文档库 最新最全的文档下载
当前位置:文档库 › (完整word版)金属材料结构

(完整word版)金属材料结构

(完整word版)金属材料结构
(完整word版)金属材料结构

§6金属材料结构

金属材料结构包括晶体结构(FCC、BCC、HCP)及其缺陷、相结构(固溶体、中间相)和显微组织结构(共晶组织、共析组织、非金属夹杂物等)。

6.1纯金属材料的结构

常见纯金属的晶体结构有三种:面心立方结构(FCC)、体心立方结构(BCC)和密排六方结构(HCP)。

(1)面心立方结构(FCC): Au、Ag、Al、Cu、Ni、Pb、厂Fe 等20 多种。

图2.32面心立方结构示意图

(2)体心立方结构(BCC): Cr、W、Mo、V、Nb、a—Fe等30 多种

图2.33体心立方结构示意图

(3)密排六方结构(HCP): Mg、Zn、Be、Cd等

图2.34密排六方结构示意图

三种晶体结构的晶胞结构细节见下表。

表2.4金属材料常见三种晶体结构细节

6.2实际金属材料的结构

实际使用的工业金属材料,即使体积很小,其内部的晶格位向也不是完全一致的,而是包含着许许多多的彼此间位向不同的小晶粒,即实际金属材料中包含

有面缺陷,是多晶结构。通常测定的金属性能是各个位向不同的晶粒的平均值,故显示出各向同性。事实上,即使在同一个晶粒内部,晶格位向也不是象理想晶体那样完全一致,而是存在着亚结构。所以,只有在亚结构内部,晶格的位向才是一致的。

另外,实际金属材料中也包含诸如空位、间隙原子、置换原子等面缺陷以及位错等线缺陷。

6.3合金的结构

6.3.1合金及相关概念

纯金属材料的制备困难,价格高,而且性能往往有一定的局限性,实际使用的工业金属材料多为合金。

合金:是由两种或两种以上的金属元素,或者由金属元素和非金属元素组成的具有金属特性的物质;

组元:组成合金的最基本的独立的物质,可以是金属元素、非金属元素或稳定的化合物;

相:成分、结构相同,性能均宜,并有界面与其它部分隔开的独立均匀的组成部分,合金中的基本相有固溶体和中间相两种;

组织:合金结构的微观形貌,可以是单相的,也可以是多相的

632固溶体

合金中的基本相包括固溶体和中间相(intermediate phase也称化合物)两大类。固溶体是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶质原子)所形成的均匀混合的固态溶体,它保持着溶剂的晶体结构类型。

(1)固溶体分类:按固溶度大小分为有限固溶体(溶质原子在溶剂中的溶解度有上限)和无限固溶体(溶质与溶剂可以任意比例互溶),按溶质原子的位置可分为置换固溶体(溶质原子占据溶剂晶格某些结点位置)和间隙固溶体(溶质原子进入溶剂晶格的间隙中)。固溶体的实例如:置换固溶体(Cu—Ni)、间隙固溶体(奥氏体(A或Y —C溶入—Fe、铁素体(F或a —C溶入a—Fe 中)。

0_卿刑廉f Q_

?- 网了? -

图2.35固溶体结构示意图

(2、固溶强化:由于溶质原子的溶入造成溶剂晶格畸变,从而使材料的强度和硬度增加、塑性和韧性下降,这种现象称为固溶强化。一般地:溶质原子和溶剂原子的尺寸差别越大,造成的晶格畸变就越严重,固溶强化效果越显著;间隙原子造成的畸变比置换原子大,故前者强化效果较好。

6.3.3中间相

中间相又称金属间化合物,是由合金元素按一定比例结合组成的化合物,其

结合键是金属键和其他键(离子键、共价键、分子键)的混合键。由于含有金属键,其化学分子式一般不符合化合价规律。另外,和固溶体不同,中间相的晶格形式不同于各组成元素的晶格,性能和组成元素原有性能有很大的差别。一般地,中间相都具有熔点、硬度高、脆性大的特点,可作为合金组织中的强化相。中间相一般有三种类型:

(1、正常价化合物:由电负性差别较大的组元组成,组元的原子数比较符

合化合价规律,如:Mg2S n, AuAl2, AIN, SiC, CaTe 等;

(2)电子化合物:不遵循原子化合价规律,而是按照一定的电子浓度组成

一定的晶格结构;

(3)间隙化合物:过度族金属元素与小原子尺寸的非金属元素(C、N、B、形成的化合物,如Fe与C形成的硬而脆的渗碳体(F&C)。

634合金相结构与性能的关系

(1)单相合金:工业上应用的单相合金一般都是单相固溶体,其性能决定于溶剂金属的性能和溶质元素的种类、数量及溶入方式。对于一定的溶剂和溶质,溶入的溶质越多,溶剂的晶格畸变越大,则固溶体的强度、硬度和电阻越高。另外,单相固溶体还具有高的塑性、韧性和耐蚀性。

(2)多相合金:组成合金的各相都保持各自的性能特点,因此合金的性能直接决定于组成合金的相的种类和数量。但是,合金中各相的形状、大小和分布也对合金的性能有着很大的影响。一般地,最常见的合金相结构是以一种塑性较好的固溶体为基体,在其上分布着硬而脆的第二相。根据第二相的分布情况,又可分为:

a)脆性相以网状分布于基体上:合金的强度、塑性、韧性都很低;

b)脆性相以片状分布于基体上:较之前者,具有较高的强度、硬度和塑性;

c)脆性相以颗粒状分布于基体上:强度和硬度稍低,但塑性高:

d)脆性相呈弥散的质点分布于基体:由于弥散强化而使合金具有很高的强度和硬度。

金属材料的结构与性能

第一章材料的性能 第一节材料的机械性能 一、强度、塑性及其测定 1、强度是指在静载荷作用下,材料抵抗变形和断裂的能力。材料的强度越大,材料所能承受的外力就越大。常见的强度指标有屈服强度和抗拉强度,它们是重要的力学性能指标,是设计,选材和评定材料的重要性能指标之一。 2、塑性是指材料在外力作用下产生塑性变形而不断裂的能力。塑性指标用伸长率δ和断面收缩率ф表示。 二、硬度及其测定 硬度是衡量材料软硬程度的指标。 目前,生产中测量硬度常用的方法是压入法,并根据压入的程度来测定硬度值。此时硬度可定义为材料抵抗表面局部塑性变形的能力。因此硬度是一个综合的物理量,它与强度指标和塑性指标均有一定的关系。硬度试验简单易行,有可直接在零件上试验而不破坏零件。此外,材料的硬度值又与其他的力学性能及工艺能有密切联系。 三、疲劳 机械零件在交变载荷作用下发生的断裂的现象称为疲劳。疲劳强度是指被测材料抵抗交变载荷的能力。 四、冲击韧性及其测定 材料在冲击载荷作用下抵抗破坏的能力被称为冲击韧性。。为评定材料的性能,需在规定条件下进行一次冲击试验。其中应用最普遍的是一次冲击弯曲试验,或称一次摆锤冲击试验。 五、断裂韧性 材料抵抗裂纹失稳扩展断裂的能力称为断裂韧性。它是材料本身的特性。 六、磨损 由于相对摩擦,摩擦表面逐渐有微小颗粒分离出来形成磨屑,使接触表面不断发生尺寸变化与重量损失,称为磨损。引起磨损的原因既有力学作用,也有物理、化学作用,因此磨损使一个复杂的过程。 按磨损的机理和条件的不同,通常将磨损分为粘着磨损、磨料磨损、接触疲劳磨损和腐蚀磨损四大基本类型。

第二节材料的物理化学性能 1、物理性能:材料的物理性能主要是密度、熔点、热膨胀性、导电性和导热性。不同用 途的机械零件对物理性能的要求也各不相同。 2、化学性能:材料的化学性能主要是指它们在室温或高温时抵抗各种介质的化学侵蚀能 力。 第三节材料的工艺性能 一、铸造性能:铸造性能主要是指液态金属的流动性和凝固过程中的收缩和偏析的倾向。 二、可锻性能:可锻性是指材料在受外力锻打变形而不破坏自身完整性的能力。 三、焊接性能:焊接性能是指材料是否适宜通常的焊接方法与工艺的性能。 四、切削加工性能:切削加工性能是指材料是否易于切削。 五、热处理性能:人处理是改变材料性能的主要手段。热处理性能是指材料热处理的难易 程度和产生热处理缺陷的倾向。 第二章材料的结构 第一节材料的结合键 各种工程材料是由不同的元素组成。由于物质是由原子、分子或离子结合而成,其结合键的性质和状态存在的区别。 一:化学键 1:共价键 2:离子键 3:金属键 4:范德。瓦尔键 二:工程材料的键性 化学键:组成物质整体的质点(原子、分子、离子)间的相互作用力,成为化学键。 1:共价键:有些同类原子,例如周期表Ⅳa、Ⅴa、Ⅵa族中大多元素或电负性相差不大的原子相互接近时,原子之间不产生电子的转移,此时借共用电子对所产生的力结合,形成共价键,如金刚石、单质硅、SiC等属于共价键。 2:离子键:大部分盐类、碱类和金属氧化物在固态下是不导电的,熔融时可以导电。这类化合物为离子化合物。当两种电负性相差大的原子(如碱金属元素与卤素元素的原子)相互靠

金属的性能、结构与结晶

第一章 金属的性能 一、填空(将正确答案填在横线上。下同) 1、金属材料的性能一般分为两类。一类是使用性能,它包括—————————、、———— ————和—————————等。另一类是工艺性能,它包括————————、、————————、———— ————和————————等。 2、大小不变或变化很慢的载荷称为———载荷,在短时间内以较高速度作用于零件上的载荷称为—————载荷,大小和方向随时间发生周期变化的载荷称为—————载荷。 3、变形一般分为—————变形和—————变形两种。不能随载荷的去除而消失的变形称为—————变形。 4、强度是指金属材料在————载荷作用下,抵抗———————或—————的能力。 5、强度的常用衡量指标有——————和———————,分别用符号———和———表示。 6、如果零件工作时所受的应力低于材料的———————或——————————,则不会产生过量的塑性变形。 7、有一钢试样其截面积为100mm 2,已知钢试样的 MPa S 314=σ MPa b 530=σ 。拉伸试验时,当受到拉力为—————— 试样出现屈服现象,当受到拉力为—————— 时,试样出现缩颈。 8、断裂前金属材料产生—————— 的能力称为塑性。金属材料的—————— 和——————的数值越大,表示材料的塑性越好。 9、一拉伸试样的原标距长度为50mm,直径为10mm 拉断后试样的标距长度为79mm,缩颈处的最小直径为4.9 mm,此材料的伸长率为—————,断面收缩率为——————。 10.金属材料抵抗————载荷作用而—————————能力。称为冲击韧性。 11.填出下列力学性能指标的符号:屈服点———,抗拉强度————,洛氏硬度C标尺————,伸长率———,断面收缩率————,冲击韧度————,疲劳极限————。 二、判断(正确打√,错误打×。下同) 1、弹性变形能随载荷的去除而消失。( ) 2、所有金属材料在拉伸试验时都会出现显著的屈服现象。( ) 3、材料的屈服点越低,则允许的工作应力越高。( ) 4、洛氏硬度值无单位。( ) 5、做布氏硬度试验时,当试验条件相同时,其压痕直径越小,材料的硬度越低。( ) 6、材料对小能量多次冲击抗力的大小主要取决于材料的强度和塑性。( ) 7、布氏硬度测量法不宜于测量成品及较薄零件。( ) 8、洛氏硬度值是根据压头压入被测定材料的压痕深度得出的。( ) 9、铸铁的铸造性能比钢好,故常用来铸造形状复杂的工件。 三.选择(把正确答案填入括号内。下同)

金属的结构与结晶

金属的结构与结晶 一、判断题 1、非晶体具有各向同性的特点。( ) 2、金属结晶时,过冷度越大,结晶后晶粒越粗。( ) 3、一般情况下,金属的晶粒越细,其力学性能越差。( ) 4、多晶体中,各晶粒的位向是完全相同的。( ) 5、单晶体具有各向异性的特点。( ) 6、金属的同素异构转变是在恒温下进行的。( ) 7、组成元素相同而结构不同的各金属晶体,就是同素异构体。( ) 8、同素异构转变也遵循晶核形成与晶核长大的规律。( ) 9、金属的同素异构转变也是一种结晶过程。( ) 10、非晶体具有各异性的特点。( ) 11、晶体的原子是呈有序、有规则排列的物质。( ) 12、非晶体的原子是呈无序、无规则堆积的物质。( ) 13、金属分为黑色金属和有色金属。( ) 14、大多数晶格的晶粒都是固定不变得。( ) 15、金银铜铁锌铝等都属于金属而不是合金。( ) 16、金属材料是金属及其合金的总称。( ) 17、最常用的细化晶粒的方法是变质处理。( ) 18、金是属于面心立方晶格。( ) 19、银是属于面心立方晶格。( ) 20、铜是属于面心立方晶格。( ) 21、单晶体是只有一个晶粒组成的晶体。( ) 22、晶粒间交接的地方称为晶界。( ) 23、晶界越多,金属材料的性能越好。( ) 24、结晶是指金属从高温液体状态冷却凝固为固体状态的过程。( ) 25、纯金属的结晶过程是在恒温下进行的。( ) 26、金属的结晶过程由晶核的产生和长大两个基本过程组成。( ) 27、只有一个晶粒组成的晶体成为单晶体。( ) 28、晶体缺陷有点、线、面缺陷。( ) 29、面缺陷分为晶界和亚晶界两种。( ) 30、纯铁是有许多不规则的晶粒组成。( ) 31、晶体有规则的几何图形。( ) 32、非晶体没有规则的几何图形。( ) 33、铝具有密度小熔点低导电性导热性好的性能特点。( ) 34、面缺陷有晶界和亚晶界两大类。( ) 35、普通金属都是多晶体。( )

结构游戏组织与指导

三、结构游戏的组织与指导 结构游戏又称“建筑游戏”,使用各种结构材料(如积木、积塑,沙石、泥,雪、金属材料等),通过想象和手的造型活动构造建筑工程物体的形象,实现对周围现实生活的反映。幼儿在堆砌、排列和组合的活动中,认识各种材料的性能,区别形体,学习空间关系知识和整体,部分的概念,发展感知觉,目测力、操作能力及创造性,可以自然地获得分解与合成各种形体的经验,并在使用材料中获得数量、高度、长度、上下、左右、宽窄、厚薄、对称等概念,取得组合、堆积、排列各种形体的经验,从而磨练幼儿的意志,培养做事认真,克服坚持到底的品质。因此结构游戏被称为是“塑造工程师的游戏”。此外,一些利用自然材料进行的活动,如玩沙、玩水、玩雪等也属于此类游戏。 (一)结构游戏环境的创设 1、平等、宽松、自主的心理环境 老师应以一颗童心来接纳每一个孩子,以与孩子平等的心态和孩子沟通,尊重幼儿的年龄特点和个性特点。孩子们能做的、能想的,让他们自己去做,去想;孩子们能探索,发现;孩子们能计划、安排的,让他们自己去计划安排;孩子们能选择判断的让他们自己去选择判断;孩子们能获取的,让他们自己去获取,成为游戏的主人。在宽松的环境中,幼儿顾忌少,可以充分地想象、交流,表现,有利于幼儿创新能力,自主性的培养。 某幼儿园提出的五个自主原则; 自主选择结构材料 自主选择操作方式 自主选择场地 自主选择玩伴 自主选择游戏主题 2、开放、丰富的物质环境 (1)拓展幼儿的活动空间。室内、(活动室、寝室)室外,走廊都可以成为幼儿游戏的空间。 (2)保证充足的游戏时间 (3)提供符合幼儿年龄特点的丰富的结构材料

小班:色彩鲜艳、大小适中、并便于操作的材料, 中班:种类各异的有一定难度需一定力度操作的材料 大班:精细的有难度的,创作余地更大的结合结构的材料 (4)广泛搜集废旧物品作为辅助材料 自然物和无毒无害的废旧物品是一种未定型的建构材料,能够一物多用,它与定型的材料相比,不仅经济实惠,价廉物美,而且还更有利于幼儿新思维和能力的培养。 纸箱,纸盒,挂历纸,冰糕盒,贝壳,鹅卵石、可乐瓶,吸管等等。 (5)及时更换,补充结构材料 随着幼儿的发展和幼儿多次摆弄同样的材料,幼儿也会玩腻,如果很少有幼儿去玩或很少幼儿专注地去玩这些结构材料,老师就要及时地更换这些材料,但是更换的频率也不能太快,以免幼儿的注意力过多地被材料的色彩和外形所吸引。 (二)结构游戏的指导 1. 游戏前 (1)知识准备: ①丰富并且加深幼儿对物体和建筑物的印象,这是开展建构游戏首先要做的。你让幼儿建构一些事物,如果幼儿不接触生活,不观察生活,对它们没有一点印象,你让孩子们如何去建构?所以只有让幼儿对生活中经常接触到的物体进行细致地观察,深入地了解,并形成丰富深刻的印象,这样孩子们才会有建构物体的愿望,有放手建构的能力。 引导幼儿观察日常生活中经常接触的、熟悉的物品,如幼儿的坐椅、吃饭的桌子、睡觉的小床、活动场地上的跷跷板、滑滑梯、独木桥等,教会幼儿观察的方法,养成幼儿细心观察的品质;接着创造条件制造机会让幼儿观察生活中常见或少见的物品(体),如电视机、电风扇、各类家具、小动物、汽车、飞机、轮船等,逐渐让幼儿养成对生活中碰到的事物都仔细观察的习惯,为下一步的建构活动打下了坚实的基础。 ②帮助幼儿认识结构材料,掌握结构活动的基本知识和技能。是开展好结构游戏的必要条件。识别材料(大小、形状、凹凸、颜色等特征),结构操作技

金属材料基础知识汇总

《金属材料基础知识》 第一部分金属材料及热处理基本知识 一,材料性能:通常所指的金属材料性能包括两个方面: 1,使用性能即为了保证机械零件、设备、结构件等能够正常工作,材料所应具备的性能,主要有力学性能(强度、硬度、刚度、塑性、韧性等),物理性能(密度、熔点、导热性、热膨胀性等)。 使用性能决定了材料的应用范围,使用安全可靠性和寿命。 2,工艺性能即材料被制造成为零件、设备、结构件的过程中适应的各种冷、热加工的性能,如铸造、焊接、热处理、压力加工、切削加工等方面的性能。工艺性能对制造成本、生产效率、产品质量有重要影响。 二,材料力学基本知识 金属材料在加工和使用过程中都要承受不同形式外力的作用,当达到或超过某一限度时,材料就会发生变形以至于断裂。材料在外力作用下所表现的一些性能称为材料的力学性能。 承压类特种设备材料的力学性能指标主要有强度、硬度、塑性、韧性等。这些指标可以通过力学性能试验测定。 1,强度金属的强度是指金属抵抗永久变形和断裂的能力。材料强度指标可以通过拉伸试验测出。抗拉强度σb和屈服强度σs是评价材料强度性能的两个主要指标。一般金属材料构件都是在弹性状态下工作的。是不允许发生塑性变形,所以机械设计中一般采用屈服强度σs作为强度指标,并加安全系数。 2,塑性材料在载荷作用下断裂前发生不可逆永久变形的能力。评

定材料塑性的指标通常用伸长率和断面收缩率。 伸长率δ=[(L1—L0)0]100% L0试件原来的长度L1试件拉断后的长度 断面收缩率φ=[(A1—A0)0]100% A0试件原来的截面积A1试件拉断后颈缩处的截面积 断面收缩率不受试件标距长度的影响,因此能够更可靠的反映材料 的塑性。对必须承受强烈变形的材料,塑性优良的材料冷压成型的性能好。 3,硬度金属的硬度是材料抵抗局部塑性变形或表面损伤的能力。 硬度与强度有一定的关系,一般情况下,硬度较高的材料其强度也较高,所以可以通过测试硬度来估算材料强度。另外,硬度较高的材料耐磨性也较好。 工程中常用的硬度测试方法有以下四种 (1)布氏硬度(2)洛氏硬度(3)维氏硬度 (4)里氏硬度 4,冲击韧性指材料在外加冲击载荷作用下断裂时消耗的能量大小的特性。材料的冲击韧性通常是在摆锤式冲击试验机是测定的,摆锤冲断试样所作的功称为冲击吸收功。以表示,为断口处的截面积,则冲击韧性。在承压类特种设备材料的冲击试验中应用较多。 三金属学与热处理的基本知识 1,金属的晶体结构物质是由原子构成的。根据原子在物质内部的排

(完整word版)金属材料结构

§6金属材料结构 金属材料结构包括晶体结构(FCC、BCC、HCP)及其缺陷、相结构(固溶体、中间相)和显微组织结构(共晶组织、共析组织、非金属夹杂物等)。 6.1纯金属材料的结构 常见纯金属的晶体结构有三种:面心立方结构(FCC)、体心立方结构(BCC)和密排六方结构(HCP)。 (1)面心立方结构(FCC): Au、Ag、Al、Cu、Ni、Pb、厂Fe 等20 多种。 图2.32面心立方结构示意图 (2)体心立方结构(BCC): Cr、W、Mo、V、Nb、a—Fe等30 多种 图2.33体心立方结构示意图 (3)密排六方结构(HCP): Mg、Zn、Be、Cd等 图2.34密排六方结构示意图 三种晶体结构的晶胞结构细节见下表。 表2.4金属材料常见三种晶体结构细节

6.2实际金属材料的结构 实际使用的工业金属材料,即使体积很小,其内部的晶格位向也不是完全一致的,而是包含着许许多多的彼此间位向不同的小晶粒,即实际金属材料中包含 有面缺陷,是多晶结构。通常测定的金属性能是各个位向不同的晶粒的平均值,故显示出各向同性。事实上,即使在同一个晶粒内部,晶格位向也不是象理想晶体那样完全一致,而是存在着亚结构。所以,只有在亚结构内部,晶格的位向才是一致的。 另外,实际金属材料中也包含诸如空位、间隙原子、置换原子等面缺陷以及位错等线缺陷。 6.3合金的结构 6.3.1合金及相关概念 纯金属材料的制备困难,价格高,而且性能往往有一定的局限性,实际使用的工业金属材料多为合金。 合金:是由两种或两种以上的金属元素,或者由金属元素和非金属元素组成的具有金属特性的物质; 组元:组成合金的最基本的独立的物质,可以是金属元素、非金属元素或稳定的化合物; 相:成分、结构相同,性能均宜,并有界面与其它部分隔开的独立均匀的组成部分,合金中的基本相有固溶体和中间相两种; 组织:合金结构的微观形貌,可以是单相的,也可以是多相的 632固溶体 合金中的基本相包括固溶体和中间相(intermediate phase也称化合物)两大类。固溶体是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶质原子)所形成的均匀混合的固态溶体,它保持着溶剂的晶体结构类型。

金属的组织结构

第二章金属的组织结构 为什么不同材料具有不同性能,而且同一金属也有可能具有不同性能呢?大量研究证明:金属的性能除与金属的原子结构以及原子间的结合键有关外,还与金属原子的排列方式即组织结构有关。为此,本章将阐述金属组织结构的相关知识。 第一节金属的结晶 一、金属结晶的有关概念 金属能够以气态、液态和固态形式存在,并且在一定条件下这三种状态能够互相转变。金属由液态转变变为固态的过程叫凝固,又由于固态金属都是晶体,所以这一过程也称为结晶。 (一)晶体的概念 晶体是指原子(离子﹑分子)在三维空间呈有规则的周期性重复排列的物质。在自然界中,除了少数物质(如普通玻璃、松香等)以外,包括金属在内的绝大多数固体都是晶体。晶体的各项性能指标在不同方向上具有不同的数值,即各向异性,而非晶体则是各向同性的。自然界有些晶体的还具有规则的外形。晶体都具有固定的熔点,而非晶体则没有固定的熔点,凝固总是在某一温度范围逐渐完成。 (二)金属结晶时的过冷现象 1. 理论结晶温度 从热力学角度来看,物质状态的稳定性是由该状态的自由能高低来决定的,总是自发地从自由能较高的不稳定状态向自由能较低的稳定状态转变。那么,物质中能够自动向外界释放出其多余的或能够对外界做功的这一部分能量就叫做“自由能(F)”。 图2-1所示的是同一金属在液态和固态时自由能随温度变化的曲线。由图可见,液态自由能F L和固态自由能F S都随温度升高而降低,但是结构不同,自由能随温度的变化是不同的,液态自由能降低得更快些,因此两条曲线交于T0温度。在T0温度,液态和固态的自由能恰好相等,两种状态具有同样的稳定性,固相和液相处于动态平衡,既不熔化,也不结晶。液态和固态自由能相等时所对应的温度T0,就是理论结晶温度或理论熔点。 2. 过冷现象 如果将液态纯金属缓慢冷却,每隔一定时间测量一次温度,最后把实验数据绘在“温度-时间”坐标中,便可得到图2-2所示的冷却曲线,图中T0表示理论结晶温度。由图可见,在结晶之前,冷却曲线连续下降。当液态金属冷却到结晶温度T0时,并不开始结晶。一直冷却到T0以下的某个温度T n时,液态金属才开始结晶,这种实际结晶过程只有在理论结晶温度以下才能进行的现象叫过冷现象。这是因为,要使液态金属进行结晶,就要使温度低于理论结晶温度,造成液相与固相间的自由能差(△F=F L-F S),即具有一定的结晶驱动力才可以。结晶发生时,由于“结晶潜热”(结晶时释放的能量)释放,补偿了冷却散失的热量,所以冷却曲线上出现“平台”,对应的温度T n称为实际结晶温度,平

相关文档
相关文档 最新文档