文档库 最新最全的文档下载
当前位置:文档库 › 微孔分子筛催化剂的制备及应用

微孔分子筛催化剂的制备及应用

微孔分子筛催化剂的制备及应用
微孔分子筛催化剂的制备及应用

微孔分子筛催化剂的制

备及应用

文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

2

银川能源学院

工业催化

学生姓名席坤

学号

指导教师王伟

院系石油化工学院

专业班级能源化工1302班

微孔分子筛催化剂的制备及应用

摘要:微孔分子筛具有表面积大、水热稳定性高、微孔丰富均一、表面性质可调等性能,被广泛地用作催化剂。分子筛作为催化剂常应用在石油化工、有机中间体的合成和物质

的分离中。本文主要是简述了一下微孔分子筛催化剂及对微孔分子筛的改进方法和分子

筛催化剂在不同反应中的应用。

关键词:催化剂;微孔;分子筛;应用

一、引言

分子筛是一种具有立方晶格的硅铝酸盐化合物,具有均匀的微孔结构,这些孔穴能把比其直径小的分子吸附到孔腔的内部,并对极性分子和饱和分子具有优先吸附能力,因而能把极性程度不同,饱和程度不同,分子大小不同及沸点不同的分子分离开来,即具有“筛”分子的作用,故称分子筛。根据形成的孔径的大小,国际纯粹与应用化学协

会(IUPAC)定义:微孔(小于2nm),介孔(2~50nm),大孔(大于50nm)三类。分子筛到现在通过各种方法合成的新型分子筛,人们已经从结构,性质,作用原理等各个方面全面认识了分子筛。根据不同的需要合成具有不同功能的分子筛材料,不同种多性能的分子筛被越来越多的人研究[1]。因此分子筛也不再局限于由硅氧四面体和铝氧四面体组成的阴离子骨架硅铝酸盐体系 ,而是泛指一类具有规则孔结构的结晶无机固体。这些具有新型组成和结构的分子筛进一步扩大了微孔分子筛的应用和发展空间。分子筛作为催化剂特别具有活性高,选择性好,稳定性和抗毒能力强等优点。近年来,它作为一种化工新材料发展得很快,应用也日益广泛。特别是在石油的炼制和石油化工方面作为工业催化剂发挥了很重要的作用[2]。

二、微孔分子筛的合成方法[3]

传统的微孔分子筛合成方法有:水热体系合成法,非水体系合成法,蒸汽相体系合成法,干粉体系合成法,微波法,高温焙烧法,向导剂法等等。

1、水热体系合成法

又称水热晶化法,是将硅源、铝源、碱(有机碱和无机碱)和水按一定比例合,放入反应釜中,在一定温度下晶化而制备沸石晶体。通常低硅铝比沸石是在低温水热体系中合成的,而高硅铝比的沸石于高温水热体系中合成。

2、非水体系合成法

非水体系合成法于本世纪八十年代初期由Bibbq和Dale[19]开创。它不以水为溶剂,而代之以有机物作为溶剂进行沸石的合成。开辟了一条沸石合成的新途径,并为沸石的固相转变机理提供了有力的佐证。

3、蒸汽相体系合成法

蒸汽相体系合成法区别于水热体系合成法和非水体系合成法,蒸汽相体系合成法是将硅源铝源和无机碱置于溶剂和有机模板剂的蒸汽相中进行沸石合成,从而开辟了一种新的合成方法,降低了合成中有机胺的用量,减少了环境污染,提高了合成的效率。

4、干粉体系合成法

干粉体系合成方法是近年来提出的一种新的合成沸石的方法。其特点是反应物料为干粉状,模板剂以吸附态形式作用于合成体系,且在整个晶化过程中无液体出现。这种方法也很好的解释了固相的催化机理。

5、微波法

自从微波技术在化学合成领域得以广泛应用。近年来,微波合成技术被拓展到分子筛的合成中。从而开辟了分子筛合成的新路线。利用微波法,制备出了Y型沸石和ZSM-5分子筛。

6、高温焙烧法

-5分子筛产物。这种新的合成途径具将反应混合物直接在高温焙烧的条件下得到AlPO

4

有设备简单(不必用高压反应釜),生产周期短和单位产量高等优点。

7、导向剂法

β沸石在合成体系中必须加入大量价格昂贵的有机模板剂TEAOH,致使合成成本较高。采用导向剂法合成β沸石只需加入少量β沸石导向剂(不必再加入有机模板剂)就可合成出β沸石,并且可以合成出低硅铝比的沸石分子筛,这大大减少了合成体系中有机模板剂用量,降低了合成成本,减少了对环境的污染。

8、其他的合成方法还有:凝胶法,双硅源法,纯固体配料合成法。

三、微孔分子筛催化剂的改进及微-介孔复合分子筛的合成

目前通过对微孔分子筛改进或是把介孔分子筛与微孔分子筛复合使用得到了性能更好的复合分子筛,这种材料预期在大分子的吸附和催化方面具有广阔的应用前景。

1、首先是在微孔中制造介孔以达到改变孔径的目的,根据方法的不同可以通过脱铝法,脱硅法和热处理法[4]。

1、1 脱铝法

此种方法是采用脱铝剂与分子筛骨架的Al络合使其进入溶液,骨架脱铝后形成大量的羟基空穴在高温失水后形成了介空结构。另外也可以用水热法脱铝,过程是用铵交换分子筛中的钠为分子筛结构稳定化水热条件。一般情况是脱铝试剂盒水热脱铝联合使用,以达到形成稳定改性的分子筛结构。如:Cooper等[5]采用可溶性铝盐溶液交换与水热处理相结合脱铝制备晶胞常数小于2.414nm的Y沸石,发现铝离子的交换量越多,分子筛的晶胞越容易收缩。脱铝Y分子筛的水热稳定性经过改进性能有了显着的提高,已在工业上有了重要的应用。

1、2 脱硅法

主要是把分子筛置于碱性的水热溶液中,脱掉部分骨架硅产生介孔。这种方法具有操作简单,原料便宜,适合工业生产,但是此种方法合成的介孔孔道因受原分子筛的结果

Si/Al的限制而不均匀,如:Groen等[6]在碱性NaOH水溶液中处理MFI沸石,研究发现当Si/Al ≤15时,碱处理很难脱除骨架硅,因此限制了介孔的生成;当Si/Al=25-50 时,沸石能在碱性溶液中脱除部分骨架硅, 形成5-20nm的介孔;当Si/Al≥200时,沸石骨架硅大量溶解,形成了大孔结构的沸石,有的甚至造成沸石骨架结构坍塌。

1、3 热处理法[13]

此方法使一般在高温(1000℃)空气中加热分子筛,使微孔扩大。其中关键是严格控制加热条件。此种方法简单,费用低,易控制且有较好的重复性。但是用此方法合成的双孔分子筛孔径分布仍然不均匀。

2、空间限制法合成具有介孔的微孔分子筛

2、1 碳模板制备法

文献报道,Haldor Topsoe公司以大约10nm大小的碳颗粒为模板,合成介孔ZSM-5分子筛[7]。这种方法容易控制分子筛的的组成、结构、孔道大小和形状,但是除了孔径分布不均匀外还存在着大孔包小孔的缺点。后通过与纳米碳的复合物焙烧得到的分子筛对以上的缺点有了改良。

2、2高分子聚合物模板法

这种方法也碳模板法相似,。Xiao等[8]将此方法用于微-介孔沸石的合成,他们选择阳离子高分子聚合物作为模板,通过对合成的材料进行表征,显示该材料同时具有微孔和多级介孔结构,比传统沸石有更加优越的催化性能。该法可以作为一个普遍的方法来制备介孔和微孔的复合材料,但介孔的无序以及介孔孔径不均匀是该法的缺陷。

3、微-介孔分子筛的合成[14-15]

3、1 附晶生长法

在沸石表面通过离子交换法等方法附晶生长,得到预期的孔径。如:对Y型沸石而言, 其硅铝比低, 表面富集大量Na+ , 因此可通过离子交换的方法在其表面附晶生长MCM-41。李福祥等[9]通过在ZSM25中引入F-改变ZSM-5表面电场性能, 以实现MCM-41的附晶生长。

结果表明F-添加量对附晶生长MCM-41有显着影响。当未添加F-时在ZSM-5 上附晶生长MCM-41很困难。李玉平等[10]采用附晶生长法合成了MCM-41 /Y复合材料。该材料是MCM-41相生长在Y型沸石内核的外表面形成的包络型复合材料, 与HY相比, 虽然对萘的叔丁基化反应活性有所下降, 但选择性却大大改善, 反应副产物大幅度降低, 因此为煤加工副产物—萘的利用提供了有益的依据, 同样也适用于其它大分子的催化反应。

3、2孔壁晶化法

孔壁晶化法是将模板剂阳离子交换到介孔分子筛上, 模板剂与其孔壁中的无定形物质相互作用,使无定形的孔壁部分结晶。Verhoef等[11]研究了MCM-41的孔壁部分再结晶, 用TPAOH溶液浸渍MCM-41随后进行水热处理, 可形成均匀分布的3nm微粒。

四、微孔分子筛催化的应用举例

微孔分子筛是工业中重要的择形催化剂。均匀的孔结构,较大的表面积,稳定的骨架使它作为催化剂或载体具有很大的选择性。简单地说它的择形有四种不同的形式,(1)选择反应混合物中小于孔径的分子进入,在催化剂部位进行催化反应。(2)产物的择形催化。(3)过渡态限制的择形催化,ZSM-5催化剂常用作过渡态选择性的催化反应,它可以催化低分子烃类的异构化反应,裂化反应,二甲苯的烷基转移反应等。(4)分子交通控制的择形催化,就是反应物分子从一种孔道进入催化剂,产物分子从另一个孔扩散出去,尽量的减少逆扩散,从而增大反应的速率。

1、微孔分子筛在芳酮中合成的应用[12]

芳酮是生产中的重要中间体,传统的Friedel-Crafts酰基化是在路易斯酸或是质子酸催化下完成的,然而此种催化剂存在着些缺点,本着向环境友好型催化剂的发展,实现绿色生产分子筛催化剂以择形,热稳定,易分离,再生能力强受到瞩目。(1) β沸石。以β沸石微孔分子筛用于酰化反应的研究最普遍,主要是由于β沸石的强酸性和合适的孔结构。β沸石的孔道尺寸恰好与反应物及产物相匹配,因此能满足酰化反应的需要,同时又阻止了多酰化反应的发生。(2)HZSM-5。HZSM-5的主孔道尺寸比较小, 一般开口为0. 54 ×0. 56nm和0. 51 ×0. 55nm,限制了一些分子进入其孔道内,所以HZSM25的催化作用范围较窄,适合于分子尺寸较小的酰化反应,且主要是外表面酸中心起催化作用。此催化剂对苯甲醚与酸酐和羧酸的酰化反应效率较高。(3)Y分子筛。大孔型微孔Y分子筛主孔道较大芳烃分子和酰化试剂可以进入孔道中接触内表面的酸中心反应生成芳酮。分子筛催化剂作为酰化反应的催化剂虽然活性高,选择性好,但是催化剂失活现象比较严重。因此对不同的酰化反应选择不同的分子筛催化剂很重要。

2、纳米ZSM-5分子筛作为催化剂的应用[16-17]

ZSM-5分子筛在催化领域的应用已经实现了工业化。作为催化剂它有如下特点:⑴特有的产物选择性。石粒径小,孔道短,晶内扩散阻力小,暴露在外的原子多,含有丰富的晶间隙,具有较强的吸附能力,有利于提高大分子的选择性。以小晶粒HZSM-5沸石为催化

剂,在甲醇制汽油反应中,C

5以上的烃类选择性较高;在乙烯齐聚反应产物中,C

9

以上

的芳烃含量占50% 以上。⑵较高的催化活性。小晶粒沸石外表面有许多不饱和键,易于吸附其他分子,因而可能会表现出较高的催化性能,尤其对扩散控制反应和大分子反应。⑶较长的催化剂寿命。产物能很快地从小晶粒沸石孔道扩散出去,减少了深度反应而使积碳失活减慢。在乙烯的齐聚反应中发现,纳米HZSM-5 沸石晶粒越小,抗积碳能力越强,催化剂寿命越长。

五、总结

微孔分子筛因其特殊的结构和优异的催化性能在许多有机反应中表现出良好的反应活性和选择性,已经广泛应用于石化工业中。最近几年来,随着人们对环保意识的逐渐增强,采用绿色合成已成为分子筛合成的重要方向。特别是新型分子筛的合成和应用,相信在未来的几十年内,沸石分子筛在工业生产中具有更加广阔的应用前景。

参考文献:

[1]宋毅,牛雄雷,翟玉春,徐龙伢.微孔分子筛合成的研究进展[J].石油化工,2005,

34(9):807-810

[2]李莉,陈梦,王伟.分子筛催化剂的性能及应用[J].中国科技信息,2008,13:32-34

[3]黄世英,张莉艳.微孔分子筛的合成研究[J]. 科技信息,2008,29:349-350

[4]王义,李旭光,薛志元,李全芝.多孔分子筛材料的合成[J].化学进展,2010,22:323-328

[5]Cooper V A, Denkewicz R P, Hertzenberg E P, et al. Synthesis of Y

zeolites[J]. US, 1993, 125:524-677

[6]Groen J C, Jansen J C, Moulijn J A, et al. Preparation of zeolite

dealuminated[J].J. Phys. Chem. B,2004,108: 13062-13065

[7]Van Donk S, Janssen A H, Bitter J H, et al. Synthesis of ZSM-5[J]. Catal.

Rev, 2003, 45:297-319

[8]Xiao F S. Template Synthesis of carbon molecular sieve[J].Acta Petrolei

Sinica. Syn. Commun, 2006, 22:10-14

[9]李福祥,吴岚,秦梦庚.附晶生长在微-介孔分子筛中的应用[J].燃料化学学报, 1998,

26(2):102-107

[10]李玉平,李香兰,张瑛.微孔分子筛制备[J].燃料化学学报,2002,30(2):162-166

[11]Verhoef M J, Kooyman P J, vander Waal J C, et al. Crystallization of the

hole wall applications [J].Chem. Mater,2001, 13(2):683-687

[12]陈平,高良军,翟玉春.微孔分子筛催化剂在芳酮合成中的应用[J].香料香精化妆

品,2008,1:31-35

[13]万克树,刘茜,张存满.热处理ZSM-5制备微孔-介孔双孔分子筛[J].无机材料学报,

2003,18(5):1097-1010

[14]杨宇川,辉永庆,何小波,钟志京.微孔-介孔复合分子筛研究进展与应用前景[J].硅酸

盐通报,2006,2:86-89

[15]宋春敏,阎子峰,微孔-介孔复合结构分子筛的研究新进展[J].分子催化,2008,22

(3):280-285

[16]王水利,葛岭梅.纳米沸石的合成与应用[J].纳米科技,2004,1(1):8-13

[17]白妮,王水利,孟桂花. 纳米ZSM-5沸石合成方法及应用[J].纳米科技,2005,6:55-56

[18] Tagawa T, Amemiya J, Goto S. Chlorinefree Friedel-Crafts acylation of

benzene with benzoic anhyaride on insoluble heteropplyacid catalyst [J].

App l. Catal,2004,257:19-23

[19] D. M. Bibby, M. P. Dale. Synthesis of silica-sodalite from non-aqueous

systems [J]. Nature, 1985, 317:157-158

[20] Luiza M Cardoso, Walter Alves J r, et al. Friedel-Crafts resctions

anisole with acetic anhydride over HPW /SiO2 [ J ]. Mol. Catal.A, 2004, 209 (122) : 189-197.

分子筛制造工艺过程

分子筛的生产工艺 一生产设备 1 混合机 2 摇摆式颗粒机 3 糖衣机 4 带式干燥机 5. 培烧窑 6 平板筛 二制备过程: 原料混合-------- 造粒-------- 筛分------- 干燥-------- 焙烧-------- 包装 1 原料混料 将高岭土与4A/3A沸石原粉按一定的比例倒入到锥形混合机中,开启混合机搅拌约90min左右。混合越均匀越好。 2 造粒 将搅拌均匀的原粉分批放入到摇摆式颗粒机中,开启摇摆式颗粒机,边搅拌边加入三聚磷酸钠溶液(三聚磷酸钠的溶液浓度为水:三聚磷酸钠=20:1)。即可筛选出很小的晶粒。第一次造粒需要此步骤来造晶粒,以后只要不停产,即不再需要此步骤来造晶粒。 开启糖衣机。将所制得的晶粒倒入其中,缓慢喷洒配好的三聚磷酸钠溶液,当颗粒润湿后,将混匀的原料洒进去,一段时间以后,晶粒会逐渐增大,此过程即为造粒。 3 筛分 当糖衣机中的颗粒粒径增大到一定程度以后,将其取出,在平板筛上筛分。一般在1.0-1.4mm的筛子上过筛,筛出的三种粒径的颗粒(即小于1.0mm,1.0-1.4mm之间,大于1.4mm)放入不同的糖衣机中分别造粒。如此循环操作,即为造粒。当粒径达到所需的要求时,停止喷洒溶液,也不再加入原粉,此过程称为曝光,曝光半小时以后出锅即可。 将出锅的分子筛要先经过实验室强度测定,当其强度符合标准后才可出锅,否则为不合格产品,可将其粉碎当原粉用,或做其他处理。 4 干燥 将出锅的分子筛放入带式干燥机中干燥的过程;带式干燥机分为4个加热区,分别设置温度为:一区50℃、二区70℃、三区80℃、四区60℃。带式干燥机往前推动的速度越小,其干燥效果越好。 5 焙烧 将干燥完的分子筛放入焙烧炉中煅烧,即得成品分子筛。第一次使用焙烧炉需预热二天,以后隔一段时间使用时需预热一天,焙烧炉分9个加热区,不同粒径分子筛其最佳加热温度不同。温度过高或过低,都会导致强度和吸水量变差;实验室用马弗炉与工业用焙烧炉之间温差约为100℃,可将分子筛先在实验室测其最佳温度,在加100℃即可得最佳的焙烧炉煅烧温度。目前可知的不同粒径的煅烧温度为: 当粒径为小于1.6mm时,焙烧炉各个区的设定温度为450、450、500、550、600、650、700、700、600.,流量V=35g/s。 当粒径为小于1.6-2.4mm时,焙烧炉各个区的设定温度为450、450、500、550、600、700、750、750、600,流量V=35g/s。

分子筛催化剂

绿色高分子材料论文 ——分子筛催化剂 学院:京江学院 班级:高分子1101 姓名:刘铭 学号:4111126020

摘要:随着环保意识的增强,对清洁能源的需求不断提高,人们越来越多的研究了新型环保的催化剂。目前,分子筛催化剂在炼油与化工工业得到了研究与应用,如催化裂化、加氢裂化、带支链芳烃的烷基化、异构脱蜡以及轻烯烃聚合等。国内外已开发出一批有发展前景的高功能化、多功能化、精密化的分子筛催化剂材料。 1. 分子筛催化剂的概述 1.1、定义: 指以分子筛为催化剂活性组分或主要活性组分之一的催化剂。又称沸石催化剂。分子筛具有离子交换性能、均一的分子大小的孔道、酸催化活性,并有良好的热稳定性和水热稳定性,可制成对许多反应有高活性、高选择性的催化剂。应用最广的有X型、Y型、丝光沸石、ZSM-5等类型的分子筛。工业上用量最大的是分子筛裂化催化剂。 1.2、合成方法: ①水热晶化法; ②非水体系合成法; ③干胶转换法; ④无溶剂干粉体系合成法;; ⑤微波辐射合成法; ⑥蒸汽相体系合成法; ⑦多级孔道沸石分子筛的合成; ⑧化学后处理法; ⑨硬模板法; ⑩软模板法。 2. 分子筛催化剂的的发展现状 1954年第一次人工合成沸石分子筛催化剂并作为吸附剂而商品化。20世纪50年代人们先后合成了 A 型、X型和Y 型分子筛。随着人们对分子筛催化剂的不断加深,美国联合碳化学公司(UCC)开发出合成沸石分子筛,继而,美国Mobil公司的研究人员开发出由Zeolites Socony Mobil缩写命名的ZSM系列高硅铝比沸石分子筛催化剂,并形成工业化规模生产。1980年Sand合成了ZEOLON分子筛。1982 年UCC(联合碳化公司)Wilson和Flanigen等首次合成20余种AlPO4 和SaPO4分子筛,从而打破了沸石分子筛由硅氧四面体和铝氧四面体组成的传统观念。1982年,WLSON 等在水热条件下首先合成了新型微孔磷铝分子筛,这种分子筛由铝氧四面体和磷氧四面体严格有序交替排列而成,其骨架接近中性。1992年美国Mobil公司发现了M41S介孔分子筛。为了改善催化剂的催化活性,在催化剂中加入杂原子,如La、Ce、Fe、Mn、Ti、Sn。Vietze等将有机燃料加入到在磷酸铝分子筛合成中。Tang等在磷酸铝分子筛中组合了直径为0.4nm的超小的单个的碳纳米分子筛。Caro等报道了非线性硝基苯胺载体磷酸铝晶体的特性。 近几年来市场对各类分子筛催化剂的需求不断增加,国内合成分子筛的生产规模也不断增大。中科院大连化物所自20世纪80年代以来开展沸石分子筛的合成及改性研究工作,开发出二甲醚裂解制低碳烯烃催化剂及甲醇转化制低碳烯烃催化剂。1988年首次合成了具有十八环的VPI-5分子筛,孔径达1.3nm,实

分子筛的结构应用说明

1.分子筛的概念 分子筛是结晶型的硅铝酸盐,具有均匀的孔隙结构。分子筛中含有大量的结晶水,加热时可汽化除去,故又称沸石。自然界存在的常称沸石,人工合成的称为分子筛。它们的化学组成可表示为 Mx/n ?ZH2O 式中M是金属阳离子,n是它的价数,x是AlO2的分子数,y是SiO2分子数,Z是水分子数,因为AlO2带负电荷,金属阳离子的存在可使分子筛保持电中性。当金属离子的化合价n = 1时,M的原子数等于Al的原子数;若n = 2,M的原子数为Al原子数的一半。 常用的分子筛主要有:方钠型沸石,如A型分子筛;八面型沸石,如X-型,Y-型分子筛;丝光型沸石(-M型);高硅型沸石,如ZSM-5等。分子筛在各种不同的酸性催化剂中能够提供很高的活性和不寻常的选择性,且绝大多数反应是由分子筛的酸性引起的,也属于固体酸类。近20年来在工业上得到了广泛应用,尤其在炼油工业和石油化工中作为工业催化剂占有重要地位。 2.分子筛的结构特征(1)四个方面、三种层次: 分子筛的结构特征可以分为四个方面、三种不同的结构层次。第一个结构层次也就是最基本的结构单元硅氧四面体(SiO4)和铝氧四面体(AlO4),它们构成分子筛的骨架。相邻的四面体由氧桥连结成环。环是分子筛结构的第二个层次,按成环的氧原子数划分,有四元氧环、五元氧环、六元氧环、八元氧环、十元氧环和十二元氧环等。环是分子筛的通道孔口,对通过分子起着筛分作用。氧环通过氧桥相互联结,形成具有三维空间的多面体。各种各样的多面体是分子筛结构的第三个层次。多面体有中空的笼,笼是分子筛结构的重要特征。笼分为α笼,八面沸石笼,β笼和γ笼等。 (2)分子筛的笼: α笼:是A型分子筛骨架结构的主要孔穴,它是由12个四元环,8个六元环及6个八元环组成的二十六面体。笼的平均孔径为1.14nm,空腔体积为7603。α笼的最大窗孔为八元环,孔径0.41nm。 八面沸石笼:是构成X-型和Y-型分子筛骨架的主要孔穴,由18个四元环、4个六元环和4个十二元环组成的二十六面体,笼的平均孔径为1.25nm,空腔体积为8503。最大孔窗为十二元环,孔径0.74nm。八面沸石笼也称超笼。 β笼:主要用于构成A型、X-型和Y型分子筛的骨架结构,是最重要的一种孔穴,它的形状宛如有关削顶的正八面体,空腔体积为1603,窗口孔径为约0.66nm,只允许NH3、H2O等尺寸较小的分子进入。 此外还有六方柱笼和γ笼,这两种笼体积较小,一般分子进不到笼里去。 不同结构的笼再通过氧桥互相联结形成各种不同结构的分子筛,主要有A-型、X型和Y型。(3)几种具有代表性的分子筛 A型分子筛 类似于NaCl的立方晶系结构。若将NaCl晶格中的Na+和Cl-全部换成β笼,并将相邻的β笼用γ笼联结起来就得到A-型分子筛的晶体结构。8个β笼联结后形成一个方钠石结构,如用γ笼做桥联结,就得到A-型分子筛结构。中心有一个大的α的笼。α笼之间通道有一个八元环窗口,其直径为4?,故称4A分子筛。若4A分子筛上70%的Na+为Ca2+交换,八元环可增至5?,对应的沸石称5A分子筛。反之,若70%的Na+为K+交换,八元环孔径缩小到3?,对应的沸石称3A分子筛。 X-型和Y-型分子筛 类似金刚石的密堆六方晶系结构。若以β笼为结构单元,取代金刚石的碳原子结点,且用六方柱笼将相邻的两个β笼联结,即用4个六方柱笼将5个β笼联结一起,其中一个β笼居

沸石分子筛如何制备合成

沸石分子筛及其复合材料新型合成方法研究进展 沸石分子筛作为离子交换材料、吸附剂、催化剂等,在化学工业、石油化工等领域发挥着重要作用。随着新材料领域和电子、信息等行业的不断发展,其使用范围已经跳出传统行业,在诸如新型异形分子筛吸附剂、催化剂和催化蒸馏元件、气体和液体分离膜、气体传感器、非线性光学材料、荧光材料、低介电常数材料和防腐材料等方面得到应用或具有潜在的应用前景。因此,沸石分子筛的制备方法也越来越受到人们的关注。 沸石分子筛传统的制备方法主要包括水热法、高温合成法、蒸汽相体系合成法等,但随着组合化学技术在材料领域应用的不断扩大,20世纪90年代末人们将组合化学的概念与沸石分子筛水热法结合,建立了组合水热法。将组合化学技术应用到沸石分子筛水热合成之中,加快了合成条件的筛选与优化。除此之外,气相转移和干胶法等新型制备方法也被提出并应用于实践,本文对这些方法进展进行简单概述。 1. 组合化学水热法 组合化学是一种能建立化学库的合成方法,其大的优势是能在短时间内合成大量的化合物,从而达到快速、高效合成与筛选的目的。水热法合成沸石分子筛及相关材料,要考察的因素比较多,包括多种反应原料的选择及配比、反应温度及反应时间等。使用组合化学法可以减轻实验工作量和劳动强度,大大提高工作效率。 ·石墨烯·分子筛·碳纳米管·黑磷·类石墨烯·纳米材料 江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、

利用组合化学水热法制备沸石分子筛,设计了一种组合反应釜,即在圆形聚四氟乙烯片上钻100个小孔,然后在其上、下表面分别用不锈钢片夹紧,形成100个水热反应器,将不同配比的水热合成液分别置于各反应器中。在一定条件下,和传统水热法一样合成沸石分子筛。他们对Na2O-Al2O3-SiO2-H2O的四组分体系进行了考察,比较了使用传统的水热法和组合水热法的差别,证实了组合化学的高效性和快速筛选性。在此基础上,科学家对组合水热法进行了改进,设计出易于自动化X射线衍射测定的装置,并用这种方法对TS-1分子筛的合成配方进行了筛选。 组合化学水热法在分子筛的制备和无机材料合成方面已有一定的应用,但其应用还很有限。同时,要利用组合化学水热法,具备以下特点:(1)每次合成要产生出尽可能多的平行结果;(2)减少每组试样量;(3)增加合成与表征过程中的自动化程度;(4)实验过程与计算机充分结合,提高实验效率。 2. 气相转移法 2.1 气相转移法制备分子筛粉末 气相转移法可用于制备MFI、FER、MOR等结构的沸石分子筛。Zhang等利用气相转移法合成了ZnAPO-34和SAPO-34分子筛,证明水是气相法合成磷铝分子筛不可缺少的组分。后来,也有人利用气相法合成了AFI和AEI的磷铝分子筛,验证了水在合成过程中的作用。在n(P2O5)/n(Al2O3)=1时,分别用三乙胺和二正丙胺与水作为模板剂合成了AlPO4-5和AlPO4-11分子筛。 ·石墨烯·分子筛·碳纳米管·黑磷·类石墨烯·纳米材料 江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、

分子筛的合成

分子筛的合成、表征及性能研究 姓名好 班级:好 学号:好 2014年01月11日

一、实验设计思路 二、实验目的 1.了解分子筛的主要特点和用途; 2.了解水热法的主要特点和一些基本实验操作; 3.掌握X 射线衍射表征方法的原理及实验操作; 4.掌握氮气吸附法测多孔材料孔结构参数的原理及操作; 5.掌握沸石分子筛化学组成的测定方法; 6.通过比较、分析不同类型分子筛在离子交换、吸附性能上的差异。 三、实验原理 分子筛材料,广义上指结构中有规整而均匀的孔道,孔径为分子大小的数量级,它只允许直径比孔径小的分子进入,因此能将混合物中的分子按大小加以筛分;狭义上分子筛是结晶态的硅酸盐或硅铝酸盐,由硅氧四面体或铝氧四面体通过氧桥键相连而形成。 分子筛按骨架元素组成可分为硅铝类分子筛、磷铝类分子筛和骨架杂原子分子筛。按孔道大小划分,小于2 nm 称为微孔分子筛,2~50 nm 称为介孔分子筛,大于50 nm 称为大孔分子筛。按照分子筛中硅铝比的不同,可以分为A 型(1.5~2.0),X 型(2.1~3.0),Y 型(3.1~6.0),丝光沸石(9~11),高硅型沸石(如ZSM -5)等,其通式为:MO.Al2O3.xSiO2.yH2O ,其中M 代表K 、Na 、Ca 等。商品分子筛常用前缀数码将晶体结构不同的分子筛加以分类,如3A 型、4A 型、5A 型分子筛等。4A 型即孔径约为4A ;含Na+的A 型分子筛记作Na-A,若其中Na+被K+置换,孔径约为3A ,即为3A 型分子筛;如Na-A 中有1/3以上的Na+被Ca2+置换,孔径约为5A ,即为5A 型分子筛。X 型分子筛称为 13X (又称Na-X 型)分子筛;用Ca2+交换13X 分子筛中的Na+,形成孔径为9A 的分子筛晶体,称为10X (又称Ca-X 型)分子筛。 A 型分子筛结构,类似于NaCl 的立方晶系结构,如将NaCl 晶格中的Na+和Cl-全部换成β笼,并将相邻的β笼用γ笼联结起来,就会得到A 型分子筛的晶体结构;X 型和Y 型 合成 材料 组成、结构 性能 硅铝比 结构导向剂 介孔分子筛 A 型 沸石分子筛X 型 Y 型 氧化硅介孔 M m/2O ·Al 2O 3·nSiO 2·xH 2O 微孔 大分子吸附 小分子吸附 离子交换

分子筛催化剂

伴随着工业革命的大潮,碳材料的应用越来越广泛,从最初的过滤杂质逐渐发展到分离不同组份。与此同时,随着技术的进步,人类对物质的加工能力也越来越强。那么什么是分子筛催化剂?为此,安徽天普克环保吸附材料有限公司为大家总结了相关信息,希望能够为大家带来帮助。 分子筛催化剂又称沸石催化剂,指以分子筛为催化活性组分或主要活性组分之一的催化剂,工业上用量最大的是分子筛裂化催化剂,它属于固体酸催化剂。此外,常用的还有具双功能催化作用的载金属分子筛催化剂,如钯-超稳Y型分子筛加氢裂化催化剂。 催化性质按分子筛的催化性质,可分为分子筛固体酸催化剂、金属分子筛双功能催化剂和分子筛择形催化剂三大类。按分子筛的类型分类,则分子筛催化剂的分类和分子筛的分类相同。 分子筛催化剂中通常只含有5%~15%的分子筛,其余部分可称为基质,通常由难熔性无机氧化物或其混合物和粘土组成。基质的作用是使分子筛良好分散,使分子筛易于粘结成形,甚至可使分子筛的

热稳定性得到提高。在催化过程中基质还起到热载体的作用。制造催化剂时,分子筛原粉通常经胶体磨研磨后混入基质的胶体中,用喷雾、挤条或其他方法成形,再经干燥、焙烧等步骤最后制成催化剂。 安徽天普克环保吸附材料有限公司是原上海摩力克分子筛有限公司直属公司,本公司成立于2004年,由于生产量扩增,本公司在安徽合肥空港寿县新桥产业园投资建设生产基地。公司目前拥有年产2000吨分子筛、1500吨活性氧化铝生产线各一条。 二期工程将建成4000吨分子筛生产线。公司全面推行ISO9001质量管理体系,建有现代化的实验室和质量控制中心。现有工程技术人员20人,其中工程师8人。 产品系列化、经营多元化,这些都是企业的发展方针,而OEM----更是公司多年的经营模式,并且得到广泛好评。我们的用户涉及石油、化工、冶金、汽车、空调、电子仪表等行业,我们的客户群不仅是在国内而且遍及东南亚、欧美等地。公司热忱欢迎国内外客

分子筛合成方法

有水热合成、水热转化和离子交换等法: ①水热合成法用于制取纯度较高的产品,以及合成自然界中不存在的分子筛。将含硅化合物(水玻璃、硅溶胶等)、含铝化合物(水合氧化铝、铝盐等)、碱(氢氧化钠、氢氧化钾等)和水按适当比例混合,在热压釜中加热一定时间,即析出分子筛晶体。合成过程可用下式表示: 工业生产流程中一般先合成Na-分子筛,如13X型与10X型分子筛的合成(见图)。在水热合成过程中添加某些添加剂可以改变最终产品的结构,如加入季胺盐可得到ZSM-5型分子筛。 分子筛 ②水热转化法在过量碱存在时,使固态铝硅酸盐水热转化成分子筛。所用原料有高岭土、膨润土、硅藻土等,也可用合成的硅铝凝胶颗粒。此法成本低,但产品纯度不及水热合成法。 ③离子交换法通常在水溶液中将Na-分子筛转变为含有所需阳离子的分子筛,

通式如下: 式中 Z-表示阴离子骨架,Me+表示需交换的阳离子,例如NH嬃、Ca2+、Mg2+、Zn2+等,原料通常为氯化物、硫酸盐、硝酸盐。溶液中不同性质的阳离子交换到分子筛上的难易程度不同,称为分子筛对阳离子的选择顺序,例如:13X型分子筛的选择顺序为Ag+、Cu2+、H+、Ba2+、Au3+、Th4+、Sr2+、Hg2+、Cd2+、Zn2+、Ni2+、Ca2+、Co2+、NH嬃、K+、Au2+、Na+、Mg2+、Li+。常用下列参数表示交换结果:交换度,即交换下来的Na+量占分子筛中原有Na+量的百分数;交换容量,为每100克分子筛中交换的阳离子毫克当量数;交换效率,表示溶液中阳离子交换到分子筛上的质量百分数。为了制取合适的分子筛催化剂,有时尚需将交换所得产物与其他组分调配,这些组分可能是其他催化活性组分、助催化剂、稀释剂或粘合剂等,调配好的物料经成型即可进行催化剂的活化。

微孔分子筛催化剂的制备及应用

微孔分子筛催化剂的制 备及应用 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

2 银川能源学院 工业催化 学生姓名席坤 学号 指导教师王伟 院系石油化工学院 专业班级能源化工1302班 微孔分子筛催化剂的制备及应用 ) 摘要:微孔分子筛具有表面积大、水热稳定性高、微孔丰富均一、表面性质可调等性能,被广泛地用作催化剂。分子筛作为催化剂常应用在石油化工、有机中间体的合成和物质 的分离中。本文主要是简述了一下微孔分子筛催化剂及对微孔分子筛的改进方法和分子 筛催化剂在不同反应中的应用。 关键词:催化剂;微孔;分子筛;应用 一、引言 分子筛是一种具有立方晶格的硅铝酸盐化合物,具有均匀的微孔结构,这些孔穴能把比其直径小的分子吸附到孔腔的内部,并对极性分子和饱和分子具有优先吸附能力,因而能把极性程度不同,饱和程度不同,分子大小不同及沸点不同的分子分离开来,即具有“筛”分子的作用,故称分子筛。根据形成的孔径的大小,国际纯粹与应用化学协

会(IUPAC)定义:微孔(小于2nm),介孔(2~50nm),大孔(大于50nm)三类。分子筛到现在通过各种方法合成的新型分子筛,人们已经从结构,性质,作用原理等各个方面全面认识了分子筛。根据不同的需要合成具有不同功能的分子筛材料,不同种多性能的分子筛被越来越多的人研究[1]。因此分子筛也不再局限于由硅氧四面体和铝氧四面体组成的阴离子骨架硅铝酸盐体系 ,而是泛指一类具有规则孔结构的结晶无机固体。这些具有新型组成和结构的分子筛进一步扩大了微孔分子筛的应用和发展空间。分子筛作为催化剂特别具有活性高,选择性好,稳定性和抗毒能力强等优点。近年来,它作为一种化工新材料发展得很快,应用也日益广泛。特别是在石油的炼制和石油化工方面作为工业催化剂发挥了很重要的作用[2]。 二、微孔分子筛的合成方法[3] 传统的微孔分子筛合成方法有:水热体系合成法,非水体系合成法,蒸汽相体系合成法,干粉体系合成法,微波法,高温焙烧法,向导剂法等等。 1、水热体系合成法 又称水热晶化法,是将硅源、铝源、碱(有机碱和无机碱)和水按一定比例合,放入反应釜中,在一定温度下晶化而制备沸石晶体。通常低硅铝比沸石是在低温水热体系中合成的,而高硅铝比的沸石于高温水热体系中合成。 2、非水体系合成法 非水体系合成法于本世纪八十年代初期由Bibbq和Dale[19]开创。它不以水为溶剂,而代之以有机物作为溶剂进行沸石的合成。开辟了一条沸石合成的新途径,并为沸石的固相转变机理提供了有力的佐证。 3、蒸汽相体系合成法

分子筛催化剂的解析

分子筛催化剂的解析 分子筛(又称合成沸石)是一种硅铝酸盐多微孔晶体,它是由 SiO4和AlO4四面体组成和框架结构。在分子筛晶格中存在金属阳离子(如 Na,K,Ca等),以平衡四面体中多余的负电荷。分子筛的类型按其晶体结构主要分为: A型,X型,Y型等 A型主要成分是硅铝酸盐,孔径为 4A(1A=10 -10 米),称为 4A(又称纳A型)分子筛;用Ca2+交换4A分子筛中的Na+,形成5A的孔径,即为5A(又称钙A型)分子筛;用K+交换4A分子筛的Na+,形成3A的孔径,即为3A(又称钾A型)分子筛。 X型硅铝酸盐的晶体结构不同(硅铝比大小不一样),形成孔径为 9—10A的分子筛晶体,称为 13X(又称钠X型)分子筛;用Ca2+交换13X分子筛中的Na+,形成孔径为9A的分子筛晶体,称为 10X(又称钙X型)分子筛。 沸石分子筛是一类由硅氧四面体和铝氧四面体通过共用氧原子相互连接成骨架结构、并具有均匀晶内孔道的晶态微孔材料。通常,天然的和人工合成的沸石分子筛指的是硅铝酸盐。 1 分子筛的应用领域 沸石分子筛不仅可应用于催化、吸附、分离等过程,还可用于微激光器、非线性光学材料及纳米器件等新兴领域,并在药物化学、精细化工和石油化工等领域有着广阔的应用前景。 分子筛主要应用品种有 3A、4A、5A 、13X以及以上述为基质的改性产品。 3A分子筛用途:各种液体(如乙醇)的干燥;空气的干燥;制冷剂的干燥;天然气、甲烷气的干燥;不饱和烃和裂解气、乙烯、乙炔、丙烯、丁二烯的干燥。 4A分子筛用途:空气、天然气、烷烃、制冷剂等气体和液体的深度干燥;氩气的制取和净化;药品包装、电子元件和易变质物质的静态干燥;油漆、燃料、涂料中作为脱水剂。 5A分子筛用途:变压吸附;空气净化脱水和二氧化碳。 13X分子筛用途:空气分离装置中气体净化,脱除水和二氧化碳;天然气、液化石油气、液态烃的干燥和脱硫;一般气体深度干燥。 改性分子筛可用于有机反应的催化剂和吸附剂。 2分子筛催化剂的发展历史 分子筛的起源可追溯到1756年,首次在玄武岩的孔洞中发现了天然微孔硅铝酸盐,天然沸石。1840年,发现天然沸石具有可逆地吸水一脱水的性能,并且在加热过程中,它的透明度和结晶形状不发生变化。于是,天然沸石的微孔性及其在吸附、离子交换等方面的能引起了研究者的关注。1858年,根据泡沸石脱水晶体可以分离不同大小分子的性能,成功地实现了异构烷烃和正烷烃的分离。1925年,人们发现菱沸石能迅速吸附水、乙醇和甲酸蒸气,而基本上不吸收丙酮、乙醚和苯,再次证实了沸石的分子筛分作用。于是,沸石分子筛这一不仅代表其组成,而且代表着其作用的名称便产生了。研究者最初主要把沸石分子筛用作流体干燥和净化过程的吸附剂与干燥剂,后来也用于流体的分离。 20世纪50年代中期至80年代初期,是分子筛科研、应用及产业发展的全盛时期。1960年,提出了分子筛规整结构的“择形催化”概念,1962年,X型沸石分子筛首次用于催化裂化过程,此阶段发现的低、中硅铝比(SiO2/A1203≤10)的A型、X型、Y型、丝光沸石等称为第一代分子筛。 20世纪70年代,美国美孚石油公司开发的以ZSM一5为代表的高硅三维交叉直通道的新结构沸石分子筛称为第二代分子筛。如ZSM一5、ZSM一11、ZSM一12等,这些高硅分子筛水热稳定性高,亲油疏水,绝大多数孔径在0.6nm左右,对甲醇及烃类转化反应有良好的活性及选择性,此类分子筛的开发,促进了分子筛及微孔化合物结构与性质的研究,也大大推动了分子筛应用方面的研究。 联碳(UCC)公司于80年代开发了非硅、铝骨架的磷铝系列分子筛联碳(UCC)公司于80

分子筛催化剂的发展及研究进展

分子筛催化剂的发展及研究进展 摘要:分子筛是一种具有特定空间结构的新型催化剂,具有活性高、选择性好、稳定性和抗毒能力强等优点,因此,近几十年来它作为一种化工新材料发展的很快,应用也日益广泛。特别是在石油的炼制和石油化工方面作为工业催化剂发挥了很重要的作用。本文介绍了几种常见的分子筛及应用前景,并对分子筛的性能做了详尽的概述[1]。 关键词:分子筛;催化剂;应用;性能 Development and research of the molecular sieve catalyst Abstract:Zeolite is a new catalyst with specific spatial structure, with high activity, good selectivity, advantages, stability and antitoxic ability etc. Therefore, in recent decades, as a kind of new material chemical development soon, have been widely applied in. Especially as industrial catalysts in refining and petrochemical petroleum plays a very important role. This paper introduces the composition and application of molecular sieve, and the properties of molecular sieves as described in detail. Key words:Molecular sieve;catalyst;application;performance 1.分子筛的发展现状 所谓分子筛催化剂,就是将气体或液体混合物分子按照不同的分子特性彼此分离开的一类物质,实际上是一些具有实际工业价值且具有分子筛作用的沸石分子筛,构成沸石分子筛基本结构特征主要是硅氧四面体和铝氧四面体,这些四面体交错排列形成空间网状结构,存在大量空穴,在这些空穴内分布着可移动的水分和阳离子。基本组成物质为:Na2O、Al2O3、SiO2。上世纪50年代末发现小分子的催化反应可以在分子筛的孔道中进行,才使得这种材料得以迅速的发展。美国的多家公司,具有代表的是Linder公司、Exxon公司、联合碳化公司(UCC )模拟天然沸石的类型与生成条件,开发了一系列低硅铝和中硅铝的人工合成沸石。 上世纪60年代左右,上海试剂五厂开展沸石分子筛的研制开发工作,合成出A型、X型、Y型沸石分子筛。上世纪80年代,金陵石化有限公司炼油厂首次工业化生产ZSM-5沸石分子筛。已有南开大学、北京石科院、兰化炼油厂等单位纷纷开展ZSM -5沸石分子筛的开发生产,并将其广泛应用催化裂解、辛烷值助剂、柴油、润滑油降凝、芳烃烷基化、异构化及精细化工等领域。 近几年来市场对各类分子筛催化剂的需求不断增加,国内合成分子筛的规模也在不断扩大。中科院大连物化所自上世纪80年代以来开展沸石分子筛的合成及改性研究工作,开发出二甲醚裂解制低碳烯烃催化剂。已完成中试放大实验,据称,该研究所采用改性SAPO-34分子筛催化剂可使二甲醚单程转化率大于97%,低碳烯烃选择性达90%。1988年首次合成了具有十八环的VPI-5分子筛,孔径达1.3nm,实现了大孔分子筛的合成。上海骜芊科贸发展有限公司生产经营ZSM-5高硅沸石分子筛结晶粉体、疏水晶态ZSM-5吸附剂等系列分子筛。南开大学催化剂厂主要生产了NFK-5分子筛(直接法合成ZSM-5分子筛)、Beta分子筛、Y型分子筛以及以其为载体的获得国家级发明奖的各类催化剂。 2.分子筛的性能 一切固体物质的表面都有吸附作用,只有多孔物质或表面积很大的物质,才有明显的吸附效应,才是良好的吸附剂。常用的固体吸附剂活性炭、硅胶,活性氧化铝和分子筛等都有很大的表面积。其中沸石分子筛在吸附分离方面有十分重要的地位,它除了有很高的吸附量外,还有独特的选择性吸附性能。这是由于它具有规整的微孔结构,这些均匀排列的孔道和尺寸固定的孔径,决定了能进入沸石分子筛内部的分子的大小。

分子筛生产工艺技术及应用简介

分子筛生产工艺技术及应用简介 1、分子筛简介 分子筛是一种具有立方晶格的硅铝酸盐化合物,其品种达到数十种。分子筛有很大的比表面积,达300~1000m2/g,内晶表面高度极化,为一类高效吸附剂,也是一类固体酸,表面有很高的酸浓度与酸强度,能引起正碳离子型的催化反应。当组成中的金属离子与溶液中其他离子进行交换时,可调整孔径,改变其吸附性质与催化性质,从而制得不同性能的分子筛催化剂。 分子筛具有均匀的微孔结构,它的孔穴直径大小均匀,这些孔穴能把比其直径小的分子吸附到孔腔的内部,并对极性分子和不饱和分子具有优先吸附能力,因而能把极性程度不同,饱和程度不同,分子大小不同及沸点不同的分子分离开来,即具有“筛分”分子的作用,故称分子筛。由于分子筛具有吸附能力高,热稳定性强等其它吸附剂所没有的优点,使得分子筛获得广泛的应用。 分子筛按照其用途主要分为两个大的领域:一个是作为吸附材料(吸附剂),应用领域包括石油炼制、石油化工、煤化工、化肥、冶金、电子等行业,用做气体的分离、干燥、净化,主要品种有3A、4A、5A、13X分子筛;另一个是作为固体酸催化剂用于石油炼制和石油化工,主要品种有HZSM-5、USY等。 2、分子筛生产

分子筛的生产过程分为两个阶段:一个是分子筛原粉的合成;另一个就是分子筛的成型。 2.1分子筛的合成 分子筛是用硅的化合物(例如硅溶胶、硅酸钠等)、铝的化合物(例如活性氧化铝、铝盐等)、碱(例如氢氧化钠等)以及模板剂在水热条件下合成的,由此制备的产品称为分子筛原粉,是一种极其细小的硅铝酸盐晶体材料,晶体直径在100纳米左右,不能直接用于工业生产过程,必须加工成一定形状和大小的颗粒才具有实用价值。分子筛的合成过程需要消耗大量的基础化学品和净化水,并产生大量的废液和污水,需要配备有原水净化和污水处理装置。 2.2 分子筛成型 分子筛按照其用途不同需要加工成不同的形状。目前,工业上常用的分子筛有三种形状:条状、球状和微球状。其中条状和球状分子筛最为常见,广泛用做吸附剂和固定床酸催化剂。而微球状分子筛只有在流化床反应器中使用,是作为酸催化剂。分子筛成型过程的作用主要有两个:一个是将分子筛加工成一定的形状,以满足不同类型反应器的装填要求;另一个就是使得分子筛成品具有一定的强度,保证分子筛成品在使用过程中能抗拒工艺条件(如温度、压力、流体冲刷、再生等)对其结构的破坏,分子筛成品的强度越高,在使用中粉化越少,床层的压降越小,使用寿命越长。 通常作为吸附剂的分子筛成品,例如3A、4A、5A、13X分子筛都是加工成不同颗粒大小的条状和球状。

微孔分子筛催化剂的制备及应用

2 银川能源学院 工业催化 学生姓名席坤 学号 1310140108 指导教师王伟 院系石油化工学院 专业班级能源化工1302班 微孔分子筛催化剂的制备及应用 (银川能源学院能源化工1302班1310140108 席坤) 摘要:微孔分子筛具有表面积大、水热稳定性高、微孔丰富均一、表面性质可调等性能,被广泛地用作催化剂。分子筛作为催化剂常应用在石油化工、有机中间体的合成和物质的分离中。本文主要是简述了一下微孔分子筛催化剂及对微孔分子筛的改进方法和分子

筛催化剂在不同反应中的应用。 关键词:催化剂;微孔;分子筛;应用 一、引言 分子筛是一种具有立方晶格的硅铝酸盐化合物,具有均匀的微孔结构,这些孔穴能把比其直径小的分子吸附到孔腔的内部,并对极性分子和饱和分子具有优先吸附能力,因而能把极性程度不同,饱和程度不同,分子大小不同及沸点不同的分子分离开来,即具有“筛”分子的作用,故称分子筛。根据形成的孔径的大小,国际纯粹与应用化学协会(IUPAC)定义:微孔(小于2nm),介孔(2~50nm),大孔(大于50nm)三类。自1756年,瑞典科学家 A.F.Cronstedt 在研究矿物时发现了最早的天然沸石分子筛到现在通过各种方法合成的新型分子筛,人们已经从结构,性质,作用原理等各个方面全面认识了分子筛。根据不同的需要合成具有不同功能的分子筛材料,不同种多性能的分子筛被越来越多的人研究[1]。因此分子筛也不再局限于由硅氧四面体和铝氧四面体组成的阴离子骨架硅铝酸盐体系 ,而是泛指一类具有规则孔结构的结晶无机固体。这些具有新型组成和结构的分子筛进一步扩大了微孔分子筛的应用和发展空间。分子筛作为催化剂特别具有活性高,选择性好,稳定性和抗毒能力强等优点。近年来,它作为一种化工新材料发展得很快,应用也日益广泛。特别是在石油的炼制和石油化工方面作为工业催化剂发挥了很重要的作用[2]。 二、微孔分子筛的合成方法[3] 传统的微孔分子筛合成方法有:水热体系合成法,非水体系合成法,蒸汽相体系合成法,干粉体系合成法,微波法,高温焙烧法,向导剂法等等。 1、水热体系合成法 又称水热晶化法,是将硅源、铝源、碱(有机碱和无机碱)和水按一定比例合,放入反应釜中,在一定温度下晶化而制备沸石晶体。通常低硅铝比沸石是在低温水热体系中合成的,而高硅铝比的沸石于高温水热体系中合成。 2、非水体系合成法 非水体系合成法于本世纪八十年代初期由Bibbq和Dale[19]开创。它不以水为溶剂,而代之以有机物作为溶剂进行沸石的合成。开辟了一条沸石合成的新途径,并为沸石的固相转变机理提供了有力的佐证。 3、蒸汽相体系合成法 蒸汽相体系合成法区别于水热体系合成法和非水体系合成法,蒸汽相体系合成法是

分子筛催化剂

分子筛催化剂

分子筛催化剂及其进化柴油机尾气的研究 一、分子筛催化剂 1、分子筛的相关解释 分子筛, 常称沸石或沸石分子筛, 按经典的定义为“是具有可以被很多大的离子和水分占据孔穴(道) 骨架结构的铝硅酸盐”。照传统定义,分子筛是具有均一结构,能将不同大小分子分离或选择性反应的固体吸附剂或催化剂。狭义讲,分子筛是结晶态的硅酸盐或硅铝酸盐,由硅氧四面体或铝氧四面体通过氧桥键连相连形成孔道和空隙体系,从而具有筛分分子的特性。基本可分为A、X、Y、M和ZSM几种型号,研究者常把它归属固体酸一类。 2、分子筛催化剂的分类及其特点 分子筛按孔道大小划分,分别有小于2 nm、2—50 nm和大于50 nm的分子筛,它们分别称为微孔、介孔和大孔分子筛。分子筛根据孔径大小可分为微孔、介孔和大孔分子筛3 大类。微孔分子筛具有强酸性和高水热稳定性等优点和特殊“择形催化”性能,但也存在着孔径狭窄、扩散阻力大等缺点,从而大大限制了在大分子催化反应中的应用。介孔分子筛具有比表面积高、吸附容量大、孔径大等特点,在一定程度上解决了传质扩散限制问题,但其酸性较弱且水热稳定性较差,导致其工业应用受到了限制。为了解决上述问题,研究人员开发了多级孔分子筛,该分子筛结合了介孔和微孔分子筛的优点,在石油化工领域具有不可估量的应用前景。 3、分子筛的催化特性 (1)催化反应的活性要求: 比表面积大,孔分布均匀,孔径可调变,对反应物和产物有良好的形状选择;结构稳定,机械强度高,可耐高温(400~600℃),热稳定性很好,活化再生后可重复使用;对设备无腐蚀且容易与反应产物分离,生产过程中基本不产生“三废”,废催化剂处理简单,不污染环境。如择形催化的研究体系,几乎包括了全部的烃类转化和合成,还有醇类和其它含氮、氧、硫有机化合物以及

分子筛催化剂,分子筛价格报价

分子筛催化剂,分子筛价格报价 郑州永坤环保科技有限公司 分子筛催化剂,分子筛价格报价,分子筛价格也是根据各种型号价格相差很多,9500元/吨到19000元/吨不等,分子筛是指具有均匀的微孔,其孔径与一般分子大小相当的一类物质。分子筛的应用非常广泛,可以作高效干燥剂、选择性吸附剂、催化剂、离子交换剂等,但是使用化学原料合成分子筛的成本很高。常用分子筛为结晶态的硅酸盐或硅铝酸盐,是由硅氧四面体或铝氧四面体通过氧桥键相连而形成分子尺寸大小(通常为0.3~2 nm)的孔道和空腔体系,因吸附分子大小和形状不同而具有筛分大小不同的流体分子的能力,多孔材料在许多领域有着广泛的应用,如微孔分子筛作为主要的催化材料、吸附分离材料和离子交换材料,在石油加工、石油化工、精细化工以及日用化工中起着越来越重要

的作用。 分子筛(又称合成沸石)是一种硅铝酸盐多微孔晶体。它是由硅氧、铝氧四面体组成基本的骨架结构,在晶格中存在着金属阳离子(如Na+,K+,Ca2+,Li+ 等),以平衡晶体中多余的负电荷。分子筛的类型按其晶体结构主要分为:A型,X型,Y型等。分子筛是一种具有立方晶格的硅铝酸盐化合物。分子筛具有均匀的微孔结构,它的孔穴直径大小均匀,这些孔穴能把比其直径小的分子吸附到孔腔的内部,并对极性分子和不饱和分子具有优先吸附能力,因而能把极性程度不同,饱和程度不同,分子大小不同及沸点不同的分子分离开来,即具有“筛分”分子的作用,故称分子筛。由于分子筛具有吸附能力高,热稳定性强等其它吸附剂所没有的优点,使得分子筛获得广泛的应用。 分子筛工作原理:吸附功能:分子筛对物质的吸附来源于物理吸附(范德华力),其晶体孔穴内部有很强的极性和

分子筛在石油加工中的应用和作用

七月四号星期四 分子筛在石油加工中的应用和作用 分子筛在石油化工中最主要的用途是催化作用。工业上用量最大的是分子筛裂化催化剂。使用分子筛催化的优点是活性高,选择性高,稳定性好,抗毒能力强。择形催化是一种将化学反应与分子筛吸附及扩散特性结合的科学,通过它可以改变已知反应途径及产物的选择性。导致择形催化的机理有两种,一种是由孔腔中参与反应的分子的扩散系数差别引起的,称为质量传递选择性;另一种是由催化反应过度态空间限制引起的,称为过渡态选择性。择形催化有四种形式:反应物择形催化(当反应混合物中某些能反应的分子因太大而不能扩散进入催化剂孔腔内,只有那些直径小于内孔径的分子才能进入内孔,在催化活性部分进行反应);产物的择形催化(当产物中某些分子太大,难于从分子筛催化剂内孔中扩散出来);过渡态限制的选择性(反应物和产物都不受催化剂窗口孔径扩散的限制,只是由于需要内孔或笼腔有较大的空间,才能形成相应的过渡态);分子交通控制的择形催化(在具有两种不同形状和大小孔道分子筛中,反应物可以很容易地通过一种孔道进入到催化剂的活性部位,进行催化反应,而产物分子则从另一孔道扩散出去,尽可能地减少逆扩散,从而增加反映速率)。分子筛对烯烃聚合有较好的催化作用,其活性为:异丁烷>丙烷>乙烯。在实际应用中可以把分子筛做成不同孔径以针对特定的反映。 分子筛吸湿能力极强,因此被广泛的用作干燥剂。吸收器油可用于分子筛干燥,使原来环境温度下操作的油吸收设备能转变为更有效的,在低温下操作的回收设备,油中存在的水分在一定的低温下生成碳氯化合物的水化物,引起堵塞和污染。分子筛的吸水作用会使水分减少,吸收器可在相对较高的温度下工作。在氟化氢或硫酸的烷化反应中,应用分子筛干燥原料可改善腐蚀和降低酸耗。分子筛可循环利用,吸水后,可在干燥箱250-300度干燥4小时以上,可以除掉绝大部分水分(再生不彻底)或者先用干燥箱150度干燥1小时,再用高温马弗炉500-550度焙烧1小时,可以除掉结晶水(再生完全)。 分子筛也可以做吸附剂,以除去硫化物。在二氧化碳含量较高的小储藏量的酸气井中,,天然气用分子筛吸附脱硫极为有利,通常用碱性吸收井不经济,分子筛对硫化氢的选择性比二氧化碳高。可用仪器自动控制,操作距离更远更安全。轻质碳氢化合物气流用分子筛液相吸附脱硫, 可得良好效果, 因为硫化合物的极性

最新分子筛的合成、表征及性能研究

分子筛的合成、表征及性能研究

设计型化学实验 分子筛的合成、表征及性能研究 dd

分子筛的合成、表征及性能研究 分子筛材料,广义上指结构中有规整而均匀的孔道,孔径为分子大小的数量级,它只允许直径比孔径小的分子进入,因此能将混合物中的分子按大小加以筛分;狭义上分子筛是结晶态的硅酸盐或硅铝酸盐,由硅氧四面体或铝氧四面体通过氧桥键相连而形成。 分子筛按骨架元素组成可分为硅铝类分子筛、磷铝类分子筛和骨架杂原子分子筛。按孔道大小划分,小于2 nm称为微孔分子筛,2~50 nm称为介孔分子筛,大于50 nm称为大孔分子筛。按照分子筛中硅铝比的不同,可以分为A 型(1.5~2.0) ,X 型(2.1~3.0),Y 型(3.1~6.0),丝光沸石(9~11),高硅型沸石(如Z S M-5) 等,其通式为:MO.Al2O3.xSiO2.yH2O,其中M代表K、Na、Ca等。商品分子筛常用前缀数码将晶体结构不同的分子筛加以分类,如3A 型、4A型、5A型分子筛等。4A型即孔径约为4A;含Na+的A型分子筛记作Na-A,若其中Na+被K+置换,孔径约为3A,即为3A型分子筛;如Na-A中有1/3以上的Na+被Ca2+置换,孔径约为5A,即为5A型分子筛。X型分子筛称为 13X(又称Na-X型)分子筛;用Ca2+交换13X分子筛中的Na+,形成孔径为9A的分子筛晶体,称为 10X(又称Ca-X型)分子筛。 A型分子筛结构,类似于NaCl的立方晶系结构,如将NaCl晶格中的Na+和Cl-全部换成β笼,并将相邻的β笼用γ笼联结起来,就会得到A型分子筛的晶体结构;X型和Y型分子筛结构类似于金刚石的密堆立方晶系结构,如以β笼这种结构单元取代金刚石的碳原子结点,且用六方柱笼将相邻的两个β笼联结,就得到了X和Y型分子筛结构;丝光沸石型分子筛结构,没有笼,是层状结构,结

沸石分子筛催化剂的发展现状及趋势

沸石分子筛催化剂的发展现状 摘要:从工业催化的角度思考和表述了沸石分子筛催化剂合成、催化及应用,综述了国内外相关的最新研究进展,探讨了分子筛催化剂未来的发展方向。旨在引发人们对分子筛催化未来向经济、可控、高效催化、绿色环保和新应用等方面发展的思考与探索。 关键词:沸石分子筛催化剂、工业应用、未来发展 在我国的经济发展,工业是国民经济的重要组成部分,化学工业中80% 以上的过程涉及催化技术,尤其对于炼油与石化工业,催化剂更是不可或缺,其中分子筛催化剂未来的发展方向又深切关系着工业的发展。目前,分子筛催化剂在炼油与化工工业得到了研究与应用,如催化裂化、加氢裂化、带支链芳烃的烷基化、异构脱蜡以及轻烯烃聚合等。国内外已开发出一批有发展前景的高功能化、多功能化、精密化的分子筛催化剂材料。分子筛催化剂的合成方法主要有:①水热晶化法;②非水体系合成法;③干胶转换法;④无溶剂干粉体系合成法;⑤微波辐射合成法;⑥蒸汽相体系合成法;⑦多级孔道沸石分子筛的合成;⑧化学后处理法;⑨硬模板法;⑩软模板法[1]。 而沸石分子筛是其中重要一员。沸石分子筛的工业催化应用始于上世纪60 年代,Mobil 公司首先发现并采用八面沸石替代无定形硅铝催化剂, 应用于炼油中催化裂化(FCC) 过程, 大大提高了汽油产量以及原油利用率。目前,仅作为FCC催化剂一项,沸石分子筛催化剂的销售额就占全球催化剂的18.5%。沸石分子筛具有确定的孔体系,大的晶内比表面积和与硫酸或氯化铝相当的酸性,同时具有分子筛分或择形作用以及可改性或易掺杂等优点,它们对许多工业催化反应有高效促进作用。在各种酸性催化剂高性能中,反应了它的催化潜力。此外,还有其他类型的高效分子筛催化剂。 1、沸石分子筛结构 沸石分子筛是一族结晶性硅铝酸盐的总称。沸石最基本的结构是由(SiO4)四面体和(AlO4)四面体。相邻的四面体由氧桥连结成环,环有大有小,按成环的氧原子数划分,有四元氧环,五元氧环,六元氧环,八元氧环,十元氧环和十二元氧环;环是分子筛的通道孔口,对通过的分子筛起筛分作用。氧环通过氧桥相互

相关文档