文档库 最新最全的文档下载
当前位置:文档库 › 基于Solidworks的凸轮设计与装配

基于Solidworks的凸轮设计与装配

基于Solidworks的凸轮设计与装配
基于Solidworks的凸轮设计与装配

基于Solidworks的凸轮设计与装配

摘要:凸轮在工业上应用广泛,当根据使用要求确定了凸轮机构的类型、基本参数以及从动件运动规律后,既可进行凸轮轮廓曲线的设计,传统的凸轮设计方法(主要包括作图法和解析法),由于设计过程复杂,设计精度较低,而且设计结果不能直接应用于凸轮的数控加工等原因,已经越来越不能适应当前对凸轮设计快速、精确及满足数控加工的基本要求;采用Solidworks技术方法来代替传统的凸轮设计方法可以大大缩短设计周期、提高设计质量,满足凸轮数控加工的客观实际需要,是凸轮设计方法的发展趋势。

本文介绍一种利用Excel工具生成凸轮理论轮廓点的数据,在SolidWorks 环境中直接利用三维点数据将凸轮理论轮廓曲线用样条曲线绘制出来,并通过相关命令输入推杆滚子半径,将曲线转换成草图曲线,得到凸轮实际轮廓曲线,再通过拉伸特征完成盘形凸轮基体的三维建模。

关键词:凸轮理论轮廓曲线三维建模Solidworks装配

1 引言

凸轮机构是具有曲线轮廓的构件,是利用凸轮转动带动从动件实现预期运动规律的一种高副机构,广泛的应用于各种机械,特别是自动机械、自动控制装置等。盘形凸轮因为其形状简单,被广泛应用。基于SolidWorks的盘形凸轮的建模方法有很多,可以通过VB、VC等程序设计语言.利用SolidWorks的API程序接口,生成凸轮轮廓,也可以通过Toolbox中的"凸轮"插件生成凸轮模型。但是采用程序设计方法对用户的编程水平要求较高,采用Toolbox中的"凸轮"插件也属于SolidWorks中的高级操作,一般用户也不太熟悉。本文在Excel环境中生成凸轮理论轮廓的点坐标信息,存成文本格式,在SolidWorks环境中利用"通过XYZ点的曲线"直接生成凸轮理论轮廓曲线。

2 SolidWorks简介

创新的、易学易用的而且价格平宜的SolidWorks是Windows原创的三维设计软件。其易用和友好的界面,能够在整个产品设计的工作中,SolidWorks完全自动捕捉设计意图和引导设计修改。在SolidWorks的装配设计中可以直接参照已有的零件生成新的零件。不论设计用"自顶而下"方法还是"自底而上"的方法进行装配设计,SolidWorks都将以其易用的操作大幅度地提高设计的效率。

SolidWorks有全面的零件实体建模功能,其丰富程度有时会出乎设计者的期望。用SolidWorks的标注和细节绘制工具,能快捷地生成完整的、符合实际产品表示的工程图纸。 SolidWorks具有全相关的钣金设计能力。钣金件的设计即可以先设计立体的产品也可以先按平面展开图进行设计。SolidWorks软件提供完整的、免费的开发工具(API),用户可以用微软的Visual Basic、Visual C++或其它支持OLE的编程语言建立自己的应用方案。通过数据转换接口,SolidWorks 可以很容易地将目前市场几乎所有的机械CAD软件集成到现在的设计环境中来。

为比较评价不同的设计方案,减少设计错误,提高产量,SolidWorks强劲的实体建模能力和易用友好的Windows界面形成了三维产品设计的标准。机械工程师不论有无CAD的使用经验,都能用SolidWorks提高工作效率,使企业以较低的成本、更好的质量更快将产品投放市场。而最有意义的是,用于SolidWorks 的投资是容易承受的,这使得参加工程设计的所有人员都能在他们桌面上的计算机进行三维设计。

2.1 用户界面

SolidWorks软件在用户界面方面的方便程度是世界公认的,但SolidWorks 公司还是努力地改进软件的用户界面,使得设计工作更加自动化。Solidworks 去掉了一些多余的对话框,而以隐含的右键菜单所代替,最明显的是能够将特征管理器沿水平拆分。这使得进行某些特殊命令操作时,如检查装配关系,而不会迷失在特征树的位置。这对于大型装配体和复杂零件的操作也非常重要,因为零件复杂以后,特征管理树会很长,有时很难同时观察特征树的最上端和特征树的最下端。有了特征管理器的拆分功能,这一切都成为可能。

2.2 草图设计

SolidWorks软件所有的零件都是建立在草图基础上的,草图功能的提高会直接影响到对零件的可编辑能力的提高。在Solidworks中,增加了样条编辑控制功能,当样条处于编辑状态时,一个小三角箭头会出现在样条曲线上。当小符号沿着样条曲线拖动时,箭头的方向会不断改变,以表示各点不同的曲率。当沿着箭头拖动时,样条的曲率会实时改变。这一功能的增加,使得SolidWorks的用户更加方便地控制零件的形状。

由于三维样条曲线的引入使得三维草图功能显著地提高。用户可以直接控制三维空间的任何一点,以达到控制三维样条的目的,从而直接控制草图的形状。这对于创建绕线电缆和管路设计的用户是非常方便的。

2.3 曲面建模

也许是因为SolidWorks以前在实体和参数化设计方面太出色,人们可能会忽略其在曲面建模方面的强大功能。在Solidworks中,曲面建立后,可以以很

多方式对曲面进行延伸。你可以将曲面延伸到某个已有的曲面,与其缝合或延伸到指定的实体表面,或者输入固定的延伸长度,或者直接拖动其红色箭头手柄,实时地将边界拖到想要的位置。

另外,现在的可以对曲面进行修剪,可以用实体修剪,也可以用另一个复杂的曲面进行修剪。首先,选取特定的曲面做为剪切工具,以绿色表示;然后,选取要保留的那一部分曲面,以淡绿色表示;没有选取的那部分曲面,以灰色表示,就会立刻被切除。你还可以将两个曲面或一个曲面一个实体进行弯曲操作,SolidWorks软件将保持其相关性,即当其中一个发生改变时,其他另一个会同时相应改变。

2.4 新特征

SolidWorks对导圆角的处理添加了新的特征,使得倒角的功能更加强大。在原有特征阵列的基础上,也增添了新的特征。用XY坐标值系列直接生成表格驱动阵列。草图驱动阵列所用到的草图可以做为新阵列的模板。

对于设计塑胶件的工程师,使用Solidworks会更加方便。Solidworks对薄壁塑胶件的设计本身就是就考虑到一个面是开放的,用户不必单独手工指定某个面是开放的。筋的建立更加方便,你可以在任何视图上创建筋的轮廓,先进行预览再生成加强筋。对于模具设计师来讲,还可以利用XYZ缩放因子直接生成模腔。

另外,新增加的打孔向导给人留下了深刻的印象,用户可以直接点取螺栓的尺寸,所有相关的数据都可以在电子版的机械零件手册中自动查到。

2.5 大型装配

用户不仅用SolidWorks软件来解决一般的零部件设计问题,越来越多的用户开始用SolidWorks软件处理系统级的大型装配设计,对大型装配体上载的速度也是要求越来越高。面对用户的需要,SolidWorks公司的研发部门设法从不同的角度对大型装配体的上载的速度进行了改进,包括分布式数据的处理和图形压缩技术的运用,使得大型装配体的性能提高了几十倍。

在新版中,还增加了智能装配功能,能够在装配过程中自动捕捉装配关系,而无须用户另行指定。在装配过程中,还新增加了球面的配合关系和圆锥面的配合关系,这就使得将球插到孔里的操作变得更加容易。

2.6 工程图和电子工程图

在Solidworks的工程制图中引入了一个崭新的快速制图功能(即RapidDraft),它能迅速生成与三维零件和装配体暂时脱开的二维工程图,但依然保持与三维的全相关性。这样的功能使得从三维到二维的瓶颈问题得以彻底的解决。

Solidworks是一个非常优秀的软件产品。SolidWorks公司在技术上的投入

和技术的先进性不断保持SolidWorks软件在机械三维设计领域的领先地位。

3 利用Excel生成凸轮理论轮廓线坐标

根据工作要求合理地选择从动件运动规律后,可以按照结构所允许的空间和具体要求,逐步确定凸轮的基圆半径,然后绘制凸轮的轮廓。凸轮轮廓的绘制一般采用"反转法"绘制。

本文实例中的盘形凸轮机构运动要求如下:试设计一对心滚子直动推杆盘形凸轮机构。已知凸轮以等角速度ω逆时针方向转动。在凸轮的一个运动周期2π时间里,要求推杆在1s内等速上升10mm,0.5s内静止不动,0.5s内等速上升6mm,2s内静止不动,2s内等速下降16mm。其基圆半径为20mm。

根据已知条件,可以确定处推杆的位移线图,它直接反映了推杆在工作过程中的位移特征,如图l所示。欲确定凸轮的理论轮廓曲线,关键在于根据推杆的位移线图得出理论轮廓曲线上的离散点的位置(坐标)。传统的凸轮轮廓图解法的原理就是根据上述的离散点位置,手工拟合而成。这种做法存在加大的精度误差,而且由于是手工取点,所确定的点的个数往往不够多,从而限制了凸轮轮廓的准确性。

图1推杆的位移线图

如果想要提高凸轮理论轮廓曲线的精度,我们只要合理得大量确定离散点的位置即可,在计算机工具的帮助下,计算理论轮廓点的坐标,利用绘图命令直接拟合离散点即可。如图2所示,根据已知条件分析盘形凸轮理论轮廓点的位置坐

标。根据"反转法"绘图原理,对于理论轮廓上的任意一点P,该点的轴坐标可由下式计算得出:

X=OP*sin(θ) (1)

Y=OP*cos(θ) (2)

其中,OP的长度就是基圆的半径与在相应时刻的推杆位移线图点的位移量之和。

图2 盘形凸轮理论轮廓上点的位置坐标分析

如图1所示,0A、BC、DE段的位移变化均为等速变化,三段直线的方程可以根据特殊点的位置直接确定出来:

(1)0A的方程:Y=

30*X

π

(2)BC的方程:Y=

36*X-8

π

(3)DE的方程:Y=-

24*X+48

π

这样我们可以根据实际精度需要,确定足够多的离散点,在位移线图直线方程的帮助下确定相应点的坐标。

在Excel环境中,将凸轮回转一个周期分为36份,即每10取1个点,并且将对应的度数转化为弧度的值,如图3中的B、C栏。

图3 对应的度数转化为弧度的值

根据推杆的位移线图中OA、BC、DE、AB、CD段的直线方程。可以计算出在一个周期内的每转过l0°时对应点的OP的长度。

在D1单元格中输入公式:30/3.1415926*C1+A1,如图4;

图4 D1单元格中输入公式

在D10单元格中输入公式:36/3.1415926*C10+12,如图5;

图5 D10单元格中输入公式

在D25单元格中输入公式:-24/3.1415926*C25+68,如图6;

图6 D25单元格中输入公式

然后将D1的公式复制到D2→D6,在D7→D9中均输入30,D10的公式复制到D11→D12,在D13→D24中均输入36,D25的公式复制到D26→D36,最后结果如图7;最后根据(1)与(2)计算出相应点的XY轴坐标值,如图7中的E、F栏。

图7 基于Excel 的凸轮理论轮廓线坐标点计算

根据建模需要,可以在Z=0的平面内绘制凸轮理论轮廓,在计算出凸轮理论轮廓的36个离散点位置坐标后,可将X 、Y 、Z 轴的坐标值保存为纯文本格式,SolidWorks 打开数据文件时,软件会自动将前三列的数值作为X 、Y 、Z 轴的坐标值,如图8所示:

图8 凸轮理论轮廓线坐标值的文本格式

4 凸轮三维实体造型

4.1 生成理论轮廓线

在SolidWorks环境中,曲线的绘制方式有多种,其中有一个命令是"通过XYZ点的曲线",见插入-曲线-通过XYZ点的曲线,在出现的对话框中单击【浏览】按钮,在【文件类型】下拉列表框中选择Text Files类型文件,如图9所示。找到“凸轮理论轮廓线坐标.txt”文件,单击【打开】按钮,坐标数据在表中显

示出来,如图10所示。

图9 凸轮理论轮廓线坐标文本文件

单击【确定】按钮,在图中将凸轮理论轮廓线曲线用样条曲线绘制出来,如图11所示。

图10 通过凸轮理论轮廓点坐标生成理论轮廓曲线

图11 凸轮理论轮廓曲线

4.2 绘制实际廓线

选择【插入】/【草图绘制】命令,选择【前视基准面],选择曲线,选择【工具】/【草图绘制工具】/【等距实体】命令,输入推杆滚子半径,将曲线装换成草图曲线12所示。

图12 凸轮实际轮廓曲线

得到凸轮实际轮廓曲线,在原点处绘制凸轮轴孔,如图13所示。

图13 凸轮轴孔绘制

4.3 凸轮三维实体造型

以距离5mm双向拉伸草图轮廓,得到凸轮三维实体,如图14所示。

图14凸轮三维实体造型

单击【确定]按钮,然后右键单击特征管理器中的拉伸特征,左键单击打开特征属性对话框,单击【颜色】按钮打开实体属性对话框,单击【改变颜色】按

钮,选择相应的颜色后,单击【确定】按钮即可,如图15所示。

图15凸轮三维实体

5 滚子、推杆、支架和底座造型

5.1 滚子三维实体造型

滚子半径Rg=5mm,材质设置为“普通碳钢”,滚子草图如图16所示。以距离2mm双向拉伸草图轮廓,得到滚子三维实体,如图17所示。最后将滚子的颜色设置为红色,如图18所示。

图16 滚子草图

图17 滚子三维实体造型

图18 滚子三维实体

5.2 推杆三维实体造型

推杆的材质设置为“普通碳钢”,三维实体造型过程如图19-1~图19-9所示。最后通过设置特征属性将实体颜色改为青色。

图19-1 推杆草图1

图19-2推杆拉伸1

图19-3 推杆草图2

图19-4推杆拉伸2

图19-5 推杆草图3

图19-6 推杆拉伸3

图19-7 推杆草图4

图19-8 推杆拉伸4

图19-9 推杆三维实体

精讲solidworks系列化零件设计

标准文档 实用大全第8章系列化零件设计 【教学提示】 SolidWorks不仅提供了强大的造型功能,而且提供了实用性很好的产品设计系列化功能,包括方程式和数值连接、配置、系列零件设计表、库特征等。通过方程式和数组连接的方式可以控制特征间的数据关系。通过配置可以在同一个文件中同时反映产品零件的多种特征构成和尺寸规格。采用Excel表格建立系列零件设计表方式反映零件的尺寸规格和特征构成,表中的实例将成为零件中的配置。将建立的特征按照文件库的方式存储,即生成库特征,可以在零件造型中调用。 【教学要求】 ?能够利用方程式和数值关联体现设计意图 ?熟练掌握手工生成一个零件配置的方法 ?掌握建立系列化零件设计表的方法及其高级应用技巧 ?理解Solidworks库特征,能够建立、修改和使用库特征 8.1 方程式和数值连接 绘制草图时,可以利用“中点”、“相等”等几何关系添加相应的尺寸约束,但有时为了更明确设计意图,在草图中利用这些简单的几何关系往往无法实现。这种情况下,应该使用方程式明确设计意图。 8.1.1 尺寸名称 SolidWorks是一个全相关的设计软件,对任何一个尺寸的修改都会影响到如装配、工程图等方面。因此,在SolidWorks中每个尺寸都有一个特定的名称。 1. 显示尺寸名称 选择【工具】︱【选项】命令,出现【系统选项】对话框,单击【常规】选项,选中【显示尺寸名称】复选框,单击【确定】按钮,如图8-1所示。

2 图8-1 尺寸名称 2. 更改尺寸名称 (1)右击“D1”尺寸,在快捷菜单中选择【属性】命令,出现【尺寸属性】对话框, 将名称改为“outD”,单击按钮,如图8-2所示。 图8-2 更改尺寸名称 8.1.2 方程式 使用方程式可以对任何特征的草图尺寸或参数进行控制。 新建“法兰”零件,如图8-3所示。法兰包括3个特征:基体拉伸、孔、阵列(圆周)。

solidworks画凸轮技巧

凸轮。。。应该有。。。升程和回程。。所以你的槽。。应该是围绕圆柱图带旋转切不是标准圆。。。通 俗点就是3坐标都有偏移。 方法还是比较多的。。。。你可以选择。。 1。用包络。画法。。先在平面草绘出槽的中心线。。包络到圆柱体上去后。用扫描切除槽内材料。。即可。。。’ 2。可以用高级功能中的。。。。环形折弯。。。。跟一方法的区别在于这个直接折弯实体。。成一个 也圆柱。。意思就是你先画出槽的平面展开图。。再折弯就行了。 希望对你有所帮助。 直接利用运动曲线画凸轮(上篇) 已有 395 次阅读2012-2-22 15:30|系统分类:技术|曲线, 运动, SolidWorks, 谐波 概述:SolidWorks Toolbox插件里面带有凸轮插件,可以很方便地绘制各种简 单的盘形凸轮和线性凸轮。在此插件里面可以定义:摆线、谐波、正弦等9种运动曲线。但如果我们想利用一些自定义的运动曲线来生成相应的凸轮,应该如何做呢? 下面我将详细介绍如何利用一条已存在的凸轮展开线绘制凸轮。(包括线性凸轮、盘形凸轮和圆柱凸轮) 1.将曲线导入到SolidWorks草图中: 2.直接用此草图拉伸成实体,这是线性凸轮。如下图:

3.做两个坐标系,每个坐标对应另两种凸轮:

4.加入“弯曲”特征。

5.以下分别是盘形凸轮和圆柱凸轮,效果图如下:

6.三种凸轮运动状态见下面的动画。从动画中可以看出,三种凸轮的运动轨迹跟原草图中的运动曲线是一致的。 已同步至香港智诚科技的微博 利用motion生成共扼凸轮(下篇) - 利用跟踪轨迹生成凸轮 已有 235 次阅读2012-2-20 15:15|系统分类:技术|SolidWorks, motion, 共扼凸轮 智诚科技ICT Assistant Technical Manager Lenny Yang 1,概述,在上一篇文章里,我们讲解了如何利用motion生成运动仿真。现在,我将介绍如何使用motion运动仿真进行共扼凸轮的绘制。案例如下图: 2,在motion结果上,我们可以跟踪任意点相对任意物体的运动轨迹。而在凸轮运动中,凸轮的形状跟凸轮中心点相对旋转轴的运动轨迹是相似的。所以我们只要跟踪凸轮中心点的运动轨迹就可以得到正确的凸轮形状。

如何用solidworks2016进行凸轮的运动仿真分析

如何用Solidworks2016进行凸轮的运动分析 李犹胜(上海200000) 0、摘要 凸轮机构是机械设计中常用的结构,它的运动仿真模拟是凸轮设计过程中不可缺少的步骤。很多专业人士都对其做了研究,但是过程趋于复杂。较多的年轻工程师很难理解,本文通过一个简单的例子通过SolidWorks2016软件来说明凸轮机构仿真模拟的方法和步骤,浅显易懂。 1、关键词 凸轮机构、运动仿真、运动分析 2、概述 凸轮机构一般是由凸轮、从动件和机架三个构件组成的高副机构。凸轮通常作连续等速转动,从动件根据使用要求设计使它获得一定规律的运动。凸轮机构能实现复杂的运动要求,广泛用于各种自动化和半自动化机械装置中,几乎所有任意动作均可经由此一机构产生[1]。在设计凸轮机构时,凸轮机构的模拟运动分析将是一项必要而不可缺少的工作。它也是进行凸轮外形设计的辅助手段。 本文介绍了使用solidworks2016软件进行凸轮运动分析的基本步骤和使用技巧。 3、零件建模及装配 3.1、先用solidworks2016 将凸轮机构的零件建 模好,作为本文的一个例子,作者建立了下列零 件数模。 3.2 将上述零件导入到solidworks 2016装配体中, 具体操作为:步骤1、文件、新建、选择装配图模板,进入装配体模式 步骤2、导入凸轮轴 (1)选择插入部件 (2)在插入零部件窗口中选择“浏览”按钮。 (3)选择要插入的文件,按“打开”按钮; (4)将图形放在屏幕的任意位置,将其固定(如图2)。

步骤3、导入“凸轮” (1)重复按照步骤2的方法,将凸轮导入到装配体中。 (2)添加“同心”约束,添加后如图(3)添加“距离”约束添加后的结果如下 步骤4 、导入“滚轮” (1)重复按照步骤2的方法,将滚轮导入到装配体中。 (2)添加一个“机械约束”中的“凸轮配合”约束

Solidworks入门教程五配置以及系列零件设计表

Solidworks入门教程五配置以及系列零件设计表 置让:可以在单一的文件中对零件或装配体生成多个设计变化。配置提供了简便的方法来开发与管理一组有着不同尺寸、零部件、或其他参数的模型。配置的概念基本上和pro/e 的family table 相似。 配置的应用:配置主要有如下几个方面的应用: 1、在两个特征相同的零件中,某些尺寸不一样。如自己建立标准件库 2、同一零件的不同状态:如需要开模的零件。模具是一个配置,加工后是一个配置 3、相同产品的不同系列的需要:如同一产品中,对某零件、部件使用不同的方案。 4、特定的应用需要:可以简化模型,应用于零件的有限元分析(FEM);另外,可能需要特殊的模型用于快速成型(RP) 5、改善系统性能:对于很复杂的零件,可以考虑压缩一些特征,以便于其他特征的建立。 6、装配方面的考虑:当装配零件很多,文件很大时,可以考虑压缩一些特征,便于装配 配置的生成方法:要生成一个配置,先指定名称与属性,然后再根据您的需要来修改模型以生成不同的设计变化 1、在零件文件中,配置使您可以生成具有不同尺寸、特征和属性的零件系列。 2、在装配体文件中,配置使您可以生成 ●通过压缩或隐藏零部件来生成简化的设计 ●使用不同的零部件配置、不同的装配体特征参数或不同的尺寸来生成装配体系列

1.手工生成: 2.采用系列零件设计表: 配置的有关术语: ●压缩/解除压缩:不要某特征或不要某零部件(装配中)。当一个特征或零件不压缩时,系统把它当作不存在来处理,并非真的删除。 ●设计表:利用设计表来控制系列零件的尺寸值。同时,可以定义特征的显示状态(压缩/不压缩) ●使用配置:在零件或装配中可以使用配置,显示不同的配置。而工程图不可以建立配置,但可以使用零件或装配的不同配置 §5.1 手工生成配置-改变尺寸值 我们利用下面的零件生成2个配置,简单说明以下制作过程。 1、单击设计树底部的配置标签:

SolidWorks模具设计,很简单

第四章.SolidWorks模具设计应用 在SolidWorks软件的各个版本中都具有一定的模具设计功能,到了2003版,这种功能进一步得到增强,特别是在一些分模线比较直观的零件分模设计中,型腔和型芯的创建只需要几步就可以完成,对一些较复杂的产品零件,也可以通过系统提供的功能逐步完成。本章中我们以两个产品模型为例来说明SolidWorks软件在分模设计过程中的应用。 4.1安装盖的模块设计 下面我们对图 4.1显示的零件进行模具型腔模块的设计,通过说明了解在SolidWorks 中设计型芯和型腔的基本方法。 图4.1 本节中的设计步骤大致如下: 对零件进行比例缩放 建立外分模面并在装配体中建立型芯和型腔模块 缝合得到完整分模面 通过拉伸完成成形型腔创建 4.1.1 建立分模面 首先,需要对调入的模型进行收缩率的设定,通过比例缩放功能来实现,它可以按照零件沿三个坐标轴方向指定相同的或不同的缩放系数,来对零件进行收缩处理,在本例中我们通过比例缩放功能将零件放大2%来抵消零件成型时的收缩尺寸。 接着通过使用延展曲面功能从零件的分模线向外创建分模面,使用一个零件上的平面或基准面作为参考平面,通常参考平面与零件成形时的开模方向垂直。 最后,通过缝合曲面功能将外分模面与模型表面提取出的面缝合在一起成为完整的分模面。 具体创建步骤如下。 1.打开零件 单击主菜单中的文件→打开命令,设置打开的文件类型为Parasolid(*.x_t)格式,选中midpan.x_t文件打开,然后保存为同名的SolidWorks文件格式,模型如图4.1所示。 2.零件放大 单击主菜单中的插入→特征→比例缩放命令或直接从工具条中单击图标,进

Solidworks圆柱凸轮教程

Solidworks圆柱凸轮绘制教程由于Solidworks前期版本不支持公式曲线,绘制圆柱凸轮一直比较麻烦,很多使用者到处查阅资料,寻求方法,非常浪费宝贵的时间,笔者本人也曾经一度因此努力,还好终于有所收获,虽不尽如人意,但总算得到了解决问题的办法,现在总结于下,并对不同方法进行比较,可能由于笔者也是学习阶段,水平有限,论述存在或多或少的不足,请大家多提宝贵意见,以便笔者提高。本教程将对相关曲线绘制方法、成型方法进行总结比较,希望对大家有所帮助。 一、曲线绘制方法 大家可能都知道,要想凸轮工作时冲击小,运行平稳,需要使凸轮表面升程曲线为正弦曲线,而软件本身并不支持公式,那么用什么方法来实现呢?笔者总结其方法,有如下四种,先不论优劣,一一表述: 1、曲线导入法 这种方法是一种比较实用的方法,用其它支持公式曲线的软件(比如CAD、CAXA等)生成需要的正弦曲线,保存为DWG格式,再导入Solidworks中。此方法比较简单,而且与笔者介绍的下一方法结果有类似,在此不多介绍了。 2、螺旋线转化法 这种方法是一种比较高级的方法,想出这种办法的人对软件本身领悟较深,是个高手,在此表示感谢!这种方法在后面的成型教程中

有较详细介绍。 3、多点样条拟合法 这种方法是采用多点逼近,样条拟合的方法。具体来说就是利用通过X、Y、Z点的曲线命令来做,先用数学方法计算出多个点的X、Y、Z坐标(可以用excel软件实现,方法中用到公式及VBA知识,有兴趣的朋友可以自己研究,当然也可用其它方法实现),再将这些点的坐标导入Solidworks中进行曲线拟合,如果数量足够多,精度也非常高。但缺点是比较麻烦,并不适合快速制图,在此不多介绍。4、直线投影法 这种方法是用一根直线进行投影,方法简捷,但曲线并不是十分完美,,适合在要求精度不是很高的情况下使用,在本教程下面的内容中有较详细的介绍。 二、三维成型方法 对于如何利用已经存在的曲线,在已经存在的特征或者实体上切割出槽或者叠加上凸台,软件中有很多命令,比如:拉伸、旋转、扫描、放样、包覆、圆顶等,在这里我觉得能用上的有拉伸、扫描和包覆,也许还有其它命令,笔者不了解,不做表述。 1、拉伸法 这个命令相信大家都不陌生,它可以和弯曲命令配合来实现圆柱凸轮,但由于一些原因,并不实用,教程第一种方法有简单介绍。2、扫描法 这种方法也很常见,但并不是每个人对它的了解都是那么到位,

SolidWorks中系列零件库的创建及调用方法

SolidWorks中系列零件库的创建及调用方法 在使用SolidWorks进行产品设计时,常用的标准件(如螺栓、螺母、垫圈等)通常可以在安装了SolidWorksToolbox插件后调出使用,而许多标准件在Toolbox并不存在,不能从插件中直接调用。在用到这些零件时,设计人员常常因其尺寸、规格不同而进行重复设计,效率低、工作量大。针对这一问题,本文以“外六角螺塞”为例,详细介绍系列零件库的创建及使用方法。 1.创建默认零件 按照重型机械标准JB/ZQ4450-1997的“外六角螺塞M20×1.5”设计默认零件。 (1)新建一个零件文件,进入草图绘制状态。 (2)以“前视基准面”为草绘基准面,绘制草图。选择下拉菜单“视图/尺寸名称”,在绘图区草图中改变尺寸名称,如图1所示。

(3)选择特征工具栏上的“旋转”命令,建立“旋转1”特征(见图2)。

(3)以图2左端面为基准,绘制草图,选择特征工具栏上的“拉伸”命令,建立“凸台-拉伸1”特征,双击设计树中的“凸台-拉伸1”特征,在绘图区零件上修改尺寸名称,如图3所示。将文件保存为“外六角螺塞JB4450-1997.SLDPR T”(螺纹特征创建略)。

2.创建系列零件设计表 (1)新建MicrosoftExcel工作表,在单元格A1中输入“规格”,分别双击SolidWorks 设计树中的“旋转1”,“凸台-拉伸1”特征,在绘图区中选择零件尺寸,在弹出的对话框中将 主要值分别复制、粘贴到B1K1单元格。 (2)按国标输入每种规格的螺塞所对应的参数值,将文件保存为“外六角螺塞设计 表.xls”,如图4所示。

盘形凸轮的四种设计方法

盘形凸轮的四种设计方法 深圳市百特兴科技有限公司 周杰平 摘要:详细介绍运用SolidWorks 绘制盘形凸轮的不同方法,包括插件法、解析法、折弯法及仿真法。 关键词:盘形凸轮,插件法,解析法,折弯法,仿真法,余弦加速度, SolidWorks,EXCEL。 凸轮/连杆机构以其快速、稳定的特点,在很多的场合尤其是传统的制程设备中得以运用。但其缺点也很明显:适应性较差,结构相对比较复杂,开发周期长,凸轮加工精确要求比较高等,非标设备大多由伺服马达/步进马达、丝杆/同步带、气缸/油缸等替代。近年来,由于对设备产能要求越来也高,传统的凸轮/连杆机构又受到用户青睐。以动力电池制造设备中塑封制程为例。进口设备核心机构采用凸轮/连杆机构,产能在140件/分钟以上,国产设备采用伺服/丝杆驱动,产能则在50件/分钟左右。更为重要的是前者用于制程的有效时间更长,确保了品质的可靠性。凸轮的设计将成为机构设计工程是不可缺少的技能。 本文以盘形凸轮为研究对象,分别介绍几种不同的设计方法。 一、基本参数 1.1、凸轮基本参数 项目 代号 参数值 基圆直径 D 150 凸轮厚度 W 15 辊子直径 d 25 升程 h 50 表1 1.2、从动杆运动规律 动作 运动角度数 (Φ) 起始角度位置 终止角度位置 结束半径 运动规律 推程 120 0 120 125 余弦加速度 远休止角 30 120 150 125 回程 90 150 240 75 余弦加速度 近休止角 120 240 360 75 表2 注:余弦加速度(简谐运动)方程: S=h*[1-cos(πφ/Φ)]/2

图1 二、SolidWorks 插件法 2.1、如图2,打开SolidWorks,新建零件,关闭草图。菜单栏Toolbox -> 凸轮 如菜单栏无Toolbox,先加入插件。 图2 图3 2.2、设置。如图3 凸轮类型为圆形,推杆类型为平移,如果是偏心的,可作相应的选择;开始半径为基圆半径,开始角度根据<表2>填写;旋转方向为顺时针 2.3、运动如图4

如何用Solidworks生成凸轮

如何用Solidworks自带的工具生成凸轮在Solidworks中生成凸轮,一共可以分为三大步骤。 1.基本设置 其中: 单位:公制 凸轮类型:圆形

推杆类型:平移 推杆直径:可以用不输入,因为这个可以在后面的建模中自行设计和添加。 开始半径:理论上为基圆半径。但是,考虑到加工凸轮时的刀具半径,需要有一个刀补,你需要的是直径120,半径为60的基圆,在这里可以输入69.525 开始角度:0 旋转方向:可以根据需要选择。 2.运动设置: 第一次设计,可以单击添加,弹出运动细节对话框,在这个对手框里,选择运动类型,是进程还是停顿,输入结束半径,度运动,是指这一个运动过程的转运角度,即可生成新的运动过程。

下图是第一个进程,因为你需要的进程是45mm,理论上结束半径可以输入105,(即基圆半径60+45=105.),同样需要考虑刀具半径补偿,在这里,我输入的是114.525mm,在转运120度后,完成进程运动。

再次单击添加,生成第二个运动细节,即远程停止。 第三次添加,生成第三个运动细节,回程。注意,在回程时,结束半径就是前面的起始半径,即考虑了刀补的基圆半径。度运动可以酌情输入。我这里输入的是75度完成回程。

第四次添加,完成近程停止。同样,度运动可以酌情输入,停止的角度范围。 需要注意的是,下图中的度运动各角度之和一般要等于360度,即总运动这个地方要是360度闭环。否则,会出现包容等。这不是我们所需要的。

另外,运动设置完成后,也可以在运动类型下的项目中单击右键,选编辑运动项目,来修改所输入的结束半径和度运动数值。

SolidWorks零件设计表运用参数化设计

SolidWorks零件设计表运用参数化设计 1.首先以现有零部件为基准。例如:一个套筒,在现实使用中,套筒为铸铝成型,所以套 筒的长度在实际产品配对中,其长度L是多种多样的。示例中:默认L=10mm。 2.选择SW中插入→表格→设计表,进入界面。如下图所示:

3.默认选择自动生成,选择所需草图特征,确认后进入设计表格。如下图所示: 4.选中表格中“普通”右击选择“设置单元格格式”选择“常规”进行确认,将表格中: “普通”转换零件尺寸数值。(如同Excel表格操作一样)

5.在本示例中,我们所关心的只是套筒L长度,所以可以把表格中后面三项“套筒的内径”、 “套筒的外径”以及“旋转生成所需的中心轴”草图特征删除。同时为便于查看表格,可以对表格进行优化(根据个人习惯,无非就是单元格的插入、删除、输入而已)。如下图所示: 6.依次在表格中输入我们所需要的参数值,示例中,我们取套筒五种型号,从P01到P05, 长度依次递增10mm,(注:在输入新的L值时,我们输入的是数字但有可能会显示出文字“普通”,只需参照步骤4设置单元格格式即可调节成数值)如下图:

7.到此为止,我们设计表中的参数已设置好,只需在SW界面中,鼠标点击设计表以外的 操作区域,设计表将会自动保存。弹出如下对话框,点击确定即可! 8.回到SW界面设计树中,选择“配置”界面,如下图所示。可以清楚的看到我们刚刚在 设计表中所输入的参数值。可以把不需要的配置删除(例如:默认这个配置),保留我们所需。

9. 点击我们所做的配置,可以相应得到套筒的不同规格长度L 。如下图所示: 1)P01,L=10mm

solidworks的配置以及系列零件设计表

系列零件设计表 §5.0 概述 配置:可以在单一的文件中对零件或装配体生成多个设计变化。配置提供了简便的方法来开发与管理一组有着不同尺寸、零部件、或其他参数的模型。配置的概念基本上和pro/e的family table 相似。 配置的应用:配置主要有如下几个方面的应用: 在两个特征相同的零件中,某些尺寸不一样。如自己建立标准件库 同一零件的不同状态:如需要开模的零件。模具是一个配置,加工后是一个配置相同产品的不同系列的需要:如同一产品中,对某零件、部件使用不同的方案。 特定的应用需要:可以简化模型,应用于零件的有限元分析(FEM);另外,可能需要特殊的模型用于快速成型(RP) 改善系统性能:对于很复杂的零件,可以考虑压缩一些特征,以便于其他特征的建立。 装配方面的考虑:当装配零件很多,文件很大时,可以考虑压缩一些特征,便于装配. 配置的生成方法:要生成一个配置,先指定名称与属性,然后再根据您的需要来修改模型以生成不同的设计变化 在零件文件中,配置使您可以生成具有不同尺寸、特征和属性的零件系列。 在装配体文件中,配置使您可以生成 通过压缩或隐藏零部件来生成简化的设计 使用不同的零部件配置、不同的装配体特征参数或不同的尺寸来生成装配体系列 1.手工生成: 2.采用系列零件设计表: 配置的有关术语: 压缩/解除压缩:不要某特征或不要某零部件(装配中)。当一个特征或零件不压缩时,系统把它当作不存在来处理,并非真的删除。 设计表:利用设计表来控制系列零件的尺寸值。同时,可以定义特征的显示状态(压缩/不压缩) 使用配置:在零件或装配中可以使用配置,显示不同的配置。而工程图不可以建立配置,但可以使用零件或装配的不同配置.

solidworks画凸轮技巧

直接利用运动曲线画凸轮(上篇) 曲线, 运动, SolidWorks, 谐波 概述:SolidWorks Toolbox插件里面带有凸轮插件,可以很方便地绘制各种简单的盘形凸轮和线性凸轮。在此插件里面可以定义:摆线、谐波、正弦等9种运动曲线。但如果我们想利用一些自定义的运动曲线来生成相应的凸轮,应该如何做呢? 下面我将详细介绍如何利用一条已存在的凸轮展开线绘制凸轮。(包括线性凸轮、盘形凸轮和圆柱凸轮) 1.将曲线导入到SolidWorks草图中: 2.直接用此草图拉伸成实体,这是线性凸轮。如下图:

3.做两个坐标系,每个坐标对应另两种凸轮: 4.加入“弯曲”特征。

5.以下分别是盘形凸轮和圆柱凸轮,效果图如下: 6.三种凸轮运动状态见下面的动画。从动画中可以看出,三种凸轮的运动轨迹跟原草图中的运动曲线是一致的。 已同步至香港智诚科技的微博 利用motion生成共扼凸轮(下篇) - 利用跟踪轨迹生成凸轮 已有 235 次阅读2012-2-20 15:15|系统分类:技术|SolidWorks, motion, 共扼凸轮 智诚科技ICT Assistant Technical Manager Lenny Yang 1,概述,在上一篇文章里,我们讲解了如何利用motion生成运动仿真。现在,我将介绍如何使用motion运动仿真进行共扼凸轮的绘制。案例如下图:

2,在motion结果上,我们可以跟踪任意点相对任意物体的运动轨迹。而在凸轮运动中,凸轮的形状跟凸轮中心点相对旋转轴的运动轨迹是相似的。所以我们只 要跟踪凸轮中心点的运动轨迹就可以得到正确的凸轮形状。

基于SolidWorks二次开发的凸轮廓线精确设计说明

基于SolidWorks二次开发的凸轮廓线精确设计 本文介绍了以直动滚子从动件盘形凸轮机构为例,先用SolidWorks自带的Visual Bisic编辑宏,精确绘制凸轮的轮廓曲线,并拉伸成型,然后用SolidWorks插件COSMOSMotion对凸轮机构进行运动仿真,生成推杆的位移和速度曲线 引言 凸轮机构是由凸轮、从动件和机架组成的高副机构,凸轮具有曲线轮廓或凹槽,通常作连续等速转动,从动件则按预定运动规律作间歇(或连续)直线往复移动或摆动。凸轮机构的特点是结构简单、紧凑、工作可靠,只要凸轮廓线设计合理,便可使从动件按任意给定的规律运动。在精密机械特别是在自动控制装置和仪器中,应用非常广泛。 当从动件的运动规律和凸轮的基圆半径确定后,凸轮廓线的设计方法通常有作图法和解析法。作图法简便、直观,但作图误差较大,难以获得凸轮廓线上各点的精确坐标,只能用于低速或不重要的场合;对于高速凸轮或精确度要求较高的凸轮,需用解析法设计,并借助于计算机编程软件精确地计算出凸轮廓线上各点的坐标值,以适合在数控机床上精确加工。 1 问题的提出 已知推杆的运动规律为:当凸轮转过60°时,推杆等加速等减速上升l0mm;凸轮继续转过120°时,推杆停止不动;凸轮再继续转过60°时,推杆等加速等减速下降l0mm;最后,凸轮转过所余的120°时,推杆又停止不动。设凸轮逆时针方向等速转动,凸轮理论廓线圆半径r0=50mm,推杆滚子半径rg=l0mm,设计满足该运动要求的凸轮廓线。 2 对心直动滚子从动件盘形凸轮机构数学模型的建立 图1 凸轮机构运动简图 在如图l所示的对心直动滚子从动件盘形凸轮机构中,选取如图1所示的极坐标系,B0点为凸轮理论廓线的起始点。当凸轮转过角δ时,推杆相应地产生位移s。根据反转法原理,此时滚子中心应处于B点,则轮理论廓线的直角坐标参数方程为

solidworks画凸轮技巧

直接利用运动曲线画凸轮(上篇) 曲线,运动,SolidWorks ,谐波 概述:SolidWorks Toolbox插件里面带有凸轮插件,可以很方便地绘制各种简单的盘形凸轮和线性凸轮。在此插件里面可以定义:摆线、谐波、正弦等9种运 动曲线。但如果我们想利用一些自定义的运动曲线来生成相应的凸轮,应该如何 做呢? 下面我将详细介绍如何利用一条已存在的凸轮展开线绘制凸轮。(包括线性凸轮、 盘形凸轮和圆柱凸轮) 1?将曲线导入到SolidWorks草图中: 2.直接用此草图拉伸成实体,这是线性凸轮。如下图: I

4.加入“弯曲”特征。

◎cm ±i ?血注■ 国方眩 != ?a 0imM 雨 0 上《M3E 0 力!UM ?MIA0 A 选中实体』 0U?*{ ??*D 0盹 OMks FliHKattt) L ▼ ay 方親式 扌三HH 妹碇〉 0IHUE 冷 而 0上幅冷而 邑(-)XS! 人坐标蓟 fi VB3 VM . m 苴它设置一样,这里选中坐 标系2。则有不同的效果。卩 苴它设置一样,这里选中坐 。则有不同的戒果。卩

5.以下分别是盘形凸轮和圆柱凸轮,效果图如下: 6.三种凸轮运动状态见下面的动画。从动画中可以看出,三种凸轮的运动轨迹跟原草图中的运动曲线是一致的。 O 已同步至香港智诚科技的微博 利用motion生成共扼凸轮(下篇)-利用跟踪轨迹生成凸轮 已有235 次阅读2012-2-20 15:15 | 系统分类:技术| SolidWorks , motion ,共扼凸轮 智诚科技ICT Assistant Technical Manager Lenny Yang 1,概述,在上一篇文章里,我们讲解了如何利用motion生成运动仿真。现在, 我将介绍如何使用motion运动仿真进行共扼凸轮的绘制。案例如下图:

精讲solidworks系列化零件设计(新)

所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执。 第8章系列化零件设计 【教学提示】 SolidWorks不仅提供了强大的造型功能,而且提供了实用性很好的产品设计系列化功能,包括方程式和数值连接、配置、系列零件设计表、库特征等。通过方程式和数组连接的方式可以控制特征间的数据关系。通过配置可以在同一个文件中同时反映产品零件的多种特征构成和尺寸规格。采用Excel表格建立系列零件设计表方式反映零件的尺寸规格和特征构成,表中的实例将成为零件中的配置。将建立的特征按照文件库的方式存储,即生成库特征,可以在零件造型中调用。 【教学要求】 ?能够利用方程式和数值关联体现设计意图 ?熟练掌握手工生成一个零件配置的方法 ?掌握建立系列化零件设计表的方法及其高级应用技巧 ?理解Solidworks库特征,能够建立、修改和使用库特征 8.1 方程式和数值连接 绘制草图时,可以利用“中点”、“相等”等几何关系添加相应的尺寸约束,但有时为了更明确设计意图,在草图中利用这些简单的几何关系往往无法实现。这种情况下,应该使用方程式明确设计意图。 8.1.1 尺寸名称 SolidWorks是一个全相关的设计软件,对任何一个尺寸的修改都会影响到如装配、工程图等方面。因此,在SolidWorks中每个尺寸都有一个特定的名称。 1. 显示尺寸名称 同是寒窗苦读,怎愿甘拜下风! 1

所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执。 同是寒窗苦读,怎愿甘拜下风! 2 选择【工具】︱【选项】命令,出现【系统选项】对话框,单击【常规】选项,选中 【显示尺寸名称】复选框,单击【确定】按钮,如图8-1所示。 图8-1 尺寸名称 2. 更改尺寸名称 (1) 右击“ D1”尺寸,在快捷菜单中选择【属性】命令,出现【尺寸属性】对话框, 将名称改为“outD ”,单击按钮,如图8-2所示。 图8-2 更改尺寸名称 8.1.2 方程式 使用方程式可以对任何特征的草图尺寸或参数进行控制。 新建“法兰”零件,如图8-3所示。法兰包括3个特征:基体拉伸、孔、阵列(圆周)。

基于Excel和Solidworks画摆杆凸轮机构

基于Excel 和solidworks 画摆杆凸轮机构 T1213-6 20120130226 李雄雄 题目:试以作图法设计一摆动推杆盘形凸轮机构的凸轮轮廓曲线。已知OA l =55mm,0r =25mm,AB l =50mm,r r =8mm.凸轮逆时针方向等速转动,要求当凸轮转过180°时,推杆以余弦加速度运动向上摆动m ?=25°;转动一周中的其余角度时,推杆以正弦加速度运动摆回原位置。 解: 第一步:理论分析 1、理论公式分析: (1)余弦加速度推程运动规律: 0180δ≤≤ 0[1cos(/)]/2m ??πδδ=- (2) 正弦加速度回程运动规律: 180360δ≤≤ 00[1(()/')sin(2()/')/(2)]m ??δπδπδπδπ=--+- 推杆初始角度计算: 222 00arccos 2a l r al ?+-= 任取摆动滚子推杆盘型凸轮理论廓线上一点B (x,y ) 00sin sin()cos cos()x a l y a l δδ??δδ??=-++??=-++? 任取实际廓线上一点B'(x,y ) 'cos 'sin r r x x r y y r θθ=+??=+?

2222sin (/)/(/)(/)cos (/)/(/)(/)dx d dx d dy d dy d dx d dy d θδδδθδδδ?=+??=-+?? 推程运动 00sin(/)/(2)m d ?πδπδδδ=推 回程运动 000' 2()[cos 1]'m d d v ?πδδ?δδδ-=-=回 0cos cos()(1)dx a d l d δδδ???=-+++ 0s i n s i n ()(1) d y a d l d δδδ?? ?=-++++ 第二步:利用Excel 作出角位移φ 方法:利用公式222 00arccos 2a l r al ?+-=可求出φ0=27°。又由题目已知 在Excel 中将公式 Φm=25°。 (0180δ≤≤) 00[1(()/')sin(2()/')/(2)]m ??δπδπδπδπ=--+-, (180360δ≤≤) 输入表格中,指定任意两行,一行为自变量δ,其中δ的取值为0°,15°,30°,45°…………360° 另一行为变量φ,再利用单变量公式依次可求出角位移δΣ,不同角度所对应的角位移如下表所示:

solidworks 系列零件设计表

< >\samples\tutorial\designtables M i cr osof t Excel z z z z z z 1. < >\samples\tutorial\designtables\tutor1.sldprt 2. --Feat ur eM anager Extrude1 1 Feat ur eM anager F2 3. Box Enter @ 4. Extrude2 -1Hole_in_knob 1 Outside_corners () ()

5.tutor3.sldprt 1.Feat ur eM anager FeatureManager 2. 2 31 3.60m m 4.Pr oper t yM anager 5. > 1.(70 ) 2. Pr oper t yM anager knob_dia 3. 4.

5. Pr oper t yM anager Ctrl+S 1.Feat ur eM anager 2. 3. (60) Delete 4. 5.

1. 2. 3 2 Pr oper t yM anager 3. 4. / Pr oper t yM anager 1./ 2. Pr oper t yM anager 3. 4. 5. 6. M i cr osof t Excel () ()

1.2. Feat ur eM anager FeatureManager 3. z z 1:1 z 4.Z Shift+Z 5. anager 1.> > 2. Pr oper t yM anager z z z 3. Excel Excel SO LI D W O RKS A3 B2 4. (120) B2 B3 C2

基于solidworks凸轮设计

基于Solidworks 的凸轮参数化设计与 COSMOS 分析 作者:虞静指导教师:冯涛 摘要:在工程应用中选择一种高要求的凸轮,经过理论分析得出了这种凸轮设 的数学模型,通过 Solidworks 的应用,完成凸轮的参数化三维设计,保证了凸轮设计的科学性。通过 Solidworks COSMOS 的仿真,验证凸轮设计的结果是否达到要求,为凸轮的设计的可靠性提供了依据。凸轮设计步骤多、涉及参数多,给设计工作者带来很多的不便,降低了设计效率。通过 SolidWorks 实现凸轮机构的参数化设计,从而提高开发效率,对凸轮进行cosmos分析得到凸轮变形、固有频率等,为凸轮设计提供依据。 关键词:SolidWorks;盘形凸轮;参数化设计; COSMOSWorks;VB Parameterizedly Design Cam Based on Solidworks and Simulation by COSMOSworks Abstract:Choose a strict cam from project,Through theoretical analysis derived a mathematical model of this cam designment.Through the application of Solidworks,complete the three-dimensional design parameter Cam,ensure the scientific essense of cam design.Through the simulation by Solidworks COSMOSMotion,verify whether the results of cam design meet the requirements,this provides the basis for the reliability. Cams’ design steps are too many and involving lots of parameters. It brings a lot of inconvenience to design workers and reduce the design efficiency. Through using SolidWorks can realize the parameter optimization design of cam mechanism, improve the efficiency of development. Cosmos analyses cam mechanism the deformation ofcam, natural frequency and so on will be getting. It will provide the basis for cam design. Keywords:Solidworks;disc cams; parameter design;COSMOS Works; VB

精讲solidworks 系列化零件设计

第8章系列化零件设计 【教学提示】 SolidWorks不仅提供了强大的造型功能,而且提供了实用性很好的产品设计系列化功能,包括方程式和数值连接、配置、系列零件设计表、库特征等。通过方程式和数组连接的方式可以控制特征间的数据关系。通过配置可以在同一个文件中同时反映产品零件的多种特征构成和尺寸规格。采用Excel表格建立系列零件设计表方式反映零件的尺寸规格和特征构成,表中的实例将成为零件中的配置。将建立的特征按照文件库的方式存储,即生成库特征,可以在零件造型中调用。 【教学要求】 能够利用方程式和数值关联体现设计意图 熟练掌握手工生成一个零件配置的方法 掌握建立系列化零件设计表的方法及其高级应用技巧 理解Solidworks库特征,能够建立、修改和使用库特征 8.1 方程式和数值连接 绘制草图时,可以利用“中点”、“相等”等几何关系添加相应的尺寸约束,但有时为了更明确设计意图,在草图中利用这些简单的几何关系往往无法实现。这种情况下,应该使用方程式明确设计意图。 8.1.1 尺寸名称 SolidWorks是一个全相关的设计软件,对任何一个尺寸的修改都会影响到如装配、工程图等方面。因此,在SolidWorks中每个尺寸都有一个特定的名称。 1. 显示尺寸名称

选择【工具】︱【选项】命令,出现【系统选项】对话框,单击【常规】选项,选中【显示尺寸名称】复选框,单击【确定】按钮,如图8-1所示。 图8-1 尺寸名称 2. 更改尺寸名称 (1)右击“D1”尺寸,在快捷菜单中选择【属性】命令,出现【尺寸属性】对话框, 将名称改为“outD”,单击按钮,如图8-2所示。 图8-2 更改尺寸名称 8.1.2 方程式 使用方程式可以对任何特征的草图尺寸或参数进行控制。 新建“法兰”零件,如图8-3所示。法兰包括3个特征:基体拉伸、孔、阵列(圆周)。2

SolidWorks_管道设计基础

第7章管道系统设计 SolidWorks Routing 是 SolidWorks 专门用于管路系统和电缆设计的一个插件,完全与SolidWorks 无缝集成。利用 SolidWorks Routing,用户可以快速、高效地完成大部分用于气体和液体传输设备的管路系统。 本章主要介绍SolidWorks Routing 插件的管道和管筒设计功能,包含如下内容: 管路设计介绍 管道零件和管路附件库 管道设计相关知识 管道和管筒设计步骤 7.1 SolidW orks Routing 简介 利用 SolidWorks Routing,用户可以完成管道路线、管筒路线以及电力电缆和线束的三 维建模,并将三维模型在工程图中应用,从而建立管道和附件的下料表以及电线电缆的二维线束工程图。 7.1.1 管线系统的主要功能 SolidWorks Routing 具有如下功能: 直观地创建和修改线路系统。 在复杂的产品中迅速进行管筒、管道、电力电缆和缆束系统的 3D 参数建模。 直接或通过线夹和吊架自动设计管筒、软管、电力电缆和缆束段。 SolidWorks 提供了管筒、管道、电力电缆和缆束零部件库。 自动创建包含完整信息(包括管道和管筒线路的切割长度)的工程图和材料明细 表。 7.1.2 管线系统的分类 SolidWorks Routing 管线系统插件可以完成如下系统的设计,如图7-1 所示。 管道:一般指硬管道,特别指那些需要安装才能完成的管道系统,例如,通过螺 纹连接、焊接方法将弯头和管道连接成的管道系统。在SolidWorks 中,管道系统称为“Pipe”。 管筒:一般用于设计软管道系统,例如折弯管、塑性管。此类管道系统中,不需要在折弯的地方添加弯头附件。在SolidWorks 中的管筒称为“Tube”。 电缆和缆束:用于完成电子产品中三维电缆线设计和工程图中的电线清单或连接信息。 图7-1 管线系统的分类 7.1.3 启动SolidWorks Routing

基于Solidworks的机械零件参数化设计方法

基于Solidworks的机械零件参数化设计方法 【摘要】三维设计软件是机械设计中常用的技术软件,为机械零部件的结构设计提供了十分方便直观的软件开发平台。Solidworks是一款具备强大参数化建模功能的三维设计软件,在Solidworks的软件环境下,对机械零件的参数化设计方法展开讨论,针对性的分析了各种设计方法的技术特点,为机械零件的参数化设计人员提供了有价值的技术参考。 【关键词】Solidworks 机械零件参数化设计设计方法 机械产品因为其几何造型的可视性使得设计软件得以替代人工制图,在产品造型设计和零部件设计阶段起到了巨大的作用。在当前的机械行业,同类型产品往往更新换代的速度相当的快,因此,不同代的产品无论是在造型设计还是零部件的采用上都具有一定的延续性,因此,针对零部件几何形状特征的相似点进行零部件的参数化设计可以大幅度的缩减设计周期,提高设计效率。对于机械产品而言,参数化设计主要是集中在对零部件的图纸设计上,因此零件模版的作用就比较重要,通过建立通用系数高、系列化脉络清晰和标准化程度搞的定型产品的参数化模型,可以基于模型参数的修改,达到对零部件的重新设计。在实际的设计工作中,通过约束机械零部件模型的几何约束、力学性能约束以及运动状态约束,可以得到一个参数化的形状特征,这一系列的参数化模型的构造过程都可以基于Solidworks软件设计开发平台来展开。 在Solidworks三维设计软件中,通过软件内置的非全约束的参数化实体特征建模与曲面建模相结合的技术,可以全方位的实现零件的参数化设计工作。实际设计工作中,主要采用两种方法实现零件的参数化模型的建立:首先,是基于软件内部的参数化表格管理技术,创建零部件的参数化装配体模型;其次是基于计算机编程语言对Solidworks进行二次开发,是的参数化设计得以用程序实现。两种方法在实际的机械零件的参数化设计中都具有广泛的应用,本文将着重阐述基于Solidworks的机械零件的参数化设计方法,为机械零部件的参数化设计提供新的设计思路。 1 基于设计变量的零件参数化设计 三维设计软件是机械设计中最倚重的设计工具,因此,在三维设计软件中都搭载了强大的几何特征造型的功能模块。在Solidworks中,基于零件的二维模型轮廓,再通过旋转、镜像、拉伸、填充和扫掠等的特征建模手段可以较好的构建零件的三维模型,并且通过Solidworks特有的数据配置功能生成零件的参数设计变量文档,通过对设计变量文档进行修正,可以实现参数化设计的人机交互操作,在Solidworks的软件平台上可以进一步开发出纯界面操作的零件参数化设计平台。 对于特征明显的轴类零件,设计变量较小,而且可以通过简单的特征模型操作实现参数化设计,是比较适合进行基于设计变量的零件参数化设计的;对于几

相关文档
相关文档 最新文档