文档库 最新最全的文档下载
当前位置:文档库 › 轧制的基本概念

轧制的基本概念

轧制的基本概念
轧制的基本概念

1轧制的基本概念

1轧制的定义:靠旋转的轧辊与轧件间的摩擦力将轧件拖入辊缝使之受到压缩产生塑性变形的过程

2轧钢的原料:

钢锭和连铸坯

3产品:钢材

4分类:

特种类型钢,型钢,板带钢,钢管,

型钢:圆钢。方钢,角钢

板带钢:带钢,钢板

钢管:方管,圆管,异型管

特殊类型钢:周期断面刚

钢锭内部结构:外层:细晶粒带。中间:柱状晶粒带。内部:苯环晶带

5轧制的目的:

获得一定尺寸形状的钢材

是钢材的性能得到改善

2轧制过程的基本参数

1变形区域参数

入口是指进入变形区的方向

出口是指离开变形区的方向

入口高度H,出口高度h入口宽度B出口宽度b变形区长l咬入角@轧辊半径R

2变形量的表示

a绝对变形量表示

高度方向:压下量Δh=H-h

宽度方向:宽展量Δb=b-B

长度方向:延伸量△l=l-L

绝对变形量用于工程计算不能反映物体的变形程度

b相对变形量

高度方向:相对压下量ε1=Δh/H*100%

宽度方向:相对宽展量ε2=Δb/B*100%

长度方向:相对延伸量ε3=Δl/L*100%

相对变形量表示物体的变形程度,但直观性差

c变形系数

高度方向:压下系数η=H/h

宽度方向:宽展系数ω=b/B

长度方向:压下系数μ=l/L

能说明金属变形前后的尺寸变化倍数关系

3体积不变定律

V1=v2

H*B*L=h*b*l

F*0*L=F*N*l

l/L=F0/FN=μ

4总延伸系数,道次延伸系数,平均延伸系数

μ总=μ1*μ2*μ3*。。。。。。μn

μ平=n√μ总

5变形区参数间的几何关系

Δh=D*(1- cosα)

分析参数

当α一定时,D越大,Δh越大,变形区越长

当Δh一定时,D越大,α越小变形区越长

当D一定时,α越大,变形区越长

3摩擦力的概念

1摩擦力:是指两个物体互相接触当它们作相对运动或有作相对运动的趋势时,在接触面上会产生一种阻碍运动的力叫摩擦力

2产生摩擦力的条件

相对运动

作相对运动

3摩擦力的大小与哪些因素有关

正压力的大小

摩擦对的性质和状态,归结为摩擦系数

4摩擦定律

T= f*n

4轧制过程的建立1开始咬入的条件

咬入时轧辊给轧件的力

正压力的垂直分力

结论

正压力不变,摩擦力增大

减小咬入角,摩擦力增大

咬入过程的建立

2咬入条件的第二种表达

f>tanα

3咬入条件的第三种表达

合力偏向出口i

摩擦角:合力与法线的夹角,它是由摩擦系数决定的成为摩擦角4咬入条件的第四种表达

F=tanВ

5轧制过程的三个阶段

●咬入阶段:轧件前端与轧辊接触到前端达到变形区出口的这个过程

●稳定轧制阶段:从轧件前端离开变形区出口到轧件后端进入变形区入口位置叫

●抛出阶段:轧件后端里开变形区出口

6稳定轧制的条件

f>tanα

tanв>tanα/2

●剩余摩擦力:克服推出力以为还剩余的摩擦力叫剩余摩擦力

●最大压下量

受咬入条件限制的最大压下量

Δhmax=D(1-cosαmax)

Αmax=в

7影响咬入的条件

a摩擦系数的增大有利于咬入

影响摩擦系数的因素

工具的表面状态,工具的化学成分,金属的表面状态,金属的化学成分,接触面的单位压力变形温度,变形速度

b咬入角增大,不易咬入

轧辊直径增大,咬入角减小

压下量增大,咬入角增大

c其他影响咬入的因素

轧件前端的形状,孔型侧壁,后推力,

5宽展的概念

1宽展的定义:轧制时被压下的金属一部分延横向流动,使金属产生横向变形叫宽展

2最小阻力定律:当变形体的质点有可能香不同方向流动时,则每个质点延阻力最小的方向流动

3分析轧制过程:

变形区的俯视图呈扁平梯形

分析轧制时的宽展与延伸的分配

变形区分宽展与延伸区

变形区长度小于宽度,延伸区大与宽展区

轧件宽度越大,变形区越宽,宽展区越小

变形区长度越小,宽展区越小

4宽展的种类

自由宽展,强迫宽展,限制宽展

自由宽展:轧件在轧制时被压迫部分金属在横向可以自由流动的宽展形式

限制宽展:轧件在孔型轧制时,被压下部分金属体积在横向流动的时受到孔型侧壁限制不能自由流动的宽展形式

强迫宽展:在轧制某些特殊孔型或特殊轧件形状使得被压下金属大量的横向流动造成轧件宽展量大增许多的宽展形式

5影响宽展的因素:

高向移动的体积

变形区轧件变形的纵横阻力比

压下量的影响随压下量的增加而增加

原因:

压下量增加高度方向位移体积增加长宽两个方向位移体积增加,

压下量增加变形区长度增加导致延伸阻力增加宽展要增加更多

轧件宽度的影响

轧件越宽,宽展越小

轧辊直径的影响轧辊直径增加变形区增大宽展量增加

原因:

轧辊直径增加,变形区长度增加纵向摩擦力增加延伸减小宽展增加

轧辊直径增加约趋于平面纵向力的水平分力越大

轧制道次的影响总压下量相等,随道次增加宽展减小

摩擦力的影响摩擦系数增加宽展增加

原因:

高温时温度增加摩擦系数减小宽展减小

轧制速度越快摩擦力越小宽展越小

轧辊表面越粗糙宽展越大

合金钢比碳钢宽展大

钢辊比铁辊宽展大

张力对宽展的影响张力越大宽展越小

6前滑与后滑

前滑区

中性面:前滑区与后滑区的分界面叫中性面

中性角:中性面对应的圆心角叫中性角

变形区内金属对轧辊的相对运动:

第一章-过程控制基本概念

第一 章 过 程控制基本概念 教学要求:了解过程 控制的发展概况及特点; 负反馈概念; 控制系统的基本控制 要求及质量指标。 难 点:常用术语物理意 义(操纵变量与扰动量区别 ); 根据控制系统要求绘 制方框图; 静态,过渡过程概念 。 自动控制技术在工业 、农业、国防和科学技术现代化中起着十 分重要的作用,自动控 制水平的高低也是衡 量一个国家科学技术先进与否的重要标志 之一。随着国民经济和国防 建设的发展,自动控 制技术的应用日益广泛,其重要作用也越 来越显著。 生产过程自动控制( 简称过程控制) ------------ 自动 控制技术在石油、化工、电力、冶金、 机械、轻工、纺织等 生产过程的具体应用,是自动化技术的重 要组成部分。 §1.1 过程控 制的发展概况及特点 一、过 程控制的发展概况 在过程控制发展的历 程中,生产过程的需求、控制理论的开拓 和控制技术工具和手段 的进展三者相互影响 、相互促进,推动了过程控制不断的向前 发展。纵观过程控制的发展 历史,大致经历了以 下几个阶段: 20 世纪 40 年代: 手工操作状态,只有 少量的检测仪表用于生产过程,操作人员 主要根据观测 到的反映生产过程的 关键参数,用人工来改变操作条件,凭经 验去控制生产 过程。 20世纪40年代末?50年代: 过程控制系统:多为 单输入、单输出简单控制系统 过程检测:采用的是 基地式 仪表和部分单元组合仪表(气动I 型和电动I 型); 部分生产过程实现了 仪表化和局部自动化 控制理论:以反馈为 中心的经典控制理论 掌握管道及仪表流程 学会绘制简单系 统的 图绘制方法,认识常见图形符号、文字代 号 ; 掌握控制系统的基本 控制要求(稳定、快速、准确 ); 掌握静态、动态及过 渡过程概念; 掌握品质指标的定义 ,学会计算品质指标。 掌握过程控制系统各 部分作用,系统的组成; 重 点:自动控制系统的 组成及各部分的功能;

振动基础知识

精心整理 基本概念和基础知识 一、常见的工程物理量 力、压力、应力、应变、位移、速度、加速度、转速等 (一)力:力是物体间的相互作用,是一个广义的概念。物体承受的力可以有加载力,也可以有动态力,我们常测试的力主要是动态力,即给结构施加力,激发结构的某些特性,便 (四)振动速度:质量块在振荡过程中运动快慢的度量。质量块在运动波形的上部和下部极限位置时,其速度为0,这是因为质量块在这两点处,在它改变运动方向之前,必须停下来。质量块的振动速度在平衡位置处达到最大值,在此点处质量块已经加速到最大值,在此点以后质量块开始减速运动。振动速度的单位是用mm/s来表示。 (五)振动加速度:被定义为振动速度的变化率,其单位是用有多少个m/s2或g来表示。由下图可见加速度最大值处是速度值最小值的地方,在这些点处质量块由减速到停止然后再开始加速。

(六)转速:旋转机械的转动速度 (七)简谐振动及振动三要素 振动是一种运动形式――往复运动 d=Dsin(2πt/T+Φ) D T f ω和f ω f 将式( d 振动三要素:振幅D、频率f和相位Φ(八)、表示振动的参数:位移、速度、加速度振动位移:d=Dsin t D

π) 振动速度:v=Dωcosωt=Vsin(ωt+ 2 V=Dω 振动加速度:a=-Dω2sinωt=Asin(ωt+π) A=-Dω2 (九)振动三要素在工程振动中的意义 1、振幅 ○振幅~物体动态运动或振动的幅度。 ★振幅是振动强度和能量水平的标志,是评价机器运转状态优劣的主要指标。 即“有没有问题看振幅”。 ○峰峰值、单峰值、有效值 振幅的量值可以表示为峰峰值(pp)、 单峰值(p)、有效值(rms)或平均值(ap)。 峰峰值是整个振动历程的最大值,即正峰 与负峰之间的差值;单峰值是正峰或负峰 的最大值;有效值即均方根值。 ○振动位移、振动速度、振动加速度 振幅分别用振动位移、振动速度、振 动加速度值加以描述、度量,三者相互之间可以通过微分或积分进行换算。在振动测量中,除特别注明外,习惯上: ○振动位移的量值为峰峰值,单位是微米[μm]或毫米[mm]; ○振动速度的量值为有效值(均方根值),单位是毫米/秒[mm/s]; ○振动加速度的量值是单峰值,单位是米/秒平方[m/s2]或重力加速度[g],1[g]=9.81[m/s2]。 ○峰峰值、有效值、单峰值三者之间的量值关系 单峰值=峰峰值/2,有效值=0.707峰峰值(峰峰值=1.414有效值) 平均值=0.637峰峰值,平均值应用较少。 △在低频范围内,振动强度与位移成正比; △在中频范围内,振动强度与速度成正比; △在高频范围内,振动强度与加速度成正比。 频率低意味着振动体在单位时间内振动的次数少、过程时间长,速度、加速度的数值相对

第二章随机过程的基本概念

第二章随机过程的基本概念 §1随机过程及其概率分布 、随机过程概念: 一、随机过程概念: 初等概率论所研究的随机现象,基本上可以用随机变量或随机向量来描述.但在实际中有些随机现象要涉及(可列或非可列)无穷多个随机变量.

例1.某人扔一枚硬币,无限制的重复地扔下去,要表示无限多次扔的结果,我们不妨记正面为1,反面为0.第次扔的结果是一个,其分布,无限多次扔n n r vX ?{}{}1012n n P X P X ====,无限制的重复地扔,要表示无限多次扔的结果,我们不妨反面为其分布无限多次扔的结果是一个随机过程,可用一族相互独 立,,或表示.r v ?1X ,2X {},1n X n ≥

n n X 0n n 0 1 2 3 4 5 6 7 8 910 ……

例2.当固定时,电话交换站在时间内来到的呼叫次数是,记, ,其中是单位时间内平均来到的呼叫次数,而,若从变到,时刻来到的呼叫次数需用一族随机变量表 它为非降的阶,在有呼唤来到的时刻阶跃地增加,假定在任一呼唤来到的时刻不可能来到多)(0)t t ≥[0,] t r v ?()X t ()()X t P t λ λ0λ>t 0∞t {}(),[0,)X t t ∈∞()X t ,电话交换站在记,若时刻示, 是一个随机过程. 对电话交换站作一次观察可得到一条表示以前来到的呼唤曲线,它为非降的阶梯曲线,在有呼唤来到的时刻阶跃地增加,(假定在任一呼唤来到的时刻不可能来到多于一次呼唤). E t 1()x t

同理,第二次观察,得到另一条阶梯形曲线; 同理,第n 次观察,得到另一条阶梯形曲线. 2()x t ()n x t ,第二次观察,得到另一条阶梯形曲,第,得到另一条阶梯形曲 总之,一次试验得到阶梯形曲线形状具有随机性

过程控制基本概念

过程控制基本概念 自动控制技术在工业、农业、国防和科学技术现代化中起着十分重要的作用,自动控制水平的高低也是衡量一个国家科学技术先进与否的重要标志之一。随着国民经济和国防建设的发展,自动控制技术的应用日益广泛,其重要作用也越来越显著。 生产过程自动控制(简称过程控制)-------自动控制技术在石油、化工、电力、冶金、机械、轻工、纺织等生产过程的具体应用,是自动化技术的重要组成部分。 §1.1 过程控制的发展概况及特点 一、过程控制的发展概况 在过程控制发展的历程中,生产过程的需求、控制理论的开拓和控制技术工具和手段的进展三者相互影响、相互促进,推动了过程控制不断的向前发展。纵观过程控制的发展历史,大致经历了以下几个阶段: 20世纪40年代: 手工操作状态,只有少量的检测仪表用于生产过程,操作人员主要根据观测到 的反映生产过程的关键参数,用人工来改变操作条件,凭经验去控制生产过程。 20世纪40年代末~50年代: 过程控制系统:多为单输入、单输出简单控制系统 过程检测:采用的是基地式仪表和部分单元组合仪表(气动Ⅰ型和电动Ⅰ型); 部分生产过程实现了仪表化和局部自动化 控制理论:以反馈为中心的经典控制理论 20世纪60年代: 过程控制系统:串级、比值、均匀、前馈和选择性等多种复杂控制系统。 自动化仪表:单元组合仪表(气动Ⅱ型和电动Ⅱ型)成为主流产品 60年代后期,出现了专门用于过程控制的小型计算机,直接数字控 制系统和监督计算机控制系统开始应用于过程控制领域。 控制理论:出现了以状态空间方法为基础,以极小值原理和动态规划等最优控制 理论为基本特征的现代控制理论,传统的单输入单输出系统发展到多 输入多输出系统领域,、型、型 20世纪70~80年代: 微电子技术的发展,大规模集成电路制造成功且集成度越来越高(80年代初一片硅片可集成十几万个晶体管,于是32位微处理器问世),微型计算机的出 现及应用都促使控制系统发展。 过程控制系统:最优控制、非线性分布式参数控制、解耦控制、模糊控制 自动化仪表:气动Ⅲ型和电动Ⅲ型,以微处理器为主要构成单元的智能控制装置。 集散控制系统(DCS)、可编程逻辑控制器(PLC) 、工业PC机、 和数字控制器等,已成为控制装置的主流。 集散控制系统实现了控制分散、危险分散,操作监测和管理集中。 控制理论:形成了大系统理论和智能控制理论。模糊控制、专家系统控制、模式 识别技术 20世纪90年代至今:信息技术飞速发展 过程控制系统:管控一体化现场,综合自动化是当今生产过程控制的发展方向。

振动基础知识分析

基本概念和基础知识 一、常见的工程物理量 力、压力、应力、应变、位移、速度、加速度、转速等 (一)力:力是物体间的相互作用,是一个广义的概念。物体承受的力可以有加载力,也可以有动态力,我们常测试的力主要是动态力,即给结构施加力,激发结构的某些特性,便于测试了解其结构特性,如模态试验用的力锤。 (二)应力应变:材料或构件在单位截面上所承受的垂直作用力称为应力。在外力作用下,单位长度材料的伸长量或缩短量,称为应变量。在一定的应力范围(弹性形变)内,材料的应力与应变量成正比,它们的比例常数称为弹性模量或弹性系数。 (三)振动位移:位移就是质量块运动的总的距离,也就是说当质量块振动时,位移就是质量块上、下运动有多远。位移的单位可以用μm 表示。进一步可以从振动位移的时间波形推出振动的速度和加速度值。

可以是静态位移,可以是动态位移。通常我们测试的都是动态位移量。有角位移、线位移等。 (四)振动速度:质量块在振荡过程中运动快慢的度量。质量块在运动波形的上部和下部极限位置时,其速度为0,这是因为质量块在这两点处,在它改变运动方向之前,必须停下来。质量块的振动速度在平衡位置处达到最大值,在此点处质量块已经加速到最大值,在此点以后质量块开始减速运动。振动速度的单位是用mm/s来表示。 (五)振动加速度:被定义为振动速度的变化率,其单位是用有多少个m/s2 或g来表示。由下图可见加速度最大值处是速度值最小值的地方,在这些点处质量块由减速到停止然后再开始加速。 (六)转速:旋转机械的转动速度 (七)简谐振动及振动三要素 振动是一种运动形式――往复运动

d=Dsin(2πt/T+Φ) D――振动的最大值,称为振幅 T――振动周期,完成一次全振动所需要的时间 f――单位时间内振动的次数,即周期的倒数为振动频率, f =1/T (Hz)(1) 频率f 又可用角频率来表示,即 ω=2π/T (rad/s) ω和f的关系为 ω=2πf (rad/s)(2) f =ω/2π(Hz)(3) 将式(1)、(2)、(3)代入式可得 d =D sin(ωt+Φ)=Dsin(2πft+Φ) 可以用正玄或余玄函数描述的振动过程称之为简谐振动

第1章 随机过程的基本概念

第一章 随机过程的基本概念 1.设随机过程 +∞<<-∞=t t X t X ,cos )(0ω,其中0ω是正常数,而X 是标准正态变量。试求X (t )的一维概率分布 解:∵ 当0cos 0=t ω 即 πω)21(0+ =k t 即 πω)2 1 (10+=k t 时 {}10)(==t x p 若 0c o s 0≠t ω 即 πω)2 1 (1 0+≠ k t 时 当 0c o s 0>t ω时 ξπ ωωξd e t x X P t x F t x ? - = ??? ? ??≤=02cos 0 2 021cos ),( 此时 ()t e x t x F t x f t x 0c o s 2c o s 1 21,),(022ωπ ω? =??=- 若 0c o s 0

?? ?= ,2 ,cos )(出现反面出现正面t t t X π 假定“出现正面”和“出现反面”的概率各为21。试确定)(t X 的一维分布函数)2 1 ,(x F 和)1,(x F ,以及二维分布函数)1,2 1;,(21x x F 解:(1)先求)21,(x F 显然?? ?=?????=??? ??出现反面出现正面 出现反面出现正面10,2 1*2,2cos 21π X 随机变量?? ? ??21X 的可能取值只有0,1两种可能,于是 21 021= ??????=?? ? ??X P 2 1121=??????=??? ??X P 所以 再求F (x ,1) 显然?? ?-=?? ?=出现反面出现正面出现反面出现正面 2 1 2 cos (1)πX {}{}2 1 2)1(-1(1)====X p X p 所以 ???? ???≥<≤<=2 121- 2 1-1 0,1)(x x x x F (2) 计算)1,2 1 ;,(21x x F ?? ?-=?? ?=出现反面出现正面 出现反面出现正面 2 1)1(, 1 0)2 1( X X ?????≥<≤<=??? ?? 11 102 1 00 21,x x x x F

第一章 渗流的基本概念和基本规律

第一章渗流的基本概念和基本规律 内容概要: 油气渗流是在地下油层中进行的,因此学习渗流力学首先需了解油气储集层和多孔介质的概念;流体在地下渗流需要里的作用,故还要了解流体受到哪些力的作用、地层中有哪些能量;然后学习渗流的基本规律-达西定律;流体渗流不总是遵循达西定律,就有了非达西渗流或称非线性渗流;对于地层中有多相流体同时参与流动的情况就是两相或多相渗流了,在本章也做一简单介绍。 渗流的基本规律和渗流方式 内容概要: 地层流体渗流规律复杂,但一般情况下符合渗流的基本规律,即达西定律;渗流的方式也是多种多样的,我们可以对各种渗流方式进行归类、化简,变成三种基本的渗流方式,复杂渗流再由这三种方式进行组合。本节应牢固掌握达西定律,真实流速与渗流速度的概念及其关系,掌握三种基本渗流的方式。 课程讲解: 讲解ppt 教材自学: 第三节渗流的基本规律和渗流方式 本节导学 地层流体渗流规律复杂,但一般情况下符合渗流的基本规律,即达西定律;渗流的方式也是多种多样的,我们可以对各种渗流方式进行归类、化简,变成三种基本的渗流方式,复杂渗流再由这三种方式进行组合。 本节重点 1、达西定律★★★★★ 2、真实流速与渗流速度的关系★★★★★ 3、单向流★★★ 4、平面径向流★★★ 5、球面向心流★★★

一、渗流的基本规律—达西定律 多孔介质组成复杂,流体渗流规律复杂。人们最初研究渗流规律是以实验为基础的宏观研究方法。 1.达西定律 实验步骤: (1)、调节入水阀,保持一定的进水水位 (2)、调节出水阀门,得一流量Q ; (3)、流动稳定后测流量和压差。 a:出水口(稳定水位) b:滤网 E:阀门,控制流量和水头压差 D:量杯,测流量 达西实验装置图 做多组实验:不同砂层横截面积、L 、流量、砂粒大小、液体、压差。 1-1截面总水头高度 2-2截面总水头 两截面水头差 其折算压差为 大量实验研究表明,流量Q 与折算压力差△Pr 、岩心截面积A 成正比,与液体粘度μ、测压管两截面距离△L 成反比,其比例常数与填砂粒径有关,砂粒粒径越大,流量越大,反之流量越小。 用公式表示(达西公式) Q ——通过砂岩的流量,cm 3/s ; K ——砂岩的渗透率,μm 2(=1D=1000mD); A ——渗流截面积,cm 2; △L ——两渗流截面间的距离,cm ; μ——液体粘度,mPa·S; △Pr ——两渗流截面间的折算压力差,10-1 MPa ,即大气压。 上式可写成 a b 111P H z g ρ=+2 22 P H z g ρ=+1212 P P H z z g g ρρ?????=+-+ ? ????? r P g H ρ?=? () ()r P Q L KA μ?= ?动力阻力

过程控制系统 复习总结!培训资料

过程控制系统复习 总结!

过程控制系统知识点总结 ) 一、概论 1、过程控制概念:五大参数。 过程控制的定义:工业中的过程控制是指以温度、压力、流量、液位和成分等工艺参数作为被控变量的自动控制。 2、简单控制系统框图。 控制仪表的定义:接收检测仪表的测量信号,控制生产过程正常进行的仪表。主要包括:控制器、变送器、运算器、执行器等,以及新型控制仪表及装置。 控制仪表的作用:对检测仪表的信号进行运算、处理,发出控制信号,对生产过程进行控制。 3、能将控制流程图(工程图、工程设计图册)转化成控制系统框图。

4、DDZ -Ⅲ型仪表的电压信号制,电流信号制。QDZ-Ⅲ型仪表的信号制。它们之间联用要采用电气转换器。 5、电信号的传输方式,各自特点。 电压传输特点: 1). 某台仪表故障时基本不影响其它仪表; 2). 有公共接地点; 3). 传输过程有电压损耗,故电压信号不适宜远传。 电流信号的特点: 1).某台仪表出故障时,影响其他仪表; 第一个字母:参数类型 T ——温度(Temperature ) P ——压力(Pressure ) L ——物位(Level ) F ——流量(Flow ) W ——重量(Weight ) 第二个字母:功能符号 T ——变送器(transmitter ) C ——控制器(Controller ) I ——指示器(Indicator ) R ——记录仪 (Recorder ) A ——报警器(Alarm )

2).无公共地点。若要实现仪表各自的接地点,则应在仪表输入、输出端采取直流隔离措施。 6、变送器有四线制和二线制之分。区别。 1、四线制:电源与信号分别传送,对电流信号的零点及元件的功耗无严格要求。 2、两线制:节省电缆及安装费用,有利于防爆。活零点,两条线既是信号线又是电源线。 7、本安防爆系统的2个条件。 1、在危险场所使用本质安全型防爆仪表。 2、在控制室仪表与危险场所仪表之间设置安全栅,以限制流入危险场所的能量。 8、安全栅的作用、种类。 安全栅的作用: 1、安全栅作为本安仪表的关联设备,可用于传输信号。 2、控制流入危险场所的能量在爆炸性气体或混合物的点火能量以下, 以确保系统的本安防爆性能。 安全栅的种类:齐纳式安全栅、隔离式安全栅 二、基型调节器 1、基型调节器组成:控制单元和指示单元。基型调节器控制单元构成。 基型控制器又称基型调节器,对来自变送器的1-5V直流电压信号与给定值相比较所产生的偏差进行PID运算,输出4-20mA(DC)直流控制信号。 控制单元:输入电路(偏差差动和电平移动电路)、PID运算电路(由PD与PI运算电路串联)、输出电路(电压、电流转换电路)以及硬、软手操电路; 指示单元:测量信号指示电路、设定信号指示电路。 2、测量信号、内给定信号范围;外给定信号范围。 测量和内给定信号:1~5V(DC); 外给定信号:4~20mA直流电流。(它经过250Ω精密电阻转换成1~5V直流电压) 3、输入电路、输出电路的作用。 输入电路作用: 1). 信号综合。将(U i-U s)后放大两倍反相以U o1输出,即U o1= -2(U i-U s)。 2). 电平转换。将以0V为基准的输入信号转换为以U B(10V)为基准的输出信号U o1。 电平转换的目的:使运算放大器工作在允许的共模输入电压范围内。 输出电路作用:把PID输出ΔU o3(以UB为基准)转换成4-20mA.DC输出。实现电压—电流转换。 4、放大系数和比例度。

第一章 过程控制基本概念

第一章过程控制基本概念 教学要求:了解过程控制的发展概况及特点; 掌握过程控制系统各部分作用,系统的组成; 掌握管道及仪表流程图绘制方法,认识常见图形符号、文字代号; 学会绘制简单系统的管道及仪表流程图; 掌握控制系统的基本控制要求(稳定、快速、准确); 掌握静态、动态及过渡过程概念; 掌握品质指标的定义,学会计算品质指标。 重点:自动控制系统的组成及各部分的功能; 负反馈概念; 控制系统的基本控制要求及质量指标。 难点:常用术语物理意义(操纵变量与扰动量区别); 根据控制系统要求绘制方框图; 静态,过渡过程概念。 自动控制技术在工业、农业、国防和科学技术现代化中起着十分重要的作用,自动控制水平的高低也是衡量一个国家科学技术先进与否的重要标志之一。随着国民经济和国防建设的发展,自动控制技术的应用日益广泛,其重要作用也越来越显著。 生产过程自动控制(简称过程控制)-------自动控制技术在石油、化工、电力、冶金、机械、轻工、纺织等生产过程的具体应用,是自动化技术的重要组成部分。 §1.1 过程控制的发展概况及特点 一、过程控制的发展概况 在过程控制发展的历程中,生产过程的需求、控制理论的开拓和控制技术工具和手段的进展三者相互影响、相互促进,推动了过程控制不断的向前发展。纵观过程控制的发展历史,大致经历了以下几个阶段: 20世纪40年代: 手工操作状态,只有少量的检测仪表用于生产过程,操作人员主要根据观测到 的反映生产过程的关键参数,用人工来改变操作条件,凭经验去控制生产过程。 20世纪40年代末~50年代: 过程控制系统:多为单输入、单输出简单控制系统 过程检测:采用的是基地式仪表和部分单元组合仪表(气动Ⅰ型和电动Ⅰ型); 部分生产过程实现了仪表化和局部自动化 控制理论:以反馈为中心的经典控制理论 20世纪60年代: 过程控制系统:串级、比值、均匀、前馈和选择性等多种复杂控制系统。

渗流

水力学教案 第十一章渗流 【教学基本要求】 1、了解渗流现象和渗流的基本概念,理解渗流模型的内容和建立的条件。 2、掌握渗流运动的基本定律,包括达西定律表达式及其适用范围,了解渗透系数k的确定方法。 3、了解地下河槽均匀渗流的计算方法,掌握杜比公式应用的条件。对照明槽水面曲线分析,了解浸润线的特点和分析方法。 4、了解井和井群的水力计算方法。 5、初步了解求解渗流的其他方法。 【内容提要和教学重点】 流体在孔隙介质中的运动称为渗流。流体包括水、石油、天然气等。孔隙介质是指由颗粒或碎块材料组成的内部包含许多互相连通的孔隙和裂隙的物质。常见的孔隙介质包括土壤、岩层等多孔介质和裂隙介质。有些水工建筑物本身就是由孔隙介质构成的,如土坝、河堤等。 研究渗流的运动规律及其工程应用的一门科学便是渗流力学。在水利工程中,渗流主要是指水在地表以下土壤或岩层孔隙中的运动,这种渗流也称为地下水运动。研究地下水流动规律的学科常称为地下水动力学,是渗流力学的一个分支。 在社会的许多部门都会遇到渗流问题。例如,石油开采中油井的布设,水文地质方面地下水资源的探测,采矿、化工等。在水利部门常见的渗流问题有以下几方面:(1)经过挡水建筑物的渗流,如土坝、围堰等。 (2)水工建筑物地基中的渗流。 (3)集水建筑物的渗流,井、排水沟、廊道等。 (4)水库及河渠的渗流。 上述几方面的渗流问题,就其水力学内容来说,归纳起来不外乎是要求解决以下几方面的问题:(1)确定渗流量;(2)确定浸润线位置;(3)确定渗流压力;(4)估计渗流对土壤的破坏作用。 从国内外水利工程的实践经验看,不少水工建筑物的失事都是由于渗流问题没有妥善处理而造成的。“千里长堤,溃于蚁穴”说明的就是这个问题。 11.1 渗流基本概念 (1)无压渗流:位于不透水地基上并且具有自由面(也称为浸润面)的渗流。无压渗流主要求解渗流流量和地下水面线(浸润线)的分析计算。 (2)有压渗流:位于不透水层之间的渗流。有压渗流除计算渗透流量,还要计算水工建筑物底板受到的扬压力。 (3)水在土壤中存在形式有四种:气态水、薄膜水或附着水、毛细水和重力水。渗流是研究重力水在土壤中的运动规律。 (4)根据土壤的性质可将其分为均匀和非均匀的、等向和非等向的。水力学中的渗流

一过程控制基本概念

第一章过程控制基本概念 教案要求:了解过程控制地发展简况及特点; 掌握过程控制系统各部分作用,系统地组成; 掌握管道及仪表流程图绘制方法,认识常见图形符号、文字代号; 学会绘制简单系统地管道及仪表流程图; 掌握控制系统地基本控制要求<稳定、快速、准确); 掌握静态、动态及过渡过程概念; 掌握品质指标地定义,学会计算品质指标. 重点:自动控制系统地组成及各部分地功能; 负反馈概念; 控制系统地基本控制要求及质量指标. 难点:常用术语物理意义<操纵变量与扰动量区别); 根据控制系统要求绘制方框图; 静态,过渡过程概念. 自动控制技术在工业、农业、国防和科学技术现代化中起着十分重要地作用,自动控制水平地高低也是衡量一个国家科学技术先进与否地重要标志之一.随着国民经济和国防建设地发展,自动控制技术地应用日益广泛,其重要作用也越来越显著. 生产过程自动控制<简称过程控制)-------自动控制技术在石油、化工、电力、冶金、机械、轻工、纺织等生产过程地具体应用,是自动化技术地重要组成部分. §1.1 过程控制地发展简况及特点 一、过程控制地发展简况 在过程控制发展地历程中,生产过程地需求、控制理论地开拓和控制技术工具和手段地进展三者相互影响、相互促进,推动了过程控制不断地向前发展.纵观过程控制地发展历史,大致经历了以下几个阶段: 20世纪40年代: 手工操作状态,只有少量地检测仪表用于生产过程,操作人员主要根据观测到 地反映生产过程地关键参数,用人工来改变操作条件,凭经验去控制生产过程. 20世纪40年代末~50年代: 过程控制系统:多为单输入、单输出简单控制系统 过程检测:采用地是基地式仪表和部分单元组合仪表<气动Ⅰ型和电动Ⅰ 型);部分生产过程实现了仪表化和局部自动化 控制理论:以反馈为中心地经典控制理论 20世纪60年代: 过程控制系统:串级、比值、均匀、前馈和选择性等多种复杂控制系统. 自动化仪表:单元组合仪表<气动Ⅱ型和电动Ⅱ型)成为主流产品 60年代后期,出现了专门用于过程控制地小型计算机,直接数字控 制系统和监督计算机控制系统开始应用于过程控制领域.

随机过程知识点汇总

2 0 — 1分布 P(X 1) P,P(X 0) q EX DX pq 二项分布 P(X k) C : EX np DX npq 泊松分布 P(X k) k! EX DX 均匀分布略 正态分布 N(a, 2) f(x) (X a)2 2 2 EX DX 第一章随机过程的基本概念与基本类型 一.随机变量及其分布 1 .随机变量X ,分布函数F(x) P(X X) 离散型随机变量 X 的概率分布用分布列 P k P(X x k )分布函数 F(x) P k 连续型随机变量 X 的概率分布用概率密度 f(x) 分布函数F(x) X f(t)dt 2. n 维随机变量 X (X 1,X 2, ,X n ) 其联合分布函数 F (X ) F (X 1,X 2, , X n ) P(X 1 X [ , X 2 X 2 , , X n X n ,) 离散型 联合分布列 连续型联合概率密度 3 .随机变量的数字特征 数学期望:离散型随机变量 X EX X k P k 连续型随机变量 X EX xf (x)dx 2 2 2 方差:DX E(X EX) EX (EX) 反映随机变量取值的离散程度 协方差(两个随机变量 X,Y ): B XY E[(X EX )(Y 相关系数(两个随机变量 X, Y ) : XY t _ ____________________________________ VDX v'DY 独立 不相关 5 ?常见随机变量的分布列或概率密度、期望、方差 B XY EY)] E(XY) EX EY 则称X,Y 不相关。 4 ?特征函数 g(t) E(e ItX ) 离散 g(t) e ItX k p k 连续 g(t) e ltx f (x)dx 重要性质:g(0) 1 , g(t) 1 , g( t) g(t) , g (0) EX k

001,机械振动基本概念

机械振动基本概念 20160815 机械设备出现的故障种类很多,很复杂,可用于测试与诊断的信息包括温度、声响、变形、应力及润滑滑的物理化学参数等。机械设备的作用是传递力和运动,其中任何一个运动部件或与之相关的零件出现故障,必然破坏机械运动的平稳性,在传递力的参与下,这种力和运动的非平稳现象表现为振动。因而在众多的诊断技术中,没有任何技术能比振动信号分析更深刻地了解机械设备的状况。另外,由于机械设备在运行中易出现安装质量影响(如不对中)或受工艺外力作用(如喘振)而产生振动的现象,其大小与安装质量和使用中的故障直接关系。因此,振动分析与测量在诊断机械故障中有着重要的地位。当然,振动分析对不影响运动平稳性的故障(如泄漏)是无能为力的。 1.振动的概念 振动是物体运动的一种形式,指物体经过平衡位置而往复运动的过程。机械振动是物体(或其一部分)沿直线或曲线并经过其平衡位置所作的往复运动。 振动的参数:位移、速度和加速度三个参量表征。 1.位移是振动物体离开平衡位置的距离。常用微米(um)或毫米(mm) 作单位。 2.振动速度是振动物体位移的快慢,即位移对时间的变化率。常用毫米/ 秒(mm/s)为单位。 3.振动加速度是振动物体速度的变化率,即位移的二阶导数,一般用g(重 力加速度)表示其大小。 振动波形是将振动参数随时间变化的状态画出来,可以得到的相应曲线。简谐振动的波形如图1示,它是一条正弦曲线。

每个振动参量都具有三个基本要素:振幅、频率、相位。 1.振幅X 简谐振动位移的函数式表示为: ?? ? ??+=02sin φπt T X x X —位移振幅(um/mm);t —时间(s);T —周期(s); φ0—初始相位(rad );角频率为ω—T πω2= 与振幅有关的物理量: 速度有效值Vrms ;速度的最大幅值Vp ;速度平均值Vav p c av f rms V F V F V 1== Ff —波形系数;Fc —波峰系数 幅值反映振动的强度,振幅的平方与物质振动的能量成正比,振动诊断标准都是用振幅来表示的。 2.频率f 振动物体(或质点)一秒钟振动的次数,单位Hz 。 T f 1 = f πω2= 频率是振动诊断中非常重要的参数,在确定诊断方案,实施状态识,选用诊断标准时都要用到振动频率。对振动信号作频率分析是振动诊断最重要的内容,

过程控制课后习题答案

第1章自动控制系统基本概念 ~~1-3 自动控制系统主要由哪些环节组成? 解自动控制系统主要由检测变送器、控制器、执行器和被控对象等四个环节组成。~~ 1-5 题1-5图为某列管式蒸汽加热器控制流程图。试分别说明图中PI-307、TRC-303、FRC-305所代表的意义。 题1-5图加热器控制流程图 解PI-307表示就地安装的压力指示仪表,工段号为3,仪表序号为07; TRC-303表示集中仪表盘安装的,具有指示记录功能的温度控制仪表;工段号为3,仪表序号为03; FRC-305表示集中仪表盘安装的,具有指示记录功能的流量控制仪表;工段号为3,仪表序号为05。 ~~~~~ 1-7 在自动控制系统中,测量变送装置、控制器、执行器各起什么作用? 解测量变送装置的功能是测量被控变量的大小并转化为一种特定的、统一的输出信号(如气压信号或电压、电流信号等)送往控制器; 控制器接受测量变送器送来的信号,与工艺上需要保持的被控变量的设定值相比较得出偏差,并按某种运算规律算出结果,然后将此结果用特定信号(气压或电流)发送出去执行器即控制阀,它能自动地根据控制器送来的信号值来改变阀门的开启度,从而改变操纵变量的大小。 ~~~1-8.试分别说明什么是被控对象、被控变量、给定值、操纵变量、操纵介质? 解:被控对象(对象)——自动控制系统中,工艺参数需要控制的生产过程、生产设备或机器。 被控变量——被控对象内要求保持设定值的工艺参数。控系统通常用该变量的名称来称呼,如温度控制系统,压力制系统等。 给定值(或设定值或期望值)——人们希望控制系统实现的目标,即被控变量的期望值。它可以是恒定的,也可以是能按程序变化的。 操纵变量(调节变量)——对被控变量具有较强的直接影响且便于调节(操纵)的变量。或实现控制作用的变量。 操纵介质(操纵剂)——用来实现控制作用的物料。 ~~~1-11 题l-11图所示为一反应器温度控制系统示意图。A、B两种物料进入反应器

振动与波动(习题与答案)

第10章振动与波动 一.基本要求 1. 掌握简谐振动的基本特征,能建立弹簧振子、单摆作谐振动的微分方程。 2. 掌握振幅、周期、频率、相位等概念的物理意义。 3. 能根据初始条件写出一维谐振动的运动学方程,并能理解其物理意义。 4. 掌握描述谐振动的旋转矢量法,并用以分析和讨论有关的问题。 5. 理解同方向、同频率谐振动的合成规律以及合振幅最大和最小的条件。 6. 理解机械波产生的条件。 7. 掌握描述简谐波的各物理量的物理意义及其相互关系。 8. 了解波的能量传播特征及能流、能流密度等概念。 9. 理解惠更斯原理和波的叠加原理。掌握波的相干条件。能用相位差或波程差概念来分析和确定相干波叠加后振幅加强或减弱的条件。 10. 理解驻波形成的条件,了解驻波和行波的区别,了解半波损失。 二. 内容提要 1. 简谐振动的动力学特征作谐振动的物体所受到的力为线性回复力,即 取系统的平衡位置为坐标原点,则简谐振动的动力学方程(即微分方程)为 2. 简谐振动的运动学特征作谐振动的物体的位置坐标x与时间t成余弦(或正弦)函数关系,即 由它可导出物体的振动速度) =t A v - ω + ω sin(? 物体的振动加速度) =t A a2 cos(? - + ω ω 3. 振幅A 作谐振动的物体的最大位置坐标的绝对值,振幅的大小由初始条件

确定,即 4. 周期与频率 作谐振动的物体完成一次全振动所需的时间T 称为周期,单位时间内完成的振动次数γ称为频率。周期与频率互为倒数,即 ν = 1T 或 T 1=ν 5. 角频率(也称圆频率)ω 作谐振动的物体在2π秒内完成振动的次数,它与周期、频率的关系为 ω π=2T 或 πν=ω2 6. 相位和初相 谐振动方程中(?+ωt )项称为相位,它决定着作谐振动的物体的状态。t=0时的相位称为初相,它由谐振动的初始条件决定,即 应该注意,由此式算得的?在0~2π范围内有两个可能取值,须根据t=0时刻的速度方向进行合理取舍。 7. 旋转矢量法 作逆时针匀速率转动的矢量,其长度等于谐振动的振幅A ,其角速度等于谐振动的角频率ω,且t=0时,它与x 轴的夹角为谐振动的初相?,t=t 时刻它与x 轴的夹角为谐振动的相位?ω+t 。旋转矢量A 的末端在x 轴上的投影点 的运动代表着质点的谐振动。 8. 简谐振动的能量 作谐振动的系统具有动能和势能,其 动能 )(sin ?+ωω==t A m m E k 22222 12 1v 势能 )(cos ?+ω==t kA kx E p 2222 12 1 机械能 22 1 kA E E E p k =+= 9. 两个具有同方向、同频率的简谐振动的合成 其结果仍为一同频率的简谐振动,合振动的振幅 初相 2 2112211?+??+?= ?cos cos sin sin tan A A A A (1)当两个简谐振动的相差),,,( 210212±±=π=?-?k k 时,合振动振幅最大,为 21A A +,合振动的初相为1?或2?。

最新振动测试必须知道的27个基本常识

振动测试必须知道的27个基本常识 (2015-12-16 10:52:39) 转载▼ 标签: 杂谈 1、什么是振动 振动是机械系统中运动量(位移,速度和加速度)的振荡现象。 2、振动实验的目的 振动试验的目的是模拟一连串振动现象,测试产品在寿命周期中,是否能承受运输或使用过程的振动环境的考验,也能确定产品设计和功能的要求标准。振动试验的精义在于确认产品的可靠性及提前将不良品在出厂前筛检出来,并评估其不良品的失效分析使其成为高水平,高可靠性的产品。 3、振动分几种 振动分确定性振动和随机振动两种。 4、什么是正弦振动 能用一项正弦函数表达式表达其运动规律的周期运动。例如凡是旋转、脉动、振荡(在船舶、飞机、车辆、空间飞行器上所出现的)所产生的振动均是正弦振动。 5、正弦振动的目的 正弦振动试验的目的是在试验室内模拟电工电子产品在运输、储存、使用过程中所遭受的振动及其影响,并考核其适应性。 6、正弦振动的试验条件 正弦振动试验的验条件(严酷等级)由振动频率范围、振动量、试验持续时间(次数)共同确定。 7、什么是振动频率范围 振动频率范围表示振动试验由某个频率点到某个频率点进行往复扫频。例如:试验频率范围5-50Hz,表示由5Hz到50Hz进行往复扫频。 8、什么是频率 频率:每秒振动的次数.单位:Hz。 9、什么是振动量 振动量:通常通过加速度、速度和位移来表示。加速度:表示速度对时间倒数的矢量。加速度单位:g或m/s2速度:在数值上等于单位时间内通过的路程位移:表示物体相对于某参考系位置变化的矢量。位移单位:mm 10、什么是试验持续时间 振动时间表示整个试验所需时间,次数表示整个试验所需扫频循环次数。 11、什么是扫频循环

过程控制工程孙洪程答案.doc

过程控制工程孙洪程答案 【篇一:过程控制工程教学大纲】 xt> 过程控制工程 (process control engineering ) 课程性质:专业主干课适用专业:机电一体化技术 学时分配:课程总学时:60 学时其中理论课学时:60 学时;实验课学时:0 学时;先行课程情况:先行课:高等数学、单片机原理 与应用、自动控制原理、传感器技术等;教材:孙洪程,李大宇,翁维勤编著.《过程控制工程》.北京:高等教育出版社,2013 年12 月重印 参考书目:1、邵裕燊.过程控制工程.北京:机械工业出版社 2、何衍庆,俞金寿,蒋慰孙.工业生产过程控制.北京:化学工业 出版社 一、课程的目的与任务 过程控制工程是机电一体化技术专业开设的主干课之一,主要研究 工业生产过程中应用比较成熟的控制系统。 随着现代工业的迅速发展,对工业过程的要求也越来越高,用于工 业过程控制的自动化装置也迅速发展,因此对工业过程控制的要求 也随之提高。作为研究工业过程控制系统组成,基本控制规律,以 及工业过程控制系统的设计,投运的课程----- 过程控制工程也越来越受到重视,并使得该课程成为自动化相关专业的一门重要的专业课 程。 本课程的任务是:使学生通过本课程的学习,获得工业过程控制系 统的基本理论、基本知识和基本技能,掌握测量与变送器、执行器、 智能控制仪表、以及工业生产过程中的一些具体设备等自动化装置 的原理与使用方法,掌握基本过程控制系统设计的方法与控制器参 数的整定方法,从而为从事与本课程有关的的技术工作打下一定的 基础。 二、课程的基本要求 本课程采用传统的课堂讲授模式,在课堂安排上,做到精讲教学内 容和学生课外自学、阅读相结合,使学生了解重点、认识难点,突 出重点、剖析难点,掌握重点、化解难点,提高学生解决问题能力; 引导学生课前预习、课后复习,加深对其基础知识的巩固和对前沿 领域的了解。

第二章随机过程基本概念.

2随机过程的基本概念 §2.1 基本概念 随机过程是指一族随机变量 . 对随机过程的统计分析称为随机过程论 , 它是随机数学中的一个重要分支,产生于本世纪的初期 . 其研究对象是随机现象 ,而它特别研究的是随“ 时间” 变化的“ 动态” 的随机现象 . 一随机过程的定义 1 定义设 E 为随机试验, S 为其样本空间,如果 (1对于每个参数 t ∈ T , X(e,t为建立在 S 上的随机变量, (2对每一个 e ∈ S , X(e,t为 t 的函数,那么称随机变量族 {X(e,t, t∈ T, e∈ S}为一个随机过程,简记为 {X(e,t, t∈ T}或 X(t。 ((((({} {} [](为随机序列。时,通常称 , 取可列集合当可以为无穷。 通常有三种形式: 参数一般表示时间或空间, 或有时也简写为一个轨道。 随机过程的一个实现或过程的样本函数,或称随机的一般函数,通常称为为对于 :上的二元单值函数。 为即若用映射来表示注意:

t X T T T b a b a T T T T t X t X t e X T t e X S e S T t e X R S T t e X t 21321, , , , 3, 2, 1, 0, 1, 2, 3, , 3, 2, 1, 0T , . 4, . 3, , 2, :, . 1=---==??×?′?′L L L 为一个随机过程。则令 掷一均匀硬币, 例 , ( (cos (}, {1 t e X t X R t T e t H e t t X T H S =??íì====p2 随机过程举例 例 2:用 X(t表示电话交换台在 (0, t 时间内接到的呼唤的次数 , 则 (1对于固定的时刻 t, X(t为随机变量 , 其样本空间为{0, 1, 2, …..}, 且对于不同的 t, 是不同的随机变量 . (2对于固定的样本点 n, X(t=n是一个 t 的函数 . (即:在多长时间内来 n 个人 ? 所以 {X(t,t>0}为一个随机过程 . 相位正弦波。为随机过程,称为随机则令例 (

《过程控制工程随堂训练题集》单元考核

第一单元过程控制系统基本概念 ――系统工作过程(10%) 一、填空题。 1、过程控制系统一般由________、________、________和测量变送器组成。 2、对象为气体贮罐时应设置________控制系统,对象为加热炉时应设置_______控制系统。锅炉上应设置________和________控制系统。精馏塔上应设置________控制系统和________控制系统等。(填入被控变量) 3、被控对象的输入信号称为_________变量,输出信号称为_________变量。 4、控制器接受________和________两个输入量,按一定的控制规律对二者的_________值进行运算后,再将输出量送给________去执行。 5、过程控制系统的核心是_________,它有_________个输入量,_________个输出量,该输出量将驱动仪表_________。 6、气动仪表的标准统一信号是_________。 8、常规控制系统的_________用计算机替代后,系统就称为计算机控制系统。 9、过程控制系统中五大类参数(被控变量)指_________、_________、_________、_________和_________。(填写被控变量名称及字母) 二、判断题。 ()1、自动调节系统的给定值是根据生产要求人为设定的。 ()2、锅炉工作中最重要的参数是温度。 ()3、仪表的给定值就是它的测量值。

()4、过程控制系统一般由控制器、执行器、被控对象和测量变送器组成。 三、选择题。 夹套式化学反应器的控制系统一般设置为()系统。 (A)成分(B)液位(C)流量(D)温度 四、问答题。 1、什么是自动控制系统?什么是过程控制系统? 2、过程控制系统主要有哪些环节组成? 3、名词解释:被控对象、被控变量、操纵变量、测量值、给定值、比较机构、干扰、闭环和负反馈。 11、下列环节在控制系统工作时各起什么作用:控制器、执行器、被控对象和测量(元件)变送器。 12、绘制敞口贮槽、气罐、离心泵、加热炉、氨冷器、化学反应器、精馏塔、锅炉的工艺流程图,要求包含设备和必要的物料进出口管道,并标明物料名称。 五、操作题 说明:本课程自2001年起就配备了仿真软件,与理论教学一起使用,另外,我在教学过程中不断搜集相关学习资料,编辑了一个电子文档资料包,包括课程中需用到的设备结构、设备仿真运行、仪表结构、仪表接线、系统现场分布等图形和测量技术、控制方案等最新的进展情况,以及国内外主要厂家和他们的软硬件产品介绍,供同学们学习时使用、参考。 1、打开《<过程控制技术>学习工具包》,认识离心泵、加热炉、化学反应

相关文档
相关文档 最新文档