文档库 最新最全的文档下载
当前位置:文档库 › DEFORM锻压模拟基本过程

DEFORM锻压模拟基本过程

DEFORM锻压模拟基本过程
DEFORM锻压模拟基本过程

DEFORM在锻造模拟的基本过程

一软件简介

DEFORM是一套基于有限元的工艺仿真系统,用于分析金属成形及其相关工业的各种成形工艺和热处理工艺。通过在计算机上模拟整个加工过程,帮助工程师和设计人员:设计工具和产品工艺流程,减少昂贵的现场试验成本。提高工模具设计效率,降低生产和材料成本。缩短新产品的研究开发周期。

金属塑性成形技术室现代制造业中金属加工的重要方法之一,它是金属在模具的外力作用下发生塑性变形,并被加工成棒材,板材,棺材以及各类机器零件,构件或日用器具的技术。

二下面以锻压为例来说明DEFORM在金属塑性成形的基本过程

1 导入毛坯几何文件并设置坯料基本属性

对于那些非刚性材料和考虑传热影响的刚体材料,必须按需要设置材料的属性。物体名默认Workpiece不变,物体类型采用默认的塑性体,温度默认为常温不改变。在前处理窗口中,选择材料库中的Steel->AISI-1045, COLD[70F(20C)]。对导入的几何体进行几何检查,只有质量符合的图形才能划分网格并计算。

2 进行网格的划分与重划分

网格划分太大会降低模拟精确度,网格划分太小可提高模拟准确性,但模拟时间增加,降低了效率。所以选择合适的网格划分方式和网格划分大小很重要。在这里网格划分数目选择默认的8000,如图表1。

3 导入上模文件与下模文件并分别设置运动参数(如图表2)

4 设置其他模拟参数、定义接触关系并检查生成的数据库文件

设置模拟步数为20,除非模拟意外终止,否则程序将运行至20步。设置存储增量为2,每两步保存一次,避免每步都保存,造成数据文件过大。设置With Constant DieDisplement为0.13,每步进行0.13in的计算。因为是冷锻,摩擦因数系统会设为0.12。有限元分析引擎把模拟计算的结果写在数据库文件中,该文件在前处理环节中产生,此时一些模拟信息(如材料属性、运动控制参数等)会被写入该文件。

5 模拟锻造过程与后处理。

锻造的实际生产过程是非常快的,但用deform软件可以提取任意时间段的变形情况。为了解变形情况,在塑性体上选择三点(如图表3),查看其载荷行程曲线如图表4。在实际生产过程中,下料的多少直接决定了最后锻件的飞边有无与多少。根据Pro/E设计的零件毛坯重量与模具的型腔尺寸,可得出所需方体的长宽高。若下的料质量不足,将会出现充型不完全,得不到完整的零件;若下的料过大,零件的飞边就会很大,甚至使模具胀开,不能完全闭合,从而使零件尺寸发生变化。所以有适当的飞边才能保证零件的质量

下面是

三结语

通过deform计算机辅助模拟技术在锻造工艺过程的应用,可以有效解决加工制造业在产品研发过程中存在的许多问题 ,其界面操作方便,前后处理功能好性强,计算效率高,模拟精度较高,可用于实际生产的工艺分析及模具设计;为工艺人员提供了一个方便可靠的设计环境。工艺人员可以直接看到模拟结果,随时调整工艺数,修改模具,直至得到比较理想的结果,达到事半功倍的效果,在实际生产中得到越来越广泛的应用

四参考文献

胡建军李小平DERORM-3D塑性成形CAE应用教程

DEFORM在锻造模拟的基本过程

*政

1010121133

10材控(一)

铸造过程模拟仿真

铸造过程模拟仿真 1、概述 在铸造生产中,铸件凝固过程是最重要的过程之一,大部分铸造缺陷产生于这一过程。凝固过程的数值模拟对优化铸造工艺,预测和控制铸件质量和各种铸造缺陷以及提高生产效率都非常重要。 凝固过程数值模拟可以实现下述目的: 1)预知凝固时间以便预测生产率。 2)预知开箱时间。 3)预测缩孔和缩松。 4)预知铸型的表面温度以及内部的温度分布,以便预测金属型表面熔接情况,方便金属型设计。 5)控制凝固条件[1]。 为预测铸应力,微观及宏观偏析,铸件性能等提供必要的依据和分析计算的基础数据。作为铸造工艺过程计算机数值模拟的基础,温度场模拟技术的发展历程最长,技术也最成熟。温度场模拟是建立在不稳定导热偏微分方程的基础上进行的。考虑了传热过程的热传导、对流、辐射、结晶潜热等热行为。所采用的计算方法主要有:有限差分法、有限元法、边界元法等;所采用的边界条件处理方法有N方程法、温度函数法、点热流法、综合热阻法和动态边界条件法;潜热处理方法有:温度回升法、热函法和固相率法。 自丹麦Forsound于1962年第一次采用电子计算机模拟铸件凝固过程以来,为铸造工作者科学地掌握与分析铸造工艺过程提出了新的方法与思路,在全世界范围内产生了积极的影响,许多国家的专家与学者陆续开展此项研究工作。在铸造工艺过程中,铸件凝固过程温度场的数值模拟计算相对简单,因此,各国的专家与学者们均以铸件凝固过程的温度场数值模拟为研究起点。继丹麦人之后,美国在60年代中期开始进行大型铸钢件温度场的计算机数值模拟计算研究,且模拟计算的结果与实测温度场吻合良好;进入70年代后,更多的国家加入了铸件凝固过程数值模拟的研究行列中,相继开展了有关研究与应用,理论研究与实际应用各具特色。其中有代表性的研究人员有美国芝加哥大学的R.D.Pehlke教授、佐治亚工学院的J.Berry教授、日本日立研究所的新山英辅教授、大阪大学的大中逸雄教授、德国亚探工业大学的P.Sham教授和丹麦科技大学的P.N.Hansen教授等。我国的铸件凝固过程温度场数值模拟研究始于70年代末期,沈阳铸造研究所的张毅高级工程师与大连工学院的金俊泽教授在我国率先开展了铸造工艺过程的计算机数值模拟研究工作,虽然起步较晚,但研究工作注重与生产实践密切结合,取得了较好的应用效果,形成了我国在这一研究领域的研究特色[2]。 1988年5月,在美国佛罗里达州召开的第四届铸造和焊接计算机数值模拟会议上,共有来自10个研究单位的从事铸造凝固过程计算机数值模拟技术研究的专家和学者参加了会议组织的模拟斧锤型铸件凝固过程的现场比赛。由于该铸件在几何形状上属复杂类型,模拟计算有一定的难度。从比赛结果看,绝大部分的模拟结果与实际测温结果相吻合。此次比赛得出如下结论[8]: l)铸件凝固过程的计算机模拟达到了相当的水平,如三维自动刻分、三维模拟计算、三维温度场显示等,并产生了一些软件包,如日立公司的HICASS、丹麦的Geomesh、大阪大学的SOLAM及亚琛的CASTS等。 2)模拟计算的结果都接近实测,这说明有限差分、有限元和边界元这三种计算方法对温度场计算都能满足精度要求,同时也说明了铸件凝固过程温度场计算机模拟计算技术已趋成熟。

Magma铸造CAE模拟

Magma操作 STL导入 点击“preprocessor”进入“MAGMApre”界面,依次导入相应的构件,保存。

Mesh划分网格 如上图所示,Magma共提供以上四种划分网格方法:自动划分、标准划分、高级、高级2。其中,自动划分是指用户自己制定划分的总的网格数,Magma自动进行适当的调整划分实体,标准划分是指铸型等不需要很高精度的部分进行的一种比较粗略的划分,如果需要对某一部分进行更细的划分,那么用户可以在“高级”中进行制定网格大小,甚至可以在“高级2”中对更进一步的某些部分进行更细的网格划分。 自动划分是用户可以制定计算部分的大约网格数、是否生成壳、是否核心划分、是否针对解法5进行划分。 Solver5是一种针对复杂结构铸件的网格划分方法。 1.2.4 网格划分 1.根据网格总量划分 1)打开选择功能表enmeshment,则mesh generation的视窗就出现; 2)选择automatic ,输入网格总数量; 3)选择generate 划分。

按照网格总数划分 2.根据单元网格三维尺寸划分 标准高级更高级 1)操作步骤: (1)选择功能表enmeshment,则mesh generation的视窗即出现;

(2)选择standard模式定义标准的网格化参数(如图 1.2.4-2); (3)若standard模式不符划分需求,选择advanced和advanced2模式 ,来局部区域细分; 依据个人需求,改变预设的参数,参数说明后面3)中叙述。 (4)选择calculate,测试产生网格数; (5)假如接受测试结果,选择generate正式产生网格。 网格数量 2)划分准则 1、Wall thichness— 网格划分最小结构厚度。 2、Accuracy— 精度 3、Element size— 网格大小 4、Option。 其中Wall thichness和Element size一般设成一样大小。 3)参数说明 (1)wall thickness(壁厚) ─粗分网格; 几何中只要有壁厚小于设定值的地方就不会有网格产生,单位是mm 。

(仅供参考)ProCAST-熔模铸造过程数值模拟

熔模铸造过程数值模拟 —国外精铸技术进展述评 北京航空航天大学陈冰 20世纪90年代以来,国外一大批商业化铸造过程数值模拟软件的出现,标志着此项技术已完全成熟并进入实用化阶段,有相当一部分已成功地用于熔模铸造。其中,A FSolid (3D)(美国), PASSAGF/POWERCAST(美国)、MAGMA(德国)、PAM-CAST(法国)、ProCAST(美国)等最具代表性。尤其值得一提的是由美国UES公司开发的ProCAST,和美国铸造师协会(American Foundrymen's Society)开发的 AFSolid(3D),它们代表了二种不同类型的软件系统。 一. 熔模精密铸造过程数值模拟的佼佼者——ProCAST 早在1985年,美国UES Software Co.便以工程工作站/Unix为开发平台,着手开发ProCAST[1]。为了保证模拟结果的准确性,ProCAST一开始就采用有限元方法(FEM)作为模拟的核心技术。自1987年起,开发用于熔模铸造(精铸)的专业模块。1990年后,位于瑞士洛桑的Calcom SA和瑞士联邦科技研究院也参加ProCAST部分模块的开发工作。2002年,UES Software和Calcom SA先后加盟ESI 集团(法国)。通过联合,ESI集团在虚拟制造领域的领先地位进一步增强。 现在,ProCAST也有微机/Windows或Windows NT版本。三维几何造型模块支持IGES、STEP、STL 或Parasolids等标准的CAD文件格式。Meshcast模块能自动生成有限元网格。它的凝固分析模块可以准确计算和显示合金液在凝固过程的温度场、凝固时间,以及固相率变化,同时,从孤立液相区、缩孔/缩松体积分数、缩孔/缩松Nyiama (新山英辅)判据等三方面,帮助铸造工程师分析判断缩孔/缩松产生的可能性和具体位置(见图1) [2]。针对熔模铸造热壳浇注的特点,ProCAST传热分析模块考虑到热辐射对温度场和铸件凝固过程的影响, 这对于经常需要处理热辐射问题的熔模铸造而言特别重要。例如,对不锈钢人体植入物的凝固过程进行模拟时,发现位于模组中部的铸件由于接收到的辐射热比周边铸件多,因而温度偏高,不利于铸件顺序凝固,容易产生缩孔、缩松[1]。特别值得一提的是,ProCAST特有的辐射分析模块,计及辐射线入射角和遮挡物的影响,模拟对象一旦因相互运动导致辐射线入射角改变或产生遮挡, 该软件将重新自动进行计算,特别适用于定向凝固和单晶铸造。 a) 孤立液相区 b) 缩孔/缩松体积分数 c) Nyiama (新山英辅)判据图1 ProCAST缩孔/缩松判据

铸造模拟

三个基本问题 1)什么是金属材料制备工艺? 通过一定的生产流程,获得可以作为工业或工程中使用的金属材料或者构件,这个过程称之为金属材料制备与加工。 2)什么是金属材料制备工艺的计算机模拟? 根据用户要求,基于一定的判据设计的制备与加工工艺过程,建立起数学物理模型,在计算机上进行造型、运算,并将得到的成千上万的数据综合在一起逼近研究对象的全貌,表达出成分工艺组织性能的演变规律,用形象的图形或者动画形式,显示出这些过程的直观画面称之为计算机模拟。 3)为什么进行金属材料制备工艺的计算机模拟? 基本的加工工艺 1)铸造,凝固成形,液固相变。 2)焊接,凝固成形,液固相变,热影响区晶粒长大。 3)压力加工,固态成形,固态相变。 4)热处理,固态相变。 5)冷成形模拟 模拟的框架1)前处理,造型,数据输入等 2)计算,算法的优化 3)后处理,模拟结果输出,判据函数 4)数据库 模拟具有实时性,模拟的准确性取决于模型的精度。 开展工艺模拟的目的 1)优化现有工艺 2)进行模具与新工艺设计 3)缩短设计、试制和生产周期,降低成本 4)工艺的可视化,工程师和模拟工作者之间能够共同分析出达到最佳工艺的判据标准 5)机理性分析 热加工过程的结果成型和改性:使材料的成分、组织、性能最后处于最佳状态 热加工工艺设计根据所要求的组织和性能,制定合理的热加工工艺,指导材料的热加工过程热加工工艺设计存在的问题 复杂的高温、动态、瞬时过程:难以直接观察,间接测试也十分困难 建立在“经验”、“技艺”基础上 解决方法 热加工工艺模拟技术:在材料热加工理论指导下,通过数值模拟和物理模拟,在实验室动态仿真材料的热加工过程,预测实际工艺条件下的材料的最后组织、性能和质量,进而实现热加工工艺的优化设计 热加工过程模拟的意义 认识过程或工艺的本质,预测并优化过程和工艺的结果(组织和性能) 与制造过程结合,实现快速设计和制造 热加工过程模拟的部分商业软件 铸造PROCAST, SIMULOR 锻压DEFORM, AUTOFORGE, SUPERFORGE 通用MARC, ABAQUS, ADINA, ANSYS 三种传热方式:热对流,热传导,热辐射。

铸造数值模拟

铸造过程数值模拟 摘要:铸造过程数值模拟技术是当今公认材料科学的重要前沿领域。铸造过程的数值模拟是本学科发展的前沿之一,包含铸件充型、凝固过程、缩松缩孔的预测、应力场、热裂、微观组织的计算机模拟以及计算机模拟软件开发等研究内容。 关键词:数值模拟;充型过程;微观组织;应力;热裂; 计算机技术的飞速发展,已使其自电力发明以来最具生产潜力的工具之一,数字化时代正一步步向我们走来。计算机辅助设计(CAD)、计算机辅助工程分析(CAM)和计算机辅助制造(CAE)等技术在材料科学领域的应用正在不断扩大和深入,已经成为材料科学领域的技术前沿和十分活跃的研究领域。就铸造领域而言,铸造过程数值模拟已经成为计算机在铸造研究和生产应用中最为核心的内容之一,涉及铸造理论、凝固理论、传热学、工程力学、数值分析、计算机图形学等多个学科,是公认的材料科学的前沿领域。 一、铸件充型过程数值模拟的研究概况 液态金属的充型过程是铸件形成的第一个阶段, 许多铸造缺陷, 如卷气、夹渣、浇不足、冷隔及砂眼等都是在充型不利的情况下产生的。然而由于本身的复杂性, 与凝固过程相比, 充型过程计算机数值模拟技术的起步较晚。长期以来人们对充型过程的把握和控制主要是建立在大量的试验基础上的经验准则。从20世纪80年代开始, 在此领域进行了大量的研究, 在数学模型的建立、算法的实现、计算效率的提高以及工程实用化方面均取得了重大突破。 许多铸造缺陷如卷气、夹杂、缩孔等都与液态金属的充型过程有关。为了控制充型顺序和流动方式,对充型过程进行数值模拟非常必要。其研究多数以SOLA—VOF法为基础,引人体积函数处理自由表面,并在传热计算和流量修正等方法进行研究改进。有的研究在对层流模型进行大量实验验证之后,用K一£双方程模型模拟铸件充型过程紊流现象。 目前,虽然已研究了许多算法,如并行计算法、三维有限单元法等,但最好的算法仍然没有找到。常用的网格划分为矩形单元(2D)或正交平行六面体(3D)。日本的I.Ohnaka等人提出了无结构非正交网格,这种技术是通向较高精度充型模拟的可能途径之一。砂型铸造的充型模拟研究在铸造过程计算机模拟中占主导地位,然而消失模铸造、金属型铸造等充型模拟的研究工作已经开始。充型模拟的另一发展趋势是浇注系统辅助设计,R.McDavid和J.Dantzig在这方面进行了尝试,并取得了一定的成果。 二、缩松和缩孔预测的数值模拟研究概况 铸件缩松、缩孔形成的模拟预测是铸件充型凝固过程模拟软件的主要功能之一。目前国内外常用的凝固模拟软件中均提供了多种判据用于铸件缩松、缩孔的预测.但是,大多数判据均是在用于铸钢件或不含石墨的铸造合金时比较有效。由于石墨铸铁凝固时析出比体积较大的石墨。因此其体积变化较铸钢等复杂得多,必须采用专门的判据。 铸钢件缩松、缩孔预测判据经过多年的发展,从最初的定性温度场热节法,发展到后来的E.Niyama提出的G/R1/2法,再到后面的流导法、固相率梯度法等定量预测方法,无论从精度还是从使用范围看,均达到了较高的水平,可以有效地预测铸件钢中的缩松、缩孔。 而铸铁件,特别是球墨铸铁件缩松、缩孔的预测一直缺乏可靠有效的判据。1994年,李嘉荣等在大量试验的基础上提出了球墨铸铁缩松、缩孔形成预测的“收缩膨胀动态叠加法(DECAM)”,该法基于Fe—C平衡相图,用杠杆原理计算凝固过程中收缩和膨胀量,将收缩和膨胀量进行叠加,可以预测球墨铸铁件缩松、缩孔的形成.李文珍等在进行球墨铸铁微观

铸造模拟软件讲解

PROCAST ProCAST由法国ESI公司开发的综合的铸造过程软件解决方案,有20多年的历史,提供了很多模块和工程工具来满足铸造工业最富挑战的需求。基于强大的有限元分析,它能够预测严重畸变和残余应力,并能用于半固态成形,吹芯工艺,离心铸造,消失模铸造、连续铸造等特殊工艺。 procast 百科名片 ProCast软件界面 ProCAST由法国ESI公司开发的综合的铸造过程软件解决方案,有20多年的历史,提供了很多模块和工程工具来满足铸造工业最富挑战的需求。基于强大的有限元分析,它能够预测严重畸变和残余应力,并能用于半固态成形,吹芯工艺,离心铸造,消失模铸造、连续铸造等特殊工艺。 目录 适用范围材料数据库 模拟分析能力 分析模块 ProCAST特点 模拟过程 展开 适用范围 材料数据库 模拟分析能力 分析模块 ProCAST特点 模拟过程 展开 ProCast应用(10张) 编辑本段适用范围 ProCAST适用于砂型铸造、消失模铸造、高压铸造、低压铸造、重力铸造、

软件操作界面 倾斜浇铸、熔模铸造、壳型铸造、挤压铸造、触变铸造、触变成形、流变铸造。由于采用了标准化、通用的用户界面,任何一种铸造过程都可以用同一软件包ProCAST进行分析和优化。它可以用来研究设计结果,例如浇注系统、通气孔和溢流孔的位置,冒口的位置和大小等。实践证明,ProCAST可以准确地模拟型腔的浇注过程,精确地描述凝固过程。可以精确地计算冷却或加热通道的位置以及加热冒口的使用。 编辑本段材料数据库 ProCAST可以用来模拟任何合金,从钢和铁到铝基、钴基、铜基、镁基、镍基、钛基和锌基合金,以及非传统合金和聚合体。ESI旗下的热物理仿真研究开发队伍汇集了全球顶尖的五十多位冶金、铸造、物理、数学、计算力学、流体力学和计算机等多学科的专家,专业从事ProCAST和相关热物理模拟产品的开发。得益于长期的联合研究和工业验证,使得通过工业验证的材料数据库不断地扩充和更新,同时,用户本身也可以自行更新和扩展材料数据。除了基本的材料数据库外,ProCAST还拥有基本合金系统的热力学数据库。这个独特的数据库使得用户可以直接输入化学成分,从而自动产生诸如液相线温度、固相线温度、潜热、比热和固相率的变化等热力学参数。 编辑本段模拟分析能力 ProCAST可以分析缩孔、裂纹、裹气、冲砂、冷隔、浇不足、应力、变形、模具寿命、工艺开发及可重复性。ProCAST几乎可以模拟分析任何铸造生产过程中可能出现的问题,为铸造工程师提供新的途径来研究铸造过程,使他们有机会看到型腔内所发生的一切,从而产生新的设计方案。其结果也可以在网络浏览器中显示,这样对比较复杂的铸造过程能够通过网际网络进行讨论和研究。 编辑本段分析模块 ProCAST是针对铸造过程进行流动一传热一应力耦合作出分析的系统。它主要由8个模块组成:有限元网格划分MeshCAST基本模块、传热分析及前后处理(Base License)、流动分析(Fluid flow)、应力分析(Stress)、热辐射分析(Radiation)、显微组织分析(Micromodel)、电磁感应分析(Electromagnetics)、反向求解(Inverse),这些模块既可以一起使用,也可以根据用户需要有选择地使用。对于普通用户,ProCAST应有基本模块、流动分析模块、应力分析模块和网格划分模块。 1)传热分析模块 本模块进行传热计算,并包括ProCAST的所有前后处理功能。传热包括

加工过程的数值模拟作业

材料加工数值模拟 论文 专业:材料加工 姓名:闫禹伯 学号:2013432109

目录

第一章.铸造过程的数值模拟分析 传统铸件的生产是根据经验确定铸造工艺,先试浇铸,检验试样是否存在浇铸缺陷,如有则修改工艺方案,然后重复上述过程,直至获得合格铸件。由于这种方法必须在浇铸后才能对铸件工艺是否合理进行评价,因而该方法存在设计周期长、生产成本高、效率低等缺点;而且得到的往往不是最终铸造工艺,对于大型或复杂形状铸件该缺点显得更加突出。铸造CAE模拟技术是利用计算机技术来改造和提升传统铸造术,对降低产品的成本、提高铸造企业的竞争力有着不可替代的作用。 一.铸造过程数值模拟的发展现状 计算机技术的飞速发展,已使其自电力发明以来最具生产潜力的工具之一,数字化时代正一步步向我们走来。计算机辅助设计(CAD)、计算机辅助工程分析(CAM)和计算机辅助制造(CAE)等技术在材料科学领域的应用正在不断扩大和深入,已经成为材料科学领域的技术前沿和十分活跃的研究领域。就铸造领域而言,铸造过程数值模拟已经成为计算机在铸造研究和生产应用中最为核心的内容之一,涉及铸造理论、凝固理论、传热学、工程力学、数值分析、计算机图形学等多个学科[1-5],是公认的材料科学的前沿领域。 铸造过程数值模拟技术经过了四十年的发展历程,其间,从简单到复杂、从温度场发展到流动场、应力场,从宏观模拟深入到微观领域,从普通的重力铸造拓展到低压、压铸等特种铸造,从实验室研究进入到工业化实际应用。特别是近些年来,在包括计算机硬件、软件、信息处理技术以及相关学科的强有力的支持下,数值模拟技术在人类社会的各个领域得到了广泛的应用,取得了长足的进步。如果说10年前,大多数铸造技术人员对模拟仿真技术还抱有观望、怀疑的态度的话,那么10年后的今天,已有众多的企业纷纷采用数值模拟技术,应用于实际生产。目前欧美日等西方发达国家的铸造企业普遍应用了模拟技术,特别是汽车铸件生产商几乎全部装备了仿真系统,成为确定工艺的固定环节和必备工具。上世纪90年代中后期以来,国内铸造厂家逐渐认识到其重要性,纷纷引入该技术,目前已有超过200家铸造企业拥有模拟仿真手段,在实际生产中起到了较为

基于虚拟现实的铸造工艺流程仿真

基于虚拟现实的铸造工艺流程仿真 大部分机械工程专业的学生并没有真正意义上的进行铸造工艺实验,多数是从书上获得理论知识,或者是在金工实习时,听或观察老师的操作,使得很多学生并不熟悉真正的铸造是如何进行的。针对这种情况,本文利用虚拟现实的技术仿真铸造工艺的流程,使得学生可以在没有现实设备的基础下,也能依靠自学或者书本的知识,自己进行虚拟的铸造实验。 铸造工艺有很多类型,本文选择了压力铸造工艺流程的仿真。压力铸造是一种精密的铸造技术,是一种不可或缺的铸造技术,也是机械工程专业的学生必须掌握的铸造技术。虚拟现实技术综合利用计算机仿真技术、计算机图形学等等多种技术,通过产生视觉、听觉等,使得用户产生一种身临其境的感觉。其中很多软件能实现这种技术,本文采用了容易掌握和理解的EON Studio来实现压铸工艺的仿真。 本文首先对压力铸造作了简介,对其四种类型:热室压力铸造、冷室卧式压力铸造、冷室立式压力铸造和冷室全立式压力铸造的工艺流程进行了详细的分析,并且选择了热室压力铸造和冷室卧式压力铸造进行工艺仿真。而后简单介绍了EON Studio的重要功能,采用多种节点的配合作用,实现了对压力铸造工艺流程的仿真。 I

第一章绪论 1.1 选题的背景及意义 机械工程是社会发展和国民经济建设的基础学科之一。机械类专业人才的培养在整个教育中是非常重要的一部分。但我国机械专业的教学长期以来沿用原苏联的教学模式。而这种教学模式存在着严重的弊端,例如专业口径较窄、专业划分过细、内容相对过深、体系过于陈旧。随着我国的新技术的迅速发展,使机械工程、机械制造比以前的时代发生了根本性变化。这种传统的机械类教学模式必须彻底改革,不然就不会有创新。 实验教学是一种将课本知识结合到实际的教学方式,实验教学不仅巩固了学生课本上的基础知识,而且还能够培养学生的实际操作能力和动脑能力。由于机械专业属于工科类教学,对学生的实践动手操作能力要求极高,所以实验教学是提高机械工程专业学生实践动手操作能力的一个重要教学环节。 但是由于各种条件的限制,比如操作实验设备难度大、缺乏实验设备、容易精密仪器损坏、实验时间和资源的消耗大等,学生缺乏大量去尝试的机会,也因此这的相当数量的实验创新教学不能正常开展,另外一些抽象性的实验在现实情景中很难实现,例如铸造等等,从而耽误了对学生动手实践能力的培养。将虚拟现实技术应用在实验教学中,可使虚拟出来的效果接近真实实验效果[1]。 铸造成型在现代加工中占有不可或缺的地位,是制造生产复杂零件最灵活的方法。铸造实习是金工实习重要的环节之一,通过铸造实习学生可以学习到常规的铸造工艺,同时也能够了解到基本先进的铸造技术。但是因为受到我国传统教育思想的影响,实验教学的模式一直有一下几个方面的问题: (1)教学方法基本上还是老师带学生的模式,老师做学生在一旁看和模仿,过多的约束使学生难以发挥自己的想象空间,形成了一种被动的模仿实习,而不是由学生自己摸索得到的知识。在过去的实习教学中,都是由指导老师示范砂型的制作过程,然后由学生进行模仿进行操作,然而大部分学生做出来的作品都是基本的形状; (2)后续的浇注过程没有得到很好的展开,学生很难对砂型铸造的后续金属浇注过程有一个直观的认识,例如不同金属熔炼所需要具备的条件、浇注前金属液体的微观状态、铸件的成型过程以及铸件可能产生的缺陷等。而且在这种情况下学生很容易失去对实习的兴趣以及实习的成就感,从而打击到了学生实习的积极性,并且影响到部分同学的学习热情; (3)学生在实际操作之前没有得到相关实习的理论教学。例如学生没有掌握砂型铸造的要点,有的学生不是十分了解基本操作步骤。 华南理工大学机械工程虚拟仿真实验教学中心是首批国家级虚拟仿真实验教学中

铸造过程的数值模拟

铸造过程的数值模拟 1零件分析 本次铸造过程的数值模拟所用的零件为方向盘,该零件结构复杂,并且在实际使用过程 中,需要承受较大的扭转力,因此选用镁合金并采用压铸工艺。此项工作需要在方向盘上建 立合适的浇注系统和溢流槽,进行充型模拟,得到合理的压铸方案。在建立浇注系统之前,需要合理选择分型面,然后选择浇注系统的内浇口位置,待浇注系统建立好之后,进行一次预模拟,从而确定溢流槽的数量和位置。 2工艺设计 2.1浇注系统 该铸件的分型面为铸件的最大截面,选定的浇注系统在铸件上的位置如下图所示。 rr 口斗+带〒 *”斗-T 已知数据有:压室直径60mm,压室速度0.1m/s-3m/s,铸件材料AM50A,方向盘质量 595g,压射温度685C。 查表取值:AM50A 镁合金密度1.75g/cm3;充填时间t= 0.05s;内浇口厚度b=2.5mm ; 取充填速度v仁50m/s。 铸件的体积v= — = —95 =340000mm 3; P 1.75 根据经验,可以取溢流槽的体积为铸件体积的10%,则溢流槽的体积v^ 34000mm3。 计算内浇口面积(V铸件+ V溢流槽) vt 二340 34 -50 0.05二149.6 2 mm

内浇口宽度 s c 2 b 冲头速度 4v 1s 4x 50 x149.6 “ , V ? 2 2 2.65 m / s nd 兀汽60 横浇道选用等宽横浇道 厚度 bh=10mm ,斜度10°,宽度B=( 1.25-3)An/bh ;圆角半径 r=2mm ,横浇道宽 2 度为 30mm 。增压时间 k=1.5s ,: =0.005 t = k : b 1.5 0.005 9 = 0.0675s 直浇道的设计 因为压室直径为60mm ,因此可以将直浇道与压室相连处的直径设计为 60mm ,直浇道 的高度为40mm ,拔模斜度为5 °。 2.2排溢系统 根据前面所述,溢流槽的总体积设计为铸件总体积的 10%,则v^ 34000mm 3。并且 设计三个溢流槽,分布在方向盘的圆周上,具体位置根据铸件最后充型位置确定。 根据经验和查表,溢流槽的桥部的尺寸与内浇道的尺寸的差距不宜过大, 因此选取溢流 槽的尺寸为 A=30mm , B=35mm , H=12mm ,a=9mm , b=22mm , c=1mm ,溢流槽桥部厚度 为h=1.3mm 。则溢流槽的仓部体积和为 v 溢=3 ^B_H = 3 30 35 37800mm 3。 149.6 治 30 mm

铸造充型过程的数值模拟

( 学生姓名:王霞 学 院:材料科学与工程 专 业:材料工程 学 号:20131800103 二○一四年二月 铸造充型过程数值模拟的研 究进展

摘要 铸造过程计算机数值模拟技术是当今材料科学的重要前沿领域。本文从铸件充型数值模拟的发展过程、软件的开发状况、计算方法及验证方法等四个方面介绍了国内外铸件充型过程计算机数值模拟的概况。 关键词: 数值模拟; 充型过程; 铸件; 模拟软件

Abstract The technology of computernumerical simulation on casting process is an importangt frontal field of material science and technolgy.The present foreign and domestic research on compter digital simulation of casting process is summarized in the paper from four respects of evolution of numerical simulation of filling processes of castings,development state of software ,method to calculate and method to prove. Key words:numerical simulation ;filling process;castings;simulation software

铸造过程数值模拟综合实验说明书

铸造过程数值模拟综合实验前言 一、铸造过程数值模拟的来源、内容和意义 为了生产出合格的铸件,就要对影响其形成的因素进行有效的控制。铸件的形成主要经历了充型和凝固两个阶段,宏观上主要涉及到液态金属充型流动、金属凝固和冷却收缩、高温金属冷却和收缩3种物理现象。在充型过程中,流场、温度场和浓度场同时变化,凝固时伴随着温度场的变化的同时存在着枝晶间对流和收缩现象;收缩则导致应力场的变化。与流动相关的主要缺陷有:浇不足、冷隔、气孔、夹渣;充型中形成的温度场分布直接关系到后续的凝固冷却过程;充型中形成的浓度场分布与后续的冷却凝固形成的偏析和组织不均匀有关。凝固过程的温度场变化及收缩是导致缩孔缩松的主要原因,枝晶间对流和枝晶收缩是微观缩松的直接原因,热裂冷裂的形成归因于应力场的变化。 可见,客观地反映不同阶段的场的变化,并加以有效的控制,是获得合格铸件的充要条件。传统的铸件生产因其不同于冷加工的特殊性,只能对铸件的形成过程进行粗糙的基于经验和一般理论基础上的控制,形成的控制系统——铸造工艺的局限性表现在:1)只是定性分析;2)要反复试制才能确定工艺。 铸造过程数值模拟的目的就是要对铸件形成过程各个阶段的场的变化进行数值解析以获得合理的铸件形成的控制参数,其内容主要包括温度场、流场、浓度场、应力场等的计算模拟。 二、铸造过程数值模拟原理 铸造过程数值模拟技术的实质是对铸件成型系统(包括铸件—型芯—铸型等)进行几何上的有限离散,在物理模型的支持下,通过数值计算来分析铸造过程有关物理场的变化特点,并结合铸造缺陷的形成判据来预测铸件质量。 数值解法的一般步骤是: 1)汇集给定问题的单值性条件,即研究对象的几何条件、物理条件、初始条件和边界条件等。 2)将物理过程所涉及的区域在空间上和时间上进行离散化处理。 3)建立内部节点(或单元)和边界节点(或单元)的数值方程。 4)选用适当的计算方法求解线性代数方程组。 5)编程计算。 其中,核心部分是数值方程的建立。根据建立数值方程的方法不同,又分为多种数值方法。铸造过程采用的主要数值方法有:有限差分法(FDM)、直接差分法(DFDM)、控制体积法(VEM)、有限元法(FEM)、边界元法(BEM)等。 比较常用的方法为有限差分法和有限单元法。 有限差分方法(FDM)是计算机数值模拟最早采用的方法,该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。

DEFORM锻压模拟基本过程

DEFORM在锻造模拟的基本过程 一软件简介 DEFORM是一套基于有限元的工艺仿真系统,用于分析金属成形及其相关工业的各种成形工艺和热处理工艺。通过在计算机上模拟整个加工过程,帮助工程师和设计人员:设计工具和产品工艺流程,减少昂贵的现场试验成本。提高工模具设计效率,降低生产和材料成本。缩短新产品的研究开发周期。 金属塑性成形技术室现代制造业中金属加工的重要方法之一,它是金属在模具的外力作用下发生塑性变形,并被加工成棒材,板材,棺材以及各类机器零件,构件或日用器具的技术。 二下面以锻压为例来说明DEFORM在金属塑性成形的基本过程 1 导入毛坯几何文件并设置坯料基本属性 对于那些非刚性材料和考虑传热影响的刚体材料,必须按需要设置材料的属性。物体名默认Workpiece不变,物体类型采用默认的塑性体,温度默认为常温不改变。在前处理窗口中,选择材料库中的Steel->AISI-1045, COLD[70F(20C)]。对导入的几何体进行几何检查,只有质量符合的图形才能划分网格并计算。 2 进行网格的划分与重划分 网格划分太大会降低模拟精确度,网格划分太小可提高模拟准确性,但模拟时间增加,降低了效率。所以选择合适的网格划分方式和网格划分大小很重要。在这里网格划分数目选择默认的8000,如图表1。 3 导入上模文件与下模文件并分别设置运动参数(如图表2) 4 设置其他模拟参数、定义接触关系并检查生成的数据库文件 设置模拟步数为20,除非模拟意外终止,否则程序将运行至20步。设置存储增量为2,每两步保存一次,避免每步都保存,造成数据文件过大。设置With Constant DieDisplement为0.13,每步进行0.13in的计算。因为是冷锻,摩擦因数系统会设为0.12。有限元分析引擎把模拟计算的结果写在数据库文件中,该文件在前处理环节中产生,此时一些模拟信息(如材料属性、运动控制参数等)会被写入该文件。 5 模拟锻造过程与后处理。 锻造的实际生产过程是非常快的,但用deform软件可以提取任意时间段的变形情况。为了解变形情况,在塑性体上选择三点(如图表3),查看其载荷行程曲线如图表4。在实际生产过程中,下料的多少直接决定了最后锻件的飞边有无与多少。根据Pro/E设计的零件毛坯重量与模具的型腔尺寸,可得出所需方体的长宽高。若下的料质量不足,将会出现充型不完全,得不到完整的零件;若下的料过大,零件的飞边就会很大,甚至使模具胀开,不能完全闭合,从而使零件尺寸发生变化。所以有适当的飞边才能保证零件的质量 下面是

铸造凝固过程数值模拟

铸造凝固过程数值模拟 时间:2007-4-11 9:03:44 1.1 概述 在铸造生产中,铸件凝固过程是最重要的过程之一,大部分铸造缺陷产生于这一过程。凝固过程的数值模拟对优化铸造工艺,预测和控制铸件质量和各种铸造缺陷以及提高生产效率都非常重要。 凝固过程数值模拟可以实现下述目的: 1)预知凝固时间以便预测生产率。 2)预知开箱时间。 3)预测缩孔和缩松。 4)预知铸型的表面温度以及内部的温度分布,以便预测金属型表面熔接情况,方便金属型设计。 5)控制凝固条件。 6)为预测铸应力,微观及宏观偏析,铸件性能等提供必要的依据和分析计算的基础数据。 铸件凝固过程数值模拟开始于60年代,丹麦FORSUND把有限差分法第一次用于铸件凝固过程的传热计算。之后美国HENZEL和KEUERIAN应用瞬态传热通用程序对汽轮机内缸体铸件进行数值计算,得出了温度场,计算结果与实测结果相当接近。这些尝试的成功,使研究者认识到用计算数值模拟技术研究铸件的凝固过程具有巨大

的潜力和广阔的前景。于是世界上许多国家都相继开展了铸件凝固过程数据模拟以及与之相关的研究工作。 1.2 数学模型的建立和程序设计 液态金属浇入铸型,它在型腔内的冷却凝固过程是一个通过铸型向环境散热的过程。在这个过程中,铸件和铸型内部温度分布要随时间变化。从传热方式看,这一散热过程是按导热、对流及辐射三种方式综合进行的。显然,对流和辐射的热流主要发生在边界上。当液态金属充满型腔后,如果不考虑铸件凝固过程中液态金属中发生的对流现象,铸件凝固过程基本上看成是一个不稳定导热过程。因此铸件凝固过程的数学模型正是根据不稳定导热偏微分方程建立的。但还必须考虑铸件凝固过程中的潜热释放。 基于分析和计算模型开发相应的程序,即可实现铸造凝固过程温度场的计算。 1.3 温度场的数值模拟 在热模拟中,温度场的数值模拟是最基本的,以三维温度场为主要内容的铸件凝固过程模拟技术已进入实用阶段,日本许多铸造厂采用此项技术。英国的Solstar系统由三维造型,网格自动剖分,有限差分传热计算,缩孔缩松预测,热物性数据库及图形处理等模块组成。

相关文档
相关文档 最新文档