体在外力作用下发生形变时,在它的某些相对应的面上产生异号电荷,这种没有电场作用,只是由于形变产生的现象称为正压电效应。当压电晶体施加一电场时,不仅产生了极化,同时还产生了形变,这种由电场产生形变的现象称为逆压电效应,逆压电效应的产生是由于压电晶体受到电场作用时,在晶体内部产生了应力,这应力称为压电应力,通过它的作用产生压电应变,实验证明凡是具有正压电效应的晶体,也一定具有逆压电效应,两者一一对应[92]。 任何介质在电场中,由于诱导极化的作用,都会引起介质的形变,这种形变与逆压电效应所产生的形变是有区别的。电介质可能在外力作用下而引起弹性形变,也可能受外电场的极化作用而产生形变,由于诱导极化作用而产生的形变与外电场的平方成正比,这是电致伸缩效应。它所产生的形变与外电场的方向无关。逆压电效应所产生的形变与外电场成正比例关系,而且当电场反向时,形变也发生变化(如原来伸长可变为缩短,或者原来缩短可变为伸长)。此外,电致伸缩效应在所有的电介质中都具有,不论是非压电晶体还是压电晶体;只是不同结构的电介质晶体的电致伸缩效应的强弱不一样。而逆压电效应只有在压电晶体中才具有。 能产生压电效应的晶体叫压电晶体。一类压电晶体是单晶,如石英(SiO2),酒石酸钾钠(又称洛瑟盐,NaKC4H4O6?H2O),锗酸铋(Bi12GeO20)等。另一类压电晶体 称为压电陶瓷,如钛酸钡(BaTiO3),锆钛酸铅[Pb(Zr x Ti rx)O3,代号PZT],日本制成的铌镁锆钛酸铅[Pb(Mg1/3Nb2/3)O3加入PZT,代号PCM],中国制成的锑锰锆钛酸铅[Pb(Mn1/2Sb2/3)O3加入PIT代号PMS]等。 电介质的极化 压电晶体都是电介质,而且是各向异性电介质,因此压电晶体的介电性质与各向同性电介质的介电性质是不同的。 电介质在电场作用下要产生极化,极化状态是电场对电介质的荷电质点产生相对位移的作用力与电荷间的相互吸引力的暂时平衡统一的状态。电场是极化的外因,极化的内因在于介质的内部,随着介质内部的微观过程的不同,极化的主要机理有三种[97]。 (1) 组成电介质的原子或离子,在电场 作用下,带正电荷的原子核与其壳层电子 的负电中心出现不重合,从而产生电偶极 矩,这种极化称为电子位移极化。 (2) 组成电介质的正负离子,在电场 作用下发生相对位移,从而产生电偶极 矩,这种极化称为离子位移极化。 (3) 组成电介质的分子是有极分子,具有一定的本征电矩,但由于热运动,取向是无序的,整个电介质的总电矩为零(图5.1)。当外电场作用时,这些电偶极矩将

压电陶瓷片的原理及特性

压电陶瓷片的原理及特性 压电效应具有可逆性:若在压电陶瓷片上施以音频电压,就能产生机械振动,发出声响;反之,压电陶瓷片受到机械振动(或压力)时,片上就产生一定数量的电荷Q,从电极上可输出电压信号。 目前比较常见的锗钛酸铅压电陶瓷片(PZT),是用锆、钛、铅的氧化物配制后烧结而成的。鉴于人耳对频率约为3kHz的音响最敏感,所以通常将压电陶瓷片的谐振频率f0设计在3kHz左右。考虑到在低频下工作,仅用一片压电陶瓷片难以满足频率要求,—般采用双膜片结构,其外形与符号如图1所示。它是把直径为d的压电陶瓷片与直径为D的金属振动片复合而成的。D一般为 15~40mm,复合振动片的总厚度为h。 当压电材料—定时,谐振频率与h成正比,与(D/2)2成反比。谐振频率fo 与复合振动片的直径D呈指数关系,如图2(a)所示。显然D愈大,低频特性愈

好。压电陶瓷片作传声器使用时,工作频率约为300Hz~5kHz。压电陶瓷片的阻抗Z取决于d/D之比,由图2(b)可见,阻抗随d/D比值的增大而降低。>压电陶瓷片的驱动 压电陶瓷片有两种驱动方式。第一种是自激振荡式驱动。其电路原理是通过晶体管放大器提供正反馈,构成压电晶体振荡器,使压电陶瓷片工作在谐振频率fo上而发声。此时压电陶瓷片呈低阻抗,输出音量受输入电流控制,因此亦称为电流驱动型。 第二种为他激振荡式驱动,利用方波(或短形波)振荡器来激励发声。这时压电陶瓷片一般工作于fo之外的频率上,因此阻抗较高,输入电流较小,它居于电压驱动式。其优点是音域较宽。音色较好。>压电陶瓷片的测试方法 1、电压测试法 在业余条件下,可以用万用表的电压挡来检查压电陶瓷片的质量好坏,具体方法是:将万用表拨至2.5V直流电压档,左手拇指与食指轻轻握住压电陶瓷片的两面,右手持两支表笔,红表笔接金属片,黑表笔横放在陶瓷表面上,如图1所示。然后左手拇指与食指稍用力压紧一下,随即放松,压电陶瓷片上就先后产生两个极性相反的电压倍号,使指针先是向右捏一下,接着返回零位,又向左摆一下。摆动幅度约为0.1~0.15V。在压力相同的情况下,摆幅愈大,压电陶瓷片的灵敏度愈高。若表针不动,说明压电陶瓷片内部漏电或者破损。 交换两支表笔位置后重新试验,指针摆动顺序应为:向左摆->回零->向右摆->回零。 在意事项: ①如果用交流电压档,就观察不到指针摆动情况,这是由于所产生的电压信号变化较缓慢的缘故。 ②检查之前,首先用R×1k或R×10k档测量绝缘电阻,应为无穷大,否则证明漏电,压电陶瓷片受强烈震动而出现裂纹后,可用电烙铁在裂纹处薄薄地徐上一层焊锡,—般能继续使用。 ③检查时用力不宜过大、过猛,更不得弯折压电陶瓷片;勿使表笔头划伤陶瓷片,以免损坏片子。 ④若在压电陶片上一直加恒定的压力,由于电荷不断泄漏,指针摆动一下就会慢慢地回零。

压电陶瓷变压器基本工作原理及特点.

独石(多层)压电陶瓷变压器基本工作原理及特点 在现代,压电陶瓷 制品对我们并不陌 生。 正压电效应的应用主要用于燃气点火器,如燃气灶.燃气打火机等的点火系统。基本工作原理为:由外力压缩一个弹簧,压到顶点后释放,弹簧力推动一个重锤打击压电陶瓷柱产生一数千伏的高压火花,点燃可燃气体。 逆压电效应的应用主要用于压电蜂鸣器,例如音乐贺卡、门铃.寻呼机.移动电话机振铃等。基本工作原理为:当在压电陶瓷片上施加一交变电场时,压电陶瓷片产生一相对应的形变即振动,当振动频率在音频波段内时就会发出对应的音响。 应用此特性配合机械谐振原理还大量用于制造谐振器、选频器、延迟线、滤波器等电子组件。 压电陶瓷变压器的基本构成则是将一压电蜂鸣器的应用与一压电点火器的应用组合起来,组成压电谐振子。在蜂鸣器的一端(称为驱动端)输入一个与压电变压器谐振频率一致的正弦交变电压,压电谐

振子产生振动,传导至点火器的一端(称为发电端),产生连续的正弦波电压,视乎于压电变压器的结构特征,可以是输入低电压、输出高电压(升压型),也可以是输入高电压、输出低电压(降压型)。若在高频驱动电压上通过调制解调器加入低频调制,则可实现信号传输。 压电陶瓷变压器的基本结构形式如图(一)所示 压电陶瓷是一种脆性材料,为保障其机械强度,压电变压器必须有一定的厚度,上述变压器的驱动电压就受到了相当的限制。为此独石(多层)压电陶瓷变压器项目应运而生。独石(多层)压电陶瓷变压器的基本结构形式如图(二)所示。

采用了独石(多层)结构后每一单层厚度和层数均可调,驱动电压不再受到限制,因而可以使压电变压器无论处在何种驱动电压下都能工作在最佳状态。 此项目的核心技术为亚微米低温烧结压电陶瓷材料、内电极共烧技术,极化处理技术及结构设计。 独石(多层)压电陶瓷变压器制备的工艺流程为

压电晶体与压电陶瓷的结构、性能与应用Word版

压电晶体与压电陶瓷的结构、性能与应用 摘要:压电晶体与压电陶瓷作为典型的功能材料,具有能实现机械能与电能之间互相转换的工作特性,在电子材料领域占据相当大的比重。本文从压电效应入手,阐述了压电晶体与压电陶瓷的结构原理以及性能特点。针对压电晶体与压电陶瓷在生产实践中的应用情况,综述了其近年来的研究进展,并系统介绍了其在各个领域的应用情况和发展趋势。 关键词:压电晶体压电陶瓷压电效应结构性能应用发展 引言 1880年皮埃尔?居里和雅克?居里兄弟在研究热电现象和晶体对称性的时候,在α石英晶体上最先发现了压电效应。1881年,居里兄弟用实验证实了压电晶体在外加电场作用下会发生形变。1894年,德国物理学家沃德马?沃伊特,推论出只有无对称中心的20中点群的晶体才可能具有压电效应。[1] 石英是压电晶体的代表,利用石英的压电效应可以制成振荡器和滤波器等频率控制元件。在第一次世界大战中,居里的继承人朗之万,为了探测德国的潜水艇,用石英制成了水下超声探测器,从而揭开了压电应用史的光辉篇章。 除了石英晶体外,酒石酸钾钠、BaTiO3陶瓷也付诸应用。1947年美国的罗伯特在BaTiO3陶瓷上加高压进行极化处理,获得了压电陶瓷的压电性。随后,美国和日本都积极开展应用BaTiO3压电陶瓷制作超声换能器、音频换能器、压力传感器等计测器件以及滤波器和谐振器等压电器件的研究,这种广泛的应用研究进行到上世纪50年代中期。 1955年美国的B.贾菲等人发现了比BaTiO3的压电性优越的PbZrO3-PbTiO3二元系压电陶瓷,即PZT压电陶瓷,大大加快了应用压电陶瓷的速度,使压电的应用出现了一个崭新的局面。BaTiO3时代难以实用化的一些应用,特别是压电陶瓷滤波器和谐振器以及机械滤波器等,随着PZT压电陶瓷的出现而迅速地实用化了。采用压电材料的SAW滤波器、延迟线和振荡器等SAW器件,上世纪70年代末也已实用化。上世纪70年代初引起人们注意的有机聚合物压电材料(PVDF),现在也已基本成熟,并已达到了生产规模。如今,随着应用范围的不断扩大以及制备技术的提升,更多高性能的环保型压电材料也正在研究中。 一、压电晶体与压电陶瓷的结构及原理 压电效应包含正压电效应与逆压电效应,当某些电介质在一定方向上受到外力的作用而发生变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷,当作用力的方向改变时,电荷的极性也随之改变,并且受力所产生的电荷量与外力的大小成正比,而当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应;相反,当在电介质的极化方向上施加交变电场,这些电介质也会发生机械变形,电场去掉后,电介质的机械变形随之消失,这种现象称为逆压电效应。正压电效应是把机械能转换为电能,而逆压电效应是把电能转换为机械能。 1.1压电效应原理

压电陶瓷的特性及应用举例

. 压电陶瓷的特性及应用举例 芯明天压电陶瓷以PZT锆钛酸铅材料为主,主要利用压电陶瓷的逆压电效应,即通过对压电陶瓷施加电场,压电陶瓷产生纳米级精度的致动位移。 芯明天压电陶瓷 Δ压电效应正压电效应是指压电陶瓷受到特定方向外力压电效应可分为正压电效应和逆压电效应。又缓慢恢复到不带电的的作用时,在压电陶瓷的正负极上产生相反的电荷,当外力撤去后,压电陶瓷会随之发生形变位移,逆压电效应是指在对压电陶瓷的极化方向上施加电压,状态;电场撤去后,形变会随之消失。'. .

Δ纳米级分辨率,虽然形变量非常小,但可通过改变电场强1%压电陶瓷的形变量非常小,一般都小于度非常精确地控制形变量。压电陶瓷的分辨它的分辨率可达原子尺度。压电陶瓷是高精度致动器,在实际使用中,率通常受到产生电场的驱动控制器的噪声和稳定性的限制。 Δ大出力出力对于小尺寸的压电陶瓷,压电陶瓷产生的最大出力大小取决于压电陶瓷的截面积,通常达到数百牛顿的范围,而对于大尺寸的压电陶瓷,出力可达几万牛顿。'. . Δ响应时间快

电的时间,。达毫秒至亚毫秒量级。最快响应时间取决于压电陶瓷的谐振频率,一般为谐振时间的1/3 压电陶瓷被广泛应用于阀门与快门技术中。 Δ迟滞即压电陶瓷升压曲线和降尽管压电陶瓷具有非常高的分辨率,但它也表现出迟滞现象,上升曲线和下降曲线上的位移值有明显的位移在同一个电压值下,压曲线之间存在位移差。驱动电压越小则位移差也会相应越小,差,且这个位移差会随着电压变化范围的改变而改变,15%10%压电陶瓷的迟滞一般在给定电压对应位移值的-左右。'. . Δ蠕变而是位移值不是稳定在一固定值上,蠕变是指当施加在压电陶瓷的电压值不再变化时,内蠕变量约为10s随着时间缓慢变化,在一定时间之后才会达到稳定值,如右图所示。一般 1%~2%。伸长量的

相关文档
相关文档 最新文档