文档库 最新最全的文档下载
当前位置:文档库 › 概率论与数理统计课后习题参考答案高等教育出版社

概率论与数理统计课后习题参考答案高等教育出版社

概率论与数理统计课后习题参考答案高等教育出版社
概率论与数理统计课后习题参考答案高等教育出版社

概率论与数理统计课后习题参考答案

高等教育出版社

习题1.1解答

1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。

解:{=Ω(正,正),(正,反),(反,正),(反,反)}

{=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)}

2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数

之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。

解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω;

{})1,3(),2,2(),3,1(),1,1(=AB ;

{})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ;

Φ=C A ;{})2,2(),1,1(=BC ;

{})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A

3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下

事件:

(1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。

解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++;

(4)BC A C B A C AB ++; (5)C B A ++;

(6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++

(8)ABC ; (9)C B A ++

4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A ,

313221A A A A A A ++.

解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。

5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和:

C B A ++,C AB +,AC B -.

解:如图:

BC

A C

B

C AB A B BC

A C

B A

C AB AC B C C AB C AB C B A C B A BC A ABC C AB C B A C B A C B A +=+=++=-+=+++++++=++;

;

6. 若事件C B A ,,满足C B C A +=+,试问B A =是否成立?举例说明。

解:不一定成立。例如:{}5,4,3=A ,{}3=B ,{}5,4=C ,

那么,C B C A +=+,但B A ≠。

7. 对于事件C B A ,,,试问C B A C B A +-=--)()(是否成立?举例说明。

解:不一定成立。 例如:{}5,4,3=A ,{}6,5,4=B ,{}7,6=C , 那么{}3)(=--C B A ,但是{}7,6,3)(=+-C B A 。

8. 设3

1)(=

A P ,21)(=

B P ,试就以下三种情况分别求)(A B P :

(1)Φ=AB , (2)B A ?, (3)8

1)(=AB P .

解:

(1)2

1)()()()(=-=-=AB P B P AB B P A B P ; (2)6

1)()()()(=

-=-=A P B P A B P A B P ; (3)8

3

8121)()()()(=-=-=-=AB P B P AB B P A B P 。

C

B A C

B A C

B A ABC

BC

A C

AB C

B A Ω

A

B

C

C

B A

9. 已知41)()()(===

C P B P A P ,16

1)()(==BC P AC P ,0)(=AB P 求事件

C B A ,,全不发生的概率。

解:()

)(1)(C B A P C B A P C B A P ++-=++=

=[]

)()()()()()()(1ABC P BC P AC P AB P C P B P A P +---++-8

3

016116104141411=??????+---++-=

10. 每个路口有红、绿、黄三色指示灯,假设各色灯的开闭是等可能的。一个人骑车经过三个路口,试求下列事件的概率:=A “三个都是红灯”=“全红”; =B “全绿”; =C “全黄”; =D “无红”; =E “无绿”; =F “三次颜色相

同”; =G

“颜色全不相同”; =H “颜色不全相同”。

解:

271333111)()()(=????=

==C P B P A P ;27

8

333222)()(=

????==E P D P ; 91271271271)(=++=F P ;9

2

333!3)(=??=G P ;

98

911)(1)(=-=-=F P H P .

11. 设一批产品共100件,其中98件正品,2件次品,从中任意抽取3件(分三种情况:一次拿3件;每次拿1件,取后放回拿3次;每次拿1件,取后不放回拿3次),试求:

(1) 取出的3件中恰有1件是次品的概率; (2) 取出的3件中至少有1件是次品的概率。

解:

一次拿3件:

(1)0588.0310012298==C C C P ; (2)0594.03

100

198

2229812=+=C C C C C P ; 每次拿一件,取后放回,拿3次:

(1)0576.03100

9823

2

=??=P ; (2)0588.0100

9813

3

=-=P ; 每次拿一件,取后不放回,拿3次: (1)0588.0398

9910097

982=?????=

P ;

(2)0594.098

9910096

97981=????-

=P 12. 从9,,2,1,0 中任意选出3个不同的数字,试求下列事件的概率:

{}501与三个数字中不含=A ,{}502或三个数字中不含=A 。

解:

15

7

)(310381==C C A P ;

15142)(31038392=-=C C C A P 或15

14

1)(310182=-=C C A P 13. 从9,,2,1,0 中任意选出4个不同的数字,计算它们能组成一个4位偶数的概率。

解:9041

454

10

2839=-=P P P P 14. 一个宿舍中住有6位同学,计算下列事件的概率: (1)6人中至少有1人生日在10月份; (2)6人中恰有4人生日在10月份; (3)6人中恰有4人生日在同一月份;

解:

(1)41.01211166

=-= P ; (2)00061.012116

246=?= C P ; (3)0073.012

11

6246112== C C P

15. 从一副扑克牌(52张)任取3张(不重复),计算取出的3张牌中至少有2张花色相同的概率。

解:

602.03521392131431314=+= C C C C C C P 或602.013

52

11311311334=-= C C C C C P

习题1.2解答

1. 假设一批产品中一、二、三等品各占60%,30%、10%,从中任取一件,结果不是三等品,求取到的是一等品的概率。

解:

令=i A “取到的是i 等品”,3,2,1=i

3

2

9.06.0)()()()()(3133131====

A P A P A P A A P A A P 。

2. 设10件产品中有4件不合格品,从中任取2件,已知所取2件产品中有1件不合

格品,求另一件也是不合格品的概率。

解:

令=A “两件中至少有一件不合格”,=B “两件都不合格”

5

11)

(1)

()()()|(210

2

621024

=

-

=

-==C C C C A P B P A P AB P A B P 3. 为了防止意外,在矿内同时装有两种报警系统I 和II 。两种报警系统单独使用时,系统I 和II 有效的概率分别0.92和0.93,在系统I 失灵的条件下,系统II 仍有效的概率为0.85,求

(1) 两种报警系统I 和II 都有效的概率; (2) 系统II 失灵而系统I 有效的概率; (3) 在系统II 失灵的条件下,系统I 仍有效的概率。

解:令=A “系统(Ⅰ)有效” ,=B “系统(Ⅱ)有效” 则85.0)|(,93.0)(,92.0)(===A B P B P A P (1))()()()(B A P B P B A B P AB P -=-=

862.085.0)92.01(93.0)|()()(=?--=-=A B P A P B P (2)058.0862.092.0)()()()(=-=-=-=AB P A P AB A P A B P (3)8286.093

.01058

.0)()()|(=-==

B P B A P B A P

4. 设1)(0<

)|()|(A B P A B P =

证:

?:A 与B 独立,A ∴与B 也独立。 )()|(),()|(B P A B P B P A B P ==∴ )|()|(A B P A B P =∴

?: 1)(01)(0<<∴<

又)

()

()|(,)()()|(A P B A P A B P A P AB P A B P == 而由题设)

()

()()()|()|(A P B A P A P AB P A B P A B P =∴=

即)]()()[()()](1[AB P B P A P AB P A P -=- )()()(B P A P AB P =∴,故A 与B 独立。

5. 设事件A 与B 相互独立,两个事件只有A 发生的概率与只有B 发生的概率都

是4

1,求)(A P 和)(B P .

解:4

1

)()(=

=B A P B A P ,又 A 与B 独立 ∴41

)()](1[)()()(=-==B P A P B P A P B A P

4

1

)](1)[()()()(=-==B P A P B P A P B A P

4

1)()(),()(2

=-=∴A P A P B P A P

即2

1

)()(==B P A P 。

6. 证明 若)(A P >0,)(B P >0,则有

(1) 当A 与B 独立时,A 与B 相容; (2) 当A 与B 不相容时,A 与B 不独立。

证明:0)(,0)(>>B P A P

(1)因为A 与B 独立,所以

0)()()(>=B P A P AB P ,A 与B 相容。 (2)因为0)(=AB P ,而0)()(>B P A P , )()()(B P A P AB P ≠∴,A 与B 不独立。

7. 已知事件C B A ,,相互独立,求证B A 与C 也独立。

证明:因为A 、B 、C 相互独立, ∴)(])[(BC AC P C B A P =

)()()()]()()([)()()()()()()()

()()(C P B A P C P AB P B P A P C P B P A P C P B P C P A P ABC P BC P AC P =-+=-+=-+=

B A ∴与

C 独立。

8. 甲、乙、丙三机床独立工作,在同一段时间内它们不需要工人照顾的概率分别为0.7,0.8和0.9,求在这段时间内,最多只有一台机床需要工人照顾的概率。

解:

令321,,A A A 分别表示甲、乙、丙三机床不需要工人照顾, 那么9.0)(,8.0)(,7.0)(321===A P A P A P 令B 表示最多有一台机床需要工人照顾,

那么)()(321321321321A A A A A A A A A A A A P B P +++=

902

.01.08.07.08.02.07.09.08.03.09.08.07.0)

()()()(321321321321=??+??+??+??=+++=A A A P A A A P A A A P A A A P

9. 如果构成系统的每个元件能正常工作的概率为)10(<

解:令=A “系统(Ⅰ)正常工作” =B “系统(Ⅱ)正常工作” =i A “第i 个元件正常工作”,n i 2,,2,1 = n i A A A P A P 221,,,,)( =相互独立。 那么

[])()()(22121n n n n A A A A A A P A P +++=

][[]

)

2(2)

()()()

()()(221

21

1

22122121n n n n n

i i

n n i i

n i i

n n n n n P P P P A P A P A P A A A P A A A P A A A P -=-=-+=

-+=∏∏∏=+==++

)]())([()(22211n n n n A A A A A A P B P +??++=++

n

n n i n i i n i i

n i

n

i i n i P P P P A P A P A

P A P A A P )2(]2[)]()()()([)

(1

211-=-=-+=

+=∏∏∏==++=+

10. 10张奖券中含有4张中奖的奖券,每人购买1张,求 (1) 前三人中恰有一人中奖的概率; (2) 第二人中奖的概率。

解:令=i A “第i 个人中奖”,3,2,1=i (1) )(321321321A A A A A A A A A P ++

注:利用第7题的方法可以证 明)(i n i A A ++与)(j n j A A ++

j i ≠时独立。

系统I

系统II

)()()(321321321A A A P A A A P A A A P ++=

)

|()|()()

|()|()()|()|()(213121213121213121A A A P A A P A P A A A P A A P A P A A A P A A P A P ++=

2

1859410684951068596104=??+??+??= 或213

10

2614==C C C P (2))|()()|()()(1211212A A P A P A A P A P A P += 5

29410693104=?+?=

11. 在肝癌诊断中,有一种甲胎蛋白法,用这种方法能够检查出95%的真实患者,但也有可能将10%的人误诊。根据以往的记录,每10 000人中有4人患有肝癌,试求:

(1)某人经此检验法诊断患有肝癌的概率;

(2)已知某人经此检验法检验患有肝癌,而他确实是肝癌患者的概率。

解:

令=B “被检验者患有肝癌”, =A “用该检验法诊断被检验者患有肝癌” 那么,0004.0)(,10.0)|(,95.0)|(===B P B A P B A P (1))|()()|()()(B A P B P B A P B P A P += 10034.01.09996.095.00004.0=?+?=

(2))

|()()|()()

|()()|(B A P B P B A P B P B A P B P A B P +=

0038.01

.09996.095.00004.095

.00004.0=?+??=

12. 一大批产品的优质品率为30%,每次任取1件,连续抽取5次,计算下列事件的概率:

(1)取到的5件产品中恰有2件是优质品;

(2) 在取到的5件产品中已发现有1件是优质品,这5件中恰有2件是优质品。

解:令=i B “5件中有i 件优质品”,5,4,3,2,1,0=i

(1)3087.0)7.0()3.0()(3

2252== C B P

(2))()

()|()|

(0

02025

12B P B B P B B P B B P i i =

==

371.0)7.0(13087

.0)(1)(5

02=-=-= B P B P

13. 每箱产品有10件,其次品数从0到2是等可能的。开箱检验时,从中任取1件,如果检验是次品,则认为该箱产品不合格而拒收。假设由于检验有误,1件正品被误检是次品的概率是2%,1件次品被误判是正品的概率是5%,试计算: (1)抽取的1件产品为正品的概率; (2)该箱产品通过验收的概率。

解:令=A “抽取一件产品为正品” =i A “箱中有i 件次品”,2,1,0=i =B “该箱产品通过验收”

(1)9.0101031)|()()(2

2

0=-?

==

∑∑==i i i

i i

A A P A P A P (2))|()()|()()(A

B P A P A B P A P B P +=

887.005.01.098.09.0=?+?=

14. 假设一厂家生产的仪器,以概率0.70可以直接出厂,以概率0.30需进一步调试,经调试后以概率0.80可以出厂,并以概率0.20定为不合格品不能出厂。现该厂新生产了)2(≥n n 台仪器(假设各台仪器的生产过程相互独立),求:

(1)全部能出厂的概率; (2)其中恰有2件不能出厂的概率; (3)其中至少有2件不能出厂的概率。

解:令=A “仪器需进一步调试” ;=B “仪器能出厂” =A “仪器能直接出厂” ;=AB “仪器经调试后能出厂” 显然AB A B +=,

那么8.0)|(,3.0)(==A B P A P

24.08.03.0)|())(=?==A B P PA AB P 所以94.024.07.0)()()(=+=+=AB P A P B P 令=i B “n 件中恰有i 件仪器能出厂”,n i ,,1,0 = (1)n

n B P )94.0()(= (2)222

222

2)06.0()94.0()06.0()94.0()(----==n n n n n

n C C B P

(3)n

n n n n n k k C B P B P B P )94.0()94.0(06.01)()(1)(

1112

0--=--=---=∑ 15. 进行一系列独立试验,每次试验成功的概率均为p ,试求以下事件

的概率:

(1)直到第r 次才成功;

(2)第r 次成功之前恰失败k 次; (3)在n 次中取得)1(n r

r ≤≤次成功;

(4)直到第n 次才取得)1(n r r ≤≤次成功。

解:

(1)1

)

1(--=r p p P

(2)k

r r k r p p C P )1(11-=--+ (3)r

n r r n p p C P --=)1(

(4)r

n r r n p p C P ----=)1(11

16. 对飞机进行3次独立射击,第一次射击命中率为0.4,第二次为0.5,第三次为0.7. 击中飞机一次而飞机被击落的概率为0.2,击中飞机二次而飞机被击落的概率为0.6,若被击中三次,则飞机必被击落。求射击三次飞机未被击落的概率。

解:令=i A “恰有i 次击中飞机”,3,2,1,0=i =B “飞机被击落” 显然:

09.0)7.01)(5.01)(4.01()(0=---=A P

36

.07

.0)5.01()4.01()7.01(5.0)4.01()7.01()5.01(4.0)(1=?-?-+-??-+-?-?=A P 41

.07.05.0)4.01(7.0)5.01(4.0)7.01(5.04.0)(2=??-+?-?+-??=A P

14.07.05.04.0)(3=??=A P

而0)|(0=A B P ,2.0)|(1=A B P ,6.0)|(2=A B P ,1)|(3=A B P

所以

458.0)|()()(3

==∑=i i i A B P A P B P ;542.0458.01)(1)(=-=-=B P B P

习题1.3解答

1. 设X 为随机变量,且k k X

P 2

1)(==( ,2,1=k ), 则

(1) 判断上面的式子是否为X 的概率分布; (2) 若是,试求)为偶数X P (和)5(≥X P .

解:令 ,2,1,2

1

)(====k p k X P k k

(1)显然10≤≤k p ,且

112

1

2121

11=-==∑∑∞

=∞

=k k k k p

所以 ,2,1,2

1

)(===k k X P k 为一概率分布。

(2)X P (为偶数31

12

1)41411212=-===∑∑∞

=∞=k k k k p

161

12

1)5(21

21

555=-===≥∑∑∞

=∞=k k k k p X P

2.设随机变量X 的概率分布为λλ-==e k C k X P k

!

)(( ,2,1=k ), 且0>λ,求常数C .

解:1!1

=-∞

=∑λ

λe

k c k k

,而1!

=-∞

=∑

λλe k k k

1!010=??

????-∴-λλe c ,即1)1(---=λe c

3. 设一次试验成功的概率为)10(<

解: ,2,1,)1()(1

=-==-k p p k X P k

4. 设自动生产线在调整以后出现废品的概率为p =0.1,当生产过程中出现废品时立即进行调整,X 代表在两次调整之间生产的合格品数,试求

(1)X 的概率分布; (2))5(≥X P 。

解:

(1) ,2,1,0,1.0)9.0()1()(=?=-==k p p k X P k

k

(2)55

5

)9.0(1.0)

9.0()()5(=?===

≥∑∑∞

=∞=k k

k k X P X P

5. 一张考卷上有5道选择题,每道题列出4个可能答案,其中有1个答案是正确的。求某学生靠猜测能答对至少4道题的概率是多少?

解:因为学生靠猜测答对每道题的概率为41=p ,所以这是一个5=n ,4

1=p 的独立重复试验。

64

1)43()41(43)4

1

()4(0

5554

4

5=

+?

=≥C C X P 6. 为了保证设备正常工作,需要配备适当数量的维修人员。根据经验每台设备发

生故障的概率为0.01,各台设备工作情况相互独立。

(1)若由1人负责维修20台设备,求设备发生故障后不能及时维修的概率; (2)设有设备100台,1台发生故障由1人处理,问至少需配备多少维修人员,才能保证设备发生故障而不能及时维修的概率不超过0.01?

解:

(1)0175.0)99.0(01.020)99.0(11920

≈??--(按Poisson (泊松)分布近似)

(2)λ==?==101.0100,100np n (按Poisson (泊松)分布近似)

01.0!1)

99.0()01.0()1(100

1

1

100

1

100100

≤?≈=+≥∑∑+=-+=-N k k N k k

k k k e C

N X P

查表得4=N

7. 设随机变量X 服从参数为λ的Poisson(泊松)分布,且2

1)0(==X P ,求

(1)λ; (2))1(>X P .

解:2ln ,2

1

!0)0(0

=∴=

=

=-λλλe X P

)]1()0([1)1(1)1(=+=-=≤-=>X P X P X P X P

)2ln 1(2

1

]2ln 2121[1-=+-=

8. 设书籍上每页的印刷错误的个数X 服从Poisson(泊松)分布。经统计发现在某

本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率。

解:)2()1(===X P X P ,即

2,!

2!

12

1

==

--λλλλλ

e e

2

0-==∴e X P )

( 8

4

2)(--==∴e e P

9. 在长度为的时间间隔内,某急救中心收到紧急呼救的次数服从参数为的

Poisson 分布,而与时间间隔的起点无关(时间以小时计),求

(1)某一天从中午12时至下午3时没有收到紧急呼救的概率; (2)某一天从中午12时至下午5时收到1次紧急呼救的概率;

9. 在长度为t 的时间间隔内,某急救中心收到紧急呼救的次数X 服从参数为2t

的Poisson(泊松)分布,而与时间间隔的起点无关(时间以小时计). 求 (1)某一天从中午12时至下午3时没有收到紧急呼救的概率; (2)某一天从中午12时至下午5时收到1次紧急呼救的概率;

解:

(1)2

3)0(23

,3-

===

=e X P t λ

(2)2

51)0(1)1(2

5

,5--==-=≥=

=e X P X P t λ

10. 已知X 的概率分布为:

试求(1)a ; (2

)12-=X Y

的概率分布。

解:

(1)123101

2=+++++a a a a a 10

1

=∴a 。

(2)

11. 设连续型随机变量X 的概率密度曲线如图1.3.8所示.

试求:(1)t 的值; (2)X 的概率密度;

(3))22(≤<-X P .

解:

(1)135.02

1

5.0)(21=??+?-t

1-=∴t

(2)???

?

?????∈+--∈+=其它,0

)3,0[,2161

)0,1[,2121)(x x x x x f

(3)1211

)2161()2121()22012

=+-++=≤<-??-dx x dx x X P (

12. 设连续型随机变量X 的概率密度为

?

?

?≤≤=其他,00,sin )(a

x x x f 试确定常数a 并求)6

(π>X

P .

解:令

1)(=?+∞

-dx x f ,即1sin 0

=?dx x a

1cos 0

=-∴a x ,即2

,0cos π

=

=a a

2

3

|cos sin )6

(2

6

2

6

=

-==>

ππ

π

π

x xdx X P 13. 乘以什么常数将使x

x

e

+-2

变成概率密度函数?

解:令 12

=?

+∞

∞-+-dx ce x

x

即 14

1)2

1(2

=?

+∞

∞---dx e e c x

即 14

1=πce

4

11

-

=

∴e c π

14. 随机变量),(~2

σμN X ,其概率密度函数为

6

4

42

61)(+--=

x x e x f π

(+∞<<∞-x )

试求2

,σμ;若已知

?

?

-+∞

=C

C

dx x f dx x f )()(,求C .

解:

2

22)3(2)2(6

443

21

61)(--+--

=

=

x x x e

e

x f ππ

2=∴μ , 32=σ

??∞

-+∞

=c

c

dx x f dx x f )()(,由正态分布的对称性

可知 2==μc .

15. 设连续型随机变量X 的概率密度为

??

?≤≤=其他,

01

0,2)(x x x f 以Y 表示对X 的三次独立重复试验中“2

1≤X ”出现的次数,试求概率)2(=Y P .

解:412)21(2

1

==≤

?xdx X P 64

9)43()4

1()2(2

2

3=

==C Y P 。 16. 设随机变量X 服从[1,5]上的均匀分布,试求)(21x X x P <<. 如果 (1)5121<<

解:X 的概率密度为?????≤≤=其他,05

1,41)(x x f

(1)?-==<<2

1

221)1(41

41)(x x dx x X x P

(2)?-==

<<5

1211

)5(4141)(x x dx x X x P 17. 设顾客排队等待服务的时间X (以分计)服从5

1=λ

的指数分布。某顾客等

待服务,若超过10分钟,他就离开。他一个月要去等待服务5次,以Y 表示一个月内他未等到服务而离开的次数,试求Y 的概率分布和)1(≥Y P .

解:

2105

1]1[1)10(1)10(-?-=--=<-=≥e e X P X P

5,4,3,2,1,0,)1()()(5225=-==∴---k e e C k Y P k k k

5167.0)1(1)1(5

2≈--=≥-e Y P

习题1.4解答

1. 已知随机变量X 的概率分布为

2.0)1(==X P ,

3.0)2(==X P ,

5.0)3(==X P ,试求X 的分布函数;)25.0(≤≤X P ;画出)(x F 的曲线。

解:

????

??

?≥<≤<≤<=3

,1

32,5.021,2.01

,0)(x x x x x F

5.0)25.0(=≤≤X P

)(x F 曲线:

2. 设连续型随机变量X 的分布函数为

??????

?≥<≤<≤--<=331111,

1,8.0,4.0,

0)(x x x x x F 试求:(1)X 的概率分布; (2))1|2(≠

解:

(1)

(2)3

2

)1()1()1|2(=≠-==

3. 从家到学校的途中有3个交通岗,假设在各个交通岗遇到红灯的概率是相互独

立的,且概率均是0.4,设X 为途中遇到红灯的次数,试求(1)X 的概率分布; (2) X 的分布函数。

解:

(1)3,2,1,0,)5

3()5

2()(33===-k C k X P k

k

k

列成表格

(2)??????????

?≥<≤<≤<≤<=3

,

1

32,12511721,12581

10,125270,0)(x x x x x x F 4. 试求习题1.3中第11题X 的分布函数,并画出)(x F 的曲线。

解:

?????????≥<≤+

+-<≤-++-<=3

1

30412112

10

141214110

)(22x x x x x x x x x F

5. 设连续型随机变量X 的分布函数为

??

?≤>+=-0

0,0,

)(2x x Be A x F x

试求:(1)B A ,的值; (2))11(<<-X P ; (3)概率密度函数)(x f .

解:

(1)11)(lim )(2=∴=+=+∞-+∞→A Be

A F x

x

又10)0()(lim 20

-=-=∴==+-→+A B

F Be

A x

x

(2)2

1)1()1()11(--=--=<<-e

F F X P

(3)???≤>==-0,0

,2)(')(2x x e x F x f x

6. 设X 为连续型随机变量,其分布函数为

??

?

??

>≤≤++<=.,;1,ln ;1,)(e x d e x d cx x bx x a x F

试确定)(x F 中的d c b a ,,,的值。

解: 10)(=∴=-∞a F 又11)(=∴=+∞d F 又10

)1ln (lim 1

-=∴==++-→c a cx x bx x

又111

)1ln (lim =+-∴==+--→e be d x x bx e

x 即1=b

7. 设随机变量X 的概率密度函数为)

1()(2

x a x f +=π,试确定a 的值并求)(x F 和)1(

解:1)1(2=+?+∞

-dx x a

π 即

11|arctan =∴=∞

+∞-a x a

π

+∞<<∞-+=+=

?∞-x x dt t a x F x

,arctan 1

21)

1()(2ππ 5.0)]1arctan(1

21[)1arctan 121()1()1()1|(|=-+-+=--=<π

πF F X P 8. 假设某地在任何长为t (年)的时间间隔内发生地震的次数)(t N 服从参数为

1.0=λ的Poisson(泊松)分布,X 表示连续两次地震之间相隔的时间(单位:年),

试求:

(1)证明X 服从指数分布并求出X 的分布函数; (2)今后3年内再次发生地震的概率;

(3)今后3年到5年内再次发生地震的概率。

解:

(1) 当0≥t 时,t

e t N P t X P 1.0)0)(()(-===>

t

e t X P t X P t F 1.01)(1)()(--=>-=≤=∴

当0

???<≥-=∴-00

1)(1.0x x e x F x

X 服从指数分布(1.0=λ)

(2)26.01)3(3

1.0≈-=?-e

F (3)13.0)3()5(≈-F F

9. 设)16,1(~-N X ,试计算(1))44.2(X P ;(3))4(-X P .

解:

(1)8051.0)4

44

.3()4)1(44.2(

)44.2(=Φ=--Φ=< X P (2))5.1(1)5.1(-≤-=->X P X P

5498.0)8

1

(1)415.1(1=-Φ-=+-Φ-=

(3))414()414()4|(|+-Φ-+Φ=

()45(-Φ-Φ=

6678.01)4

3

()45(=-Φ+Φ=

(4)[])2()0()2()0()1|1(|>+<=><=>-X P X P X X P X P

)412(1)410(+Φ-++Φ=8253.0)4

3

(1)41(=Φ-+Φ=

10. 某科统考成绩X 近似服从正态分布)10,70(2

N ,第100名的成绩为60分,问第20名的成绩约为多少分?

解:100

20)60|(=≥≥X x X P 而

[])

60()

()60()60()()60|(≥≥=≥≥≥=≥≥X P x X P X P X x X P X x X P

又 8413.0)1(1070601)60(=

Φ=??

?

??-Φ-=≥ X P 16826.08413.02.0)(=?=≥∴x X P

即 16826.0)1(10701)(=Φ=???

??-Φ-=≥x x X P

83174.01070=??

?

??-Φ∴x ,

96.01070≈-x ,6.79≈x 11. 设随机变量X 和Y 均服从正态分布,)4,(~2

μN X ,)5,(~2μN Y ,而)4(1-≤=μX P p ,)5(2+≥=μY P p ,试证明 21p p =.

证明:

)1(44)4(1-Φ=??

?

??--Φ=-≤=μμμX P p

)1()1(1551)5(2-Φ=Φ-=??

?

??-+Φ-=+≥=μμμY P p 21p p =∴.

12. 设随机变量X 服从[a,b ]上的均匀分布,令d cX Y +=()0≠c ,试求随机变

量Y 的密度函数。

解:

??

???≤-≤???? ??-=其它,0,||1)(b c

d

y a c c d y f y f X Y 当0>c 时,??

?

??+≤≤+-=其他,0,)(1

)(d cb y d a c a b c y f Y

当0

???

+≤≤+--

=其他,0,)(1)(d ca y d b c a b c y f Y

概率论与数理统计期末复习资料(学生)

概率论与数理统计期末复习资料 一 填空 1.设A ,B 为两个随机事件,若A 发生必然导致B 发生,且P (A )=0.6,则P (AB ) =______. 2.设随机事件A 与B 相互独立,且P (A )=0.7,P (A -B )=0.3,则P (B ) = ______. 3.己知10件产品中有2件次品,从该产品中任意取3件,则恰好取到一件次品的概率等于______. 4.已知某地区的人群吸烟的概率是0.2,不吸烟的概率是0.8,若吸烟使人患某种疾病的概率为0.008,不吸烟使人患该种疾病的概率是0.001,则该人群患这种疾病的概率等于______. 5.设连续型随机变量X 的概率密度为? ??≤≤=,,0; 10,1)(其他x x f 则当10≤≤x 时,X 的分布函数F (x )= ______. 6.设随机变量X ~N (1,32 ),则P{-2≤ X ≤4}=______.(附:)1(Φ=0.8413) 7.设二维随机变量(X ,Y )的分布律为 则P {X <1,Y 2≤}=______. 8.设随机变量X 的期望E (X )=2,方差D (X )=4,随机变量Y 的期望E (Y )=4,方差D (Y )=9,又E (XY )=10,则X ,Y 的相关系数ρ= ______. 9.设随机变量X 服从二项分布)3 1,3(B ,则E (X 2 )= ______. 10.中心极限定理证明了在很一般条件下,无论随机变量Xi 服从什么分布,当n →∞时,∑=n i i X 1 的极限分布是 _________________ 11.设总体X ~N (1,4),x 1,x 2,…,x 10为来自该总体的样本,∑== 10 110 1 i i x x ,则)(x D = ______.· 12.设总体X ~N (0,1),x 1,x 2,…,x 5为来自该总体的样本,则 ∑=5 1 2i i x 服从自由度为______ 的2χ分布. 15.对假设检验问题H 0:μ=μ0,H 1:μ≠μ0,若给定显著水平0.05,则该检验犯第一类错误的概率为______. 16.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=0.3,P (B )=0.4,则P (A B )=__________. 17.盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的 概率为_________. 18.设随机变量X 的概率密度?? ???≤≤=,,0; 10 ,A )(2其他x x x f 则常数A=_________.

(完整版)概率论与数理统计课后习题答案

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’ 1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 ( 3 ) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5) S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = ( 4 ) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率论与数理统计习题集及答案

* 《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . ? §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 \ §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. — §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。

概率论与数理统计试题库

《概率论与数理统计》试题(1) 一 、 判断题(本题共15分,每小题3分。正确打“√”,错误打“×”) ⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( ) ⑸ 样本方差2n S = n 121 )(X X n i i -∑=是母体方差DX 的无偏估计 ( ) 二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生; (2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。 三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为 2101 31111115651530 X P -- 求2 Y X =的分布列. 五、(10分)设随机变量X 具有密度函数|| 1()2 x f x e -= ,∞< x <∞, 求X 的数学期望和方差. 六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布 1 ()(1) ,1,2,,01k P X k p p k p -==-=<< , 的样本,试求未知参数p 的极大似然估计.

概率论与数理统计习题及答案

习题二 3.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品个数,求: (1) X 的分布律; (2) X 的分布函数并作图; (3) 133 {},{1},{1},{12}222 P X P X P X P X ≤<≤≤≤<<. 【解】 故X 的分布律为 (2) 当x <0时,F (x )=P (X ≤x )=0 当0≤x <1时,F (x )=P (X ≤x )=P (X =0)= 22 35 当1≤x <2时,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435 当x ≥2时,F (x )=P (X ≤x )=1 故X 的分布函数 (3) 4.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】 设X 表示击中目标的次数.则X =0,1,2,3. 故X 的分布律为 分布函数 5.(1) 设随机变量X 的分布律为 P {X =k }=! k a k λ, 其中k =0,1,2,…,λ>0为常数,试确定常数a . (2) 设随机变量X 的分布律为 P {X =k }=a/N , k =1,2,…,N , 试确定常数a . 【解】(1) 由分布律的性质知 故 e a λ -= (2) 由分布律的性质知 即 1a =. 6.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率;

(2) 甲比乙投中次数多的概率. 【解】分别令X 、Y 表示甲、乙投中次数,则X~b (3,0.6),Y~b (3,0.7) (1) ()(0,0)(1,1)(2,2)P X Y P X Y P X Y P X Y ====+==+==+ 331212 33(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++ (2) ()(1,0)(2,0)(3,0)P X Y P X Y P X Y P X Y >===+==+==+ =0.243 7.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)? 【解】设X 为某一时刻需立即降落的飞机数,则X ~b (200,0.02),设机场需配备N 条跑道,则有 即 200 2002001 C (0.02)(0.98) 0.01k k k k N -=+<∑ 利用泊松近似 查表得N ≥9.故机场至少应配备9条跑道. 8.已知在五重伯努利试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则 故 1 3 p = 所以 4451210(4)C ()33243 P X === . 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率; (2) 进行了7次独立试验,试求指示灯发出信号的概率. 【解】(1) 设X 表示5次独立试验中A 发生的次数,则X ~6(5,0.3) (2) 令Y 表示7次独立试验中A 发生的次数,则Y~b (7,0.3) 10.某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t 的泊松分布,而与时间间 隔起点无关(时间以小时计). (1) 求某一天中午12时至下午3时没收到呼救的概率; (2) 求某一天中午12时至下午5时至少收到1次呼救的概率. 【解】(1)32 (0)e P X -== (2) 52 (1)1(0)1e P X P X - ≥=-==- 11.设P {X =k }=k k k p p --22) 1(C , k =0,1,2 P {Y =m }=m m m p p --44) 1(C , m =0,1,2,3,4 分别为随机变量X ,Y 的概率分布,如果已知P {X ≥1}=5 9 ,试求P {Y ≥1}. 【解】因为5(1)9P X ≥= ,故4(1)9 P X <=. 而 2 (1)(0)(1)P X P X p <===-

概率论与数理统计期末总结

第1章 概率论的基本概念 1.1 随机试验 称满足以下三个条件的试验为随机试验: (1)在相同条件下可以重复进行; (2)每次试验的结果不止一个,并且能事先明确所有的可能结果; (3)进行试验之前,不能确定哪个结果出现。 1.2 样本点 样本空间 随机事件 随机试验的每一个可能结果称为一个样本点,也称为基本事件。 样本点的全体所构成的集合称为样本空间,也称为必然事件。必然事件在每次试验中必然发生。 随机试验的样本空间不一定唯一。在同一试验中,试验的目的不同时,样本 空间往往是不同的。所以应从试验的目的出发确定样本空间。 样本空间的子集称为随机事件,简称事件。 在每次试验中必不发生的事件为不可能事件。 1.3 事件的关系及运算 (1)包含关系 B A ?,即事件A 发生,导致事件B 发生; (2)相等关系 B A =,即B A ?且A B ?; (3)和事件(也叫并事件) B A C ?=,即事件A 与事件B 至少有一个发生; (4)积事件(也叫交事件) B A AB C ?==,即事件A 与事件B 同时发生; (5)差事件 AB A B A C -=-=,即事件A 发生,同时,事件B 不发生; (6)互斥事件(也叫互不相容事件) A 、 B 满足φ=AB ,即事件A 与事件B 不同时发生; (7)对立事件(也叫逆事件) A A -Ω=,即φ=Ω=?A A A A ,。

1.4 事件的运算律 (1)交换律 BA AB A B B A =?=?,; (2)结合律 ()()()()C AB BC A C B A C B A =??=??,; (3)分配律 ()()()()()()C A B A BC A AC AB C B A ??=??=?,; (4)幂等律 A AA A A A ==?, ; (5)差化积 B A AB A B A =-=-; (6)反演律(也叫德·摩根律)B A AB B A B A B A B A ?==?=?=?,。 1.5 概率的公理化定义 设E 是随机试验,Ω为样本空间,对于Ω中的每一个事件A ,赋予一个实数P (A ),称之为A 的概率,P (A )满足: (1)1)(0≤≤A P ; (2)1)(=ΩP ; (3)若事件 ,,, ,n A A A 21两两互不相容,则有 () ++++=????)()()(2121n n A P A P A P A A A P 。 1.6 概率的性质 (1)0)(=φP ; (2)若事件n A A A ,, , 21两两不互相容,则())()()(2121n n A P A P A P A A A P +++=??? ; (3))(1)(A P A P -=; (4))()()(AB P B P A B P -=-。 特别地,若B A ?,则)()(),()()(B P A P A P B P A B P ≤-=-; (5))()()()(AB P B P A P B A P -+=?。

概率论与数理统计课后习题答案

习题1.1解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和:C B A ++,C AB +,AC B -. 解:如图:

概率论与数理统计模拟试题

模拟试题A 一.单项选择题(每小题3分,共9分) 1. 打靶3 发,事件表示“击中i发”,i = 0,1,2,3。那么事件 表示( )。 ( A ) 全部击中;( B ) 至少有一发击中; ( C ) 必然击中;( D ) 击中3 发 2.设离散型随机变量x 的分布律为则常数 A 应为 ( )。 ( A ) ;( B ) ;(C) ;(D) 3.设随机变量,服从二项分布B ( n,p ),其中0 < p < 1 ,n = 1,2,…,那么,对 于任一实数x,有等于( )。 ( A ) ; ( B ) ; ( C ) ; ( D ) 二、填空题(每小题3分,共12分) 1.设A , B为两个随机事件,且P(B)>0,则由乘法公式知P(AB) =__________ 2.设且有 ,,则 =___________。 3.某柜台有4个服务员,他们是否需用台秤是相互独立的,在1小时内每人需用台秤的概 率为,则4人中至多1人需用台秤的概率为:__________________。 4.从1,2,…,10共十个数字中任取一个,然后放回,先后取出5个数字,则所得5个数字全不相同的事件的概率等于___________。 三、(10分)已知,求证 四、(10分)5个零件中有一个次品,从中一个个取出进行检查,检查后不放回。直到查 到次品时为止,用x表示检查次数,求的分布函数: 五、(11分)设某地区成年居民中肥胖者占10% ,不胖不瘦者占82% ,瘦者占8% ,又知肥胖者患高血压的概率为20%,不胖不瘦者患高血压病的概率为10% ,瘦者患高血压病的概率为

5%, 试求: ( 1 ) 该地区居民患高血压病的概率; ( 2 ) 若知某人患高血压, 则他属于肥胖者的概率有多大? 六、(10分)从两家公司购得同一种元件,两公司元件的失效时间分别是随机变量和,其概率密度分别是: 如果与相互独立,写出的联合概率密度,并求下列事件的概率: ( 1 ) 到时刻两家的元件都失效(记为A), ( 2 ) 到时刻两家的元件都未失效(记为B), ( 3 ) 在时刻至少有一家元件还在工作(记为D)。 七、(7分)证明:事件在一次试验中发生次数x的方差一定不超过。 八、(10分)设和是相互独立的随机变量,其概率密度分别为 又知随机变量 , 试求w的分布律及其分布函数。 九、(11分)某厂生产的某种产品,由以往经验知其强力标准差为 7.5 kg且强力服从正态分布,改用新原料后,从新产品中抽取25 件作强力试验,算 得,问新产品的强力标准差是否有显著变化?( 分别 取和0.01,已知, ) 十、(11分)在考查硝酸钠的可溶性程度时,对一系列不同的温度观察它在100ml 的水中溶解的硝酸钠的重量,得观察结果如下:

(完整word版)概率论与数理统计期末试卷及答案

一、选 择 题 (本大题分5小题, 每小题4分, 共20分) (1)设A 、B 互不相容,且P(A)>0,P(B)>0,则必有( ) (A)0)(>A B P (B))()(A P B A P = (C)0)(=B A P (D))()()(B P A P AB P = (2)将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( ) 3311() () () ()32 8 168 A B C D (3)),4,(~2 μN X ),5,(~2 μN Y }5{},4{21+≥=-≤=μμY P p X P p ,则( ) (A)对任意实数21,p p =μ (B )对任意实数21,p p <μ (C)只对μ的个别值,才有21p p = (D )对任意实数μ,都有21p p > (4)设随机变量X 的密度函数为)(x f ,且),()(x f x f =-)(x F 是X 的分布函数,则对任意 实数a 成立的是( ) (A )? - =-a dx x f a F 0 )(1)( (B )?-= -a dx x f a F 0 )(21)( (C ))()(a F a F =- (D )1)(2)(-=-a F a F (5)已知1250,,,X X X L 为来自总体()2,4X N :的样本,记50 11,50i i X X ==∑ 则 50 21 1()4i i X X =-∑服从分布为( ) (A )4(2, )50N (B) 2 (,4)50 N (C )()250χ (D) ()249χ 二、填 空 题 (本大题5小题, 每小题4分, 共20分) (1) 4.0)(=A P ,3.0)(=B P ,4.0)(=?B A P ,则___________)(=B A P (2) 设随机变量X 有密度? ??<<=其它01 0,4)(3x x x f , 则使)()(a X P a X P <=> 的常数a = (3) 设随机变量),2(~2 σN X ,若3.0}40{=<

概率论与数理统计课后习题答案

习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出 现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A = ‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量, A =‘通过汽车不足5台’, B =‘通过的汽车不 少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =L , 135{,,}A e e e =。 (2) {(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 (3) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (4) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5) {0,1,2,},{0,1,2,3,4},{3,4,} S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用 ,,A B C 表示下列事件: (1)仅A 发生; (2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。 解 (1)ABC (2)AB AC BC U U 或 ABC ABC ABC ABC U U U ; (3)A B C U U 或 ABC ABC ABC ABC ABC ABC ABC U U U U U U ; (4)ABC ABC ABC U U ; (5)AB AC BC U U 或 ABC ABC ABC ABC U U U ; 3.一个工人生产了三件产品,以(1,2,3)i A i =表示第i 件产品是正品,试用i A 表示下列事件:(1)没有一件产品是次品;(2)至少有一件产品是次品;(3)恰有一件产品是次品;(4)至少有两件产品不是次品。 解 (1)123A A A ;(2)123A A A U U ;(3) 123123123A A A A A A A A A U U ;(4)121323A A A A A A U U 。 4.在电话号码中任取一个电话号码,求后面四个数字全不相同的概率。 解 设A =‘任取一电话号码后四个数字全不相同’,则 5.一批晶体管共40只,其中3只是坏的,今从中任取5只,求 (1)5只全是好的的概率; (2)5只中有两只坏的的概率。 解 (1)设A =‘5只全是好的’,则 537540 ()0.662C P A C =B ;

概率论与数理统计试题库及答案(考试必做)

<概率论>试题A 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A U = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,U 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和 0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则A=______________ 7. 已知随机变量X 的密度为()f x =? ? ?<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________ 8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率

为8081 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<= 14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。 15.已知)4.0,2(~2-N X ,则2(3)E X += 16.设)2,1(~),6.0,10(~N Y N X ,且X 与Y 相互独立,则(3)D X Y -= 17.设X 的概率密度为2 ()x f x -=,则()D X = 18.设随机变量X 1,X 2,X 3相互独立,其中X 1在[0,6]上服从均匀分 布,X 2服从正态分布N (0,22),X 3服从参数为λ=3的泊松分布,记Y=X 1-2X 2+3X 3,则D (Y )= 19.设()()25,36,0.4xy D X D Y ρ===,则()D X Y += 20.设12,,,,n X X X ??????是独立同分布的随机变量序列,且均值为μ,方差为2σ,那么当n 充分大时,近似有X ~ 或 X ~ 。特别是,当同为正态分布时,对于任意的n ,都精确有 X ~ 或~ . 21.设12,,,,n X X X ??????是独立同分布的随机变量序列,且i EX μ=,

概率论与数理统计习题集及答案

概率论与数理统计习题 集及答案 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

《概率论与数理统计》作业集及答 案 第1章概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H﹑反面T 出现的情形. 样本空间是: S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是: S= ; 2.(1) 丢一颗骰子. A:出现奇数点,则A= ;B:数点大于2,则 B= . (2) 一枚硬币连丢2次, A:第一次出现正面,则A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则 C= . §1 .2 随机事件的运算 1. 设A、B、C为三事件,用A、B、C的运算关系表示下列各事件: (1)A、B、C都不发生表示为: .(2)A与B都发生,而C不发生表示为: . (3)A与B都不发生,而C发生表示为: .(4)A、B、C中最多二个发生表示为: . (5)A、B、C中至少二个发生表示为: .(6)A、B、C中不多于一个发生表示为: . 2. 设}4 =x B = x ≤ ≤ x < S:则 x A x 2: 1: 3 }, { { }, = {≤< 0: 5 ≤

(1)=?B A ,(2)=AB ,(3) =B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知, 3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则 =?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随 机地抽一个签,说明两人抽“中‘的概率相同。

概率论与数理统计期末考试卷答案

《概率论与数理统计》 试卷A (考试时间:90分钟; 考试形式:闭卷) (注意:请将答案填写在答题专用纸上,并注明题号。答案填写在试卷和草稿纸上无效) 一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则A B = U () A 、A B B 、A B C 、A B D 、A B U 2、设A ,B ,C 表示三个事件,则A B C 表示( ) A 、A , B , C 中有一个发生 B 、A ,B ,C 中恰有两个发生 C 、A ,B ,C 中不多于一个发生 D 、A ,B ,C 都不发生 3、A 、B 为两事件,若()0.8P A B =U ,()0.2P A =,()0.4P B =, 则( )成立 A 、()0.32P A B = B 、()0.2P A B = C 、()0.4P B A -= D 、()0.48P B A = 4、设A ,B 为任二事件,则( ) A 、()()()P A B P A P B -=- B 、()()()P A B P A P B =+U C 、()()()P AB P A P B = D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是() A 、A 与 B 独立 B 、A 与B 独立 C 、()()()P AB P A P B = D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为 其分布函数为()F x ,则(3)F =() A 、0 B 、0.3 C 、0.8 D 、1 7、设离散型随机变量X 的密度函数为4,[0,1] ()0, cx x f x ?∈=??其它 ,则常数c = () A 、 15 B 、1 4 C 、4 D 、5

概率论与数理统计复习题--带答案

概率论与数理统计复习题--带答案

;第一章 一、填空题 1.若事件A?B且P(A)=0.5, P(B) =0.2 , 则P(A -B)=(0.3 )。 2.甲、乙各自同时向一敌机炮击,已知甲击中敌 机的概率为0.7,乙击中敌机的概率为0.8.求 敌机被击中的概率为(0.94 )。 3.设A、B、C为三个事件,则事件A,B,C中 不少于二个发生可表示为(AB AC BC ++)。 4.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率 为(0.496 )。 5.某人进行射击,每次命中的概率为0.6 独立 射击4次,则击中二次的概率为 ( 0.3456 )。 6.设A、B、C为三个事件,则事件A,B与C都 不发生可表示为(ABC)。 7.设A、B、C为三个事件,则事件A,B,C中 不多于一个发生可表示为(AB AC BC I I); 8.若事件A与事件B相互独立,且P(A)=0.5, P(B) =0.2 , 则P(A|B)=(0.5 );

9.甲、乙各自同时向一敌机炮击,已知甲击中敌机 的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(0.8 ); 10.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A-)=(0.5 ) 11.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为(0.864 )。 12.若事件A?B且P(A)=0.5, P(B) =0.2 , 则 P(B A)=(0.3 ); 13.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A)=(0.5 ) 14.A、B为两互斥事件,则A B= U(S )15.A、B、C表示三个事件,则A、B、C恰 有一个发生可表示为 (ABC ABC ABC ++) 16.若()0.4 P AB A B= U P AB=0.1则(|) P B=,() P A=,()0.2 ( 0.2 ) 17.A、B为两互斥事件,则AB=(S ) 18.保险箱的号码锁定若由四位数字组成,则一次 )。 就能打开保险箱的概率为(1 10000

哈工大概率论与数理统计课后习题答案 一

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i = , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 (3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = (4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B === 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件: (1)仅A 发生; (2),,A B C 中至少有两个发生;

概率论与数理统计课后习题答案

第一章 随机事件及概率 第一节 样本空间与随机事件 1.试写出下列的样本空间。 {}{} ()()()()()()()()(){}(){} ()(){} 2 2(1)0100,(2)1,(3)(5,0)5,15,25,35,40,51,52,53,54,5(4),02,,5,212,,0,1,2,3,4,5,6s x x x R s x x x z s s x y x y x y R s x y x y x y =≤≤∈=≥∈== ≤+≤∈=≤+≤= 2.化简下列各式: ()()1() 2A Ω整个样本空间 3.设A,B,C 为三个事件,用A,B,C 的运算关系表示下列事件: ()()()()()()()()1234567ABC A B C ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC 第二节 随机事件的概率 1. ()()()()1121341c a b c b c a c ---+--+ 2. P(A ∪B ∪C) =P(A)+P(B)+P(C)-P(AB)-P(BC)-P(CA)+P(ABC) =1/4+1/4+/4-0-0-1/8+0 =5/8

{}{}()()()()()() ()()( )() ()293101831012=053 10310 1 15331 11(+-) 10101514 115 A B C P A C P B C P AB C p A p AB P A B P A B P A P A B P A B P AB === = == ===-=-===-= 设含含 4. ()()()()()1311011372102321013 10 27 15 1 15 C P A C C C P B C C P C C == == == 设这个球是黑球为事件A 设刚好一个白球一个黑球为事件B ,两个球全是黑球为事件C. 5. ()2 21232 1523 35C C P A C ==设这两件商品来自同一场地为事件A 。 6. ()()()()500 412 411013641=0.746 3652=10.427 12 p A A p A ?? =- ???-=设至少有一个人的生日是月 日为事件A 。设至少有两个人的生日是同一个月的为事件A 。

相关文档