文档库 最新最全的文档下载
当前位置:文档库 › 反应釜封头部位大开孔接管应力分析与强度校核

反应釜封头部位大开孔接管应力分析与强度校核

反应釜封头部位大开孔接管应力分析与强度校核
反应釜封头部位大开孔接管应力分析与强度校核

带孔平板拉伸作业

带孔平板有限元分析 本文采用有限元法,对带圆孔的矩形平板进行了弹塑性受力分析,分析了圆孔处的应力集中现象,为其设计和应用提供了参考依据。 1. 研究问题概述 本文研究带圆孔矩形平板在轴对称拉力作用下的平面应力问题。平板开孔的应力问题是弹塑性力学平面中的一个经典的问题,也是实际工程中常见的问题。平板长200mm ,宽50mm ,厚8mm ,具体几何参数及受力见图1。 图1 平板几何参数及受力 2.弹性力学方法解答 由弹性力学知识知,在距圆孔圆心()r ρρ>处的径向正应力、环向正应力、切应力分别为: 222222 1c o s 211322p r p r r ρσψρρρ?????? =-+-- ? ????????? 22221cos 21322p r p r ?σψρρ????=+-+ ? ???? ? 2222sin 21132p r r ρψψρ ττψρρ???? ==--+ ?????? ? 沿着y 轴,90ψ=。,环向正应力为: 242413122r r p ?σρρ?? =++ ???

max 3q ?σ=由上表可知: ()max = 3K q ψ σ=故应力集中因子: 可见孔边最大应力比无孔时提高了3倍,应力集中系数k=3,如图2所示。 图2 孔边应力集中 3.有限元分析 3.1模型建立 图3 有限元模型 3.2边界条件和载荷 为避免在计算时平板产生移动引发计算问题,必须对试件的外部边界条件进行限定。对平板左侧进行铰接约束,示意图如下

图4 平板约束示意图 由于我们只关注孔附近的应力分布情况,根据圣维南原理,载荷的具体分布只影响载荷作用区附近的应力分布。故我们用均布力代替集中力施加在平板右侧的作用面上,其大小为225P MPa ,为负值。 图5 平板载荷示意图 3.3材料 平板的弹性模量为200GPa ,泊松比为0.3。其塑性的应力应变参数见下图 图6 塑性应力应变参数 3.4有限元网格划分 网格划分是非常重要的过程,它会对计算速度、精度、可靠性产生重要影响。网格划分主要包括两方面:尺寸、单元类型。

杆件的强度计算公式资料讲解

杆件的强度、刚度和稳定性计算 1.构件的承载能力,指的是什么? 答:构件满足强度、刚度和稳定性要求的能力称为构件的承载能力。 (1)足够的强度。即要求构件应具有足够的抵抗破坏的能力,在荷载作用下不致于发生破坏。 (2)足够的刚度。即要求构件应具有足够的抵抗变形的能力,在荷载作用下不致于发生过大的变形而影响使用。 (3)足够的稳定性。即要求构件应具有保持原有平衡状态的能力,在荷载作用下不致于突然丧失稳定。 2.什么是应力、正应力、切应力?应力的单位如何表示? 答:内力在一点处的集度称为应力。 垂直于截面的应力分量称为正应力或法向应力,用σ表示;相切于截面的应力分量称切应力或切向应力,用τ表示。 应力的单位为Pa。 1 Pa=1 N/m2 工程实际中应力数值较大,常用MPa或GPa作单位 1 MPa=106Pa 1 GPa=109Pa 3.应力和内力的关系是什么? 答:内力在一点处的集度称为应力。 4.应变和变形有什么不同? 答:单位长度上的变形称为应变。单位纵向长度上的变形称纵向线应变,简称线应变,以ε表示。单位横向长度上的变形称横向线应变,以ε/表示横向应变。 5.什么是线应变?什么是横向应变?什么是泊松比? 答:(1)线应变 单位长度上的变形称纵向线应变,简称线应变,以ε表示。对于轴力为常量的等截面直杆,其纵向变形在杆内分布均匀,故线应变为 l l? = ε (4-2) 拉伸时ε为正,压缩时ε为负。线应变是无量纲(无单位)的量。 (2)横向应变 拉(压)杆产生纵向变形时,横向也产生变形。设杆件变形前的横向尺寸为a,变形后为a1,则横向变形为 a a a- = ? 1 横向应变ε/为

第7章-应力状态和强度理论03.

西南交it 大学应用力*与工程系材#^力学教研i 图示拉伸甄压缩的单向应力状态,材料的破 坏有两种形式: 塑性屈服;极限应力为0■力=<5;或bpO2 腌性斷裂;极限应力为O ■必= CJ\ 此时,4 O>2和偽可由实验测得.由此可建 互如下S 度余件: ^mai 其中n 为安全系数? 2)纯剪应力状态: 图示纯剪应力狀态,材料的破 坏有两 种形式: 塑性屈服:极限应力为 腌性斯裂:极限应力为5 = 5 %和昭可由实验测得.由此可建立如下 =(^■1 it §7.7强度理论及其相当应力 1、概述 1)单向应力状态: a. <亠[6 n 其中, ?度条件:

前述a 度条件对材料破坏的原因并不深究.例如 图示低碳钢拉(压)时的强度条件为: r V J - b, b|nw W — — — // n 然而,其屈服是由于 YnurJl 起的,对?示单向 应力状态,有: 「niu 依照切应力强度条件,有:

4)材料破坏的形式 常温、静栽时材料的破坏形式大致可分为: ?腌性斷裂型: 例如:铸铁:拉伸、扭转等; "钢:三向拉应力状态. -塑性屈月艮型: 例如:低碳钢:拉伸、扭转寻; 铸铁:三向压缩应力状态. 可见:材料破坏的形式不仅与材料有关,还与应力状态有关. , 5)强度理论 根据一些实验资料,针对上述两种破坏形式,分别针对它们发生破坏的原因提出假说,并认为不论材料处于何种应力状态,某种类型的破坏都是由同一因素引起,此即为强度理论. 常用的破坏判据有: 旎性断裂:5,磁可皿 ?性斷裂:V; 下面将讨论常用的-基于上述四种破坏判据的?虞理论.

第7章 应力状态和强度理论 (答案)

7.1已知应力状态如图所示(单位:MPa ),试求: ⑴指定斜截面上的应力; ⑵主应力; ⑶在单元体上绘出主平面位置及主应力方向; ⑷最大切应力。 解: 100x MPa σ= 200y MPa σ= 100x MPa τ= 0 30α=- (1)cos 2sin 2211.622 x y x y x ασσσσ σατα+-= + -=sin 2cos 293.32 x y x MPa ασστατα-=+= (2)max 261.82 x y MPa σσσ+= = min 38.22x y MPa σσσ+== MPa 8.2611=σ MPa 2.382=σ 03=σ (3)13 max 130.92 MPa σστ-== 7.2扭矩m kN T ?=5.2作用在直径mm D 60=的钢轴上,试求圆轴表面上任一点与母线成 30=α方向上的正应变。设E=200GPa, 0.3υ=。 解:表面上任一点处切应力为: max 59P T MPa W τ= = 表面上任一点处单元体应力状态如图 30sin 251MPa στα=-=- 120sin 251MPa στα=-= () 00430301201 3.310E εσυσ-= -=? 2 στ τ

7.3用电阻应变仪测得空心钢轴表面某点与母线成 45方向上的正应变4 100.2-?=ε,已知转速min /120r ,G=80GPa ,试求轴所传 递的功率。 解:表面任一点处应力为 max 9550P P P T n W W τ== max 9550 P W n P τ∴= 纯剪切应力状态下,0 45斜截面上三个主应力为:1στ= 20σ= 3στ=- 由广义胡克定律 ()113 1 1E E υ εσυστ+= -= 又()21E G υ= +V 2G τε∴= 代入max 9550 P W n P τ= ,得109.4P KW = 7.4图示为一钢质圆杆,直径mm D 20=,已知A 点与水平线成 60 方向上的正应变4 60101.4-?= ε,E=200GPa ,0.3υ=, 试求荷载P 。 解:0P A σ= 204D P πσ=? 斜截面上 02 060cos 4 σσσα== 2001503cos 4 σσσα== 由广义胡克定律 () 0006015060134E E υεσυσσ-= -= 将060043E εσυ = -代入2 04 D P πσ=? 解得P=36.2KN

杆件的应力与强度

第3章杆件的应力与强度 判断 1、“轴向拉压杆件任意斜截面上的内力作用线一定与杆件的轴线重合” 2、“拉杆内只存在均匀分布的正应力,不存在剪应力。” 3、“杆件在轴向拉压时最大正应力发生在横截面上” 4、“杆件在轴向拉压时最大剪应力发生在与轴线成45度角的斜截面上” 5、“材料的延伸率与试件的尺寸有关。“ 6、“没有明显的屈服极限的塑性材料,可以将产生0.2%应变时的应力作为屈服极限。“ 7、“构件失效时的极限应力是材料的强度极限。” 8、“对平衡构件,无论应力是否超过弹性极限,剪应力互等定理均成立。” 9、“直杆扭转变形时,横截面的最大剪应力在距截面形心最远处。” 10、“塑性材料圆轴扭转时的失效形式为沿横截面断裂” 11、“对于受扭的圆轴,最大剪应力只出现在横截面上” 12、”圆轴受扭时,横截面的最大剪应力发生在距截面形心最远处。” 13、“圆轴受扭时,轴内各点均处于纯剪切状态“ 14、”薄壁圆管与空心圆管的扭转剪应力计算公式完全一样。” 15、”圆轴的扭转变形实际上是剪切变形。” 16、”圆轴扭转时,根据剪应力互等定理,其纵截面上也存在剪应力。” 17、“剪应力互等定理只适用于纯剪状态” 18、“传动轴的转速越高,则其横截面的直径应越大” 19、“受扭杆件的扭矩仅与杆件所受的外力偶矩有关,而与杆件的材料、横截面的大小以及横截面的形状无关” 20、“普通碳钢扭转屈服极限τs=120MPa,剪变模量G=80GPa,则由剪切虎克定律τ=Gγ得到剪应变为γ=1.5×10-3rad” 21、“一等直圆杆,当受到扭转时,杆内沿轴线方向会产生拉应变。” 22、“低碳钢圆柱试件受扭时,沿450螺旋面断裂。” 23、“铸铁圆柱试件受扭时,沿横截面断裂” 24、“弯曲时梁横截面的中性轴通过截面形心。” 25、“梁的截面如图,其抗弯截面系数为W Z=BH2/6-bh2/6”

基本变形的应力和强度计算

教学课题基本变形的应力和强度计算【练习课】 教学目标或要求 1、理解各种基本变形的应力特点和分布规律; 2、掌握各种基本变形的应力和强度计算方法; 3、理解材料在拉伸和压缩时的机械性能指标的含义。 教学重点、难点 教学方法、手段讲练结合,以练为主 教学过程及内容 基本变形的应力和强度计算 强度是指材料在外力作用下对塑性变形和断裂的抵抗能力。强度问题事关重大,强度不足,就有可能酿成大祸。工程结构和机器零件必须具有足够的强度。强度是材料力学研究的一个主要问题。 第一节轴向拉伸与压缩的应力和强度计算 一、横截面的正应力 例1:如图a所示一变截面直杆,横截面为圆形,d 1=200mm,d 2 =150mm,承受轴向 载荷F 1=30kN,F 2 =100kN的作用,试求各段截面上的正应力。 图 a 图 b 解:1)计算轴力:AB段的轴力:N AB =-F 2 +F 1 =-70kN(压) BC段的轴力:N BC =F 1 =30kN(拉) 画出轴力图如图12.1.2b所示。2)求横截面面积 AB段的横截面积: BC段的横截面积: 3)计算各段正应力 AB段的正应力:

BC段的正应力: 负号表示AB上的应力为压应力。 二、强度问题 例2:气动夹具如图所示,已知气缸内径D=140mm,缸内气压p=0.6MPa,活塞杆材料为20钢,[σ]=80MPa,试设计活塞杆的直径, 解:活塞杆两端受拉力,发生轴向拉伸变形,轴力可以由气体的压强求出,再利用N、[σ]就可以设计截面。 1.计算轴力 6. 6231 140 4 6.0 4 2 2= ? ? = = π π D p N kN 2.设计截面 []4. 115 80 6. 9231 = = ≥ σ N A mm2 根据 2 4 d A π = ,得出 1. 12 4 = = π A d mm 因此,取d12 ≥mm 注意:在解题目过程中,应首先判断问题是要设计截面,然后设法去求轴力,轴力利用压强可以求出,问题得到解决。另外要注意物理量的单位换算,当轴力、长度用N和mm时,应力的对应单位是MPa.

圆孔孔边应力集中

4.8 半无限平面边界上受法向集中力作用的问题一 弗拉芒一布辛涅斯克问题 没有边界的无限大物体称为无限体。将它用平面分成两半,每一半就称半无限体。本节分析的是半无限的弹性平面体在边界上受一法向集中力作用的问题(图4-8)。这一问题在实际工程问题中会经常遇到,如建筑物地基的应力和沉陷问题等。最近发展起来的边界元数值计算法也利用这问题的解答。 假定在边界面上沿半无限平面厚度上分布有均匀压力P。这样,半无限体就处于平面应变状态,单位厚度上分布的压力就可视为集中力P,其量纲为[力×长度-1] 解题:如图4-8所示,估计应力呈扇形分布,因此采用极坐标。为解题方便,取X轴方向向下,y轴方向向右,相应地极坐标r方向向外,θ方向由x轴逆时针旋转。 图4-8半无限平面边界受法间集中力 (1)初定应力函数:根据应力的函数形式决定应力函数的形式,而应力的函数形式是根据估计的应力分布情况面定。本题中估计σr的

分布与P ,r ,θ都有关系,与P 成正比,与r 成反比。 故σr 的函数形式估计为 )(θσF r P r = (a ) 式中σr 与P ,r 都是一次幂关系,这是因为只有这样,等式两边的量纲才能相等(皆为[力×长度-2])。 列出应力函数与应力分量的关系式,即(4.18)式的第一式 22211θ??σ??+??=r r r r 由此式可见,为使等式两边r 的幂次相等,应力函数中的r 的幂次应当比应力分量中r 的幂次高两次,所以初选应力函数的形式为 )(θ?rf = (b ) 式中f (θ)可通过双调和方程得到。将(b )式代入双调和方程(4.17)式得 )(1)(11122 22222=????????+??+??+??θθθθf r f r r r r r )( 即 0)]()(2)([122443=++θθθθθf d f d d f d r (c ) 删去因子3 1r ,(c )式为常系数线性微分方程,其通解为 ) sin cos (sin cos )(θθθθθθD C B A f +++= (d ) 代入(b )得 )] sin cos (sin cos [θθθθθ?D C B A r +++= (e )

杆件强度,刚度,稳定性计算

建筑力学问题简答(五)杆件的强度、刚度 和稳定性计算 125.构件的承载能力,指的是什么? 答:构件满足强度、刚度和稳定性要求的能力称为构件的承载能力。 (1)足够的强度。即要求构件应具有足够的抵抗破坏的能力,在荷载作用下不致于发生破坏。 (2)足够的刚度。即要求构件应具有足够的抵抗变形的能力,在荷载作用下不致于发生过大的变形而影响使用。 (3)足够的稳定性。即要求构件应具有保持原有平衡状态的能力,在荷载作用下不致于突然丧失稳定。 126.什么是应力、正应力、切应力? 答:内力在一点处的集度称为应力。 垂直于截面的应力分量称为正应力或法向应力,用σ表示;相切于截面的应力分量称切应力或切向应力,用τ表示。 127.应力的单位如何表示? 答:应力的单位为Pa。 1 Pa=1 N/m2 工程实际中应力数值较大,常用MPa或GPa作单位 1 MPa=106Pa 1 GPa=109Pa 128.应力和内力的关系是什么?

答:内力在一点处的集度称为应力。 129.应变和变形有什么不同? 答:单位长度上的变形称为应变。单位纵向长度上的变形称纵向线应变,简称线应变,以ε表示。单位横向长度上的变形称横向线应变,以ε/表示横向应变。 130.什么是线应变? 答:单位长度上的变形称纵向线应变,简称线应变,以ε表示。对于轴力为常量的等截面直杆,其纵向变形在杆内分布均匀,故线应变为 l l ?= ε 拉伸时ε为正,压缩时ε为负。线应变是无量纲(无单位)的量。 131.什么是横向应变? 答:拉(压)杆产生纵向变形时,横向也产生变形。设杆件变形前的横向尺寸为a ,变形后为a 1,则横向变形为 a a a -=?1 横向应变ε/为 a a ?= / ε 杆件伸长时,横向减小,ε/为负值;杆件压缩时,横向增大,ε/为正值。因此,拉(压)杆的线应变ε与横向应变ε/的符号总是相反的。 132.什么是泊松比? 答:试验证明,当杆件应力不超过某一限度时,横向应变ε/与线应变ε的绝对值之比为一常数。此比值称为横向变形系数或泊松比,用μ表示。 ε εμ/ = μ是无量纲的量,各种材料的μ值可由试验测定。

带孔平板的应力集中分析

有限元方法 Finite Element Method ——基于ANSYS的有限元建模与分析 姓名吴威 学号20100142 班级10级土木茅以升班2班 西南交通大学 2014年4月

综合练习——带孔平板的应力分布及应力集中系数的计算一、问题重述 计算带孔平板的应力分布及应力集中系数。 二、模型的建立与计算 在ANSYS中建立模型,材料的设置属性如下 分析类型为结构(structural),材料为线弹性(Linear Elastic),各向同性(Isotropic)。弹性模量、泊松比的设定均按照题目要求设定,以N、cm为标准单位,实常数设置中设板厚为1。

采用solid 4 node 42板单元,Element Behavior设置为Plane strs w/thk。 建立模型时先建立完整模型,分别用单元尺度为5cm左右的粗网格和单元尺度为2cm左右的细网格计算。 然后取四分之一模型计算比较精度,为了使粗细网格单元数与完整模型接近,四分之一模型分别用单元尺度为2.5cm左右的粗网格和单元尺度为1cm左右的细网格计算。 (1) 完整模型的计算 ①粗网格

单元网格的划分及约束荷载的施加如图(单元尺度为5cm) 约束施加时在模型左侧边界所有节点上只施加x方向的约束,即令U X=0,在左下角节点上施加x、y两个方向的约束,即U X=0、U Y=0。荷载施加在右侧边界上,大小为100。 对模型进行分析求解得到: 节点应力云图(最大值222.112)

单元应力云图(最大值256.408) 可看出在孔周围有应力集中现象,其余地方应力分布较为均匀,孔上部出现最大应力。 ②细网格 单元网格的划分及约束荷载的施加如图(单元尺度为2cm)

材料力学B试题7应力状态_强度理论

(2) 主应力大小及主平面位置,并将主平面标在单元体上。 解:(1) MPa 6.762sin 2cos 2 2 =--+ += ατασσσσσα x y x y x MPa 7.322cos 2sin 2 -=+-=ατασστα x y x (2) 2 2min max )2 (2xy y x y x τσσσσσσ+-±+=98.12198.81-=MPa 98.811=σMPa ,02 =σ,98.1213-=σ MPa 35.3940 200 arctan 21)2arctan( 2 10== --=y x xy σστα 2. 解:取合适坐标轴令25=x σ MPa ,9.129-=x τ由02cos 2sin 2 120 =+-= ατασστxy y x 得125-=y σMPa 所以2 2m in m ax )2 (2xy y x y x τσσσσσσ+-± += 200 100 15050)9.129(755022-= ±-=-+± -= MPa 1001=σ MPa ,02=σ,2003-=σ MPa 3. 一点处两个互成 45平面上的应力如图所示,其中σ未知,求该点主应力。 解:150=y σ MPa ,120-=x τ MPa

由 ατασστ2cos 2sin 2 45 xy y x +-= 802 150 -=-= x σ 得 10-=x σ MPa 所以 2 2min max )2 (2xy y x y x τσσσσσσ+-±+= 22 .7422.214-= MPa 22.2141=σ MPa ,02=σ,22.743-=σ 4. 图示封闭薄壁圆筒,内径100=d mm ,壁厚2=t mm ,承受内压4=p MPa ,外力偶矩192.0=e M kN ·m 。求靠圆筒内壁任一 点处的主应力。 解:75.505.032 ) 1.0104.0(π1019 2.0443 =?-?= x τ MPa 504==t pd x σ MPa 1002==t pd y σ MPa 35.497.100)2 (22 2min max =+-±+=xy y x y x τσσσσσσ MPa 7.1001=σ MPa ,35.492=σ MPa ,43-=σ MPa 5. 受力体某点平面上的应力如图示,求其主应力大小。 解:取坐标轴使100=x σMPa ,20=x τ α τασσσσσα2sin 2cos 2 2 x y x y x --+ += ' 45-M e

第7章应力状态和强度理论(答案)

已知应力状态如图所示(单位:MPa ),试求: ⑴指定斜截面上的应力; ⑵主应力; ⑶在单元体上绘出主平面位置及主应力方向; ⑷最大切应力。 解: 100x MPa σ= 200y MPa σ= 100x MPa τ= 0 30α=- (1)cos 2sin 2211.622 x y x y x MPa ασσσσσατα+-= + -= sin 2cos 293.32 x y x MPa ασστατα-=+= (2)2 2max 261.82 2x y x y x MPa σσσσστ+-??= += ??? 2 2 min 38.222x y x y x MPa σσσσστ+-??=+= ??? MPa 8.2611=σ MPa 2.382=σ 03=σ (3)13 max 130.92 MPa σστ-== 扭矩m kN T ?=5.2作用在直径mm D 60=的钢轴上,试求圆轴表面上任一点与母线成 30=α方向上的正应变。设E=200GPa, 0.3υ=。 解:表面上任一点处切应力为: max 59P T MPa W τ= = 表面上任一点处单元体应力状态如图 30sin 251MPa στα=-=- 120sin 251MPa στα=-= () 00430301201 3.310E εσυσ-= -=? 100100 200 60T α A 2 σ1 στ τ

用电阻应变仪测得空心钢轴表面某点与母线成 45方向上的正应变 4100.2-?=ε,已知转速min /120r ,G=80GPa ,试求轴所传递 的功率。 解:表面任一点处应力为 max 9550P P P T n W W τ== max 9550 P W n P τ∴= 纯剪切应力状态下,0 45斜截面上三个主应力为:1στ= 20σ= 3στ=- 由广义胡克定律 ()11311E E υ εσυστ+= -= 又()21E G υ=+V 2G τε∴= 代入max 9550 P W n P τ= ,得109.4P KW = 图示为一钢质圆杆,直径mm D 20=,已知A 点与水平线成 60方向上的正应变460101.4-?= ε,E=200GPa ,0.3υ=,试求荷载P 。 解:0P A σ= 204D P πσ=? 斜截面上 02 060cos 4 σσσα== 2001503cos 4 σσσα== 由广义胡克定律 () 0006015060134E E υεσυσσ-= -= 将060043E εσυ = -代入2 04 D P πσ=? 解得P= 45A 80120 60 A P

带孔平孔的应力分析

带孔平孔的应力分析 一、创建部件 进入部件模块 1.创建部件点击创建部件,命名为plate1,其它选项如 右图所示,点击“continue”,进入绘图区。 2.绘制圆弧点击点击视图区正中间的坐标原点(0,0), 作为圆弧的中心,再分别点击坐标(0,5)和(5,0)的位 置,这就完成了1/4圆孔的绘制。 3.绘制直线点击,依次点击(0,5),(0,50), (50,50),(50,0),(5,0)的位置,完成如图1-1 所示的二维模型。点击下面的“done”,完成第一 步。如图1-2所示 图1-1二维几何模型图1-2二维几何模型

二、创建材料和截面属性 进入特性模块 1.创建材料点击,弹出Edit Material对话框,Name为steel,点击Mechanical→Elasticity→Elastic,其他选项如图1-3所示,点击OK。 图1-3 定义材料 2. 创建截面属性点击,如图1-4,图1-5所示,保持默认参数不变,点击continue。

图1-4创建材料图1-5创建截面属性 3.给部件赋予截面属性点击,点击视图区中的平板模型,红色高亮度显示被选中,在窗口底部点击done,弹出Edit Section Assignment对话框,保持默认参数不变,如图1-6所示,点击OK。 图1-6部件赋予截面 属性 三、定义装配件 进入装配功能模块,点击,弹出Create Instance对话框,

Instance Type为Dependent(mesh on part),如图1-7所示,点击OK。 图1-7把实体加入装配件 四、设置分析步 进入分析步功能模块,点击,在Name后输入Apply Load,其余参数保持默认(Procedure type:General ;选中Static General),点击continue。在弹出的Edit Step 对话框中,保持参数的默认值,如图1-8,图1-9所示,点击OK。

《材料力学》第章%B应力状态和强度理论%B习

第七章 应力状态和强度理论 习题解 [习题7-1] 试从图示各构件中A 点和B 点处取出单元体,并表明单元体各面上的应力。 [习题7-1(a )] 解:A 点处于单向压应力状态。 2244 12d F d F F A N A ππσ-=-== [习题7-1(b )] 解:A 点处于纯剪切应力状态。 331616 1d T d T W T P A ππτ-=== MPa mm mm N 618.798014.3108163 36=????= [习题7-1(b )] 解:A 点处于纯剪切应力状态。 0=∑A M 04.028.02.1=?--?B R )(333.1kN R B = A σ A τ

)(333.1kN R Q B A -=-= MPa mm N A Q A 417.01204013335.15.12-=??-=? =τ B 点处于平面应力状态 MPa m m m m m m N I y M z B B 083.21204012 130103.0333.1436=??????==σMPa m m m m m m N b I QS z z B 312.0401204012 145)3040(13334 33 *-=??????-== τ [习题7-1(d )] 解:A 点处于平面应力状态 MPa m m m m N W M z A A 064.502014.332 1103.39333=????==σ MPa m m m m N W T P A 064.502014.316 1106.78333 =????== τ [习题7-2] 有一拉伸试样,横截面为mm mm 540?的矩形。在与轴线成0 45=α角的面上切应力MPa 150=τ时,试样上将出现滑移线。试求试样所受的轴向拉力F 。 解:A F x = σ;0=y σ;0=x τ 004590cos 90sin 2 x y x τσστ+-= A F 20 45= τ 出现滑移线,即进入屈服阶段,此时, 15020 45≤= A F τ kN N mm mm N A F 6060000540/30030022==??== [习题7-3] 一拉杆由两段沿n m -面胶合而成。由于实用的原因,图中的α角限于0 60 ~0范围内。作为“假定计算”,对胶合缝作强度计算时,可以把其上的正应力和切应力分别与相应的许用应力比较。现设胶合缝的许用切应力][τ为许用拉应力][σ的4/3 ,且这一拉杆 A τ B τ B σA τA σ

平面应力状态开孔应力场的研究

平综述 摘要:在机械制造、航空、造船、建筑等领域, 开孔问题是十分普遍的。然而, 开孔必 然引起应力集中现象, 这一直是工程技术人员十分关心的问题。对平面应力状态开孔周边应力场的研究, 掌握应力场的变化规律, 在实际工程中具有十分重要的意义. 关键词:应力场开孔平面应力状态 1 前言 对于开口结构来说,特别突出的一个问题就是临界区域的孔边应力集中问题。准确的求解孔周围的应力是很困难的,特别是对于一些复杂孔型。就像人们所知道的,孔口附近往往也就是构件最薄弱的区域。因此,对开孔及其周边应力场的研究,对于机械及相关领域来说至关重要,这将是我们必须长期坚持和努力的研究领域。 2开孔周边应力场的研究历史及现状 2.1 复合材料开孔周边应力场研究 吴德隆[1]在对二维平面的复合材料结构开孔分析中,得出相应的结论:开孔引起的应力扰动项是局部的,随距离的增加而迅速衰减。最大应力集中发生在孔角处45°,并与开孔尺寸成反比。李成[2]等为了探索出一种方法,使得在实际设计中,计算含孔的复合材料板的应力、强度时,既可以避免级数法的繁琐,又可以提高其计算精度。于是他们以复变函数理论为基础,借助积分方程,采用多复变量应力函数对含圆孔形的复合材料板进行研究,得到了精确边界条件下的应力解析, 并用所得到的应力表达式对不同载荷的影响进行了分析、评价,同含有圆孔的均质材料板边的应力场进行比较。得出了含复杂孔形孔边应力的解析解法。并且得出了对带有圆形孔的复合材料板和均质材料板,在不同方向的载荷作用情况下的计算方法,这种计算方法在工程中有很高的实用价值。 2.2 平板开孔应力场的研究 张涛[3]等对开椭圆孔有限板的应力集中问题进行研究。应用弹性力学的复变函数理论,在各内边界上引入保角变换,在外边界上采用分段函数,通过傅立叶级数展开,计算整个弹性板的应力场,给出了开椭圆孔有限板的计算实例。突破了开

第三强度理论.

第七章 应力和应变分析 强度理论 §7.1应力状态概述 过构件上一点有无数的截面,这一点的各个截面上应力情况的集合,称为这点的应力状态 §7.2二向和三向应力状态的实例 §7.3二向应力状态分析—解析法 1.任意斜截面上的应力 在基本单元体上取任一截面位置,截面的法线n 。 在外法线n 和切线t 上列平衡方程 αασαατσc o s )c o s (s i n )c o s (dA dA dA x xy a -+ 0s i n )s i n (c o s )s i n (=-+αασαατdA dA y yx αασαατ τsin )cos (cos )cos (dA dA dA x xy a -- 0sin )sin (cos )sin (=++ααταασdA dA yx y 根据剪应力互等定理,yx xy ττ=,并考虑到下列三角关系 22sin 1sin ,22cos 1cos 22 α ααα-=+= , ααα2sin cos sin 2= 简化两个平衡方程,得 ατασσσσσα2sin 2cos 2 2 xy y x y x --+ += xy τyx τn α t

ατασστα2cos 2sin 2 xy y x +-= 2.极值应力 将正应力公式对α取导数,得 ?? ????+--=ατασσασα 2cos 2sin 22xy y x d d 若0αα=时,能使导数 0=α σα d d ,则 02cos 2sin 2 00=+-ατασσxy y x y x xy tg σστα-- =220 上式有两个解:即0α和 900±α。在它们所确定的两个互相垂直的平面上,正应力取得极值。且绝对值小的角度所对应平面为最大正应力所在的平面,另一个是最小正应力所在的平面。求得最大或最小正应力为 2 2min max )2 (2xy y x y x τσσσσσσ+-±+= ??? 0α代入剪力公式,0ατ为零。这就是说,正应力为最大或最小所在的平面,就是主平 面。所以,主应力就是最大或最小的正应力。 将切应力公式对α求导,令 02sin 22cos )(=--=ατασσα τα xy y x d d 若1αα=时,能使导数0=α τα d d ,则在1α所确定的截面上,剪应力取得极值。通过求导可得 02sin 22cos )(11=--ατασσxy y x xy y x tg τσσα221-= 求得剪应力的最大值和最小值是: 2 2min max )2 ( xy y x τσσττ+-±=??? 与正应力的极值和所在两个平面方位的对应关系相似,剪应力的极值与所在两个平面方

《工程力学》第7次作业(应力状态与强度理论).

《工程力学》第7次作业(应力状态与强度理论) 2009-2010学年第2学期3系、5系各班 班级学号姓名成绩 一、填空题 1.过构件内某点各个截面中的最大正应力和最小正应力就是该点处的。 2.最大切应力作用面与主应力作用面成度角。 3.研究点的应力状态,通常是该点取单元体,由于单元体尺寸为,所以可认为单元体每个侧面上的应力是;两相互平行的侧面上相应的应力大小是的,符号是的。 4.若单元体某一截面上的,则该截面称为主平面;主平面上的称为主应力。一个单元体上有相互的三对主平面,因此有三个主应力,它们按代数值大小的排列顺序是。 5.人们把从生产实践和力学试验中观测到的材料失效现象与构件的应力分析相结合,提出了一些解释材料在复杂应力状态下失效原因的假说,这些假说称为。材料失效的现象尽管多种多样,但其主要形式不外乎两种:一是,二是。 6.第一强度理论认为是引起材料失效的原因,其强度条件为。 7.第三强度理论认为是引起材料失效的原因,其强度条件为。 8.第四强度理论认为是引起材料失效的原因,其强度条件为。 二、问答题 1、什么叫一点处的应力状态?为什么要研究一点处的应力状态?如何研究一点处的应力状态? 2、.什么叫单元体?什么叫主平面和主应力?主应力与正应力有什么区别?

三、计算题 1、试画出图示简支梁上点A和B处的应力单元体,并算出这两点的主应力数值。 2、试求各单元体中指定斜截面上的正应力和切应力。

3、对于下列所示的单元体,试求: (1)求出主应力和主平面方位; (2)画出主单元体; (3)最大切应力。 4、如图所示的圆轴,直径30=d mm ,如拉力50=F KN ,扭矩2.0=M KN·m , []120 =σMPa 。试按第三和第四强度理论,校核其强度。

圆孔应力有限元分析

圆孔应力有限元分析 陈春山 (安徽工业大学工商学院机械工程系) 摘要:ANSYS软件的应用领域非常广泛,可应用在以下领域:建筑、勘查、地质、水利、交通、电力、测绘、国土、环境、林业、冶金等方面,应用ANSYS软件,对平板中心圆孔的应力集中进行了有限元分析,对圆孔平板在单向和双向应力条件下的应力状况进行了计算和分析,并将有限元结果与解析解进行了比较。 关键词: 平板开小圆孔; 应力集中; 有限元分析 Round hole stress finite element analysis CHEN Chunshan (Industrial & commercial college , anhui university of technology department of mechanical engineering) Abst ract : ANSYS soft ware has a very wide range of applicat ions, can be used in t he following areas: construct ion, exp lorat ion, geology, survey ing an d mapp ing, land, wat er conservancy, t ransport at ion, elect ric p ower, environment, forestry, met allurgy, et c., t he app licat ion of ANSYS software, t he flat round hole at t he centre of the finit e element analysis of st ress concent rat ion of circle hole p lat e under t he condit ion of unidirect ional and bidirect ional st ress calculat ion and analysis, t he stress condit ion and t he finit e element result s are comp ared wit h those of t he analyt ical solut ion Key words: flat open small round hole; Stress concentration; The f inite element analysis l 前言

带孔平板模型有限元分析

带孔平板模型分析 一、问题重述 如图所示,使用ANSYS分析平面带孔平板,分析在均布载荷作用下板内的应力分布。 已知条件:F=20N/mm,L=200mm,b=100mm,圆孔半径r=20,圆心坐标为(100, 50),E=200Gpa。板的左端固定。 二、问题分析: 从题目中可知这是一个有限元结构分析中的线性静力分析问题,由于只承受薄板长度和宽度方向所构成的平面上的载荷时,厚度方向没有载荷,一般沿厚度方向应力变化可不予考虑,即该问题可转化为平面应力问题。虽然结构是对称的,但所加载荷不对称,所以不能使用对称模型。 三、问题求解: 有限元问题求解一般分为三大步骤: 1、建立有限元模型 ①建立或导入几何模型:结构比较简单,直接在ansys中建模既可。先建一个长方形然后再中间画一个圆,两者相减即可。 ②定义材料属性:主要设置材料的弹性模量以及泊松比:EX=200000,PRXY=0.3。 ③划分网格建立有限元模型:网格的划分对结果的影响很大。在此进行了多种不同方式的网格划分,以便对结果更好的进行分析比较。单元类型均为PLANE82。 A 采用用户自定义网格尺寸参数,将长方形四条边网格长度都设置为20mm,再进行自由分网。得到的网格如下图所示。可以看出这样的网格很不规整,有大有小,有规则的有不规则的。 B 对前一种网格进行了改进,使用映射分网,但由于整个图形不能进行映射分网,所以在建模时将由四个小长方形组成一个大的长方形,中间再减去一个圆。然后再将这四块用glue命令粘起来。分网时将四块单独分网,这样就可以使用映射分网。如下图所示。可以看出,这样分出来的网格很漂亮,网格大小比较一致,这样求出来的结果更加有信服力。

《工程力学》第5次作业(杆件的应力与强度计算).

《工程力学》第5次作业(杆件的应力与强度计算) 2009-2010学年第2学期3系、5系各班 班级学号姓名成绩 一、填空题 1.杆件轴向拉压可以作出平面假设:变形前为平面的横截面,变形后,由此可知,横截面上的内力是分布的。 2.低碳钢拉伸可以分成:阶段、阶段、阶段、阶段。 3.如果安全系数取得过大,许用应力就;需用的材料就;反之,安全系数取得太小,构件的就可能不够。 4.和是衡量材料塑性性能的两个重要指标。工程上通常把的材料称为塑性材料,的材料称为脆性材料。 5.在国际单位制中,应力的单位是帕,1帕= 牛/米2,工程上常以、、 为应力的单位。 6.轴向拉伸和压缩强度条件的表达式是:,用该强度条件可解决的三类强度问题是:、、。 7.二根不同材料的等直杆,承受相同轴力,且它们的截面面积及长度都相等,则:(1)二根杆横截面上的应力;(2)二根杆的强度; (3)二根杆的绝对变形。(填相同或不相同) 8.在承受剪切的构件中,发生的截面,称为剪切面;构件在受剪切时,伴随着发生作用。 9.构件在剪切变形时的受力特点是 ;变形特点是 。剪切变形常发生在零件上,如螺栓、键、销钉等。 10.剪切面在两相邻外力作用线之间,与外力。 11.圆轴扭转时,横截面上的切应力与半径,在同一半径的圆周上各点的切应力,同一半径上各点的切应力按规律分布,轴线上的切应力为,外圆周上各点切应力。 12.圆轴扭转时的平面假设指出:扭转变形后,横截面本身的形状、大小,相邻截面间的距离,各截面在变形前后都保持为,只是绕轴线,因此推出:横截面上只存在应力,而不存在应力。 13.梁在弯曲变形时,梁内梁在弯曲变形时,梁内有一层纵向纤维,叫做中性层,它与的交线称为中性轴。 14.一般情况下,直梁平面弯曲时,对于整个梁来说的正应力为零;对于梁的任意截面来说的正应力为零。 二、选择题 1.以下关于图示AC杆的结论中,正确的是()。 A.BC段有变形,没有位移;B.BC段没有变形,有位移; C.BC段没有变形,没有位移;D.BC段有变形,有位移。 2.经过抛光的低碳钢试件,在拉伸过程中表面会出现滑移线的阶段是() A.弹性阶段;B.屈服阶段;C.强化阶段;D.颈缩阶段。 3.两个拉杆轴力相等、截面积相等但截面形状不同,杆件材料不同,则以下结论正确的是()。

第17讲带圆孔平板的均匀拉伸

§7.6 带圆孔平板的均匀拉伸 学习思路: 平板受均匀拉力q作用,平板内有半径为a的小圆孔。圆孔的存在,必然对应力分布产生影响。孔口附近的应力将远大于无孔时的应力,也远大于距孔口稍远处的应力。这种现象称为应力集中。 孔口的应力集中,根据局部性原理,影响主要限于孔口附近区域。 根据上述分析,在与小圆孔同心的厚壁圆筒上,应力可以分为两部分:一部分是沿外圆周作用的不变的正应力,另一部分是以三角函数变化的法向力和切向力。对于前者是轴对称问题;或者根据问题性质可以确定应力函数后求解。 孔口应力分析表明,孔口应力集中因子为3。 学习要点: 1. 带圆孔平板拉伸问题; 2. 厚壁圆筒应力函数; 3. 应力与边界条件; 4. 孔口应力。

设平板在x方向受均匀拉力q作用,板内有一个半径为a的小圆孔。圆孔的存在,必然对应力分布产生影响。如图所示。孔口附近的应力将远大于无孔时的应力,也远大于距孔口稍远处的应力。这种现象称为应力集中。 孔口的应力集中,根据局部性原理,影响主要限于孔口附近区域。随着距离增加,在离孔口较远处,这种影响也就显著的减小。 根据上述分析,假如b与圆孔中心有足够的距离,则其应力与无圆孔平板的分布应该是相同的。因此 上述公式表明在与小圆孔同心的,半径为b的圆周上,应力可以分为两 部分:一部分是沿外圆周作用的不变的正应力,其数值为;另一部分是随? 变化的法向力cos2? 和切向力sin2?。 对于沿厚壁圆筒外圆周作用的不变的正应力,其数值为。由此产生的应力可用轴对称应力计算公式计算。则 这里,将均匀法向应力作为外加载荷作用于内径为a,外径为b的厚壁圆筒的外圆周处。使得问题成为一个典型的轴对称应力。

相关文档
相关文档 最新文档