文档库 最新最全的文档下载
当前位置:文档库 › 北航航空发动机原理3大作业

北航航空发动机原理3大作业

北航航空发动机原理3大作业
北航航空发动机原理3大作业

机械故障诊断综合大作业—航空发动机的状态监测和故障诊断

机械系统故障诊断 综合大作业 航空发动机的状态监测和故障诊断 1.研究背景与意义 航空发动机不但结构复杂,且工作在高温、大压力的苛刻条件下。从发动机发展现状看,无论设计、材料和工艺水平,抑或使用、维护和管理水平,都不可能完全保证其使用中的可靠性。而发动机故障在飞机飞行故障中往往是致命的,并且占有相当大的比例,因此常常因发动机的故障导致飞行中的灾难性事故。 随着航空科学技术的发展并总结航空发动机设计、研制和使用中的经验教训,航空发动机的可靠性和结构完整性已愈来愈受到关注。自70年代初期即逐步明确航空发动机的发展应全面满足适用性、可靠性和经济性的要求,也就是在保证达到发动机性能要求的同时,必须满足发动机的可靠性和经济性(维修性和耐久性)的要求。 可靠性工作应贯穿在发动机设计-生产-使用-维护全过程的始终。对新研制的发动机,应在设计阶段就同时进行可靠性设计、试验和预估;对在役的发动机,应经常进行可靠性评估、监视和维护。军机和民用飞机的主管部门,设计、生产、使用和维护等各部门,应形成有机的、闭环式的可靠性管理体制,共同促进航空发动机可靠性的完善和提高。 2.国内外进展 自70年代前期,国外一些先进的民用和军用航空公司即着手研究和装备发动机的状态监视和故障诊断系统。电子技术与计算机技术的迅速发展,大大促进了航空发动机的状态监视与故障诊断技术的发展。至今,监视与诊断技术作为一项综合技术,已发展成为一门独立的学科,其应用已日趋广泛和完善。 按民航适航条例规定航空发动机必须有15个以上的监视参数。现今美国普?惠公司由有限监视到扩展监视,逐步完善了其TEAMIII等系统,美国通用电气公司也不断在发展其ADEPT系统。 从各国空军飞机发动机的资料来看,大都采用了发动机状态监视与故障诊断系统。包括发动机监视系统EMS,发动机使用情况监视系统EUMS和低循环疲劳计数器LCFC等,同时为了帮助查找故障,近年来还发展了发动机故障诊断的专家系统,如XMAN和JET—X。美国自动车工程协会(SAE)E-32航空燃气涡轮监视委员会研究并颁布了一系列指南,包括航空燃气涡轮发动机监视系统指南、有限监视系统指南、滑油系统监视指南、振动监视系统指南、使用寿命监视及零件管理指南等。 我国相关民用航空公司和院校开展的发动机状态监测与故障诊断的研究工作已初见成效。并且对于新研制的高性能发动机已将实施状态监视列为重要的技、战术指标,因此正较全面的开展这方面的研究工作。但是总的看来,国内该项工作开展得还不够,亟待有计划、有步骤地借鉴国外的成功经验,发展并推广我们自己的状态监视与故障诊断技术,以适应飞机和发展的需要。

北航最优化方法大作业参考

北航最优化方法大作业参考

1 流量工程问题 1.1 问题重述 定义一个有向网络G=(N,E),其中N是节点集,E是弧集。令A是网络G的点弧关联矩阵,即N×E阶矩阵,且第l列与弧里(I,j)对应,仅第i行元素为1,第j行元素为-1,其余元素为0。再令b m=(b m1,…,b mN)T,f m=(f m1,…,f mE)T,则可将等式约束表示成: Af m=b m 本算例为一经典TE算例。算例网络有7个节点和13条弧,每条弧的容量是5个单位。此外有四个需求量均为4个单位的源一目的对,具体的源节点、目的节点信息如图所示。这里为了简单,省区了未用到的弧。此外,弧上的数字表示弧的编号。此时,c=((5,5…,5)1 )T, ×13 根据上述四个约束条件,分别求得四个情况下的最优决策变量x=((x12,x13,…,x75)1× )。 13 图 1 网络拓扑和流量需求

1.2 7节点算例求解 1.2.1 算例1(b1=[4;-4;0;0;0;0;0]T) 转化为线性规划问题: Minimize c T x1 Subject to Ax1=b1 x1>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x1*=[4 0 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x1=20 1.2.2 算例2(b2=[4;0;-4;0;0;0;0]T) Minimize c T x2 Subject to Ax2=b2 X2>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x2*=[0 4 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x2=20 1.2.3 算例3(b3=[0;-4;4;0;0;0;0]T) Minimize c T x3 Subject to Ax3=b3 X3>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x3*=[4 0 0 0 4 0 0 0 0 0 0 0 0]T 对应的最优值c T x3=40

机械原理大作业

机械原理大作业 This model paper was revised by the Standardization Office on December 10, 2020

机械原理大作业三 课程名称:机械原理 设计题目:齿轮传动设计 院系: 班级: 设计者: 学号: 指导教师: 设计时间: 1、设计题目 机构运动简图 机械传动系统原始参数

2、传动比的分配计算 电动机转速min /745r n =,输出转速m in /1201r n =,min /1702r n =, min /2303r n ,带传动的最大传动比5.2max =p i ,滑移齿轮传动的最大传动比4m ax =v i ,定轴齿轮传动的最大传动比4m ax =d i 。 根据传动系统的原始参数可知,传动系统的总传动比为: 传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三部分实现。设带传动的传动比为5.2max =p i ,滑移齿轮的传动比为321v v v i i i 、、,定轴齿轮传动的传动比为f i ,则总传动比 令 4max 1==v v i i 则可得定轴齿轮传动部分的传动比为 滑移齿轮传动的传动比为 设定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为 3、齿轮齿数的确定 根据滑移齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮5、6、7、8、9和10为角度变位齿轮,其齿数: 35,18,39,14,43,111098765======z z z z z z ;它们的齿顶高系数1=* a h ,径向间 隙系数25.0=*c ,分度圆压力角020=α,实际中心距mm a 51'=。

2020年航空发动机行业分析报告

2020年航空发动机行业分析报告 2020年2月

目录 一、我国航空发动机国产化势在必行,产业链各环节企业将迎来重大 发展机遇期 (5) 1、国家级基金战略扶持:预计2017年启动的国家级两机专项计划投入规模 6在3000亿以上 ........................................................................................................ 2、国家安全战略重要保障:两机是工业领域皇冠上的明珠,是国家安全的重 7要战略保障 .............................................................................................................. 3、产业链条足够长、市场空间足够大:预计未来10年全球两机市场规模将 达到6000亿美元,产业链各环节企业发展空间巨大 (8) 二、我国航空发动机产业发展现状及标的梳理 (12) 1、航空发动机产业发展特点:技术壁垒高、经济回报高、研制周期长 (12) (1)技术壁垒高 (12) (2)经济回报高 (13) (3)研制周期长、研制投入大 (13) 2、我国国产军用航空发动机发展现状 (14) (1)仿制和改进 (14) (2)部分自主设计 (15) (3)拥有自主知识产权 (15) 3、我国航空发动机等两机产业链标的梳理 (16) 三、两机产业链:全球维度看切入两机供应体系,国内维度看自主可 控加速技术与产品落地 (17) 1、航发动力:我国航空发动机制造龙头企业,整机制造处垄断地位 (18) 2、应流股份:两机叶片千亿美金赛道,从此有了中国制造 (19)

航空发动机结构强度设计 大作业

航空发动机结构强度设计 大作业 王延荣主编 北京航空航天大学能源与动力工程学院 2013.3

2 1 某级涡轮转子的转速为4700r/min ,共有68片转子叶片,叶片材料GH33的密度ρ为8.2 ×103 kg/m 3,气流参数沿叶高均布,平均半径处叶栅进、出口的气流参数,叶片各截面的重心位置(X , Y , Z ),截面面积A ,主惯性矩I ξ,I η以及ξ轴与x 轴的夹角α,弯曲应力最大的A , B , C 三点的坐标ξA , ηA , ξB , ηB , ξC , ηc 列于下表,试求叶片各截面上的离心拉伸应力、气动力弯矩、离心力弯矩、合成弯矩及A ,B ,C 三点的弯曲应力和总应力。 截 面 0 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ X , cm 0.53 0.41 0.41 0.40 0.24 0.12 Y , cm -0.41 -0.38 -0.30 -0.19 -0.11 -0.02 Z , cm 62.8 59.1 56.0 53.0 49.4 45.8 A , cm 2 1.80 2.32 3.12 4.10 5.48 7.05 I ξ, cm 4 0.242 0.304 0.484 0.939 1.802 I η, cm 4 6.694 9.332 12.52 17.57 23.74 ξA , cm -2.685 -2.847 -2.938 -2.889 -2.894 ηA , cm 0.797 0.951 1.094 1.232 1.319 ξB , cm -0.084 -0.205 -0.303 -0.219 -0.302 ηB , cm -0.481 -0.521 -0.655 -0.749 -1.015 ξC , cm 3.728 3.909 4.060 4.366 4.597 ηC , cm 0.773 0.824 0.840 1.130 1.305 α 31o 40’ 27o 49’ 25o 19’ 22o 5’30’’ 16o 57’ 12o 43’ c 1am c 1um ρ1m p 1m c 2am c 2um ρ2m p 2m 297m/s -410m/s 0.894kg/m 3 0.222MPa 313m/s 38m/s 0.75 kg/m 3 0.178MPa 2 某一涡轮盘转速12500r/min,盘材料密度8.0×103kg/m 3 , 泊松比0.3,轮缘径向应力140MPa,盘厚度h 、弹性模量E、线涨系数α及温度t 沿半径的分布列于下表,试用等厚圆环法计算其应力分布。 截面, n 半径r , cm 盘厚h , cm E, GPa t , ℃ α,10-6/℃平均半径 平均厚度 0 0.0 4.86 162 165 16.5 1 5.0 3.90 16 2 165 16.5 2.5 4.38 2 10.0 2.97 157 250 17.1 7.5 3.435 3 14.0 2.2 4 148 360 18.2 12.0 2.60 5 4 15.0 1.8 6 140 400 19.0 14.5 2.05 5 15.8 1.60 13 7 430 19.4 15.4 1.73 6 16.6 1.80 134 460 19.7 16.2 1.70 7 17.4 2.30 130 500 20.3 17.0 2.05 3 某转子叶片根部固定,其材料密度2850kg/m 3,弹性模量71.54GPa ,叶片长0.1m ,各截面 位置、面积、惯性矩列于下表,试求其前3阶固有静频。 截面号i 0 1 2 3 4 5 6 7 8 9 10 x , m 0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 A , 10-4m 2 1.70 1.46 1.26 1.09 0.96 0.86 0.77 0.73 0.70 0.68 0.68 I , 10-8m 4 0.02790.0212 0.0157 0.01080.00840.00610.00450.00370.0032 0.0030 0.0030

专业点题北航机械原理

一、齿轮传动的基本概念 渐开线齿轮的啮合特点:(1)渐开线齿廓能够保证定传动比;(2)渐开线齿廓之间的正压力方向不变;(3)渐开线齿廓传动具有可分性。 齿轮机构的特点是:传动平稳、适用范围广、效率高、结构紧凑、工作可靠、寿命长。但制造和安装精度高、制造费用大,且不适合于距离较远的两轴之间的传动。齿轮传动可以用来传递任意轴间的运动和动力。 齿轮传动按照一对齿轮传递的相对运动分为平面齿轮传动和空间齿轮传动,平面齿轮传动又分为直齿圆柱齿轮传动、斜齿圆柱齿轮传动和人字齿轮传动;按照工作条件可以分为开式传动、半开式传动和闭式传动。 齿轮传动的基本要求是:传动准确、平稳;承载能力强。 二、齿轮传动的设计与计算 齿廓曲线与齿廓啮合基本定律:在啮合传动的任一瞬时,两轮齿廓曲线在相应接触点的功法线必须通过按给定传动比确定的该瞬时的节点。 渐开线齿轮啮合的正确条件:啮合轮齿的工作侧齿廓的啮合点必须总是在啮合线上,即两齿轮的模数和压力角应该分别相等。 齿轮传动的无侧隙啮合及标准齿轮的安装:一个齿轮节圆上的齿厚等于另一个齿轮节圆上的齿槽宽是无侧隙啮合的条件;外啮合齿轮的标准中心距为,内啮合是标准中心距为。

齿轮及其变位的相关计算:相关参数为齿数、模数、分度圆压力角、齿顶高系数和顶隙系数及标准直齿轮的几何尺寸计算,包括分度圆直径、齿顶高、齿根高、齿全高、齿顶圆直径、齿根圆直径、基圆直径、齿距、齿厚、齿槽宽、中心距、顶隙以及变位齿轮的变位系数等。 渐开线齿轮的根切现象:用展成法加工齿轮式,若刀具的齿顶线或齿顶圆与啮合线的焦点超过被切齿轮的极限点,则刀具的齿顶会将被切齿轮的齿根的渐开线齿廓切去了一部 分。避免根切的最小齿数,用标准齿条刀具切制标准齿轮时,因为 ,最少齿数为17。 三、机构的组成 构件指独立的运动单元,两个构件直接接触组成仍能产生某些相对运动的连接叫运动副。运动副按照相对运动的范围可以分为平面运动副和空间运动副;按运动副元素分为:低副-面接触、应力低;高副-点接触或线接触,应力高。其中运动副元素是只形成运动副的组建之间直接接触的部分。 四、机构自由度的计算 机构相对于机架所具有的独立运动的数目,叫机构的自由度。设一个平面机构由N个构件组成,其中必定有一个构件为机架,其活动构件数为n=N-1.设机构共有个低副、 个高副,因为在平面机构中每个低副和高副分别限制两个自由度和一个自由度,故平面机构的自由度为。在计算平面机构的自由度时,应该注意三种特殊情况:(1)复合铰链:三个或更多的构件在同一处联接成同轴线的两个或更多个转动副,就构成了复合铰链,计算自由度时应该按照两个或更多个运动副计算。(2)局部自由度:在有些机构中,为了其他一些非运动的原因,设置了附加机构,这种附加机构的运动是完全独立的,对整个

航空发动机原理

航空发动机主要有三种类型:活塞式航空发动机,燃气涡轮发动机和冲压发动机。 航空发动机的发展经历了活塞发动机,喷气时代的活塞发动机,燃气涡轮发动机,涡轮喷气发动机/涡轮风扇发动机,涡轮螺旋桨发动机/涡轮轴发动机。本文主要利用动态图来说明航空发动机的工作原理。 星型活塞发动机(常见于旧飞机,例如B-36,yun-5等): 星型活塞发动机的原理与汽车发动机的原理相同。燃料在汽缸中爆炸并燃烧以推动活塞工作,但汽缸装置为星形。汽车上的活塞发动机通常以V或w的形式布置。活塞式航空发动机由于效率低,噪音大,燃油消耗大而已基本取消。 涡轮喷气发动机:(J-7,MiG-25等) 涡轮喷气发动机是涡轮发动机的一种。取决于气流产生推力。它通常用于为高速飞机提供动力,但其燃油消耗高于涡轮风扇发动机。著名的MiG-25和SR-71黑鸟侦察机均配备了涡轮喷气发动机,其最大速度可突破3马赫。由于油耗高,逐渐被涡轮风扇发动机取代。 涡轮螺旋桨发动机:(Y-8,C-130,a-400m等) 涡轮喷气发动机的本质类似于带有减速器和外部螺旋桨的涡轮喷气发动机。涡轮螺旋桨发动机的推力主要由螺旋桨产生,而喷气机产生的推力很小,仅为螺旋桨的十分之一。涡轮螺旋桨发动机的优点是速度低,效率高,适用于运输机,海上巡逻机等。由于螺旋桨旋转的面积较大,因此在高速飞行时会有很多阻力,因此涡轮螺旋桨发动

机不适合高速飞行。 涡轮风扇发动机:(涡轮风扇10,AL-31F,f-135等,cmf56)涡轮风扇发动机是从涡轮喷气发动机发展而来的。与涡轮喷气发动机相比,涡轮风扇发动机的主要特点是第一级压缩机的面积要大得多。目前,大多数先进的飞机都使用涡扇发动机。涡扇发动机相当于涡轮螺旋桨发动机和涡轮喷气发动机性能的折衷产品,适用于以400-1000 km / h的速度飞行。 优点:高推力,高推进效率,低噪音,低油耗,飞行距离长。 缺点:风扇直径大,迎风面大,阻力大,发动机结构复杂,设计困难。 螺旋桨风扇发动机:(ge-36) 螺旋桨式风扇发动机不仅可以被视为具有先进高速螺旋桨的涡轮螺旋桨发动机,而且除了外部管道外,还可以被视为超高旁通比涡轮风扇发动机。它具有涡轮螺旋桨发动机低油耗率和涡轮风扇发动机高飞行速度的优点。实验中的Ge36显示出非常低的燃料消耗,但是由于噪音,它并未在任何飞机上使用。

2013级《航空发动机原理》期末考试复习

《航空发动机原理》复习 一、单项选择题(共20题每题2分共40分) 1.以下哪个是衡量发动机经济性的性能参数( A )。 A EPR B FF C SFC D EGT 2.涡轮风扇发动机的涵道比是( D )。 A流过发动机的空气流量与流过内涵道的空气流量之比 B流过发动机的空气流量与流过外涵的空气流量之比 C流过内涵道的空气流量与流过外涵道的空气流量之比 D流过外涵道的空气流量与流过内涵道的空气流量之比 3.高涵道比涡扇发动机是指涵道比大于等于( C ). A 2 B 3 C 4 D 5 4.涵道比为4的燃气涡轮风扇发动机外涵产生的推力约占总(C )。 A20% B40% C80% D90% 5.涡桨发动机的喷管产生的推力约占总推力的( B ) A.85-90% B.10-15% C.25% D. 0 6.涡桨发动机使用减速器的主要优点是:( C ) A能够增加螺旋桨转速而不增加发动机转速 B螺旋桨的直径和桨叶面积可以增加 C可以提高发动机转速而增大发动机的功率输出又能使螺旋桨保持在较低转速而效率较高 D在增大螺旋桨转速情况下,能增大发动机转速 7.双转子发动机高压转子转速N2与低压转子转速Nl之间有( C ) A N2<Nl B N2=Nl C N2>Nl D设计者确定哪个大 8.亚音速进气道是一个( A )的管道。 A扩张形B收敛形 C先收敛后扩张形 D圆柱形 9.亚音速进气道的气流通道面积是( D )的。 A扩张形 B收敛形 C先收敛后扩张形 D先扩张后收敛形10.气流流过亚音速进气道时,( D )。 A速度增加,温度和压力减小 B速度增加,压力增加,温度不变 C速度增加,压力减小,温度增加 D速度减小,压力和温度增加11.在离心式压气机里两个起扩压作用的部件是( D )。 A涡轮与压气机B压气机与歧管C叶片与膨胀器D叶轮与扩压器12.轴流式压气机的一级由( C )组成。 A转子和静子 B扩压器和导气管 C工作叶轮和整流环 D工作叶轮和导向器 13. 空气流过压气机工作叶轮时, 气流的( C )。 A相对速度增加, 压力下降B绝对速度增加, 压力下降

北航计算机控制系统大作业

北航计算机控制系统大作业

————————————————————————————————作者:————————————————————————————————日期:

计算机控制系统 大作业 姓名:陈启航 学号: 教师:周锐 日期:2016年6月1日

综合习题1 已知: 4 4)(+= s s D , 1) 试用 Z 变换、一阶向后差分、向前差分、零极点匹配、Tus tin 变换和预修正的Tus tin (设关键频率=4)变换等方法将D (s)离散化,采样周期分别取为0.1s 和 0.4s; 2) 将 D(z )的零极点标在Z 平面图上 3) 计算D (j ω)和各个D(e j ωT )的幅频和相频特性并绘图,w由0~ 20r ad ,计算40 个点,应包括=4 点,每个T 绘一张图(Z 变换方法单画) 4) 计算 D(s)及T=0.1,T=0.4 时D (z )的单位脉冲响应,运行时间为4 秒 5) 结合所得的结果讨论分析各种离散化方法的特点 6) 写出报告,附上结果。 解: (1) Z 变换法: a.离散化: T =0.1s 时, D (z )= 4z z ?0.6703; T =0.4s 时, D (z )= 4z z ?0.2019 ; b.D (z )的零极点 c. D (jω)和D(e jωT )幅频相频特性曲线 连续系统: -1 -0.8-0.6-0.4-0.200.20.40.60.81 -1-0.8-0.6-0.4-0.200.20.40.60.81 零点 T=0.1s 时极点T=0.4s 时极点

T=0.1s时 T=0.4s时

哈工大机械原理大作业凸轮机构第四题

Harbin Institute of Technology 机械原理大作业二 课程名称:机械原理 设计题目:凸轮机构设计 姓名:李清蔚 学号:1140810304 班级:1408103 指导教师:林琳

一.设计题目 设计直动从动件盘形凸轮机构,其原始参数见表 1 表一:凸轮机构原始参数 升程(mm ) 升程 运动 角(o) 升程 运动 规律 升程 许用 压力 角(o) 回程 运动 角(o) 回程 运动 规律 回程 许用 压力 角(o) 远休 止角 (o) 近休 止角 (o) 40 90 等加 等减 速30 50 4-5-6- 7多 项式 60 100 120

二.凸轮推杆运动规律 (1)推程运动规律(等加速等减速运动) 推程F0=90° ①位移方程如下: ②速度方程如下: ③加速度方程如下: (2)回程运动规律(4-5-6-7多项式) 回程,F0=90°,F s=100°,F0’=50°其中回程过程的位移方程,速度方程,加速度方程如下:

三.运动线图及凸轮线图 本题目采用Matlab编程,写出凸轮每一段的运动方程,运用Matlab模拟将凸轮的运动曲线以及凸轮形状表现出来。代码见报告的结尾。 1、程序流程框图 开始 输入凸轮推程回 程的运动方程 输入凸轮基圆偏 距等基本参数 输出ds,dv,da图像 输出压力角、曲率半径图像 输出凸轮的构件形状 结束

2、运动规律ds图像如下: 速度规律dv图像如下: 加速度da规律如下图:

3.凸轮的基圆半径和偏距 以ds/dfψ-s图为基础,可分别作出三条限制线(推程许用压力角的切界限D t d t,回程许用压力角的限制线D t'd t',起始点压力角许用线B0d''),以这三条线可确定最小基圆半径及所对应的偏距e,在其下方选择一合适点,即可满足压力角的限制条件。 得图如下:得最小基圆对应的坐标位置O点坐标大约为(13,-50)经计算取偏距e=13mm,r0=51.67mm.

航空发动机维修工程大作业

一、描述MGS-2和MSG-3的不同之处? MGS-2飞机维修大纲规定的维修要 求主要是针对飞机系统单独项目的维修方式(定时、视情和状态监控维修方式);而MGS-3飞机维修大纲规定的维修要求是针对飞机系统或分系统的维修工作 (润滑、勤务、操作检查、目视检查、检查、功能测试、性能恢复和报废等)。 MGS-2飞机的维修工作应用的 分析逻辑是从组件(units)→零部件 (component)→分系统(subsystem)→飞机系统 (system)的这种自下而上、从小到大的流程。应用分析逻辑到最低管理层面(组件层面、零部件层面、飞机系统或飞机层面逐层递加)为止,即只要可以为较低的管理层面指定一个适当的维修方式就无需再对更高一级管理层面指定维修方式。MGS-2分析逻辑只对飞机系统和飞机结构进行分析。分析结果是为飞机系统单独项目指定不同的维修方式,即定时维修(hard time)、 视情维修(on condition)和状态监控(condition monitoring)维修方式维修方式是保持飞机、飞机系统、系统单独项目的设计固有可靠性水平而规定的维修程序。按规定的方式维修飞机就可以保证满足维修大纲的要求, 保持飞机持续适航性。 与MGS-2飞机不同,MGS-3飞机的维修要求是应用MGS-3分析逻辑确定的。应用MGS-3分析逻辑指定分析逻辑完全不同的方法。其分析逻辑是针对维修工作的分析逻辑,分析工作是从飞机系统(system)→分系统(subsystem)→零部件(component)→组件 (unit or part)的这种从大到小、自上而下的流程。只要可以为上一级的管理维修工作的飞机叫MGS-3飞机。MGS-3飞机采用的是与MGS-2 层面指定一个适当的维修工作,就无需再对下一层面指定维修工作。MSG-3是为飞机系统、分系统指定不同级别的维修工作,即润滑、勤务、操作检查、目视检查、检查、功能测试、性能恢复和报废等维修工作。完成这些维修工作所需的维修成本和技能 要求是逐渐递加的。 MSG-3分析逻辑的应 用除了对飞机系统和飞机结构进行分析以外,增加了针对区域 (zonal)的分析。 MSG-3与MSG-2 分析逻辑比较除了增加区域分析外,出发点也 不相同。在充分吸取过去经验的基础上, MSG-3分析逻辑首先 从飞机系统,即最高的可管理层面开始,且在指定维修工作时不仅考 虑所指定的工作是否适用,同时还要看所指定的工作是否有效。在充分考虑适用性和有效性的基础上,就排除了原来 MSG-2飞机指定维修要求时只考虑适 用性所指定的并不一定必要的维修要求。

北航航空工程大型通用软件应用大作业样本

航空科学与工程学院 《航空工程大型通用软件应用》大作业 机翼结构设计与分析 组号第3组 小组成员11051090 赵雅甜 11051093 廉佳 11051100 王守财 11051108 刘哲 11051135 张雄健 11051136 姜南 6月

目录 一 CATIA部分....................................... 错误!未定义书签。( 一) 作业要求..................................... 错误!未定义书签。( 二) 作业报告..................................... 错误!未定义书签。 1、三维模型图................................... 错误!未定义书签。 2、工程图....................................... 错误!未定义书签。 二 FLUENT部分...................................... 错误!未定义书签。( 一) 作业要求..................................... 错误!未定义书签。( 二) 作业报告..................................... 错误!未定义书签。 1、计算方法和流程............................... 错误!未定义书签。 2、网格分布图................................... 错误!未定义书签。 3、气动力系数................................... 错误!未定义书签。 4、翼型表面压力曲线............................. 错误!未定义书签。 5、翼型周围压力云图............................. 错误!未定义书签。 6、翼型周围x方向速度云图....................... 错误!未定义书签。 7、翼型周围y方向速度云图....................... 错误!未定义书签。 8、翼型周围x方向速度矢量图..................... 错误!未定义书签。 9、翼型周围y方向速度矢量图..................... 错误!未定义书签。 10、流线图...................................... 错误!未定义书签。 三 ANSYS部分....................................... 错误!未定义书签。( 一) 作业要求..................................... 错误!未定义书签。( 二) 作业报告..................................... 错误!未定义书签。 1、机翼按第一强度理论计算的应力云图............. 错误!未定义书签。 2、机翼按第二强度理论计算的应力云图............. 错误!未定义书签。 3、机翼按第三强度理论计算的应力云图............. 错误!未定义书签。 4、机翼按第四强度理论计算的应力云图............. 错误!未定义书签。

航空发动机原理复习题

发动机原理部分 进气道 1.进气道的功用: 在各种状态下, 将足够量的空气, 以最小的流动损失, 顺利地引入压气机; 2.涡轮发动机进气道功能 冲压恢复—尽可能多的恢复自由气流的总压并输入该压力到压气机。提供均匀的气流到压气机使压气机有效的工作.当压气机进口处的气流马赫数小于飞行马赫数时, 通过冲压压缩空气, 提高空气的压力 3.进气道类型: 亚音进气道:扩张型、收敛型;超音速:内压式、外压式、混合式 4.冲压比:进气道出口处的总压与远前方气流静压的比值∏i=P1*/P0*。 影响进气道冲压比的因素:流动损失、飞行速度、大气温度。 5.空气流量:单位时间流入进气道的空气质量称为空气流量。 影响因素:大气密度, 飞行速度、压气机的转速 压气机 6.压气机功用:对流过它的空气进行压缩,提高空气的压力。供给发动机工作时所需 要的压缩空气,也可以为坐舱增压、涡轮散热和其他发动机的起动提供压缩空气。7.压气机分类及其原理、特点和应用 (1)离心式压气机:空气在工作叶轮内沿远离叶轮旋转中心的方向流动. (2)轴流式压气机:空气在工作叶轮内基本沿发动机的轴线方向流动. (3)混合式压气机: 8.阻尼台和宽叶片功用 阻尼台:对于长叶片,为了避免发生危险的共振或颤振,在叶身中部带一个减振凸台。 宽弦叶片:大大改善叶片减振特性。与带减振凸台的窄弦风扇叶片比,具有流道面积大,喘振裕度宽,及效率高和减振性好的优点。 9.压气机喘振: 是气流沿压气机轴向发生的低频率、高振幅的气流振荡现象。 10.喘振的表现: 发动机声音由尖锐转为低沉,出现强烈机械振动. 压气机出口压力和流量大幅度波动,出现发动机熄火. 发动机进口处有明显的气流吞吐现象,并伴有放炮声. 11.造成喘振的原因 气流攻角过大,使气流在大多数叶片的叶背处发生分离。 燃烧室 12.燃烧室的功用及有几种基本类型 功用:用来将燃油中的化学能转变为热能,将压气机增压后的高压空气加热到涡轮前允许的温度,以便进入涡轮和排气装置内膨胀做功。 分类:单管(多个单管)、环管和环形三种基本类型 13.简述燃烧室的主要要求点火可靠、燃烧稳定、燃烧完全、燃烧室出口温度场符合要 求、压力损失小、尺寸小、重量轻、排气污染少 14.环形燃烧室的结构特点、优缺点 结构特点:火焰筒和壳体都是同心环形结构,无需联焰管 优点:与压气机配合获得最佳的气动设计,压力损失最小;空间利用率最高,迎风面积最小;可得到均匀的出口周向温度场;无需联焰管,点火时容易传焰。 缺点:调试时需要大型气源; 采用单个燃油喷嘴,燃油—空气匹配不够好; 火焰筒刚性差;

航空发动机原理复习思考题

试题一 一、概念简答题(每题8分,共40 分) 1、目前航空燃气轮机主要有哪几种类型?简述其结构和应用特点。 2、什么是化学反应速度?它与那些因素有关?在燃气轮机燃烧室设计中,应怎样考虑利用这些因素来强化燃烧? 3、主燃烧室按结构形式可分为哪几类?试从工作原理上比较它们的优缺点。 4、双轴涡轮喷气发动机低压转子与高压转子的共同工作点为什么不是独立变化的? 5、调整放大或缩小尾喷管临界截面积对单轴涡轮喷气发动机共同工作线有什么影响?为什么? 二、计算题(每题15分,共60 分) 6、某 压气机增压比为8.5,效率为0.8, 求(1)当进气温度是200C 时的压气机出口总温。(2)压气机对每千克气体的加功量。(3)如测得压气机流量为65kg/s, 计算压气机所需的压缩功率。(绝热指数k=1.4;气体常数 R=287J/kg.K ) 7、装在协和号飞机的发动机,其原压气机进口级装有预旋导流叶片。在其动叶进口处C T 0*115=,叶尖处的s m u s m C s m C u a /360,/125,/20011===,求: (1)叶尖1aw M ? (2)在改型中去掉预旋导流叶片,且叶尖s m C a /2101=,问这时的叶尖1aw M =? 8 、具有收敛尾喷管的涡轮喷气发动机在地面台架上试车时,已知空气流量为69kg/s ,喷管出口处总温1200K ,总压5104.1?Pa ,尾喷管出口面积22.0m ,试估算发动机推力。 9、假定在巡航条件8.00=a M ,a kP P 110=,K T 2160=下,分别排气涡轮风扇发动机的风扇增压比和效率为85.0,6.1==f f ηπ;经风扇后内涵气流进入高压压气机,84.0,25==cH cH ηπ,(1)计算风扇出口总温和高压压气机出口总温。

北航计算机控制系统大作业

计算机控制系统 大作业 姓名:陈启航 学号: 教师:周锐 日期:2016年6月1日 综合习题1 已知: 4 4 )(+= s s D , 1) 试用 Z 变换、一阶向后差分、向前差分、零极点匹配、Tustin 变换和 预修正的Tustin (设关键频率=4)变换等方法将D(s)离散化,采样周期分别取为 和 ; 2) 将 D(z)的零极点标在Z 平面图上 3) 计算D (j ω)和各个D(e j ωT )的幅频和相频特性并绘图,w 由0~ 20ra d ,计算40 个点,应包括=4 点,每个T 绘一张图(Z 变换方法单画) 4) 计算 D(s)及T=,T= 时D(z)的单位脉冲响应,运行时间为4 秒 5) 结合所得的结果讨论分析各种离散化方法的特点 6) 写出报告,附上结果。 解: (1) Z 变换法: a.离散化: T =0.1s 时, D (z )=4z z ?0.6703 ; T =0.4s 时, D (z )=4z z ?0.2019 ; b.D (z )的零极点 c. D (jω)和D(e jωT )幅频相频特性曲线 连续系统: T =0.1s 时 T =0.4s 时

d. D(s)和D(z)单位脉冲响应 D(s)单位脉冲响应: D(z)单位脉冲响应: T=0.1s时 T=0.4s时 (2)各种离散化方法: a.离散化后的D(z) 1、一阶向后差分: T=0.1s时 D(z)= 0.2857z z?0.7143 T=0.4s时 D(z)= 0.6154z z?0.3846 2、一阶向前差分:T=0.1s时 D(z)= 0.4 z?0.6 T=0.4s时 D(z)= 1.6 z+0.6 3、零极点匹配T=0.1s时 D(z)=0.1648(z+1) z?0.6703 T=0.4s时 D(z)=0.3991(z+1) z?0.2019 4、Tustin变换T=0.1s时 D(z)=0.1667(z+1) z?0.6667 T=0.4s时 D(z)= 0.4444(z+1) 5、预修正的Tustin变换(设关键频率=4) T=0.1s时 D(z)=0.1685(z+1) z?0.6629 T=0.4s时 D(z)=0.5073(z+1) z+0.0146 b.D(z)的零极点 1、一阶向后差分

2016-2022年中国航空发动机产业现状调查及十三五运营管理深度分析报告

2016-2022年中国航空发动机产业现状调查及十三五运营管理深度分析 报告 中国报告网

2016-2022年中国航空发动机产业现状调查及十三五运营管理深度分析报告 ?【报告来源】中国报告网—https://www.wendangku.net/doc/b017414703.html, ?【关键字】市场调研前景分析数据统计行业分析 ?【出版日期】2016 ?【交付方式】Email电子版/特快专递 ?【价格】纸介版:7200元电子版:7200元纸介+电子:7500元 中国报告网发布的《2016-2022年中国航空发动机产业现状调查及十三五运营管理深度分析报告》内容严谨、数据翔实,更辅以大量直观的图表帮助本行业企业准确把握行业发展动向、市场前景、正确制定企业竞争战略和投资策略。本报告依据国家统计局、海关总署和国家信息中心等渠道发布的权威数据,以及我中心对本行业的实地调研,结合了行业所处的环境,从理论到实践、从宏观到微观等多个角度进行市场调研分析。它是业内企业、相关投资公司及有关部门准确把握行业发展趋势,洞悉行业竞争格局,规避经营和投资风险,制定正确竞争和投资战略决策的重要决策依据之一。本报告是为了了解行业以及对本行业进行投资不可或缺的重要工具。 本研究报告数据主要采用国家统计数据,海关总署,问卷调查数据,商务部采集数据等数据库。其中宏观经济数据主要来自国家统计局,部分行业统计数据主要来自国家统计局及市场调研数据,企业数据主要来自于国统计局规模企业统计数据库及证券交易所等,价格数据主要来自于各类市场监测数据库。 第一章:中国航空发动机行业发展综述13 1.1 航空发动机的相关概述13 1.1.1 航空发动机的定义13 1.1.2 航空发动机的分类13 1.1.3 航空发动机属“四高”行业14 (1)高技术14 (2)高投入15 (3)高风险15 (4)高壁垒16 1.1.4 航空发动机价值拆分情况17 (1)发动机占飞机价值的30% 17 (2)发动机生命周期费用拆分18 (3)航空发动机部件价值拆分19 (4)航空发动机制造成本拆分20 1.2 我国航空发动机行业的发展综述21 1.2.1 航空发动机是航空工业的短板21 1.2.2 航空发动机行业发展历程分析22 1.2.3 航空发动机行业生命周期分析23

航发动力业务梳理及盈利能力分析(2021年)

航发动力:我国军用航发龙头,整机制造几乎处行业垄断地位 航发动力在发动机整机制造行业几乎处于垄断地位,具备涡喷、涡扇、涡轴、涡桨等全种类军用航空发动机生产能力,是我国三代主战机型国产发动机唯一供应商。在国际上, 公司是能够自主研制航空发动机产品的少数企业之一。主要产品和服务有军民用航空发动机整机及部件、民用航空发动机零部件出口、军民用燃气轮机、军民用航空发动机维修保障服务。拥有我国航空主机业务动力系统的全部型谱,完成包括“昆仑”(WP-14)、 “秦岭”(WS-9)、“太行”(WS-10)等多个重点发动机型号的研制与批产工作。公司实控人是中国航空发动机集团。 图表 30:航发动力股权结构 公司业务包括航空发动机及衍生产品(覆盖研制、生产、试验、销售、维修保障五大环节)、外贸转包生产(国际新型民用航空发动机零部件试制等)及非航空产品三大板块。 2019 年航空发动机及衍生产品营收(220.25 亿元,+11.73%,占比 87.36%),是主要业务板块。其中西航集团、黎明公司、南方公司和黎阳动力四大航空发动机核心资产是上市公司净利润主要来源,2019 年四大航空发动机厂净利润总和为 13.11 亿元,上市公 司归母净利润为 10.77 亿元。 图表 31:2019 年航发动力营收结构-分业务 图表 32:航发动力 2016-2019 各业务毛利率 航空发动机制造及 衍生产品 外贸转包生产 非航空产品及其他 其他业务 25% 20% 15% 10% 5% 0% 2016 2017 2018 2019

图表 33:航发动力主要业务及子公司(亿元) 持股 2018 年 2019 年 2020H1 公司 主营介绍 集团 司 岭)、涡扇 10(太行)等 公司 (昆仑)、涡扇 10(太行)等 公司 桨 5/6/9/10 动力 涡扇 13 公司 国 GE 、PWA 、英国 RR 等航发巨头 叶片 向世界顶尖航空发动机生产商供货多年 西航集团、黎明公司、南方公司和黎阳动力四大航发核心资产几乎涵盖国内所有型号航空发动机,具备涡喷、涡扇、涡轴、涡桨、活塞全种类军用航空发动机生产能力。国内航空发动机整机制造商还包括成发公司、兰翔机械厂等等,但主要发动机型号(如涡扇 -10 等)均由航发动力制造。 2016 2017 2018 2019 2020H1 2018 2019 2020H1 航发动力2020 年三季报业绩超市场预期。2019 年公司实现营收(252.11 亿元,+9.13%),归母净利润(10.77 亿元,+1.27%)。2020 年(1-9)月营收(154.68 亿元,+20.90%),归母净利润(6.34 亿元,+53.30%);存货 233.4 亿元,较年初增 25.88%,主要是产品 图表 34:航发动力四大主机厂营收情况(百万元) 图表 35:航发动力四大主机厂营收增速 14000 12000 10000 8000 6000 4000 2000 西航集团 黎明公司 南方公司 黎阳动力 西航集团 黎明公司 南方公司 黎阳动力 60% 50% 40% 30% 20% 10% 0% -10% 2017 2018 2019 2020H1 图表 36:航发动力四大主机厂利润总额情况(百万元) 图表 37:航发动力四大主机厂净利润情况(百万元) 2016 2017 2018 2019 2020H1 800 600 400 200 0 -200 600 400 200 -200 占比 营收 净利润 营收 净利润 营收 净利润 西航 母公 大中军用航空发动机:代表产品涡喷 8、涡扇 9(秦 64.10 4.10 67.40 5.32 26.99 0.97 黎明 大中推力航空发动机:代表产品涡喷 5/6/7、涡喷 14 100% 112.79 3.98 125.64 4.08 45.28 1.46 南方 中小型航空发动机:代表产品涡轴 8/9/10/11/16、涡 100% 49.44 3.53 58.53 3.77 24.47 1.61 黎阳 中等推力涡喷及涡扇发动机:代表产品涡喷 7/13、 100% 21.84 -0.46 21.12 -0.05 9.99 0.16 莱特 叶盘、机匣、盘、环、结构件等零部件,客户包括美 100% 7.89 - 9.18 - 3.40 - 安泰 两机叶片:具备全球最先进精密锻造及机加工工艺, 100% 0.65 - 0.70 - 0.12 -

相关文档
相关文档 最新文档