文档库 最新最全的文档下载
当前位置:文档库 › GSM网络原理及其网络优化--韩杰斌

GSM网络原理及其网络优化--韩杰斌

GSM网络原理及其网络优化--韩杰斌
GSM网络原理及其网络优化--韩杰斌

第3章GSM 无线接口理论 (3)

第1节工作频段的分配 (3)

一、我国GSM网络的工作频段 (3)

二、频道间隔 (3)

三、频道配置 (3)

四、干扰保护比 (4)

第2节时分多址技术(TDMA) (4)

一、TDMA信道的概念 (4)

二、TDMA帧 (6)

三、突发脉冲序列(Burst) (7)

四、逻辑信道与物理信道之间的对应关系 (9)

五、信道组合种类 (11)

六、系统消息 (11)

第3节无线路径的损耗和衰落 (13)

一、无线路径的损耗和衰落 (13)

二、分集接收 (14)

第4节移动台和基站的时间调整 (16)

第5节跳频技术 (16)

一、跳频的种类及各自实现的方法 (17)

二、跳频的优点 (18)

三、跳频序列 (18)

第6节语音的传输过程 (19)

一、语音编码 (19)

二、信道编码 (19)

三、交织技术 (20)

四、加密 (21)

五、调制和解调 (22)

第四章呼叫处理过程 (22)

第1节小区的选择与重选 (22)

一、小区选择过程 (22)

二、小区重选过程 (23)

三、不连续接收模式DRX和寻呼信道的定义 (25)

第2节初始化过程 (26)

一、信道申请 (26)

二、初始信道的分配 (28)

三、初始化报文 (29)

第3节鉴权加密过程 (30)

一、鉴权加密过程的三参数组 (30)

二、鉴权过程 (31)

三、加密过程 (32)

四、TMSI重新分配过程 (32)

第4节位置更新 (33)

一、位置区的概念 (33)

二、正常位置更新流程(越位置区的位置更新) (34)

三、IMSI 附着和分离过程 (35)

四、周期性位置更新过程 (36)

第5节MS 主叫过程分析 (37)

一、呼叫建立过程 (37)

二、呼叫释放过程 (41)

第6节MS被叫过程分析 (42)

一、查询过程 (42)

二、寻呼过程 (43)

三、被叫的呼叫建立过程 (44)

第7节无线链路控制 (46)

一、无线链路故障 (46)

二、呼叫重建 (47)

第8节切换 (48)

一、切换过程 (48)

2、切换准备 (49)

3、触发切换的原因 (51)

4、切换的种类 (52)

5、切换流程分析 (53)

第9节功率控制 (58)

一、功率控制 (58)

二、不连续发射(DTX) (60)

第10节掉话分析(针对北电)

61

第五章信令协议 (66)

第1节信令协议概述 (66)

一、接口与协议 (66)

二、GSM通信系统内部接口 (67)

三、无线接口信令协议 (68)

四、A接口信令协议 (69)

第2节链路层信令协议 (69)

一、帧结构 (70)

二、检错和纠错 (70)

三、复用 (71)

四、流量控制 (72)

五、LAPD和LAPDm帧比较 (72)

第3节网络层信令协议 (73)

一、BSS网络层 (74)

二、NSS网络层 (77)

第4节 GSM信令网 (79)

一、信令网络结构 (79)

二、信令网路组织 (80)

三、信令点编码方案 (80)

四、信令网寻址方式 (82)

第三章GSM 无线接口理论

第一节工作频段的分配

一、我国GSM网络的工作频段

我国陆地蜂窝数字移动通信网GSM通信系统采用900MHz与1800MHz频段:

GSM900MHz频段为:890~915(移动台发,基站收),935~960(基站发,移动台收);

二、频道间隔

相邻两频点间隔为为200kHz,每个频点采用时分多址(TDMA)方式,分为8个时隙,既8个信道(全速率),如GSM采用半速率话音编码后,每个频点可容纳16个半速率信道,可使系统容量扩大一倍,但其代价必然是导致语音质量的降低。

三、频道配置

绝对频点号和频道标称中心频率的关系为:

GSM900MHz频段为:

fl(n)=890.2MHz + (n-1)×0.2MHz (移动台发,基站收);

fh(n)=fl(n)+45MHz (基站发,移动台收); n∈[1,124]

GSM1800MHz频段为:

fl(n)=1710.2MHz + (n-512)×0.2MHz (移动台发,基站收);

fh(n)=fl(n)+95MHz (基站发,移动台收);n∈[512,885]

其中:fl(n)为上行信道频率、fh(n)为下行信道频率,n为绝对频点号(ARFCN)。

注:

1、在我国GSM900使用的频段为:

905~915MHz 上行频率

950~960MHz 下行频率

频道号为76~124, 共10M带宽。

中国移动公司:905~909MH(上行),950~954MHz(下行),共4M带宽,20个频道,频道号为76~95。

(目前通过中国移动TACS网的压频,为GSM网留出了更大的空间,因而GSM实际可用频点号要远大于该范围)

中国联通公司:909~915MH(上行),954~960MHz(下行),共6M带宽,29个频道,频道号为96~124。

2、目前只有中国移动公司拥有GSM1800网络,拥有1800网络的移动分公司大多申请10M的带宽,频道号

为512~562。

四、干扰保护比

载波干扰比(C/I)是指接收到的希望信号电平与非希望信号电平的比值,此比值与MS的瞬时位置有关。这是由于地形不规则性基本地散射体的形状、类型及数量不同,以及其他一些因素如天线的类型、方向性及高度,站址的标高及位置,当地的干扰源数目等造成的。

1、同频干扰保护比:C/I≥9dB。所谓C/I,是指当不同小区使用相同频率时,另一小区对服务小区

产生的干扰,它们的比值即C/I,GSM规范中一般要求C/I >9dB;工程中一般加3dB余量,即要求C/I>12dB

2、邻频干扰保护比:C/I≥-9dB。 C/A是指在频率复用模式下,邻近频道会对服务小区使用的频道进

行干扰,这两个信号间的比值即C/A。GSM规范中一般要求C/A>-9dB,工程中一般加3dB余量,即要求C/A>-6dB

3、载波偏离400kHz的干扰保护比:C/I≥-41dB

第二节时分多址技术(TDMA)

多址技术就是要使众多的客户公用公共信道所采用的一种技术,实现多址的方法基本有三种,频分

多址(FDMA)、时分多址(TDMA)、码分多址(CDMA)。我国模拟移动通信网TACS就是采取的FDMA技术。CDMA是以不同的代码序列实现通信的,它可重复使用所有小区的频谱,它是目前是最

有效的频率复用技术。GSM的多址方式为时分多址TDMA和频分多址FDMA相结合并采用跳频的方式,载波间隔为200K,每个载波有8个基本的物理信道。一个物理信道可以由TDMA的帧号、时隙号和跳频序列号来定义。它的一个时隙的长度为0.577ms,每个时隙的间隔包含156.25比特GSM的调制方式为GMSK,调制速率为270.833kbit/s。

一、TDMA信道的概念

在GSM中的信道可分为物理信道和逻辑信道。一个物理信道就是一个时隙,通常被定义为给定TDMA帧上的固定位置上的时隙(TS)。而逻辑信道是根据BTS与MS之间传递的消息种类不同而定义的不同逻辑信道。这些逻辑信道是通过BTS来影射到不同的物理信道上来传送。

逻辑信道又可分为业务信道和控制信道.

(一)业务信道:业务信道用于携载语音或用户数据,可分为话音业务信道和数据业务信道。

1、话音业务信道

TCH/FS:全速率语音信道 13Kbit/s

TCH/HS: 半速率语音信道 6.5Kbit/s

2、数据业务信道

TCH/F9.6: 9.6kbit/s 全速率数据信道

TCH/F4.8: 4.8kbit/s 全速率数据信道

TCH/H4.8: 4.8kbit/s 半速率数据信道

TCH/H2.4: <=2.4kbit/s 半速率数据信道

TCH/F2.4: <=2.4kbit/s 全速率数据信道

(二)控制信道:控制信道用于携载信令或同步数据,可分为广播信道、公共控制信道和专用控制信道。

广播信道(BCH):包括BCCH、FCCH和SCH信道,它们携带的信息目标是小区内所有的手机,所以它们是单向的下行信道。

公共控制信道(CCCH):包括RACH、PCH、AGCH和CBCH,前一个是单向上行信道,后者是单向下行信道。

专用控制信道(DCCH):包括SDCCH、SACCH、FACCH

1、广播信道:

广播信道仅用在下行链路上,由BTS至MS。它们用在每个小区的TS0上作为标频,在一些特殊的情况下,也可用在TS2,4或6上,这些信道包括BCCH、FCCH和SCH。为了通信,MS需要于BTS保持同步,而同步的完成就要依赖FCCH和SCH逻辑信道,它们全部为下行信道,为点对多点的传播方式。

频率校正信道(FCCH):FCCH信道携带用于校正MS频率的消息,它的作用是使MS可以定位并解调出同一小区的其它信息。

同步信道(SCH):在FCCH解码后,MS接着要解出SCH信道消息,它给出了MS需要同步的所有消息及该小区的的标示信息如TDMA帧号(需22比特)和基站识别码BSIC号(需6比特)。

广播控制信道(BCCH):MS在空闲模式下为了有效的工作需要大量的网络信息。而这些信息都将在BCCH信道上来广播。信息基本上包括小区的所有频点、邻小区的BCCH频点、LAI (LAC+MNC+MCC)、CCCH和CBCH信道的管理、控制和选择参数及小区的一些选项。所有这些消息被称为系统消息(SI)在BCCH信道上广播,在BCCH上系统消息有八种类型TYPE 1、2、2bis 、2ter、3、4、7和8。

2、公共控制信道:

公共控制信道包括AGCH、PCH、CBCH和RACH,这些信道不是供一个MS专用的,而是面向这个小区内所有的移动台的。在下行方向上,由PCH、AGCH和CBCH来广播寻呼请求、专用信道的指派和短消息。在上行方向上由RACH信道来传送专用信道的请求消息。

寻呼信道(PCH):当网络想与某一MS建立通信时,它就会在PCH信道上根据MS所登记的LAC号向所有具有该LAC号的小区进行寻呼,寻呼MS的标示为TMSI或IMSI,属下行信道,点对多点传播。

接入许可信道(AGCH):当网络收到处于空闲模式下MS的信道请求后,就将给之分配一专用信道,AGCH通过根据该指派的描述(所分信道的描述,和接入的参数),向所有的移动台进行广播,看属于谁的,下行信道,点对点传播。

小区广播控制信道(CBCH):它用于广播短消息和该小区一些公共的消息(如天气和交通情况),它通常占用SDCCH/8的第二个子信道,下行信道,点对多点传播。

随机接入信道(RACH):当MS想与网络建立连接时,它会通过RACH信道来广播它所需的服务信道,请求消息包括3个比特的建立的原因(如呼叫请求、响应寻呼、位置更新请求、及短消息请求等等)和5个比特的用来区别不同MS请求的参考随机数,属上行信道,点对点传播方式。

3、专用控制信道包括SDCCH、SACCH、FACCH、TCH,这些信道被用于某一个具体的MS上.

独立专用控制信道(SDCCH):SDCCH是一种双向的专用信道,它主要用于传送建立连接的信令消息、位置更新消息、短消息、用户鉴权消息、加密命令及应答及各种附加业务。

慢速随路控制信道(SACCH):SACCH是一种伴随着TCH和SDCCH的专用信令信道。在上行链路上它主要传递无线测量报告和第一层报头消息(包括TA值和功率控制级别);在下行链路上它主要传递系统消息type5、5bis、5ter、6及第一层报头消息。这些消息主要包括通信质量、LAI号、CELLID、邻小区的标频信号强度等信息、NCC的限制、小区选项、TA值、功率控制级别。

快速随路控制信道(FACCH):FACCH信道与一个业务信道TCH相关。FACCH在话音传输过程中如果突然需要以比慢速随路控制信道(SACCH)所能处理的高的多的速度传送信令消息,则需借用20ms 的话音突发脉冲序列来传送信令,这种情况被称为偷帧,如在系统执行越局切换时。由于话音译码器会重复最后20ms的话音,所以这种中断不会被用户察觉的。

二、TDMA帧

在TDMA中,每一个载频被定义为一个TDMA帧,相当于FDMA系统中的一个频道,每帧包括 8个时隙(TS0~TS7),并要有一个帧号,这是因为在计算加密序列的A5算法中是以TDMA帧号为一个输入参数,当有了TDMA帧号后,移动台就可以判断控制信道TS0上传送的为哪一类逻辑信道了。

TDMA的帧号是以3小时28分钟53秒760毫秒(2715648个TDMA帧)为周期循环编号的。每2715648个TDMA帧为一个超高帧,每一个超高帧又由2048个超帧,一个超帧的持续时间为6.12s,而每个超帧又是由51个26复帧或26个51复帧组成。这两种复帧是为满足不同速率的信息传输而设定的,区别是:

26帧的复帧:包含26个TDMA帧,时间间隔为120ms,它主要用于TCH(SACCH/T)和FACCH 等业务信道。

51帧的复帧:包含51个TDMA帧,时间间隔为235ms,它主要用于BCCH、CCCH、SDCCH等

控制信道。

图示帧结构图

三、突发脉冲序列(Burst)

TDMA信道上的一个时隙中的消息格式被称为突发脉冲序列,也就是说每个突发脉冲被发送在TDMA帧的其中一个时隙上。因为在特定突发脉冲上发送的消息内容不同,也就决定了它们格式的不同。

可以分为五种突发脉冲序列:

●普通突发脉冲序列(normal burst):用于携带TCH、FACCH、SACCH、SDCCH、BCCH、PCH

和AGCH信道的消息。

●接入突发脉冲序列(access burst):用于携带RACH信道的消息。

●频率校正突发脉冲序列(frequency correction burst): 用于携带FCCH信道的消息。

●同步突发脉冲序列(synchronization burst): 用携带SCH信道的消息.

●空闲突发脉冲序列(dummy burst):当系统没有任何具体的消息要发送时就传送这种突发脉冲序

列(因为在小区中标频需连续不断的发送消息)。

在每种突发脉冲的格式中,都包括以下内容:

●尾比特(tail bits):它总是0,以帮助均衡器来判断起始位和终止位以避免失步。

●消息比特(information bits):用于描述业务消息和信令消息,空闲突发脉冲序列和频率校正

突发脉冲序列除外。

●训练序列(training sequence):它是一串已知序列,用于供均衡器产生信道模型(一种消除色

散的方法)。训练序列是发送端和接收端所共知的序列,它可以用来确认同一突发脉冲其它比特的确定位置,它对于当接收端收到该序列时来近似的估算发送信道的干扰情况能起到很重要的作用。值得注意的是,它在普通突发脉冲序列可分为8种,但在接入突发脉冲和同步突发脉冲序列是固定的而并不随着小区的不同而不同。

保护间隔(guard period):它是一个空白空间,由于每个载频的最多同时承载8个用户,因此必须保证各自的时隙发射时不相互重叠,尽管使用了后面会讲到的定时提前技术,但来自不同移动台的突发脉冲序列仍会有小的滑动,因而就采用了保护间隔可使发射机在GSM规范许可的范围内上下波动。从另一角度来讲,GSM规范要求MS在一个突发脉冲的有用(不包括保护比特的其它比特)应保持恒定的传输幅度,并要求MS在两个突发脉冲之间传输幅度适当衰减,因此需要保护比特.相邻两个突发脉冲之间的幅度衰减并应用适当的调制比特流,将会减小对其它RF信道的干扰。

现在让我们详细看一下每个突发脉冲序列的内容:

1、普通突发脉冲序列:它有2个的58个比特的分组用于消息字段,具体的说有两个的57比

特用于消息字段来发送用户数据或话音再加上2个偷帧标志位,它用于表述所传的是业务消息还是信令消息,如用来区分TCH和FACCH(当TCH信道需用做FACCH信道来传送信令时,它所使用的8个半突发脉冲相应的偷帧标志须置1,在TCH以外的信道上没有什么用处但可被认为是训练序列的扩展,总是置为1的。它还包括两个3比特的尾位及8.25比特的保护间隔。它的训练序列放在了两个消息字段的中间被称为中间对位,它的唯一缺陷是接收机在能解调之前需要存储突发脉冲的前一部分。它的突发脉冲共有26个比特,其中消息位有16个比特,但为了得到26个比特,它采取了将前5个比特重复到该训练序列的最后和并将后5个比特重复到该训练序列头部的办法.这种训练序列共有八种(该八种序列的相关联性最小),它们分别和不同的基站色码(BCC,3个比特)相对应,目的是用来区分使用同一频点的两个小区.

2、接入突发脉冲序列:用于随机接入(是指用于向网络发起初始的信道请求并用于切换时的接入).它

是基站在上行方向上解调所需的第一个突发脉冲。它包括41比特的训练序列,36比特的信息位,它的保护间隔是68.25比特。对于接入突发脉冲只规定了一种固定的训练序列,由于干扰的可能性很小,不值得多增加多种训练序列所引起的复杂性。它的训练序列和保护间隔都要比普通脉冲要长,这是为了适应移动台首次接入(或切换到另一个BTS)后不知道时间提前量的缺陷并提高系统的解调能力而设定的.

3、频率校正突发脉冲序列:它用于移动台的频率同步,相当于一个未调载波,该序列有142固定比特

用于频率同步,它的结构十分简单,固定比特全部为0,当使用调制技术后,其结果是一个纯正弦波.它应用在FCCH信道上来使移动台找到并且解调出同一小区内的同步突发脉冲序列,当MS通过该突发脉冲序列知道该小区的频率后,才能在此标频上读出在同一物理信道上的随后的突发脉冲序列的信息来(如SCH及BCCH).保护间隔和尾比特同普通突发脉冲序列.

4、同步突发脉冲序列:它用于移动台的时间同步,它的训练序列为64比特,2个39比特的信息字段,它

用于SCH信道,属下行方向.因为它是第一个需被移动台解调突发脉冲,因而它的训练序列较长而容易被检测

图示突发脉冲序列结构图

到.而且它的突发脉冲只有一种,而且只能有一种,因为如果定义了几种序列,移动台无法知道基站选择的序列。该突发脉冲的信息位中有19比特描述TDMA的帧号(用于MS与网络的同步和加密过程),有6比特来描述基站识别号BSIC(NCC+BCC),经过信道卷积后就得到了2个39比特.保护间隔和尾比特同普通突发脉冲序列.

5、空闲突发脉冲序列:此突发脉冲序列在某些情况下由BTS发出,不携带任何信息,它的格式与普

通突发脉冲序列相同,其中加密比特改为具有一定比特模型的混合比特.

四、逻辑信道与物理信道之间的对应关系

我们知道,每个小区都有若干个载频,每个载频都有8个时隙,因而我们可以定义载频数为C0、C1、…、Cn,时隙数为TS0、TS1、..、TS7。

1、控制信道的映射

在某个小区超过一个载频时,则该小区C0上的TS0就映射广播和公共控制信道(FCCH、SCH、BCCH、CCCH),可使用mainBCCH的组合,该时隙不间断的向该小区的所有用户发送同步信息、系统消息及寻呼消息和指派消息。即使没有寻呼和接入进行,BTS也总在C0上发射空闲突发脉冲。

我们从帧的分级结构知道,51帧的复帧是用于携带SCH和CCCH,因此51帧的复帧共有51个TS0,也就是说将51个连续TDMA帧的8个时隙中的TSO都取出来以组成一个51帧的复帧。该序列在映射完一个51复帧后开始重复下一个51帧的复帧。

以上叙述了下行链路C0上的TS0的映射,对于上行链路CO上映射的TS0是不含有上述信道的,它只含有随机接入信道(RACH),用于移动台的接入。

下行链路C0上的TS1用于映射专用控制信道,它可使用SDCCH的信道组合形式。它是102个TDMA 帧重复一次。由于是专用信道,所以上行链路C0上的TS1也具有同样的结构,这就意味着对一个移动台同时可双向连接,但在时间上会有一个偏移(以后我们会讲到出现这种情况的原因)。

当某个小区的容量很小,仅使用一个载频时,则该载频的TSO即用做公共控制信道又用做专用控制信道,即可采用mainBCCHcombined的信道组合形式。该信道组合每102重复一次。

当某小区业务量很高时,它可把C0的TS0配置成为mainBCCH,并可在TS2、TS4、TS6上扩展三个组合集,使用CCCH的配置形式,该配置形式包括除SCH和FCCH外的TS0的所有组合,因为这两个信道只能出现在C0的TS0上。

BCCH+CCCH(下行)51复帧

BCCH+CCCH(上行)(RACH)51复帧

BCCH+CCCH+4SDCCH/4(下行) 2×51复帧

BCCH+CCCH+4SDCCH/4(上行) 2×51复帧

F:频率校正脉冲序列TDMA帧 S:同步脉冲序列TDMA帧

R:用于RACH的TDMA帧 B:用于BCCH的消息块(4个TDMA帧)

D:用于SDCCH的消息块(4个TDMA帧)

C:用于CCCH的消息块(4个TDMA帧)

A:用于SACCH的消息块(4个TDMA帧)

表控制信道的映射

2、业务信道的映射

在每个小区携带有BCCH信道的载频的TS0和TS1上按上述映射安排控制逻辑信道,TS2至TS7以及其它载频的TS0至TS7均可安排业务信道。

除映射控制信道外的时隙均映射在业务信道TCH上,用于携带TCH/F的复帧是26复帧的,因此它有26个帧的TS n。第26个TSn是空闲时隙,空闲时隙之后序列从0开始。

上行链路的结构与下行的是一样的,一个接通的GSM移动信道业务信息在每一帧分配的TS中以突

发脉冲的形式发送,唯一的不同是有一个时间偏移,这个时间偏移为3个时隙。

TCH信道用于传送话音和数据。SACCH信道用于传送随路控制信息。IDLE信道不含任何信息。它有两个作用,一方面是针对全速率TCH信道,在呼叫接续的状态下,为了预同步它的相邻小区,移动台可利用IDLE时隙所在的第26个空闲帧所提供的这一段时间的间隔,去读取其邻小区的基站识别码BSIC;另一方面是针对半速率TCH信道,在此时该时隙用于传输另一个TCH/H业务信道的SACCH。

全速率TCH的26复帧

T:TCH的TDMA帧 A:SACCH的TDMA帧 N:空闲TDMA帧

五、信道组合种类

下面是可使用的逻辑信道的组合形式:

1)FCCH+SCH+BCCH+PCH+AGCH+RACH 称为mainBCCH

2)FCCH+SCH+BCCH+PCH+AGCH+RACH+SDCCH/4+SACCH 称为 mainBCCHcombined

3)SDCCH/8(0,…7)+SACCH/8(0,…7) 称为 SDCCH

4)TCH/F+ SACCH/TF ,称为tchfull

5)TCH/H+FACCH/H+SACCH/TF,称为TCHhalf

6)BCCH+PCH+AGCH+RACH 称为CCCH

7)同2,但其中SDCCH/4(2),用做CBCH 称为 bcchsdcch4CBCH

8)同3,但其中SDCCH/8(2)用做CBCH,称为sdcch8CBCH

对于不同容量的基站,控制信息速率随之不同,因此控制信道和业务信道的安排不尽相同。

1、对于小容量基站,只有一个TRX的情况,TS0可使用第二种mainBCCHcombined的形式。

TS1~TS7,可使用TCH/F的信道类型。

2、对于中等容量的基站,如有四个TRX的情况,TS0可使用第一种mainBCCH的类型,再用2个

TS作为SDCCH信道类型。剩余29个用做TCH/F。

3、对于大容量基站,可将TS0使用mainBCCH组合方式,TS2、TS4可使用第六种CCCH的组合方

式。其于用做SDCCH或TCH/F。

六、系统消息

MS为了能得到或提供各种各样的服务通常需要从网络来获得许多消息。这些在无线接口广播的消息被称做系统消息,可共分为12种类型:type1、2、2bis、2ter、3、4、5、5bis、5ter、6、7、8。

每个系统消息都由不同的元素组成,如以下阐述:

●当前网络、位置区和小区的识别消息

●小区供切换的测量报告消息和小区选择的进程消息

●当前控制信道结构的描述消息

●该小区不同的可选项的消息

●关于邻小区BCCH频点的分配

系统消息在两种逻辑信道中传送,BCCH或SACCH信道。手机在不同的模式下通过不同的逻辑信道来收听系统消息

●在空闲模式下,用BCCH信道(传送系统消息1 至4及7、8)

●在通信模式下,用SACCH信道(传送系统消息5和6)

系统消息的主要内容如下:

●SI type1 小区信道描述+RACH控制参数 (TC=0,若系统采用跳频,1.88秒一次)

●SI type2 邻小区BCCH频点描述+RACH控制消息+允许的PLMN(TC=1,1.88秒一次)

●SI type2bis 扩展邻小区BCCH频点描述+RACH控制消息(TC=5,1.88秒一次)

●SI type2ter 扩展邻小区BCCH频点描述2(TC=4或5,1.88秒一次)

●SI type3 小区识别(CELLID)+位置区识别(LAI)+控制信道描述+小区选择+小区选择参数

+RACH控制参数(TC=2且TC=6,1.88秒两次) c

●SI type4 位置区识别(LAI)+小区选择参数+RACH控制参数+CBCH信道描述+CBCH移动配置

(TC=3且TC=7,1.88秒两次)

●SI type5 邻近小区BCCH频点描述

●SI type5bis 扩展邻近小区BCCH频点描述

●SI type5ter 扩展邻近小区BCCH频点描述

●SI type6 小区识别(CELLID)+位置区识别(LAI)+小区选择

●SI type7 小区重选参数(TC=7,1.88秒一次)

●SI type8 小区重选参数(TC=3,1.88秒一次)

其中TC为循环序号,这些消息被循环在BCCH或SACCH信道中向移动台广播。BCCH信道是一个小容量的信道,每51复帧(235ms)仅有四帧(一个消息块)传送一个23字长Lapdm的消息。//0607

注:

1、小区信道描述中含有该小区所使用到的所有频点,包括BCCH频点和跳频频点。

2、RACH控制消息中含有参数max retrans(最大重传数)、TX_integer(传输的时隙数)、cell bar

access(小区是否被禁止接入)、RE(呼叫重建允许比特)、EC(紧急呼叫允许比特)、AC CN(被限制接入的用户级别)

3、邻小区BCCH频点描述包括其邻小区所使用的BCCH频点

4、允许的PLMN用来提供小区内BCCH载波上移动台监测的所允许的NCC。

5、控制信道描述中包括:A TT(移动台附着分离允许指示)、BS-AG-BLKS-RES(留做接入允许

AGCH的块数)、CCCH-CONF(公共控制信道结构)、BA-PA-MFRMS(传输寻呼消息留给同一寻呼组的51TDMA复帧数)、T3212(用做周期性位置更新的时间)。

6、小区选择中包括:PWRC(功率控制指示)、DTX(不连续发射指示)、RADIO-LINK-

TIMEOUT(无线链路超时值)

7、小区选择参数包括:小区重选滞后值、MS-TXPWR-MAX-CCH(移动台接入小区应使用的最大

TX功率电平)、RXLEV-ACCESS-MIN(允许接入系统的移动台的最小接入电平)。

8、CBCH信道描述中包括:信道类别和TDMA偏差(哪种专用信道的组合)、TN(时隙号)、

TSC(训练序列码)、H(跳频信道指示)、MAIO(移动配置指数偏移量)、HSN(跳频序列号)、ARFCN(绝对频点号)。

9、CBCH移动配置中包括参与跳频的频道顺序与小区信道描述的关系。

10、小区重选参数包括CELLRESELIND(小区重选指示)、CBQ(小区禁止限制)、CRO

(小区重选偏置量)、TO(临时偏置量)、PT(惩罚时间)

第三节无线路径的损耗和衰落

一、无线路径的损耗和衰落

当移动台和基站的距离逐渐增加时,所收到的信号会越来越弱,这就是发生了路径损耗。路径损耗不仅与载频频率、传播速度有关,而且还与传播地形和地貌有关。下面让我们具体研究一下损耗产生的各种原因。

1、自由空间信号强度的传播衰落

自由空间是指相对于介电参数和相对导磁率均为一的均匀介质所存在的空间它是一个理想的无限大的空间,是为了减化问题的研究而提出的一种科学的抽象。在自由空间的传播衰落我们不考虑其它衰落因素,仅考虑由能量的扩散而引起的损耗。通过研究我们发现该衰落符合以下公式的规律:Pr=Pt×(λ/4πd)2 .G1G2

其中,Pr为接收机的接收功率,Pt为发射机的发射功率(单位为瓦或毫瓦),λ为波长(即c/f),d为接收机和发射机之间的距离,G1为发射机的天线增益,G2为接收机的天线增益。

从公式中我们可以看出,如果将其它参数保持不变仅使工作频率f或传播距离d提高一倍,则其接收功率就为发射功率的四分之一,即自由空间的传播损耗就增加了6dB。然而在实际上电波还要受到诸如平地面的吸收、反射和曲率地面的绕射以及地面上覆盖物等产生的传输损耗的影响。因而采取更为复杂的模型如爱立信的Okomura模型更接近实际,Okomura模型如下:

Lp(城区)=69.55+26.16logf-13.82logh

b +(44.9-6.55logh

b

)logd-a(h

m

)

Lp(农村)= Lp(市区)-2[log(f/28)]2-5.4

Lp(开阔地带)= Lp(市区)-4.78(logf)2+18.33logf-40.94

其中,Lp为无线衰耗, f为载波频率(适用于GSM900M频段),h

b

基站天线高度(30 –

200m),d为基站与移动台的距离(1 – 20km),h

m

为移动台的天线至地面的高度(1-10m).

Okomura模型在大量实测场强数据的基础上,采用数理统计分析方法,确认了市区移动通信场强预测模型,它适用于市区和郊区的各种不同条件,是一个比较全面的模式,此模式被目前移动通信场强预测广泛采用,必须指出在使用该模式时必须结合本地的地形地物特性做必要的修正。

对非理想地面的条件下的更好近似是平均信号强度与距离的四次方成反比。

2、对数正态衰落

常常在移动台和基站之间有高大建筑物、树林和高低起伏的地势地貌,这些障碍物的阻挡造成电磁场的阴影,产生了阴影效应,致使接收信号强度下降。经过大量的野外测试表明,这种衰落服从对数正态衰落,它的接收信号的中值电场与基站和移动台的距离的四次方成反比。由于这种场强的变化随着地理位置改变而较慢的变化,故称为慢衰落。又因为其接收场强中值是受电磁场阴影而变化的所以又称为阴影衰落。其次,大气折射条件的变化使多径信号相对时延变化,造成同一地点场强中值随时间的慢变化,但这种变化远小于地形因素的影响,这也是产生慢衰落的一种原因,因此由于季节不同、气候不同等对无线信号的影响也就不同

3、多径传播引起的衰落

移动通信信道是一种多径衰落信道,发射的信号在城市中常常会受到建筑物或地形的阻挡要经过直射、反射、散射等多种传播路径才到达接收端,而且随着移动台的移动,各条传播路径上的信号幅度时延及相位随时随地发生的变化,所以接收到的信号是起伏不稳定的这些多径信号相互迭加产生的矢量和就会形成一个严重的衰落谷点,使矢量和非常接近为零。迭加后的信号幅度变化符合瑞利分布,因而又被称为瑞利衰落。瑞利衰落随时间而急剧变化,又常常

图示瑞利衰落

被称为快衰落。根据理论推导,衰落最快时为每秒2V/λ次(V为移动速度,λ为信号波长)严重衰落时深度达(20~40)dB,这将严重的影响信号传播质量,从这里可以看出在经历衰落谷点的时间取决于移动台的运动速度及发射的工作频率,作为一种近似,两谷点之间的的距离可以认为是半个波长,对于900MHz频带,它约为17cm。根据该公式还可以看出当采用1800MHz时两衰落谷点的时间是900 MHz的一半。瑞利衰落在开阔地带的对通信影响要小一些。

4、多普勒频移

快速运动的移动台还会发生多普勒频移现象,这是因为在移动台高速运动时接收和发送信号将导致信号频率将发生偏移而引起的干扰。多普勒频移符合下面的公式:

f

I =f

-f

D

cosθ

I

= f

-(v/λ)cosθ

I

f I 为合成后的频率,f

为工作频率,f

D

为最大多普勒频移,θ

I

为多径信号合成的传播方向与移动台

行进方向的夹角,v为移动台的运动速度,λ为波长,当移动台快速远离基站时为f

I =f

-f

D

,当移动台快

速靠近基站时为f

I =f

+f

D

当运动速度过高时,多普勒频移的影响必须考虑,而且工作频率越高,频移越大。

二、分集接收

多径衰落和阴影衰落产生的原因是不同的,随着移动台的移动,瑞利衰落随着信号的瞬时值快速变动,而对数正态衰落随着信号平均值变动,这两者是构成移动通信接收信号不稳定的主要因素,使接收信号被大大恶化,虽然通过增加发信功率、天线尺寸和高度等方法能取得改善,但采用这些方法在移动通信中比较昂贵,有时也显得不切实际,而采用分集方法即在若干支路上接收相互间相关性很小的载有同一消息的信号,然后通过合并技术再将各个支路的信号合并输出,那么便可在接收终端上大大降低深衰落的概率。

由于衰落具有频率、时间和空间的选择性,因此分集技术包括空间分集、时间分集、频率分集和极化

分集四种。

1.空间分集:若在空间设立两副接收天线,独立接收同一信号,由于其传播环境及衰落各不相同,具

有不相干或相干性很小的特点,采用分集合并技术并使输出较强的有用信号,降低了传播因素的影响。在移动通信中,空间的间距越大,多径传播的差异就越大,所收场强的相关性就越小。天线间隔可以是垂直间隔也可以是水平间隔。但是,垂直间隔的分集性能太差,不主张用这种方式。为获得相同的相关系数,基站两分集天线之间的垂直距离应大于水平距离。这种方式在移动通信中是最有效的,也是应用最普遍的一种分集方式。

2.时间分集:可采用通过一定的时延来发送同一消息,或在系统所能承受的时延范围以内在不同时间

内的各发送消息的一部分。在GSM中采用的是后面会讲到的交织技术来实现时间分集的。

3.频率分集:这种分集技术在GSM中是通过调频来实现的,

4.极化分集:它是通过采用垂直电子天线、垂直磁性天线和环状天线来实现的。

第4节移动台和基站的时间调整

移动台收发信号要求有3个时隙的间隔,由于移动台是利用同一个频率合成器来进行发射和接收的.因而在接收和发送信号之间应有一定的间隔。从基站的角度上来看,上行链路的编排方式可由下行链路的编排方式延迟3个突发脉冲获得。这3个突发脉冲的延时对于整个GSM网络是个常数。

典型的移动台在一个时隙间接收,在频率上平移45MHz,经过一段时间(3个突发脉冲减去传播的校正时间后发送,然后可能再次平移监视其它信道,并使接收频率移动到能重新开始整个周期。

在通信过程中,如移动台在呼叫期间向远离基站的方向上移动,因而从基站发出的消息将越来越迟的到达移动台。与此同时,移动台的应答信息也会越来越迟的到达基站.如不采取措施,该时延长至当基站收到该进动台在本时隙上发送的消息会与基站在其下一个时隙收到的另一个呼叫信息重叠起来,而引起干扰。因此,在呼叫进行期间由移动台向发送的基站SACCH上的测量报告的报头上携带着由移动台测量的时延值,而基站必须监视呼叫到达的时间,并BTS在下行的SACCH的系统报告上每次两秒的频次向移动台发出指令,随着移动台离开基站的距离,逐步指示移动台提前发送的时间,这就是时间的调整。在GSM中被称为时间提前量TA。

时间提前量值可以由0至233us,该值会影响到小区的无线覆盖,在给定光速下,GSM小区的无线覆盖半径最大可达到35km,这个限制值是由于GSM定时提前的编码是在0~63之间。基站最大覆盖半径算法如下:

3.7us×63×3×108m/s÷2=35km

其中,3.7us:每个比特的时长;63:时间调整的最大比特数;3×108m/s:光速。

但在某些情况下,客观需要基站能覆盖更远的地方,比如在沿海地区,如需用来覆盖较大范围的一些海域或岛屿。这种覆盖在GSM 中是能实现的,代价是须减少每载频所容纳的信道数,办法是仅使用TN为偶数的信道(因为TN0必须用做BCCH),空出奇数的TN,来获得较大的保持时间。这在北电中被称为扩展小区技术,这一技术有专门的接收处理.这样定时提前的编码将会增大一个突发脉冲的时长。即基站的最大覆盖半径为:

3.7us×(63+156.25)×3×108m/s÷2=120km

图示:扩展小区的TDMA帧

第5节跳频技术

跳频可分为快速跳频和慢速跳频,在GSM中采用的是慢速跳频,其特点是按照固定的间隔改变一个信道使用的频率.

根据GSM的建议,基站无线信道的跳频是以每一个物理信道为基础的,因此对于移动台来说,只需要在每个帧的相应时隙跳变一次,其跳频速率为217跳/秒,它在一个时隙内用固定的频率发送和接收,然后在该时隙后需跳到下一个TDMA帧,由于监视其它基站需要时间,故允许跳频的时间约为1ms,收发频率为双工频率。但对基站系统来说,每个基站中的TRX(收发信机)要同时于多个移动台通信,因此,对于每个TRX来说,能根据通信使用的物理信道,在其每个时隙上按照不同的跳频方案来进行跳变。

一、跳频的种类及各自实现的方法

GSM中的跳频可分为基带跳频和射频跳频两种。在北电系统中采用的是射频跳频。

基带跳频是通过腔体合成器来实现的,而射频跳频是通过混合合成器来实现的。

当采用基带跳频时,它的原理是在真单元和载频单元之间加入了一个以时隙为基础的交换单元,通过把某个时隙的信号切换到相应地无线频率上来实现跳频,这种做法的特点是比较简单,而且费用也底。但由于采用的腔体合成器它要求其每个发信机的频率都是固定发射的,当发信机要改动其频率时,只能人工调谐到新的频率上,其话音信号随着时间的变化使用不同频率发射机发射,收发信机在跳频总线上不停的扫描观察,当总线发现有要求使用某一频率时,总线就自动指向拥有该频率的发信机上来发送信号。采用基带跳频的小区的载频数与该小区使用的频点数是一样的。

当采用射频跳频时,它是在通过对其每个TRX的频率合成器进行控制,使其在每个时隙的基础上按照不同的方案进行跳频。它采用的混合合成器对频带的要求十分宽松,每个发信机都可使用一组相同的频率,采用不同的MAIO 加以区分。但它必须有一个固定发射携带有BCCH的频率的发信机,其他的发信机可随着跳频序列的序列值的改变而改变。

两者的区别是:

1、基带跳频采用的腔体合成器最多可配置8个发信机,而且衰耗小,此时衰耗仅为3.5dB;而射频跳频采用的混合合成器的容量较小,最多可配置4个发信机,而且衰耗大,当为H2D时,衰耗为4.5dB当为H4D时,衰耗为8dB.显然,当基站配置较大时,采用混合合成器的基站的覆盖要小.

2、腔体合成器对频段的要求不如混合合成器灵活,混合合成器所带的发信机可以使用一组频率,频点的间隔要求为200 K;腔体合成器的发信机仅能使用固定的频率发射,而且所用频点的间隔要求大于600K.

3、基带跳频的每个发信机TX只能对应一个频点,而射频跳频的每个发信机TX能够发送所有参与跳频的频点。当使用基带跳频时携带BCCH频点的TX若出现故障,则易导致整个小区的瘫痪,而在射频跳频时则不会出现这类情况,因为每个TX都能发送BCCH频点,携带BCCH信道的载频优先级最高,当该载频出现问题时,携带BCCH信道的TDMA帧,能够自动通过另一个载频发射出去。

二、跳频的优点

GSM采用跳频有两个原因,是因为它可起到频率分集和干扰源分集的作用。

1、跳频可起到频率分集的作用。

跳频是要保证同一个信息按几个频率发送,从而可提高了传输特性。不同频率的信号所收到的衰落不同,而且随着频率差别增大时,衰落更加独立。对于相距足够远的频率,它们可看做是完全独立的,通过跳频,包括信息一部分的所有突发脉冲不会被瑞利衰落以同一方式破坏。

当移动台以高速移动时,在同一信道上接收两个相邻突发脉冲期间(相隔8个时隙,即4.615ms),移动台位置的差别对于驱除信号瑞利变化的相关性以足够了,在这种情况下,跳频基本起不到什么作用.然而对于拥有大量手持机的用户的系统是很重要的,因为手持机的用户通常运动速度较慢,或处于静止状态,在此时跳频优越性就显示出来了,它所能提供的增益大概是在6.5dB左右.

2、跳频可起到干扰源分集作用

在业务量密集的地方,网络的容量将受到由于频率复用产生的干扰限制。相对干扰比C/I值(载波电平/干扰电平)可能在呼叫之间变化很大。载波电平随着移动台相对于基站的位置及移动台与基站之间障碍的数量而变化,干扰电平的变化依赖于此频率是否被附近蜂房的另一呼叫使用,它还随着干扰源距离、电平的变化而变化。由于系统的目标是尽可能满足更多用户的需求,当不选用跳频时,如一频点出现干扰时,当用户占用该频点时就会造成通话质量使用户难以忍受,而当使用跳频时,该干扰情况就会被该小区的许多呼叫所共享,整个网络的性能将得到提高。经分析使用跳频的网络可比不采用跳频的网络高出3dB的增益。

三、跳频序列

在小区参数的定义中定义了两个频率组,一个称为小区分配表(CELL ALLOCA TION)用来定义该小区所用到的所有频点,另一个被称为移动分配表(MOBILE ALLOCA TION)用来定义参与跳频的所有频点。在此值得注意的是,携带有BCCH的载频,不能用于跳频,因为它携带有FCCH、SCH及BCCH信道,需要不停的向该小区的所有手机广播同步消息及系统消息。在GSM规范中有两个参数用来定义跳频序列,分别是MAIO(移动分配指针偏移)和HSN(跳频序列号)。

MAIO因需描述跳频重复功能的起点,所以偏移的可能值与参与跳频的频率数一样多。MA的频点数应在1到64之间,产生跳频序列要经过一个十分复杂的算法过程时,参与计算的参数有FN(当前的帧号及获得的描述帧号的T1、T2、T3值)、MAIO、HSN。

HSN值有64个不同的值,通常一个小区的信道应有相同的HSN值,不同的MAIO值,因为这是要避免同一小区信道之间的干扰,当同一小区出现相同的MAIO后将导致严重的指派失败率。两个拥有相同HSN不同MAIO的信道,不会在同一突发脉冲使用相同的频率。相反,当两个使用同一跳频组,MAIO也相同的但HSN不同的信道,它只会对突发脉冲的1/n干扰。

MS可以由系统广播消息中提供的小区参数来根据算法导出跳频序列和小

区的跳频序列号。

在使用同一跳频组的相邻小区中,应注意使用不同的HSN,该做法可获得干扰源分集增益。但注意应尽量避开使用HSN=0的情况(它是循环跳频),因为它会导致低质量的干扰源分集。

第六节语音的传输过程

一、语音编码

由于GSM系统是一种全数字系统,话音和其它信号都要进行数字化处理,因此移动台首先要将语音信号转换成模拟电信号,以及其反变换,移动台再把这模拟电信号转换成13Kbit/s的数字信号,用于无线传输。下面我们主要讲一下TCH全速率信道的编码过程。

目前GSM采用的编码方案是13 Kbit/s的RPELTP(规则脉冲激励长期

预测),其目的是在不增加误码的情况下,以较小的速率优化频谱占用,同时到达与固定电话尽量相接近的语音质量。

它首先将语音分成20ms为单位的语音块,再将每个块用8 KHZ抽样,因而每个块就得到了160个样本。每个样本在经过A率13比特(μ率14比特)的量化,因为为了处理A率和μ率的压缩率不同,因而将该量化值又分别加上了3个或2个的“0”比特,最后每个样本就得到了16比特的量化值。因而在数字化之后,进入编码器之前,就得到了128Kbit/s的数据流。这一数据流的速率太高了以至于无法在无线路径下传播,因而我们需要让它通过编码器的来进行编码压缩。如果用全速率的译码器的话,每个语音块将被编码为260比特,最后形成了13Kbit/s的源编码速率。此后将完成信道的编码。

在BTS侧将能够恢复13Kbit/s的源速率,但为了形成16Kbit/s的TRAU 帧以便于在ABIS和ATER接口上传送,因而需再增加3Kbit/s的信令,它可用于BTS来控制远端TCU的工作,因而被称为带内信息。这3Kbit/s将包括同步和控制比特(包括坏帧指示、编码器类型、DTX指示等)。总之,带内信息将能使TCH,知道信息的种类(全速率语音、半速率语音、数据),以及采用何种适用的方法用于上行和下行的传输。

在TCU侧,通过为了适应PSTN网络64Kbit/s的传输,因而在它其中的码型速率转换板将完成将速率由13Kbit/s转换为64Kbit/s的工作,

二、信道编码

信道编码用于改善传输质量,克服各种干扰因素对信号产生的不良影响,但它是以增加比特降低信息量为代价的。编码的基本原理是在原始数据上附加一些冗余比特信息,增加的这些比特是通过某种约定从原始数据中经计算产生的,接收端的解码过程利用这些冗余的比特来检测误码并尽可能的纠正误码。如果收到的数据经过同样的计算所得的冗余比特同收到不一样时,我们就可以确定传输有误。根据传输模式不同,在无线传输中使用了不同的码型。

GSM使用的编码方式主要有块卷积码、纠错循环码(FIRE CODE)、奇偶码(PARITY CODE)。块卷积码主要用于纠错,当解调器采用最大似然估计方法时,可以产生十分有效的纠错结果。纠错循环码主要用于检测和纠正成组出现的误码,通常和块卷积码混合使用,用于捕捉和纠正遗漏的组误差。奇偶码是一种普遍使用的最简单的检测误码的方法。

无论如何处理,全速率TCH编码都将在信道编码后,在每20ms内将形成456比特的编码序列。

1、全速率TCH信道编码

在对全速率语音编码时,首先将对语音编码形成的260个比特流分成三类,分别为50个最重要的比特,132个重要比特以及78个不重要的比特。然后对上述50个比特添加上3个奇偶校验比特(分组编码),这53个比特连同132个重要比特与4个尾比特一起被卷积编码,速率为1:2,因而得到378个比特,另外78个比特不予保护。于是最后将得到456比特。

1、BCCH、PCH、AGCH、SDCCH、FACCH、SACCH信道的编

LAPDm是数据链路层的协议(第二层),在连接模式下被用于传送信令。它被应用在逻辑信道BCCH、PCH、AGCH、SDCCH、FACCH、SACCH 上,一个LAPDm帧共有23个字节(184个比特)。为了获得456比特的保护字段,便可通过对LAPDm帧的编码来得到。

首先给184比特增加40比特的纠错循环码,这样就可以来检测是否物理层的差错校正码能正确的校正传输差错。通过这种码型来监测无线链路,来确认是否SACCH消息块是否被正确的接收到。

为了实现卷积编码,还应加上4个比特的尾位。我们将得到的这228个比特通过1:2卷积编码速率,最后也会得到456比特的数据。

2、SCH信道的编码

SCH信令信道不能用LAPDm协议。在每个SCH信道有25比特的消息字段,其中19比特是帧号,6比特用于BSCI号。由于每个单独的SCH时隙都携带着一个完整的同步消息,而且SCH的突发脉冲的消息位的字段是78个比特。因而我们需要将这25比特的数据编码成78个比特。

我们将这25个比特的数据再加上10个奇偶校验比特和4个比特的尾位,这就得到了39个比特。再将这39个比特按照1:2的卷积编码速率,便得到了78个比特的消息。

3、RACH信道的编码

随机接入信道RACH的消息是由8个消息比特组成,包括3个比特的建立原因和5个比特的隋机鉴别符。由于RACH的突发脉冲的消息位的字段是36个比特。因而我们需要将这8比特的数据编码成36个比特。

首先,我们给它加上6个比特的色码,这六个比特的色码是通过将6个比特的BSIC和6个比特的奇偶校验码取模2而获得的。然后再加上4个比特的尾位。这样就得到了18个比特,我们再将这18个比特按照1:2的卷积编码速率,最后将得到RACH突发脉冲上的36比特的消息位。

三、交织技术

在移动通信中这种变参的信道上,比特差错经常是成串发生的。这是由

网络优化毕业实践报告

网络优化毕业实践报告文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

西安航空学院计算机工程系 毕业设计论文(实践报告) 题目:网络优化的研究 学号: 姓名:刘鑫 专业:计算机应用 班级: 1538 指导教师:侯维刚 设计地点:西安汇通网络科技有限公司 2015年 5 月 引言 时光如梭,转瞬自己的大学生活即将结束。三年的时间,自己学到了很多,也得到了很多,作为学习通信工程专业的学生,作为以后即将成为一名通信人才的学生来说,了解通信基础知识,掌握通信专业的学习方法,明白通信行业最前沿的科技知识,是关系到自己前途,关系到自己人生价值能否实现的人和事。 大三下学期,通过这段时间的实习,平时自己通过杂志,报刊,网络的了解,和专业人员的讲座,以及在西安汇通网络科技有限公司的实习。现对自己掌握的通信基础知识进行整理,总结,以便在今后的生活,学习,工作中更好的系统利用这些资源。 目录 一、实习计划

二、实习目的 三、实习内容 四、实习总结或体会 五、实习日志 1.实习计划 一.实习公司介绍 西安汇通网络科技有限公司是一家年轻的创业型公司,专业从事移动通信无线网络优化服务和工程建设的高新技术企业。 汇通网络的业务涵盖移动通信网络的网络优化、网络规划、网络维护、勘察设计系统测试、设备安装等多个方面。创业团队成员长期从事华为、中兴、爱立信、诺西等主流设备厂商的技术服务,具有丰富的项目管理经验,具备GSM、TD及W等多张网络方面的技术实力,拥有丰富的技术人才管理经验,具备整网性能提升、专项优化、工程优化、网络性能评估等多层次技术服务能力。汇通秉承以客户为中心,始终把质量控制和服务意识作为公司的生命线,严格遵守ISO9000和TL9000的质量认证体系和工作流程,确保优质的服务。 二.具体实习计划 (1)实习时间2014年12月至今 (2)实习地点:西安汇通网络科技有限公司 (3) 实习安排:主要结合教材以及现在通信发展所需要的专业知识,如TD

路测基础知识

1.1路测 1.1.1 路测概述 ?路测(DT)是指借助仪表/测试手机以及测试车辆等工具,沿着特定的 线路进行无线网络参数/运行和话音质量指标的测定和采集。测试设 备可以记录无线环境参数以及移动台与基站之间信令消息、路测系 统具有对测试记录数据的分析与回放功能。它的目的是模拟移动用 户的呼叫状态,记录数据并分析这些数据,把这些数据与原来的网 络设计数据相比较,若有差异及异常的呼叫信息,则设法修改各种参 数,以便优化网络.路测是网络优化的重要手段,路测所采集的参数、 呼叫接通情况以及测试者对通话质量的评估,为运营商提供了较为 完备的网络覆盖情况,也为网络运行情况的分析提供了较为充分的 数据基础。由于路测可以记录并回放测试过程中的所有信息,这对 于故障定位和效果评估有非常大的作用,特别是对于掉话点的定位 上。 1.1.2 DT测试的作用 ?DT测试在网络优化过程中起着重要作用。首先是网络质量的评估。 其次是对于定点优化的测试。当进行全网质量评估时,DT测试可以 模拟高速移动用户的通话状态。由于DT测试设备可以记录测试全过 程以及测试路线上的所有无线参数,通过DT测试可以全面完整地评 估网络质量。当进行定点优化时,DT测试的作用是对故障点、掉话 点的定位和优化后的效果进行验证。 1.1.3 在进行路测时,使用的测试工具: ?硬件测试工具: 1)优化车 2)笔记本电脑一台 3)双RC232串口卡一个 4)GPS天线 5)数据连接线2根,GPS连接PC和手机连接PC的数据线。 6)插座 7)12V—300W逆变器一个 8)京瓷2235手机两部(长短呼各一部) 9)加密狗一个 ?软件测试工具: 1)TEMS Investigation CDMA 2.2 2)测试区基站数据信息。 3)测试区电子地图。 1.1.4 路测步骤 ?在准备好进行路测之后,需要明确路测的工作程序和内容。第一步 要选择合适的测试线路。在选择测试线路的时候,首先要遵循下列 原则: 1)沿途有尽可能多的基站; 2)经过不同的电波传播环境;

网络优化测试报告

测 试 业 务 区 路测数据分析报告()

目录 第一章网络概况 ............................................. 错误!未定义书签。 网络基本情况................................................ 错误!未定义书签。站点分布图.................................................. 错误!未定义书签。测试方法介绍................................................ 错误!未定义书签。测试选择:.................................................. 错误!未定义书签。 第二章测试结果及分析 ....................................... 错误!未定义书签。 RX P OWER .................................................... 错误!未定义书签。S TRONGEST E C/I O............................................... 错误!未定义书签。 A GGREGATE E C/I O............................................... 错误!未定义书签。T X P OWER ..................................................... 错误!未定义书签。F-FCH FER ................................................... 错误!未定义书签。TX A DJ...................................................... 错误!未定义书签。 第三章网络性能统计 ........................................ 错误!未定义书签。 C ALL S ETUP R ATE............................................... 错误!未定义书签。 C ALL D ROP R ATE................................................ 错误!未定义书签。 H ANDOFF S TATISTICS R ESULT....................................... 错误!未定义书签。 A IR I NTERFACE S ETUP D ELAY....................................... 错误!未定义书签。第四章测试结论 ............................................ 错误!未定义书签。 一、网络问题分析........................................... 错误!未定义书签。 二、个人总结............................................... 错误!未定义书签。

Seo优化基础知识培训课程

Seo优化基础知识培训课程 第1课:什么是主关键词和长尾关键词 对于一个网站来说,主关键词就是和网站最相关的词语,也是你最想让搜索引擎搜索出来的词。比如百合seo教程网的主关键词是“seo教程”、“seo论坛”等,我们做seo的目标就是让网站的主关键词在百度有较好的排名,排到百度首页或是前几位,最好是百度第一名。 如果我们能够把关键词做到百度首页,那么就会有很多人每天通过搜索这些词来到我们的网站,百度排名越靠前网站访问量就越大。 总体来说,网站主关键词就是与我们网站的服务、产品、或内容最相关的词,再比如假如一家销售机床的企业,根据他的产品网站关键词可以定为“二手加工中心”(这是他们销售的一种机床)。比如销售杀虫剂的企业,他们可以把关键词定为“气雾杀虫剂”。 网站关键词决定了来到你网站的人群,是属于什么性质的流量,

也就是定向流量,是相关的流量。这样才更容易销售出去产品。 二、长尾关键词 建立一个网站除了主关键词外,可能还会涉及到很多的长尾关键词。长尾关键词,就是由两三个短词构成的词,比如“淘宝网女装短裤”、“seo基础教程”、“seo视频教程”。 长尾关键词一般包含主关键词,比如seo视频教程,包含了seo 教程这个关键词。 第2课:什么是百度关键词指数及查询方法 在第一课中我们讲了什么是关键词和长尾关键词,在本课中,介绍一下是什么是百度关键词指数以及查询方法。 人们上网查询信息,一般都是通过百度等搜索引擎。我们查询时,都是在百度搜索框里输入关键词或是长的句子,以获得我们想要的信息。比如,我们查询“seo教程”这个词时,百度就会把相关网站给我们呈现出来,一般情况下每页显示10个搜索结果。我们都是这样查询,因为全国的网民比较多,所以在一天里同一

无线网络优化入门

无线网络优化 GSM无线网络优化是通过对现已运行的网络进行话务数据分析、现场测试数据采集、参数分析、硬件检查等手段,找出影响网络质量的原因,并且通过参数的修改、网络结构的调整、设备配置的调整和采取某些技术手段(采用MRP的规划办法等),确保系统高质量的运行,使现有网络资源获得最佳效益,以最经济的投入获得最大的收益。 简介 近几年,随着移动用户的迅猛增长,用户对网络通信质量的要求越来越高,移动运营商也都大规模开展了以提高用户感知度为目标的网络优化工作,并提出了对各项主要指标的考核标准。2003年,伴随着CDMA网络的扩容建设,联通关于GSM的建设思想已经由大规模的网络建设转为以网络的优化、挖潜作为主要目标,满足全网用户的快速增长。对于带宽本来就极其有限的GSM网络,这其实是对网络优化提出了更严格的要求。 流程 GSM无线网络优化是一个闭环的处理流程,循环往复,不断提高。随着近两年优化工作的不断深入,各分公司的优化工作实际上已进入一个较深层次的分析优化阶段。即在保证充分利用现有网络资源的基础上,采取种种措施,解决网络存在的局部缺陷,最终达到无线覆盖全面无缝隙、接通率高、通话持续、话音清晰且不失真,保证网络容量满足用户高速发展的要求,让用户感到真正满意。 GSM无线网络优化的常规方法 网络优化的方法很多,在网络优化的初期,常通过对OMC-R数据的分析和路测的结果,制定网络调整的方案。在采用图1的流程经过几个循环后,网络质量有了大幅度的提高。但仅采用上述方法较难发现和解决问题,这时通常会结合用户投诉和

CQT测试办法来发现问题,结合信令跟踪分析法、话务统计分析法及路测分析法,分析查找问题的根源。在实际优化中,尤其以分析OMC-R话务统计报告,并辅以七号信令仪表进行A接口或Abis接口跟踪分析,作为网络优化最常用的手段。网络优化最重要的一步是如何发现问题,下面就是几种常用的方法: 1.话务统计分析法 OMC话务统计是了解网络性能指标的一个重要途径,它反映了无线网络的实际运行状态。它是我们大多数网络优化基础数据的主要根据。通过对采集到的参数分类处理,形成便于分析网络质量的报告。通过话务统计报告中的各项指标(呼叫成功率、掉话率、切换成功率、每时隙话务量、无线信道可用率、话音信道阻塞率和信令信道的可用率、掉话率及阻塞率等),可以了解到无线基站的话务分布及变化情况,从而发现异常,并结合其它手段,可分析出网络逻辑或物理参数设置的不合理、网络结构的不合理、话务量不均、频率干扰及硬件故障等问题。同时还可以针对不同地区,制定统一的参数模板,以便更快地发现问题,并且通过调整特定小区或整个网络的参数等措施,使系统各小区的各项指标得到提高,从而提高全网的系统指标。 2.DT (驱车测试) 在汽车以一定速度行驶的过程中,借助测试仪表、测试手机,对车内信号强度 是否满足正常通话要求,是否存在拥塞、干扰、掉话等现象进行测试。通常在DT中根据需要设定每次呼叫的时长,分为长呼(时长不限,直到掉话为止)和短呼(一般取60秒左右,根据平均用户呼叫时长定)两种(可视情况调节时长),为保证测试的真实性,一般车速不应超过40公里/小时。路测分析法主要是分析空中接口的数据及测量覆盖,通过DT测试,可以了解:基站分布、覆盖情况,是否存在盲区;切换关系、切换次数、切换电平是否正常;下行链路是否有同频、邻频干扰;是否有小岛效应;扇区是否错位;天线下倾角、方位角及天线高度是否合理;分析呼叫接通情况,找出呼叫不通及掉话的原因,为制定网络优化方案和实施网络优化提供依据。 3.CQT

GSM网络优化浅谈

网络优化是高层次的维护工作,是通过采用新技术手段以及优化工具对网络 参数及网络资源进行合理的调整,从而提高网络质量的维护工作。可采用室分布、跳频、同心圆技术、DTX、功率控制等手段减少干扰,增大网络容量,改善无线环境;通过调整天线角度,增益,方位角,俯仰角以及功率大小,选择最佳站址,调整载频配置,均衡话务分布,改善网络质量,获得最佳覆盖效果等等。 基础维护做的好,可确保设备完好率;但要提高网络质量,必须要优化网络参数,即进行网络优化。只有搞好网络优化才能使基础维护的成效得以充分体现 。 维护的最终目标是为网上用户提供高质量的网络服务,而只有通过网络优化才能 实现维护的最终目标,维护工作才有实际的意义。 三、网络优化是持续性的工作 1、因为影响网络质量的因素不是一成不变的,网络优化应随着网络参数和环境 的变化而不断进行。各地区特别是近几年来,经济蓬勃发展,城市高楼大厦不断涌现,改变了无线信号的传播环境,可能会出现新的盲区以及来自系统部的干扰。而且话务的分布也在改变,在原来没有的话务或话务较小的地区会出现更高 的话务需求,需要及时调整网络以吸收话务量。 2、工程建设会严重改变网络参数,尽管工程规划务求做得尽善尽美,但规 划人员很难将参数调整到最佳状态,不可避免地造成干扰和话务的不均衡,这就 需要网络优化来解决。 3、无线网软、硬件版本的升级也会改变部分BSC数据库中的参数,也需要调 整参数设置,实施网络优化。 因此,网络优化非一朝一夕,而是长期、持久、艰巨的维护工作。简单地说,只要网络运营一天,就需要进行网络优化。网络优化的重要性和持久性决定了网络优化工作必须由各地市根据当地的实际情况持续地开展,任何短期的、突 击性的优化从长远看是取效甚微的。下面我们就优化中的室覆盖、天线在网

网络优化基本知识

无线网络优化是通过对现已运行的网络进行话务数据分析、现场测试数据采集、参数分析、硬件检查等手段,找出影响网络质量的原因,并且通过参数的修改、网络结构的调整、设备配置的调整和采取某些技术手段(采用MRP的规划办法等),确保系统高质量的运行,使现有网络资源获得最佳效益,以最经济的投入获得最大的收益。 二GSM无线网络优化的常规方法 网络优化的方法很多,在网络优化的初期,常通过对OMC-R数据的分析和路测的结果,制定网络调整的方案。在采用图1的流程经过几个循环后,网络质量有了大幅度的提高。但仅采用上述方法较难发现和解决问题,这时通常会结合用户投诉和CQT测试办法来发现问题,结合信令跟踪分析法、话务统计分析法及路测分析法,分析查找问题的根源。在实际优化中,尤其以分析OMC-R话务统计报告,并辅以七号信令仪表进行A接口或Abis接口跟踪分析,作为网络优化最常用的手段。网络优化最重要的一步是如何发现问题,下面就是几种常用的方法: 1.话务统计分析法:OMC话务统计是了解网络性能指标的一个重要途径,它反映了无线网络的实际运行状态。它是我们大多数网络优化基础数据的主要根据。通过对采集到的参数分类处理,形成便于分析网络质量的报告。通过话务统计报告中的各项指标(呼叫成功率、掉话率、切换成功率、每时隙话务量、无线信道可用率、话音信道阻塞率和信令信道的可用率、掉话率及阻塞率等),可以了解到无线基站的话务分布及变化情况,从而发现异常,并结合其它手段,可分析出网络逻辑或物理参数设置的不合理、网络结构的不合理、话务量不均、频率干扰及硬件故障等问题。同时还可以针对不同地区,制定统一的参数模板,以便更快地发现问题,并且通过调整特定小区或整个网络的参数等措施,使系统各小区的各项指标得到提高,从而提高全网的系统指标。 2.DT (驱车测试):在汽车以一定速度行驶的过程中,借助测试仪表、测试手机,对车内信号强度是否满足正常通话要求,是否存在拥塞、干扰、掉话等现象进行测试。通常在DT中根据需要设定每次呼叫的时长,分为长呼(时长不限,直到掉话为止)和短呼(一般取60秒左右,根据平均用户呼叫时长定)两种(可视情况调节时长),为保证测试的真实性,一般车速不应超过40公里/小时。路测分析法主要是分析空中接口的数据及测量覆盖,通过DT测试,可以了解:基站分布、覆盖情况,是否存在盲区;切换关系、切换次数、切换电平是否正常;下行链路是否有同频、邻频干扰;是否有小岛效应;扇区是否错位;天线下倾角、方位角及天线高度是否合理;分析呼叫接通情况,找出呼叫不通及掉话的原因,为制定网络优化方案和实施网络优化提供依据。

某市GSM无线网络优化论文

毕业设计设计题目: XX市GSM无线网络优化 入学年月: 专业: 班级: 学号: 姓名: 指导老师: 完成日期:

论文摘要 随着中国加入WTO 后运营商之间竞争的加剧, GSM网络不断扩大,网络的质量已经成了决定移动通信运营商命运的根本要素。网络优化正成为移动通信运营商未来的工作重点。现在,运营商们关心的是,如何在现有网络基础上,通过优化与完善,从而最大限度地挖掘网络潜力。网络优化的目标是提高或保持网络质量,而网络质量是各种因素相互作用的结果,随着优化工作的深入开展和优化技术的提高,优化已经从当前的网络渗透到包括市场预测、网络规划、工程实施直至投入运营的整个循环过程的每个环节。本论文在深入研究GSM 系统原理的基础上,结合成都联通GSM 无线网络,对某市区GSM 网络目前反映突出的网络问题进行分析与排查,提出并实施了切合工程实际的无线网络优化方案,大幅度提升网络质量,并以此为基础进一步研究了用户话务行为,用户增长趋势,对下一期工程建设和网络扩容提出了指导性建议,完成了下一期网络规划设计的初步方案,预设方案已应用在新的工程设计建设中。 关键词切换;掉话率;网络优化;天馈系统;BSC配置;室内覆盖

目录 论文摘要 (2) 第1章、GSM网络优化的概述 (4) 1.1 GSM网络优化的概念 (4) 1.2 GSM网络优化的主要内容以及注意事项 (4) 1.3 GSM网络优化的意义 (4) 第2章、实施GSM无线网络优化的方法和流程 (6) 2.1 数据采集与分析 (6) 2.2 GSM无线网络优化调整方案的探讨于实施 (7) 第3章、天线在网络优化中的作用 (16) 3.1 天线的主要性能指标 (16) 第4章、典型案例--室内覆盖的优化 (19) 4.1 室内覆盖的优化意义 (19) 4.2 改善室内覆盖的方法及手段 (21) 4.3 室内分布系统的组成 (23) 4.4 不同信号源提取方法比较 (23) 4.5 信号分布的基本方式及比较 (25) 4.6室内覆盖系统的优化 (27) 4.7如何评价一个好的室内覆盖系统 (28) 第5章、网络优化的分析的分析 (29) 5.1 降低小区拥塞 (29) 5.2 消除覆盖盲区 (32) 5.3 GSM掉话的种类和产生的原因解决方案 (33) 5.4 结论 (36) 第6章、参考文献 (37)

GSM-R系统网络优化技术

GSM-R系统网络优化技术 摘要 随着我国经济的飞速发展,人们对于出行及通信的便捷性的需求日益提升。同时,我国高速铁路的不断建成开通也极大的满足了人们对于便捷出行的需求。但是,高速铁路在高速运行状态下,电平快速衰落、无线环境快速改变,加之高速铁路采用的穿透损耗较大的封闭车厢,都对GSM网络的传统覆盖方式提出了挑战。于是衍生出了新一代的铁路数字移动通信系统GSM-R。GSM-R系统是在GSM的基础上,针对铁路移动通信的特点开发的一种专用无线通信系统,其安全性受到网络结构和用户终端移动性本身的制约,存在很多问题,包括频率优化,干扰排查,多普勒效应等内容。通过分析GSM-R网络的体系结构特点,讨论了GSM-R系统中存在的网络安全隐患,结合工作实践,提出相应的防范措施。 列车的通信系统可以说对于游客来说是有一定改善需求的领域,由于信息化的加强使得信息产品的使用在生活中越来越密不可分,因而移动通信需求可以说成为了一个比较迫切需要解决的问题。而就实际情况来说,高速铁路自身的控制系统,实际上也需要对于通信技术又跟更高的要求,虽然两者并非同类,但是技术要求却是一致的。因为实际上可以说是移动通信技术的发展,无论对于客户需求或者是自身的强化来说,都是有价值的。本文主要阐述了GSM-R系统网络优化的方法,介绍网络性能统计、优化的常用工具。对于GSM-R系统日常维护工作中发现的网络性能指标偏低的典型问题进行分类汇总,编写相应网络优化方案,总结网络优化经验,提出GSM-R网络优化工作的维护 建议。 关键词:GSM-R系统;高速铁路;列车通信;网络优化

引言 随着我国铁路提速、高速铁路和客运专线的修建以及重载技术的不断发展,GSM-R作为一种专门为满足铁路应用而开发的数字式无线通信系统,具有适应铁路运输的特典和成熟的技术优势,符合通信信号一体化发展的需要,其安全可靠性要求也更高。 GSM-R起源于欧洲,目前在德国、瑞士、荷兰、意大利等国家已进入商业运营。我国对GSM-R技术的研究始于上世纪末,多年来我国也积极开发GSM-R系统,如今GSM-R日渐成熟,规模日趋完善,并成功地运用于青藏线、大秦线、胶济线、武广线、京津冀铁路等线路中。但是目前我国铁路的GSM-R在实际应用中网络性能随着周围环境改变而改变,会出现通话质量差、有杂音、掉话率高、干扰现象严重等问题,如何通过各种技术手段的措施,解决系统在网络建设和运营阶段可能存在的问题,保证系统维持较好的运行状态,提高网络吸纳话务的能力,这就是网络优化的目的。 GSM-R系统的系统网络部分存在很多不稳定因素,而且系统网络优化优化对于整个通信网络的质量起决定性作用。也就是如何在GSM-R运行后通过解决系统在网络建设和运行阶段存在的问题,优化网络,提高效率。 通信是社会发展的基础设施,铁路通信是指挥列车运行,组织运输生产,提高效率,传输各种信息的重要设施。随着计算机和微电子技术的发展,各种有线和无线通信技术不断涌现。铁路因其运输生产的特点。对铁路移动通信提出了更高的要求。发展铁路移动数字通信系统,是新时期铁路无线通信的必由之路。

网络优化测试报告

网络优化测试报告文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

测 试 业 务 区 路测数据分析报告 () 目录 第一章网络概况.............................................................................................................................. 网络基本情况 ............................................................................................................................... 站点分布图 ................................................................................................................................... 测试方法介绍 ............................................................................................................................... 第二章测试结果及分析.................................................................................................................. RX P OWER ..................................................................................................................................... S TRONGEST E C/I O.......................................................................................................................... A GGREGATE E C/I O ......................................................................................................................... T X P OWER....................................................................................................................................... F-FCH FER .................................................................................................................................... TX A DJ........................................................................................................................................... 第三章网络性能统计.................................................................................................................... C ALL S ETUP R ATE.......................................................................................................................... C ALL D ROP R AT E ........................................................................................................................... H ANDOFF S TATISTICS R ESULT........................................................................................................ A IR I NTERFACE S ETUP D ELAY........................................................................................................ 第四章测试结论..............................................................................................................................

网络优化工作(基础培训)

本文对网络优化工作中的一些方面进行了描述,主要包括网络优化工作的工具、网络优化工作的步骤、一些常用的性能指标和一些常见问题的解决方案。本文是对网络优化人员的培训教材。 1、网络优化工程概述 随着移动网络的迅猛发展,网络的服务质量问题已经越来越受到人们的关注。频率资源的紧缺、昂贵的设备投入、日益增加的用户数都对网络的发展造成了阻碍,同时更加广泛的移动性要求以及人们对服务质量、业务的更高要求又对迫使网络不得不不断发展。如何利用现有的网络设备、资源和容量,最大限度地提高网络的平均服务质量,提高效益;如何使得网络在不断发展的过程中,能够保持网络的服务质量不下降,就是网优人员的任务,是不断对网络进行优化工作的原动力。 1.1网络优化工程的目的 网络优化工作就是通过对设备、参数的调整等手段对已有网络进行优化工作,最大限度地发挥网络的能力,提高网络的平均服务质量。其主要的目的有以下几个方面: 1.提高平均的网络服务质量 主要包括高质量的语音和其他业务服务,足够的覆盖和接通率等。 2.尽可能地减少运营成本 主要包括提高设备的利用率,增加网络容量,减少设备和线路的投资等。 1.2做好网络优化工作的前提条件 网络优化工作是一件复杂的系统工程。它的涉及面广、时间长、对专业知识的要求极高,要把网络优化工作做好,需要大量的人力、物力、财力的投入,主要包括: ●经验丰富的优化工程师:长期、专一的网优技术人员,具备分析问题、解决问题 的思路和能力。同时这些人员应具备有线、无线领域的专业知识;既要熟悉GSM 规范,又要对设备的性能、参数、算法等非常熟悉;另外还需要有一定的工程经 验。 ●齐备的工具:路测设备、信令仪表、网络优化工作平台、模拟发信机等。 ●完整而可靠的原始数据:基站数据、OMC性能数据、路测数据、信令数据以及 完整的网络优化档案等。 ●详尽的地理信息数据:完整的地理信息数据可以使得优化工作更准确。 1.3网络优化工作的主要内容

网络优化实习日记

今天是实习的第一天,所做的工作为为移动公司后台服务,处理一些重要数据,实习第一天,还是比较兴奋的,因为自己毕竟要工作了,一些责任还是要承担起来的。 第一天,看到这里的工作者还是比较认真的都在自己做着自己的事情,因为我才来,所以不知道自己所做的工作,还是要自己学习的。 在操作一些仪器的时候,因为自己不知道怎么操作,所以处处还是小心翼翼的,避免自己出现问题,但是很多问题还是要自己解决的,吃一堑长一智,在不断地的磨练中不断锻炼自己,不断的将自己的技术学的更加完善,然后才能得到自己所想要获取的东西。 我的旁边坐了两个江苏的老乡,毕竟老乡有个照应,我们三个人还住在一起,这样方便交流和沟通,而且我有一些问题还可以向他们请教,这样我才能得到提高,我才能尽快的适应这种工作,尽快融入到这个大集体中。 下午,他们给我讲解了很多基础性的知识,但自己还要自己操作否则还是什么都不会,但是因为自己是学网络技术的,这个涉及通信方面,所以自己就是门外汉一点也不懂,只有自己慢慢的了解,自己慢慢的操作,才学到知识。 晚上,我们跟项目经理聚了餐,互相了解一下自己所要负责的工作,彼此熟悉一下,跟项目组里面的一些成员都认识一下,这样为以后的工作提供便利,不然自己如果有一些具体数据不明白连一个可以问的人都没有,这样不就悲催了啊。自己的工作都做不好还怎么继续下去。

今天是我开始实习的第二天,我实习的岗位是无线网络优化工程师。由于对于网络优化,我还是一个新手,所以我必须从最基础的日常测试做起,主要是用户投诉。这天,我跟住负责测试工作的同事一起到用户投诉信号不好的地方进行信号测试,而目的只是先了解做投诉方面测试的基本流程与注意事项,刚开始觉得挺无趣的,因为我像一个旁人一样帮不上忙,只能眼睁睁的看着同事在工作,做完一个投诉就到下一个,他们所说的那些该注意的参数,我感觉是多么的陌生,只看见它们在无规律的跳变。坐了一早上的车跑投诉,感觉有点难以适应,身体也挺疲劳的,但我相信只要我坚持下去,我能学到自己想要的知识。 来公司工作几天了,今天下班之后,我们集体参加了一个关于《CDMA无线网络规划与优化的》的专题培训,培训的目的是提高我们的技术,在培训中,我认真的听着高级工程师对无线网络知识的讲解,也适当的记下了一些重要的知识点,虽然培训中所讲到的内容有些是在大学课堂上讲过的,但是也有很多都是我没有接触过的,有些专业术语,我都不太清楚。通过这次培训,我觉得我对无线网络优化有了一定的认识,学到的知识也对我日后的工作很有用,不过培训当中也有很多东西是没有消化的,我觉得我课后应该到互联网上搜索相关的内容,使自己能够学习更多的知识

GSM网路优化常用的手段

GSM网路优化常用的手段 在GSM网路优化中一个很重要的环节就是调整小区覆盖图。如果小区覆盖调整的比较理想,其它问题都比较容易解决。譬如干扰(包括同频和邻频)问题,只要按照小区覆盖图排列好频率组,基本上可以把干扰控制在允许范围之内。再譬如邻区设置以及越区切换各参数的设置,都可以根据小区覆盖图事先提出方案。而且一般的讲,这个方案在付诸实施后修改工作量很小。 在小区覆盖图调整好之后,还要进一步提高网络的效率。这就是调整好网络结构以发挥其最佳效率(参见“GSM无线网路优化程序”)。 在GSM无线网路优化中,比较难处理和运用电波传播理论较多的部分,就是小区覆盖图的调整。它要根据具体情况:或者调整天线高度,或者调整发射机的输出功率(包括改变接收机灵敏度),或者调整天线方向,或者调整天线俯角,或者设置直放站或增加微蜂窝基站,甚至于必要时调整基站位址。这些方法的采用要经过对实测结果的详细分析,找出覆盖不理想的原因,然后设想一种或几种改善覆盖的方法予以实施。必要时,实施前进行预测或实施后再次实际测试以验证改善效果。 本文将着重分析一些在调整小区覆盖图时常用的手段,然后涉及频率调整等各方面的问题。 1. 调整天线高度和调整发射机输出功率的分析 电波传播的路径损耗是天线高度的函数,在光滑地球表面上的传播损耗可以根据电波传播理论进行计算。但遗憾的是除平静的湖、海表面以外,陆地上有人烟的地方几乎没有哪里可以近似成光滑地球表面。诸如地球表面的起伏不平,地球表面的植被,人为的地表修整以及建筑工程等,使得电波沿地球表面的传播损耗无法进行理论计算。为了能够计算,不少专业研究人员也提出了一些计算方法。但都只能在某种特定环境中近似计算。虽然如此,但通过对这些计算方法的考察,可以得出结论:“在建筑群中,电波传播损耗随距离变化的斜率与天线高度仍旧保持密切关系”。或者说,调整天线高度就等于调整电波传播损耗的斜率。 如图1.1中所示的情况,图中纵轴为下行接收信号电平,横轴为离开基站的距离。其中图1.1(a) 接收信号电平接收信号电平 距离 天线高度) 。 如果在城市市区,由于扩容,基站数量增加,而希望缩小某个基站的覆盖范围。上述两种方法都可以使用,但根据具体情况应分别采用两种方法之一。譬如在大区制环境中,为了减小基站覆盖范围,可以采用降低天线的方法。因为这样可以使处于基站附近的用户基本不受缩小覆盖范围的影响(如室内覆盖等)。但如果采用降低发射机输出功率的方法,则基站附近的室内本来通话很好的地方可能通话质量降低。但是如果是覆盖一段街道的微蜂窝基站,为了减小它的覆盖范围就只能采用降低发射机输出功率的方法。因为一般覆盖一段街道的微蜂窝基站天线都不太高

GSM网络优化

摘要:介绍了GSM网络优化的概述、优化流程、网络优化常规方法、GSM网络优化过程中常见问题及解决方案。 关键词:优化常规方法常见问题 1、概述 GSM无线网络优化是通过对现已运行的网络进行话务数据分析、现场测试、数据采集、参数分析、硬件检查等手段,找出影响网络质量的原因,并且通过参数的修改、网络结构的调整、设备配置的调整和采取某些技术手段(如采用MRP的规划办法等),解决网络存在的局部缺陷,确保系统高质量的运行,使现有网络资源获得最佳效益,以最经济的投入获得最大的收益,让用户感到真正满意。 2、优化流程 在优化流程上,在网络运行质量已处于稳定、良好的阶段,需进一步提高指标,改善网络质量的深层次优化中应该将对性能统计数据的关注中转移到对用户投诉的处理,解决局部地区话音质量差的问题,高话务区的深度覆盖等等具体事件中来。网络性能统计指标能够从宏观上反应整体的网络质量,具体事件点关注、性能统计数据分析、测试分析,优化方案的制定以及优化方案的实施成为较为稳定的网络优化流程。

图1无线网络优化流程图 GSM无线网络优化是一个闭环的处理流程(如图1),循环往复。在保证充分利用现有网络资源的基础上,采取种种措施,解决网络存在的缺陷,最终达到网络无缝覆盖、高接通率、低掉话率、通话持续、话音清晰且不失真。保证网络质量真正满足用户高速发展的要求。 3、GSM无线网络优化的常规方法 网络优化的方法很多,常通过对OMC数据统计的分析、路测的结果,制定网络调整的方案。结合用户投诉和CQT、DT测试来发现问题,应用各种软件分析,利用信令跟踪分析法、话务统计分析法及路测分析法,分析查找问题的根源。以下是几种常用的方法: 3.1、统计分析法:话务统计是了解网络整体性能指标的一个重要途径,反映了无线网络的运行状况。是网络优化基础数据的主要根据。通过话务统计报告中的各项指标(随机接入成功率、掉话率、切换成功率、每线话务量、话音信道可用率、信道拥塞率、无线接通率等等),

网络优化测试报告

网络优化测试报告 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

测 试 业 务 区 路测数据分析报告 () 目录 第一章网络概况 ............................................................. 网络基本情况............................................................... 站点分布图................................................................. 测试方法介绍............................................................... 第二章测试结果及分析 ....................................................... RX P OWER.................................................................... S TRONGEST E C/I O.............................................................. A GGREGATE E C/I O.............................................................. T X P OWER..................................................................... F-FCH FER .................................................................. TX A DJ ..................................................................... 第三章网络性能统计 ........................................................ C ALL S ETUP R ATE.............................................................. C ALL D ROP R ATE............................................................... H ANDOFF S TATISTICS R ESULT...................................................... A IR I NTERFACE S ETUP D ELAY...................................................... 第四章测试结论 ............................................................

GSM网络参数优化

G L O B A L S Y S T E M F O R M O B I L E C O M M U N I C A T I O N S R 网络优化技术文件 版本号:V1.0.0 一九九八年三月 空页

目录 1. 前言 (5) 2. 本文的研究内容 (8) 3. 小区数据 (9) 3.1 公共数据 (9) 3.1.1 BCCH载频发射功率(BSPWRB) (9) 3.1.2 小区全球识别码(Cell Global Identity,CGI). 11 3.1.3 基站识别码(Base Station Identity Code,BSIC)14 3.1.4 BCCH载波频率(BCCHNO) (17) 3.1.5 BCCH组合类型(BCCHTYPE) (19) 3.1.6 接入允许保留块数(AGBLK) (20) 3.1.7 寻呼复帧数(MFRMS) (22) 3.1.8 帧偏置(FNOFFSET) (24) 3.1.9 移动站最大发射功率(MSTXPWR) (25) 3.1.10 跳频状态(HOP) (27) 3.1.11 跳频序列号(HSN) (28) 3.1.12 SDCCH/8信道数(SDCCH) (29) 3.1.13 小区广播信道(CBCH) (31) 3.2 空闲模式 (32) 3.2.1 最小接入电平(ACCMIN) (32) 3.2.2 控制信道最大发射功率(CCHPWR) (34) 3.2.3 小区重选滞后(CRH) (36) 3.2.4 允许的网络色码(NCCPERM) (38) 3.2.5 BCCH系统消息开关(SIMSG和MSGDIST) (39) 3.2.6 小区接入禁止(CB) (41) 3.2.7 小区禁止限制( Cell Bar Qualify ,CBQ) (43)

GSM网络原理及其网络优化--韩杰斌

第3章GSM 无线接口理论 (3) 第1节工作频段的分配 (3) 一、我国GSM网络的工作频段 (3) 二、频道间隔 (3) 三、频道配置 (3) 四、干扰保护比 (4) 第2节时分多址技术(TDMA) (4) 一、TDMA信道的概念 (4) 二、TDMA帧 (6) 三、突发脉冲序列(Burst) (7) 四、逻辑信道与物理信道之间的对应关系 (9) 五、信道组合种类 (11) 六、系统消息 (11) 第3节无线路径的损耗和衰落 (13) 一、无线路径的损耗和衰落 (13) 二、分集接收 (14) 第4节移动台和基站的时间调整 (16) 第5节跳频技术 (16) 一、跳频的种类及各自实现的方法 (17) 二、跳频的优点 (18) 三、跳频序列 (18) 第6节语音的传输过程 (19) 一、语音编码 (19) 二、信道编码 (19) 三、交织技术 (20) 四、加密 (21) 五、调制和解调 (22) 第四章呼叫处理过程 (22) 第1节小区的选择与重选 (22) 一、小区选择过程 (22) 二、小区重选过程 (23) 三、不连续接收模式DRX和寻呼信道的定义 (25) 第2节初始化过程 (26) 一、信道申请 (26) 二、初始信道的分配 (28) 三、初始化报文 (29) 第3节鉴权加密过程 (30) 一、鉴权加密过程的三参数组 (30) 二、鉴权过程 (31) 三、加密过程 (32) 四、TMSI重新分配过程 (32) 第4节位置更新 (33) 一、位置区的概念 (33) 二、正常位置更新流程(越位置区的位置更新) (34) 三、IMSI 附着和分离过程 (35)

相关文档