文档库 最新最全的文档下载
当前位置:文档库 › 最新【概率论习题答案】第3章-随机变量的数字特征

最新【概率论习题答案】第3章-随机变量的数字特征

最新【概率论习题答案】第3章-随机变量的数字特征
最新【概率论习题答案】第3章-随机变量的数字特征

第3章 随机变量的数字特征

1,在下列句子中随机地取一单词,以X 表示取到的单词所包含的字母个数,试写出X 的分布律并求)(X E .

“They found Peking greatly changed ”

解:根据题意,有1/5的可能性取到5个单词中的任意一个。它们的字母数分别为4,5,6,7,7。所以分布律为

5/29)77654(5

1

)(=++++=X E .

2,在上述句子的29个字母中随机地取一个字母,以Y 表示取到的字母所在的单词所包含的字母数,写出Y 的分布律并求)(Y E 。 解:5个单词字母数还是4,5,6,7,7。这时,字母数更多的单词更有可能被取到。分布律为

29/175)147665544(29

1

)(=?+?+?+?=

Y E .

3,在一批12台电视机中有2台是次品,若在其中随即地取3台,求取到的电视机中包含的次品数的数学期望。

解:根据古典概率公式,取到的电视机中包含的次品数分别为0,1,

2台的概率分别为

1163123100==C C p , 229312210121==C C C p , 221

312

110222==C C C p 。 所以取到的电视机中包含的次品数的数学期望为

)(2

1

222112290116台=?+?+?=

E 。

4,抛一颗骰子,若得6点则可抛第二次,此时得分为6+(第二次所抛的点数),否则得分就是第一次所抛的点数,不能再抛。求所得分数的分布律,并求得分的数学期望。

解:根据题意,有1/6的概率得分超过6,而且得分为7的概率为两个1/6的乘积(第一次6点,第2次1点),其余类似;有5/6的概率得分小于6。分布律为

得分的数学期望为

)(12

49)121110987(361)54321(61点=++++++++++=

E 。

5,(1)已知)(~X λπ,}6{}5{===X P X P ,求)(X E 。 (2)设随机变量X 的分布律为

,4,3,2,1,6

}{2

2--==

=k k k X P π, 问X 的数学期望是否存在?

解:(1)根据)(~X λπ,可得}6{!

6!

5}5{65===

=

=--X P e e X P λ

λ

λλ,因此

计算得到6=λ,即)6(~X π。所以)(X E =6。 (2)根据题意,按照数学期望的公式可得

2

1

1

21

221

11

2

ln 61)1(66)

1(}{)

1()(ππ

π=-=-==-=∑∑∑+∞

=-+∞

=-+∞

=-k k k k k k k k k k X kP X E , 因此期望存在。(利用了11,1)1()1ln(0

≤<-+-=+∑∞

=x n x x n n

n

)(不符书上答案)

6,(1)某城市一天水的消费量X (百万升计)是一个随机变量,其

概率密度为???>=-其他,

00

,9/)(3/x xe x f x ,求一天的平均耗水量。

(2)设某动物的寿命X (以年计)是一个随机变量,其分布函数为

???

??>-≤=5,25

15,0)(2x x

x x F

求这种动物的平均寿命。 解:(1)一天的平均耗水量为

?????+∞

-+∞

-+∞

-+∞

-+∞

∞--=+

=-===0

3

/03/0

3/2

03/2)(2320)(39)()(x x x x e xd dx xe e d x dx e x dx x xf X E 6200

3/=+=?+∞-dx e x (百万升)。

(2)这种动物的平均寿命为

1050

)25

1()()(52

5

2==

-==???+∞

+∞

+∞

∞-dx x

x xd x xdF X E (年)。

7,在美国,致命的汽车事故所占的比例X 的概率密度为

???<<-=其他,

010,)1(42)(5x x x x f ,

求X 的数学期望。

解:[]???--=-==+∞

-1

621

5

2

)1(7)1(42)()(x d x dx x x dx x xf X E

[

][][]???-+--=--=-+--=1

710

71

7

10

6

1

62

)1(2)

1(2)1(2)1(14)

1(7dx

x x x x xd dx x x x x =1/4。

8,设随机变量X 具有概率密度如下,求)(X E 。

???≤≤-=其他,

02

1),/11(2)(2x x x f 。

解:2ln 23)ln 2()/11(2)()(2

12

2

1

2

-=-=-==??+∞

-x x dx x x dx x xf X E 。

9,设随机变量X 具有概率密度如下,求)(X E 。

??

?

??<<-≤≤-+=其他,010,

2/)1(30

1,2/)1(3)(22x x x x x f 解:???-++==-+∞

∞-1

20

12)1(23)1(23)()(dx x x

dx x x dx x xf X E

0)1(23)1(231

2012=-+-=??dx x x

dx x x 。

(对第一个积分进行变量代换y x -=)

10,设),4(~p B X ,求数学期望)2

(sin X

E π.

解: ∑=-?????

?-???=4

044)1(2sin )2(sin

k k k k

p p C k X

E ππ )221)(1(4)1()1(2133

43114p p p p p p C p p C +--=-??+-??=。(不符书上答案)

11,设球的直径R 服从区间),0(a 上的均匀分布,求球体积6/3R V π=的数学期望。

解:R 的概率密度函数为???≤≤=其他,

00,/1)(a x a x f ,所以

24

16)(3

3

a dr a r V E a

ππ=

?=?

12,设随机变量X 的概率密度为???>=-其他,

00

,3.0)(3.0x e x f x ,另有X 的

函数??

??

?>≤≤<=4,164

0,0,

0)(2X X X X X g ,求数学期望)]([X g E 。 解:???+∞

--+∞

-?+?==4

3.04

3.02

3.0163.0)()()]([dx e dx e

x dx x f x g X g E x x

)584200(9

1

2.1--=e (不符书上答案)

13,设随机变量n X X X ,,,21 相互独立,且都服从区间)1,0(上的均匀分布,记),,,m in(211n X X X Y =,),,,m ax (21n n X X X Y =,求)(),(1n Y E Y E 。

解:因为),2,1(n i X i =的分布函数为???

??≥<≤<=1,110,0,

0)(x x x x x F ,所以可以求出

n Y Y ,1的分布函数为

?????≥<≤--<=1,110,)1(10,0)(min y y y y y F n , ???

??≥<≤<=1,110,0,0)(max y y y y y F n 。

n Y Y ,1的密度函数为

???<<-=-其他,010,)1()(1min y y n y f n ,???<<=-其他,

010,)(1max y ny y f n 。

所以n Y Y ,1的数学期望为

1

1

)1()

1()

1()()(1

1

1

1

01

min 1+=

---=-==

????--+∞

-n dy y n dy y n dy y ny dy y yf Y E n n n , 1

)()(1

max +=

==

??+∞

-n n

dy ny dy y yf Y E n

n 。

14,设随机变量(X,Y)具有分布律

求)(),(),(XY E Y E X E ,)23(),(Y X E Y X E +-。 解:求出边缘分布律如下

2/1}{)(2

===∑=k k X kP X E , 4/3}{)(2

===∑=k k Y kP Y E ,

14/314/311}{}{)(202

=??====∑∑==j i j Y P i X ijP XY E ,

4/128/7}{}{)()(2

02

-=-===-=-∑∑==j i j Y P i X P j i Y X E ,

328/84}{}{)23()23(2

02

====+=+∑∑==j i j Y P i X P j i Y X E 。

15,在上题中,求)]1/([)],,[min(+X Y E Y X E 。

解:14/314/31}{}{),min()],[min(2

02

0=?====∑∑==j i j Y P i X P j i Y X E ,

14/928/18}{}{1

)]1/([2

020

====+=+∑∑

==j i j Y P i X P i j

X Y E 。

16,设随机变量具有概率密度

其他

1

,10,10,

0,

24),(≤+≤≤≤≤??

?=y x y x xy y x f

求)(),(),(XY E Y E X E 。

解:5/224),()(10

2

1

===

????-?y

R

R ydx x

dy dxdy y x xf X E ,

5/224),()(10

2

1

===

????-?y

R

R xdx y dy dxdy y x yf Y E ,

15/224),()(10

22

10

===

????-?y

R

R dx y x

dy dxdy y x xyf XY E 。

17,某工程队完成某种工程的天数X 是随机变量,具有分布律

所得利润(以元计)为)12(1000X Y -=,求)(),(Y

D Y

E 。 解:根据题意,可得利润的分布律为

因此,

4001.020001.010003.010002.02000)(=?-?-?+?=Y E (元) 16000001.0)2000(1.0)1000(3.010002.02000)(22222=?-+?-+?+?=Y E []1440000)()()(2

2=-=Y E Y E Y D 。

18,设随机变量X 服从瑞利分布,其概率密度为

?????>=-其他,

00,)()2/(2

22x e x x f x σσ

其中0>σ为常数,求)(),(),(X D X D X E 。

解:2)()(0)

2/(0

)

2/(0

)

2/(2

2

22

2222π

σ

σ

σσσ=+-==

=???+∞

-∞+-+∞

-+∞

∞-dx e xe

dx e

x dx x xf X E x

x x , ???+∞

-∞+-+∞

-+∞

-+-==

=

)

2/(0

)

2/(20

)

2/(2

3

2

2

222

22

22)()(dx

xe

e

x dx e

x dx x f x

X E x x x σσσσ

20)

2/(22222σσσ=-=+∞-x e

[]22

2)2/2()()()(σπ-=-=X E X E X D ,σπ)2/2()(-=X D 。

(本题积分利用了2

2

/2π

=

?

+∞

-dx e

x ,这个结果可以从标准正态分布密度函数中得到)

19,设随机变量X 服从几何分布,其分布律为

,2,1,)1(}{1=-==-k p p k X P k ,

其中10<

解:p p p p k p k X kP X E k k k 11)1(}{)(1

2

11

=?

=-===∑∑+∞

=-+∞

=, ?

?

? ??---+=-===∑∑∑∑+∞

=-+∞=-+∞

=-+∞=1111

1

1

2

1

2

2

)1()1)(1()

1(}{)(k k k k k k k p k p k k p p k p k X P k X E p

p p p p 1

2)12(

223-=-=, 所以,[]22

22111)()()(p

p

p p X E X E X D -=-=-=。

本题利用了幂级数求和中先积分再求导的方法。设∑+∞

=--=1

1)1()(k k p k p s ,

则p

p dp p s k k p

1

1)1()(1

1

-=--=∑?+∞

=,所以2'

1

1

)()(p

dp p s p s p

=

?

??

? ??

=?。类似的,设∑+∞

=--+=1

1

)

1)(1()(k k p k k p S ,则经过两次积分以后可得到p

p 2

)1(-,在经过

两次求导得到32

)(p

p S =。

20,设随机变量X 具有概率密度为

???

??<≥=+θθθθx x x k k x f k k ,

0,),;(1

其中0,0>>θk 为常数。 (1)

(2) 若1>k ,求)(X E 。 (3)

(4) 问当1=k 时,)(X E 是否存在? (5) 若2>k ,求)(X D 。

(6) 问当2=k 时,)(X D 是否存在?

解:(1)当1>k 时,11)()(-====???+∞

+∞+∞∞-k k dx x k dx x

k dx x xf X E k k

k k

θ

θθθ

θ。 (2)当1=k 时,+∞==?+∞

θ

θdx x

X E 1

)(,即)(X E 不存在。

(3),当2>k 时,2)()(2

12

2

-===??+∞

-+∞∞-k k dx x

k dx x f x X E k k θθθ,

所以,[])

2()1()1(21)()()(2

2

22

2

2

--=??????---=-=k k k k k k k X E X E X D θθ。 (4)当2=k 时,+∞===??+∞

+∞∞-θθdx x

dx x f x X E 2

2

2

2)()(,所以)(X D 不存在。

21,(1)在14题中,求XY Y X Cov ρ),,(。 (2)在16题中,求XY Y X Cov ρ),,(,)(Y X D +。

(3)在第二章习题第14题中,求XY Y X Cov ρ),,(。 解:(1)根据14题中结果,得到

56/94/32/114/3)()()(),(-=?-=-=Y E X E XY E Y X Cov ;

因为7/4}{)(20

2

2

===∑=k k X P k X E , 28/27}{)(2

22

===∑=k k Y P k Y E ,

所以[]28/9)()()(22=-=X E X E X D ,[]112/45)()()(22=-=Y E Y E Y D , 5

5

)

()(),(-

==

Y D X D Y X C o v XY ρ。 (2)根据16题结果可得:

()75/25/215/2)()()(),(2

-=-=-=Y E X E XY E Y X Cov ;

因为 5/124),()(10

310

2

2===

????-?y

R

R ydx x dy dxdy y x f x

X E ,

5/124),()(10

3

1

2

2

===

????-?y

R

R xdx y dy dxdy y x f y Y E ,

所以,[]25/1)()()(22=-=X E X E X D ,[]25/1)()()(22=-=Y E Y E Y D

75/2),(2)()()(=++=+Y X Cov Y D X D Y X D ,

32

)

()()

,(-==

Y D X D Y X Cov XY ρ。 (3)在第2章14题中,由以下结果

得到,14.1)(=X E ,34.1)(=Y E ,8.1)(=XY E ,9.1)(2=X E ,34.2)(2=Y E , 所以,2724.0)()()(),(=-=Y E X E XY E Y X Cov ;

[]6004.0)()()(2

2=-=X E X E X D ,[]5444.0)()()(2

2=-=Y E Y E Y D ,

4765.05717

.02724

.0)

()(),(==

=

Y D X D Y X Cov XY ρ.

22,设随机变量(X,Y)具有4)(,9)(==Y D X D ,6/1-=XY ρ,求)(Y X D +,

)43(+-Y X D 。

解:根据题意有 ),(2)()()(Y X Cov Y D X D Y X D ++=+

)()(2)()(Y D X D Y D X D XY ρ++=116)6/1(249=?-?++=。

)3,4(2)3()4()43(Y X Cov Y D X D Y X D +-++=+-

),(6)(9)(Y X Cov Y D X D -+=516)6/1(6369=?-?-+=。

23,(1)设随机变量321,,X X X 相互独立,且有1)(,0)(2==i i X E X E ,

3,2,1=i ,求[

]

2322

1)4(X X X E -。

(2)设321,,X X X 相互独立,且都服从区间(0,1)上的均匀分布,求[]2321)2(X X X E +-。

解:(1)因为321,,X X X 相互独立,所以

[

]

]168[])4[()()4(2

33222232212322

1X X X X E X X E X E X X X E +-=-=-

][16][][8][]168[2

3322

22

3322

2X E X E X E X E X X X X E +-=+-=

171601=+-=。

(2)根据题意,可得[]3/1)()()(,2/1)(22=+==i i i i X E X D X E X E ,3,2,1=i 。

[]

]4244[)2(2331212

322212321X X X X X X X X X E X X X E -+-++=+-

]

[][4][][2][][4][][4][2331212

32

22

1X E X E X E X E X E X E X E X E X E -+-++= 2

11211313431=-+-++=

24,设随机变量(X,Y)具有概率密度

其他

1

0,,

0,

1),(<<

?=x x y y x f

验证X,Y 不相关,但X,Y 不是相互独立的。

解:因为 3/2),()(1

===

????-?x

x

R

R xdy dx dxdy y x xf X E ,

0),()(1

===

????-?x

x R

R ydy dx dxdy y x yf Y E ,

0),()(1

===

????-?x

x

R

R xydy dx dxdy y x xyf XY E ,

所以,0)()()(),(=-=Y E X E XY E Y X Cov , 即,验证了X,Y 不相关。

又因为,??

???<<===??-

+∞-他其,,01021),()(x x dy dy y x f x f x

x X ; ???

??<<-<<+=?????

??????<≤<<-==???-∞+∞-他其,,,他

其,,,015.015.0010101011),()(1

1

y y y y y dx y dx dx y x f y f y y

Y ,

显然,)()(),(y f x f y x f Y X ≠,所以验证了X,Y 不是相互独立的。

25,将n 只球号)n ~1(放入n 只盒子号)n ~1(中去,一只盒子装一之球。

若一只球装入与之同号的盒子中,称为一个配对。记X 为总的配对数,求)(X E 。

解:引入随机变量定义如下

?

?

?=个盒子个球未落入第第个盒子

个球落入第第i i i i X i 01 则总的配对数∑==n

i i X X 1

,而且因为n X P i 1

}1{==,所以,)1,(~n

n N X 。

故所以,11)(=?=n

n X E 。

(第3章习题解答完毕)

随机变量的数字特征试题答案

随机变量的数字特征试题 答案 It was last revised on January 2, 2021

第四章 随机变量的数字特征试题答案 一、 选择(每小题2分) 1、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是(D ) A. E (X )=,D (X )= B. E (X )=,D (X )= C. E (X )=2,D (X )=4 D. E (X )=2,D (X )=2 2、设随机变量X 与Y 相互独立,且X~N (1,4),Y~N (0,1),令Y X Z -=,则D (Z )= (C ) A. 1 B. 3 C. 5 D. 6? 3、已知D (X )=4,D (Y )=25,cov (X ,Y )=4,则XY ρ =(C ) A. 0.004 B. C. D. 4 4、设X ,Y 是任意随机变量,C 为常数,则下列各式中正确的是(D ) A . D (X+Y )=D (X )+D (Y ) B . D (X+C )=D (X )+C C . D (X -Y )=D (X )-D (Y ) D . D (X -C )=D (X ) 5、设随机变量X 的分布函数为???? ???≥<≤-<=4, 14 2,12 2, 0)(x x x x x F ,则E(X)=(D ) A . 31 B . 21 C .2 3 D . 3 6、设随机变量X 与Y 相互独立,且)61,36(~B X ,)3 1 ,12(~B Y ,则)1(+-Y X D = (C ) A . 34 B . 37 C . 323 D . 3 26

7、设随机变量X 服从参数为3的泊松分布,)31 ,8(~B Y ,X 与Y 相互独立,则 )43(--Y X D =(C ) A . -13 B . 15 C . 19 D . 23 8、已知1)(=X D ,25)(=Y D ,XY ρ=,则)(Y X D -=(B ) A . 6 B . 22 C . 30 D . 46 9、设)3 1 ,10(~B X ,则)(X E =(C ) A . 31 B . 1 C . 3 10 D . 10 10、设)3,1(~2N X ,则下列选项中,不成立的是(B ) A. E (X )=1? B. D (X )=3? C. P (X=1)=0 D. P (X<1)= 11、设)(X E ,)(Y E ,)(X D ,)(Y D 及),cov(Y X 均存在,则)(Y X D -=(C ) A . )(X D +)(Y D B . )(X D -)(Y D C .)(X D +)(Y D -2),cov(Y X D .)(X D +)(Y D +2),cov(Y X 12、设随机变量)2 1 ,10(~B X ,)10,2(~N Y ,又14)(=XY E ,则X 与Y 的相关系数 XY ρ=(D ) A . B . -0.16 C . D . 13、已知随机变量X 的分布律为 25 .025.012p P x X i -,且E (X )=1?,则常数x =( B) A . 2 B . 4 C . 6 D . 8 14、设随机变量X 服从参数为2的指数分布,则随机变量X 的数学期望是(C ) A. B. 0 C. D. 2 15、已知随机变量X 的分布函数为F(x)=?? ?>--other x e x 00 12,则X 的均值和方差分别为(D )

概率论与数理统计第三章课后习题答案

习题三 1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与 出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 222??222 ??= 2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 324 C 35= 32 4 C 35= 322 4 C 35= 11322 4 C C 12C 35=132 4 C 2C 35 = 21322 4 C C 6C 35 = 2324 C 3 C 35 = 3.设二维随机变量(X ,Y )的联合分布函数为 F (x ,y )=?????≤ ≤≤≤., 020,20,sin sin 其他ππy x y x 求二维随机变量(X ,Y )在长方形域? ?? ? ??≤<≤<36,40πππy x 内的概率. 【解】如图πππ {0,}(3.2)463 P X Y <≤ <≤公式 ππππππ(,)(,)(0,)(0,)434636 F F F F --+

ππππππ sin sin sin sin sin0sin sin0sin 434636 2 (31). 4 =--+ =- 题3图 说明:也可先求出密度函数,再求概率。 4.设随机变量(X,Y)的分布密度 f(x,y)= ? ? ?> > + - . ,0 ,0 ,0 ,)4 3( 其他 y x A y x e 求:(1)常数A; (2)随机变量(X,Y)的分布函数; (3)P{0≤X<1,0≤Y<2}. 【解】(1)由-(34) 00 (,)d d e d d1 12 x y A f x y x y A x y +∞+∞+∞+∞ + -∞-∞ === ???? 得A=12 (2)由定义,有 (,)(,)d d y x F x y f u v u v -∞-∞ =?? (34)34 00 12e d d(1e)(1e)0,0, 0, 0, y y u v x y u v y x -+-- ??-->> ? == ?? ? ?? ?? 其他 (3) {01,02} P X Y ≤<≤< 12 (34)38 00 {01,02} 12e d d(1e)(1e)0.9499. x y P X Y x y -+-- =<≤<≤ ==--≈ ?? 5.设随机变量(X,Y)的概率密度为 f(x,y)= ? ? ?< < < < - - . ,0 ,4 2,2 ), 6( 其他 y x y x k (1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1.5}; (4)求P{X+Y≤4}. 【解】(1)由性质有

四、随机变量的数字特征(答案)

概率论与数理统计练习题 、选择题: 二、填空题: 1 4.设随机变量 X 的密度函数为f(x) e |x| ( x ),则E(X) 0 三、计算题: 1.袋中有5个乒乓球,编号为1 , 2, 3, 4, 5,从中任取3个,以X 表示取出的3个球中最大编 号,求E(X) 解:X 的可能取值为3, 4, 5 E(X) 3 丄 4 色 5 3 4.5 10 10 5 1/5 1/6 1/5 1/15 11/30 系 _____ 第四章 专业 ______ 班 _________ 随机变量的数字特征(一) 学号 1 ?设随机变量 X 的可能取值为0, 1, 相应的概率分布为 0.6,0.3 , .01,则 E(X) 0.5 2 .设X 为正态分布的随机变量,概率密度为 f(x) 2?2 e (x 1)2 2 8 ,贝U E(2X 1) ,则 E(X 3X 2) 116/15 1 ?设随机变量X ,且 E(X)存在,则 E(X)是 (A )X 的函数 (B )确定常数 随机变量 (D )x 的函数 2 .设X 的概率密度为 f(x) 1 x e 9 9 0 ,则 E( 9X) 3 ?设 x x e 9 dx 1 (B) 9 x x e 9dx (C ) (D ) 1 是随机变量, E( )存在,若 ¥,则 E() E() (B)罟 (C ) E() P(X 3) 1 10 , P(X 4) C 5 3 10 P(X 5) § 10

2 ?设随机变量X 的密度函数为f(X ) 2 (1 %)0甘它1,求E(X) 0 其它 2 3?设随机变量X~N(,),求E(|X I) (1) Y 1 e 2X ( 2)Y 2 max{ X, 2} 解:(1) E(Y) 2x x 1 e e dx 0 3 (2) EM) 2 x 2e dx xe 0 2 x dx 2 2e 2 3e 2 2 2 e (3) E(Y 3) 2 e x dx 2e x 0 2 dx 1 c 2 c 2 」 2 3e 2e 1 e 概率论与数理统计练习题 ________ 系 _______ 专业 ______ 班 ___________________学号 _________ 第四章 随机变量的数字特征(二) 、选择题: 解:E(X) X 2(1 x)dx 解: |x (x )2 1 — dx 令y 2 y I y |e 2dy 4 .设随机变量 X 的密度函数为f (x) x 0 ,试求下列随机变量的数学期望。 x 0 (3) Y min{ X,2} 2 2~ 2 o ye dy

概率论与数理统计题库及答案

概率论与数理统计题库及答案 一、单选题 1. 在下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 51,41,31,21 (B) 81,81,41,21 (C) 2 1,21,21,21- (D) 16 1, 8 1, 4 1, 2 1 2. 下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 4 1414121 (B) 161814121 (C) 16 3 16 14 12 1 (D) 8 18 34 12 1- 3. 设连续型随机变量X 的密度函数 ???<<=, ,0, 10,2)(其他x x x f 则下列等式成立的是( ). (A) X P (≥1)1=- (B) 21)21(==X P (C) 2 1)21(= < X P (D) 2 1)21(= > X P 4. 若 )(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成 立. (A) X a P <(≤?∞ +∞-=x x F b d )() (B) X a P <(≤? = b a x x F b d )() (C) X a P <(≤? = b a x x f b d )() (D) X a P <(≤? ∞+∞ -= x x f b d )() 5. 设 )(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有 X a P <(≤=)b ( ). (A) ? b a x x F d )( (B) ? b a x x f d )( (C) ) ()(a f b f - (D) )()(b F a F - 6. 下列函数中能够作为连续型随机变量的密度函数的是( ).

四、随机变量的数字特征(答案)

概率论与数理统计练习题 系 专业 班 学号 第四章 随机变量的数字特征(一) 一、选择题: 1.设随机变量X ,且()E X 存在,则()E X 是 [ B ] (A )X 的函数 (B )确定常数 (C )随机变量 (D )x 的函数 2.设X 的概率密度为910()9 00 x e x f x x -?≥?=??

概率论习题第三章答案

第三章连续型随机变量 3、1设随机变量 ξ 的分布函数为F(x),试以F(x)表示下列概率: 。 )()4();()3();()2();()1(a P a P a P a P >≥≤=ξξξξ 。 )(解:)0(1)()4(); (1)()3(); 0()(P 2); ()0()()1(+-=>-=≥+=≤-+==a F a P a F a P a F a a F a F a P ξξξξ 3、2函数x 211 F(x)+=就是否可以作为某一随机变量的分布函数,如果 在其它场合恰当定义。 在其它场合恰当定义;)(,0)3(,0)2(1<<∞-∞<<∞ <<∞-x x x 解:(1)F(x)在),(∞-∞内不单调,因而不可能就是随机变量的分布函数; (2)F(x)在)0∞,(内单调下降,因而也不可能就是随机变量的分布函数; (3)F(x)在) ,(-0∞内单调上升、连续且,若定义 ???≥<<∞=01 0)()(~x x X F x F - 则)(~ x F 可以就是某一随机变量的分布函数。 3、3函数 sinx 就是不就是某个随机变量ξ的分布函数?如果ξ的取值范围为 []。,);(,);(,)(?? ??????????πππ230302201 解:(1)当?? ????∈2,0πx 时,sinx 0≥且1sin 20=?πxdx ,所以 sinx 可以就是某个随机变量的分布密度; (2) 因为12sin 0≠=?πxdx ,所以sinx 不就是随机变量的分布密度; (3) 当 ?????? ∈23, ππx 时,sinx<=0所以sinx 不就是随机变量的分布密度。 3、4设随机变量ξ具有对称的分布函数p(x),即p(x)=p(-x) 证明:对任意的a>0,有

概率统计试题库及答案

、填空题 1、设 A 、B 、C 表示三个随机事件,试用 A 、B 、C 表示下列事件:①三个事件都发生 ____________ ;__②_ A 、B 发生,C 3、 设 A 、 B 、C 为三个事件,则这三个事件都不发生为 ABC; A B C.) 4、 设 A 、B 、C 表示三个事件,则事件“A 、B 、C 三个事件至少发生一个”可表示为 ,事件“A 、B 、 C 都发生”可表 示为 , 5、 设 A 、 B 、 C 为三事件,则事件“A 发生 B 与 C 都不发生”可表示为 ________ 事__件; “A 、B 、C 不都发生”可表 示为 ____________ ;_事_ 件“A 、B 、C 都不发生”可表示为 ____ 。_(_ABC ,A B C ;A B C ) 6、 A B ___________ ;__ A B ___________ ;__A B ___________ 。_(_ B A , A B , A B ) 7、 设事件 A 、B 、C ,将下列事件用 A 、B 、C 间的运算关系表示:(1)三个事件都发生表示为: _______ ;_(_ 2)三 个 事件不都发生表示为: ________ ;_(_ 3)三个事件中至少有一个事件发生表示为: _____ 。_(_ ABC , A B C , A B C ) 8、 用 A 、B 、C 分别表示三个事件,试用 A 、B 、C 表示下列事件: A 、B 出现、C 不出现 ;至少有一 个 事 件 出 现 ; 至 少 有 两 个 事 件 出 现 。 ( ABC,A B C,ABC ABC ABC ABC ) 9、 当且仅当 A 发生、 B 不发生时,事件 ________ 发_生_ 。( A B ) 10、 以 A 表 示 事 件 “甲 种 产 品 畅 销 , 乙 种 产 品 滞 销 ”, 则 其 对 立 事 件 A 表 示 。(甲种产品滞销或乙种产品畅销) 11、 有R 1, R 2 , R 3 三个电子元件,用A 1,A 2,A 3分别表示事件“元件R i 正常工作”(i 1,2,3) ,试用 A 1,A 2,A 3表示下列事件: 12、 若事件 A 发生必然导致事件 B 发生,则称事件 B _____ 事_件 A 。(包含) 13、 若 A 为不可能事件,则 P (A )= ;其逆命题成立否 。(0,不成立) 14、 设A、B为两个事件, P (A )=0 .5, P (A -B )=0.2,则 P (A B ) 。(0.7) 15、 设P A 0.4,P A B 0.7,若 A, B 互不相容,则P B ______________ ;_若 A, B 相互独立,则P B _______ 。_(_0.3, 概率论与数理统计试题库 不发生 _________ ;__③三个事件中至少有一个发生 2、 设 A 、B 、C 为三个事件,则这三个事件都发生为 _______________ 。_(__A_BC , ABC , A B C ) ;三个事件恰有一个发生 为 ABC; ABC ABC ABC )。 ;三个事件至少有一个发生为 事件“A 、 B 、C 三事件中至少有两个发生”可表示为 。( A B C , ABC , AB BC AC ) 三个元件都正常工作 ;恰有一个元件不正常工作 至少有一个元件 正常工作 。( A 1 A 2 A 3, A 1A 2 A 3 A 1 A 2A 3 A 1A 2A 3,A 1 A 2 A 3)

第三章 随机变量的数字特征答案

第三章 随机变量的数字特征答案 一、1、35;2、 6175;;259,59,259, 563、σ σμ1 , =±=b a ; 4、()(),2 1212 1211 )(2 2 2 212111 2??? ? ??-- ---+-? = ? = = x x x x e e e x πππ ? ),(~所以2 1 1N ξ ,2 1 ,12 = ===σ ξμξD E 5、2 1-;6.a=2,b=0,或a=-2,b=2;32)(=ξE 或31 ; 7、()()125,01022===+=+=+=+a D a b a D b a b aE b a E ξξξξ 所以2,5 1 2,51=-=-== b a b a 或 8、()()6.2022,2=++=++=+ηξρηξηξηξηξξηD D D D Cov D D D ()()4.232,2=-+=-+=-ηξρηξηξηξηξξηD D D D Cov D D D 9、148,57; 10、()()()()n D a E D a E i i 2 2 ,,,σξ ξσξξ= ===所以 二、1、C 2、B 3、C 4、B 5、C 三、1、,2.03.023.004.02-=?+?+?-=ξE ()8.23.023.004.02222 2=?+?+?-=ξE ()() ()() ( )04.114,412,4.1353532 222=-==-=+=+ξξξξξξE E D D E E 2、ξ~[]10,0U ,()32512010,5210 02 =-==+=ξξD E , 3 35=ξD 3、4)(,1)2 (==ξξ D D ,则 1)(,4)1(==-ξξ E D 所以0)1(=-ξE 所以 ()()()() 2 2 2111404E D E ξξξ-=-+-=+= 4、()()()()()()32323223,2D D D D Cov ξηξηξηξη-=+-=+-+- ()( )941225.6D D ξηρ=+-=

概率论与数理统计习题及答案第三章

习题3-1 1. 而且12{P X X =. 求X 1和X 2的联合分布律. 解 由12 {0}1P X X ==知12{0}0P X X ≠=. 因此X 1和X 2的联合分布必形 于是根据边缘概率密度和联合概率分布的关系有X 1和X 2的联合分布律

(2) 注意到12{0,0}0P X X ===, 而121{0}{0}04 P X P X =?== ≠, 所以X 1和X 2 不独立. 2. 一盒子中有3只黑球、2只红球和2只白球, 在其中任取4只球. 以X 表示取到黑球的只数, 以Y 表示取到红球的只数. 求X 和Y 的联合分布律. 解 从7只球中取4球只有354 7 =C 种取法. 在4只球中, 黑球有i 只, 红 球有j 只(余下为白球4i j -- 只)的取法为 4322i j i j C C C --,0,1,2,3,0,1,2,i j i j ==+≤4. 于是有 022 322 1{0,2}35 35 P X Y C C C ====,111322 6{1,1}35 35 P X Y C C C ====, 121322 6 {1,2}35 35 P X Y C C C ====,202322 3 {2,0}35 35 P X Y C C C ==== , 211 322 12{2,1}35 35P X Y C C C ==== ,220 322 3{2,2}35 35P X Y C C C === = , 301 322 2 {3,0}3535P X Y C C C === =, 310 322 2 {3,1}3535 P X Y C C C ====, {0,0}{0,1}{1,0}{3,2}0P X Y P X Y P X Y P X Y ============. 3. (,)(6),02,24, 0,.f x y k x y x y =--<<<

考研概率论与数理统计题库-题目

概率论与数理统计 第一章 概率论的基本概念 1. 写出下列随机试验的样本空间 (1)记录一个小班一次数学考试的平均分数(以百分制记分) (2)生产产品直到得到10件正品,记录生产产品的总件数。 (3)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1)A 发生,B 与C 不发生 (2)A ,B 都发生,而C 不发生 (3)A ,B ,C 中至少有一个发生 (4)A ,B ,C 都发生 (5)A ,B ,C 都不发生 (6)A ,B ,C 中不多于一个发生 (7)A ,B ,C 中不多于二个发生 (8)A ,B ,C 中至少有二个发生。 3. 设A ,B 是两事件且P (A )=0.6,P (B )=0.7. 问(1)在什么条件下P (AB )取到最大值,最 大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少? 4. 设A ,B ,C 是三事件,且0)()(,4/1)()()(=====BC P AB P C P B P A P ,8 1 )(= AC P . 求A ,B ,C 至少有一个发生的概率。 5. 在电话号码薄中任取一个电话号码,求后面四个数全不相同的概率。(设后面4个数 中的每一个数都是等可能性地取自0,1,2……9)

6. 在房间里有10人。分别佩代着从1号到10号的纪念章,任意选3人记录其纪念章的 号码。 (1)求最小的号码为5的概率。 (2)求最大的号码为5的概率。 7. 某油漆公司发出17桶油漆,其中白漆10桶、黑漆4桶,红漆3桶。在搬运中所标笺 脱落,交货人随意将这些标笺重新贴,问一个定货4桶白漆,3桶黑漆和2桶红漆顾客,按所定的颜色如数得到定货的概率是多少? 8. 在1500个产品中有400个次品,1100个正品,任意取200个。 (1)求恰有90个次品的概率。 (2)至少有2个次品的概率。 9. 从5双不同鞋子中任取4只,4只鞋子中至少有2只配成一双的概率是多少? 10. 将三个球随机地放入4个杯子中去,问杯子中球的最大个数分别是1,2,3,的概 率各为多少? 11. 已知)|(,5.0)(,4.0)(,3.0)(B A B P B A P B P A P ?===求。 12. )(,2 1 )|(,31)|(,41)(B A P B A P A B P A P ?=== 求。 13. 设有甲、乙二袋,甲袋中装有n 只白球m 只红球,乙袋中装有N 只白球M 只红球, 今从甲袋中任取一球放入乙袋中,再从乙袋中任取一球,问取到(即从乙袋中取到)白球的概率是多少? (2) 第一只盒子装有5只红球,4只白球;第二只盒子装有4只红球,5只白球。先从第一盒子中任取2只球放入第二盒中去,然后从第二盒子中任取一只球,求取到白球的概率。 14. 已知男人中有5%是色盲患者,女人中有0.25%是色盲患者。今从男女人数相等的人 群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少? 15. 一学生接连参加同一课程的两次考试。第一次及格的概率为P ,若第一次及格则第 二次及格的概率也为P ;若第一次不及格则第二次及格的概率为2/P

第四章 随机变量的数字特征试题答案

第四章随机变量的数字特征试题答案 一、 选择(每小题2分) 1、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是(D ) A.E (X )=0.5,D (X )=0.5?B.E (X )=0.5,D (X )=0.25 C.E (X )=2,D (X )=4?D.E (X )=2,D (X )=2 2 Y X -=,则34) A C 5A 6、)1= (C ) A .3 4?B .3 7C . 323?D .3 26 7、设随机变量X 服从参数为3的泊松分布,)3 1 ,8(~B Y ,X 与Y 相互独立,则 )43(--Y X D =(C ) A .-13? B .15 C .19? D .23 8、已知1)(=X D ,25)(=Y D ,XY ρ=0.4,则)(Y X D -=(B )

A .6? B .22 C .30? D .46 9、设)3 1 ,10(~B X ,则)(X E =(C ) A .31? B .1 C .3 10?D .10 10、设)3,1(~2N X ,则下列选项中,不成立的是(B ) A.E (X )=1? B.D (X )=3? C.P (X=1)=0? D.P (X<1)=0.5 11 A .C .12、XY ρ= (D 13x =(B) A . 14、(C ) A.-15、为(A .C .21)(,41)(== X D X E ?D .4 1 )(,21)(==X D X E 16、设二维随机变量(X ,Y )的分布律为

则)(XY E =(B ) A .9 1-?B .0 C .9 1?D .3 1 17、已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为(D ) A 18,0.5),则A 19,则X A 20, 则21(B A C 22、设n X X X ,,,21 是来自总体),(2σμN 的样本,对任意的ε>0,样本均值X 所满足的切比雪夫不等式为(B ) A .{}2 2 εσεμn n X P ≥ <-?B .{} 22 1ε σεμn X P -≥<- C .{}2 2 1ε σεμn X P - ≤≥-?D .{}2 2 εσεμn n X P ≤ ≥-

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

随机变量的数字特征试题答案

第四章 随机变量的数字特征试题答案 一、选择(每小题2分) 1、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是(D ) A. E (X )=,D (X )=? B. E (X )=,D (X )= C. E (X )=2,D (X )=4? D. E (X )=2,D (X )=2 2、设随机变量X 与Y 相互独立,且X~N (1,4),Y~N (0,1),令Y X Z -=,则D (Z )=? (??C?) A. 1 ? B. 3 C. 5? D. 6? 3、已知D (X )=4,D (Y )=25,cov (X ,Y )=4,则XY ρ =(C ) A. 0.004? B. ? C. ? D. 4 4、设X ,Y 是任意随机变量,C 为常数,则下列各式中正确的是(?D ) A . D (X+Y )=D (X )+D (Y ) ?B . D (X+C )=D (X )+C C . D (X-Y )=D (X )-D (Y ) ?D . D (X-C )=D (X ) 5、设随机变量X 的分布函数为???? ???≥<≤-<=4, 14 2,12 2, 0)(x x x x x F ,则E(X)=(D ) A . 31 ?B . 21 C .2 3 ?D . 3 6、设随机变量X 与Y 相互独立,且)61,36(~B X ,)3 1 ,12(~B Y ,则)1(+-Y X D =(C ) A . 34 ? B . 37 C . 323 ? D . 3 26 7、设随机变量X 服从参数为3的泊松分布,)3 1 ,8(~B Y , X 与Y 相互独立,则)43(--Y X D =(C ) A . -13 ? B . 15 C . 19 ? D . 23 8、已知1)(=X D ,25)(=Y D ,XY ρ=,则)(Y X D -=(B ) A . 6 ?B . 22 C . 30 ?D . 46 9、设)3 1,10(~B X ,则)(X E =(C ) A . 31 ?B . 1 C . 3 10 ?D . 10 10、设)3,1(~2 N X ,则下列选项中,不成立的是(B ) A. E (X )=1? B. D (X )=3? C. P (X=1)=0? D. P (X<1)= 11、设)(X E ,)(Y E ,)(X D ,)(Y D 及),cov(Y X 均存在,则)(Y X D -=(C ) A . )(X D +)(Y D ?B . )(X D -)(Y D

概率论第三章题库

第三章 多维随机变量及其分布 一、选择题 1、(易)设任意二维随机变量(X ,Y )的两个边缘概率密度函数分别为f X (x )和f Y (y ),则以 下结论正确的是( ) A.? +∞ ∞-=1)(dx x f X B. ? +∞ ∞ -= 2 1 )(dx y f Y C. ? +∞ ∞ -=0)(dx x f X D. ? +∞ ∞ -=0)(dx y f Y 2、(易)设二维随机变量221212(,)~(,,,,)X Y N μμσσρ,则X ~( ) A. 211(,)N μσ B. 221(,)N μσ C. 2 12 (,)N μσ D. 2 22(,)N μσ 3、(易)设二维随机变量(X ,Y )服从区域D :x 2 +y 2 ≤1上的均匀分布,则(X ,Y )的概率密度为( ) A. f(x ,y)=1 B. 1(,)0, x y D f x y ∈?=? ?, (,),其他 C. f(x ,y)=1 π D. 1 (,)0, x y D f x y π?∈?=???, (,),其他 4、(中等)下列函数可以作为二维分布函数的是( ). A .1,0.8,(,)0, .x y F x y +>?=? ?其他 B .?????>>??=--.,0,0,0,),(00其他y x dsdt e y x F y x t s C . ??= ∞-∞ ---y x t s dsdt e y x F ),( D .? ????>>=--. , 0, 0,0,),(其他y x e y x F y x 5、(易)设二维随机变量(X ,Y )的概率密度为f (x ,y )=?????<<<<,, 0; 20,20,41 其他y x 则P{0

概率论与数理统计试题库及答案(考试必做)

<概率论>试题A 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A U = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,U 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和 0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则A=______________ 7. 已知随机变量X 的密度为()f x =? ? ?<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________ 8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率

为8081 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<= 14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。 15.已知)4.0,2(~2-N X ,则2(3)E X += 16.设)2,1(~),6.0,10(~N Y N X ,且X 与Y 相互独立,则(3)D X Y -= 17.设X 的概率密度为2 ()x f x -=,则()D X = 18.设随机变量X 1,X 2,X 3相互独立,其中X 1在[0,6]上服从均匀分 布,X 2服从正态分布N (0,22),X 3服从参数为λ=3的泊松分布,记Y=X 1-2X 2+3X 3,则D (Y )= 19.设()()25,36,0.4xy D X D Y ρ===,则()D X Y += 20.设12,,,,n X X X ??????是独立同分布的随机变量序列,且均值为μ,方差为2σ,那么当n 充分大时,近似有X ~ 或 X ~ 。特别是,当同为正态分布时,对于任意的n ,都精确有 X ~ 或~ . 21.设12,,,,n X X X ??????是独立同分布的随机变量序列,且i EX μ=,

概率论第三章练习题

习 题 三 1.(1)盒子中装有3只黑球,2只红球,2只白球,在其中任取4只球.以X表示取到黑球的只数,以Y表示取到红球的只数.求X和Y的联合分布律.(2)在(1)中求Y}-3P{X 3},Y P{X 2X},P{Y Y},P{X <=+=>. 2.设随机变量)Y X,(的概率密度为 ?? ?<<<<--=其他,0,42,20),6(),(y x y x k y x f (1) 确定常数k . (2)求3}Y 1,P{X <<. (3)求 1.5}P{X <. (4)求4}Y P{X ≤+. 3.设随机变量)Y X,(具有分布函数 ?? ?>>+--=----其他,0,0,0,1),(F y x e e e y x y x y x 求边缘概率密度. 4.将一枚硬币掷3次,以X表示前2次出现H的次数,以Y表示3次出现H的次数.求X,Y的联合分布律以及)Y X,(的边缘分布律. 5.设二维随机变量)Y X,(的概率密度为 ?? ?≤≤≤≤-=其他,0,0,10), 2(8.4),(x y x x y y x f 求边缘概率密度. 6.设二维随机变量)Y X,(的概率密度为 ?? ?≤≤=其他,0,1,),(22y x y cx y x f (1)确定常数C. (2)求边缘概率密度.

7.设二维随机变量)Y X,(的概率密度为 ?? ?<<=-其他,0,0,),(y x e y x f y 求边缘概率密度. 8.设X 和Y 是两个相互独立的随机变量,X 在区间)1,0(上服从均匀分布,Y 的概率密度为 ?????≤>=-.0,0,0,2 1)(2Y y y e y f y 求X 和Y 的联合概率密度. 9.设X 和Y 是两个相互独立的随机变量,其概率密度分别为 ?? ?≤≤=.,0,10,1)(X 其他x x f ???>=-.,0,0,)(Y 其他y e y f y 求随机变量Y X Z +=的概率密度. 10. 设随机变量X 和Y 相互独立,且具有相同的分布,它们的概率密度均为 ?? ?>=-.,0,1,)(1其他x e x f x 求随机变量Y X Z +=的概率密度. 11. 设二维随机变量)Y X,(的概率密度为 ?????>>+=+-其他,0,0,0,)(2 1),()(y x e y x y x f y x (1) 问X 和Y 是否相互独立? (2) 求Y X Z +=的概率密度. 12. 某种商品一周的需求量是一个随机变量,其概率密度为 ?? ?≤>=-.0,0,0,)(t t e t t f t 设各周的需求量是相互独立的.求 (1) 两周的需求量的概率密度. (2) 三周的需求量的概率密度.

四随机变量的数字特征答案

概率论与数理统计练习题 系 专业 班 姓名 学号 第四章 随机变量的数字特征(一) 一、选择题: 1.设随机变量X ,且()E X 存在,则()E X 就是 [ B ] (A)X 的函数 (B)确定常数 (C)随机变量 (D)x 的函数 2.设X 的概率密度为910()9 00 x e x f x x -?≥?=??

概率论答案第三章测试题

第三章测试题 1箱子里装有12件产品,其中两件是次品.每次从箱子里任取1件产品,共取两次(取后不放回).定义随机变量X Y ,如下: 0X=1???,若第一次取出正品,若第一次取出次品 0Y=1??? ,若第二次取出正品,若第二次取出次品 (1)求出二维随机变量X Y (,)的联合分布律及边缘分布律; (2)求在Y=1的条件下,X 的条件分布律。 解 (2) 2 设二维随机变量 X Y (,)的概率密度Cy(2-x),0x 1,0y x, f(x,y)=0,.≤≤≤≤??? 其他 (1)试确定常数C ;(2)求边缘概率密度。 解 (1)1)(=??+∞∞-+∞∞-dy dx x f 即1)2(100=??-x dxdy x Cy x ,5 12 = ∴C 3设X Y (,)的联合分布律为: 求(1)Z X Y =+的分布律;(2)V min(X ,Y )=的分布律 (2)

4设X 和Y 是两个相互独立的随机变量,X 服从(0,1)上的均匀分布,Y 的概率密度为: y 212Y e ,y 0 f (y )0,y 0 -??>=? ≤?? (1)求X 和Y 的联合概率密度; (2)设含有a 的二次方程为2 a 2Xa Y 0++=,试求a 有实根的概率。 解 (1)X 1,0x 1 f (x )0,other <<<==∴-other y x e y f x f y x f y Y X , 00,10,21)()(),(2 (2)2 a 2Xa Y 0++=有实根,则0442≥-=?Y X ,即求02 ≥-Y X 的概率 ?-=??=??=≥---≥-1 01 00 20 2 2 22 121),(}0{dx e dy e dx dxdy y x f Y X P x x y y x 3413.0)0()1(211 2 2=Φ-Φ=?- dx e x π ,π23413.010 22=?∴-dx e x

相关文档
相关文档 最新文档