文档库 最新最全的文档下载
当前位置:文档库 › 紫外线传感器技术参数

紫外线传感器技术参数

紫外线传感器技术参数
紫外线传感器技术参数

传感器的主要参数特性

传感器的主要参数特性 传感器的种类繁多,测量参数、用途各异.共性能参数也各不相同。一般产品给出的性能参数主要是静态特性利动态特性。所谓静态特性,是指被测量不随时间变化或变化缓慢情况下,传感器输出值与输入值之间的犬系.一般用数学表达式、特性曲线或表格来表示。动态特性足反映传感器随时间变化的响应特性。红外碳硫仪动恋特性好的传感器,其输出量随时间变化的曲线与被测量随时间变化的曲线相近。一般产品只给出响应时间。 传感器的主要特性参数有: (1)测量范围(量程) 量程是指在正常工种:条件下传感器能够测星的被测量的总范同,通常为上限值与F 限位之差。如某温度传感器的测员范围为零下50度到+300度之间。则该传感器的量程为350摄氏度。 (2)灵敏度 传感器的灵敏度是指佑感器在稳态时输出量的变化量与输入量的变化量的比值。通常/d久表示。对于线性传感器,传感器的校准且线的斜率就是只敏度,是一个常量。而非线性传感器的灵敏度则随输入星的不同而变化,在实际应用巾.非线性传感器的灵敏度都是指输入量在一定范围内的近似值。传感器的足敏度越高.俏号处理就越简单。 (3)线性度(非线性误差) 在稳态条件下,传感器的实际输入、输出持件曲线勺理想直线之日的不吻合程度,称为线性度或非线性误差,通常用实际特性曲线与邵想直线之司的最大偏关凸h m2与满量程输出仪2M之比的百分数来表示。该系统的线性度X为 (4)不重复性 z;重复性是指在相同条件下。传感器的输人员技同——方向作全量程多次重复测量,输出曲线的不一致程度。通常用红外碳硫仪3次测量输11j的线之间的最大偏差丛m x与满量程输出值ym之比的百分数表示,1、2、3分别表示3次所得到的输出曲线.它是传感器总误差中的——项。 (5)滞后(迟滞误差) 迟滞现象是传感器正向特性曲线(输入量增大)和反向特性曲线(输入量减小)的不重合程度,通常用yH表示。

光电传感器在生活中的应用-

光电传感器在生活中的应用 ——CCD图像传感器 摘要: 在科学技术高速发展的现代社会中,人类已经入瞬息万变的信息时代,人们在日常生活,生产过程中,主要依靠检测技术对信息经获取、筛选和传输,来实现制动控制,自动调节,目前我国已将检测技术列入优先发展的科学技术之一。由于微电子技术,光电半导体技术,光导纤维技术以及光栅技术的发展,使得光电传感器的应用与日俱增。这种传感器具有结构简单、非接触、高可靠性、高精度、可测参数多、反应快以及结构简单,形式灵活多样等优点,在自动检测技术中得到了广泛应用,它一种是以光电效应为理论基础,由光电材料构成的器件。 光电传感器由于反应速度快,能实现非接触测量,而且精度高、分辨力高、可靠性好,加之半导体光敏器件具有体积小、重量轻、功耗低、便于集成等优点,因而广泛应用于军事、宇航、通信、检测与工业自动化控制等多种领域中。当前,世界上光电传感领域的发展可分为两大方向:原理性研究与应用开发。随着光电技术的日趋成熟,对光电传感器实用化的开发成为整个领域发展的热点和关键。 关键字:光电传感器;CCD图像传感器 正文 一、CCD的工作方式 ?CCD和传统底片相比,CCD 更接近于人眼对视觉的工作方式。只不过,人眼 的视网膜是由负责光强度感应的杆细胞和色彩感应的锥细胞,分工合作组成视觉感应。 CCD经过长达35年的发展,大致的形状和运作方式都已经定型。 CCD 的组成主要是由一个类似马赛克的网格、聚光镜片以及垫于最底下的电子线路矩阵所组成。 ?CCD(Charge Coupled Devices,CCD)由大量独立光敏元件组成,每个光敏元 件也叫—个像素。这些光敏元件通常是按矩阵排列的,光线透过镜头照射到光电二极管上,并被转换成电荷。每个元件上的电荷量取决于它所受到的光照强度,图像光信号转换为电信号。当CCD工作时,CCD将各个像素的信息经过模傲转换器处理后变成数字信号,数字信号以一一定格式压缩后存入缓存内,然后图像数据根据不间的需要以数字信号和视频信号的方式输出。

紫外线传感器GUVA-S12SD的应用资料

Features Gallium Nitride Based Material Schottky-type Photodiode Photovoltaic Mode Operation Good Visible Blindness High Responsivity & Low Dark Current Applications UV Index Monitoring UV-A Lamp Monitoring Absolute Maximum Ratings Symbol Unit T st ℃T op ℃V r, max.V Reverse Voltage 5Storage Temperature Operating Temperature 90-30 85-40UV-A Sensor GUVA-S12SD Parameter Min.Max.Outline Diagrams and Dimensions Remark Cathode Anode r, max.I f,max.?P opt W/?T sol ℃ Characteristics (at 25℃) Symbol Min.Max.Unit I d 1?101 125 ??I tc %/℃R A/W λ 240 370?? Responsivity Curve Photocurrent along UV Power Caution ESD can damage the device hence please avoid ESD 260 within 10 sec. UVA Lamp, 1?/? Test Conditions Typ.Responsivity Spectral Detection Range Active area λ = 350 ?, Vr = 0 V 10% of R 0.14 0.076 Photo Current Temperature Coefficient UVA Lamp 1 UVI 210.08I ph 113 Dark Current Vr = 0.1 V Optical Source Power Range 0.1μUVA Lamp 100m Soldering Temperature Parameter ※Notice: apply to us in the case that Optical Source Power is over 100?/?g Forward Current 1 ESD can damage the device hence please avoid ESD.

广州本田发动机传感器技术参数说明

技术参数说明 发动机转速: 发动机转速 (RPM) 发动机速度从CKP技术参数说明 车速: 车速 (km/h)(MPH)单位换算类型:车速 ECU将来自车速传感器的脉冲信号转换为显示的车速(km/h)。当驱动轮速度达到2km/h或更高,ECU通过车轮速度信息控制各种功能。举例) VTEC系统的打开/关闭控制在高速行驶时的燃油切断控制在行驶期间的空燃比修正控制。 - 车速传感器也用于速度表。脉冲信号由基于车速的传感器输出,并根据特定时间内的脉冲数计算出车速(km/h)。 - 车速传感器系统通过集成在转子中的磁铁和安装在磁铁外的霍尔元件检测差速齿轮的旋转。当电压施加到霍尔元件时,磁通量发生变化,霍尔电压根据磁通量的变化而输出。由于霍尔电压在转子的一个旋转期间有四个周期的变化,因此波形产生电路输出四脉冲信号。 - 当车速提高时,在特定时间内的车速信号脉冲数也随之增加,电压的输出大致是在10km/h时7个脉冲/秒、在100km/h时为707个脉冲/秒。 - 来自车速传感器的信号电压输出是一个脉冲信号,电压的输出在0V与5V之间交替变化。当车速传感器信号为关闭,ECU计算机的参考电路输出的电压(5V)流向车速传感器并变成0V,当车速传感器信号为打开,参考电压在相同的电位下变成5V。 - 计算机是基于参考电压的打开/关闭切换来检测车速信号,而参考电压的切换又是通过车速传感器的打开/关闭切换得到的。- 车辆传感器根据变速箱处的主减速器旋转速度检测车速变化。 - 车速传感器有一个磁性感应元件,并靠它检测磁通量变化。此变化被放大并被转换成高或低电压信号。磁通量的变化取决于安装在主减速器旋转区域的磁性转子的旋转速度。

无线传感器网络节点介绍

基于系统集成技术的节点类型和特点 在节点的功能设计和实现方面,目前常用的节点均为采用分立元器件的系统集成技术。已出现的多种节点的设计和平台套件,在体系结构上有相似性,主要区别在于采用了不同的微处理器,如AVR系列和MSP430系列等;或者采用了不同的射频芯片或通信协议,比如采用自定义协议、802.11协议、ZigBee[1]协议、蓝牙协议以及UWB通信方式等。典型的节点包括Berkeley Motes [2,3], Sensoria WINS[4], MIT μAMPs [5], Intel iMote [6], Intel XScale nodes [7], CSRIO研究室的CSRIO节点[8]、Tmote [9]、ShockFish公司的TinyNode[10]、耶鲁大学的XYZ节点[11] 、smart-its BTNodes[12]等。国内也出现诸多研究开发平台套件,包括中科院计算所的EASI系列[13-14],中科院软件所、清华大学、中科大、哈工大、大连海事大学等单位也都已经开发出了节点平台支持网络研究和应用开发。 这些由不同公司以及研究机构研制的无线节点在硬件结构上基本相同,包括处理器单元、存储器单元、射频单元,扩展接口单元、传感器以及电源模块。其中,核心部分为处理器模块以及射频通信模块。处理器决定了节点的数据处理能力和运行速度等,射频通信模块决定了节点的工作频率和无线传输距离,它们的选型能在很大程度上影响节点的功能、整体能耗和工作寿命。 目前问世的传感节点(负责通过传感器采集数据的节点)大多使用如下几种处理器:ATMEL公司AVR系列的ATMega128L处理器,TI公司生产的MSP430系列处理器,而汇聚节点(负责会聚数据的节点)则采用了功能强大的ARM处理器、8051内核处理器、ML67Q500x系列或PXA270处理器。这些处理器的性能综合比较见表1。 表1、无线传感器网络节点中采用的处理器性能比较

传感器的技术参数说明

关于传感器的技术参数 1.额定载荷:传感器的额定载荷是指在设计此传感器时,在规定技术指标范围内能够测量的最大负荷。但实际使用时,一般只用额定量程的2/3~1/3。 2.灵敏度/额定输出:加额定载荷时和无载荷时,传感器输出信号的差值。由于传感器的输出信号与所加的激励电压有关,所以灵敏度的以单位mV/V来表示。 3.灵敏度允差:传感器实际稳定输出对应的标称灵敏度之差对该标称灵敏度的百分比。例如,某称重传感器的实际灵敏度为2.002mV/V,与之相适应的标准灵敏度则为2 mV/V,则其灵敏度允差为:((2.002-2.000)/2.000)*100%=0.1%。 4.综合误差/精度等级:根据OIML R60,±%F.S额定输出,国内一般为C3级,分度数3000。 (5)蠕变:在负荷不变(一般为额定载荷),其它测试条件也保持不变的情况下,称重传感器输出随时间的变化量对额定输出的百分比。 (6)非线性:由空载荷的输出值和额定载荷时的输出值所决定的直线和增加负荷时实测曲线之间的最大偏差对额定输出的百比分。 线性度δ=ΔYmax/Yfs*100﹪其中,ΔYmax表示输出值的最大量,Yfs表示满量程输出,注意,线性度有正负之分,因此,前面带正负号。 7)重复性误差:在相同的环境条件下,对传感器反复加载荷到额定载荷并卸载,加载荷过程中同一负荷点上输出值的最大差值对额定输出的百分比。这项特性很重要,更能反映传感器的品质。 (8)滞后允差:从无载荷逐渐加载到额定载荷然后再逐渐卸载。在同一载荷点上加载和卸载输出量的最大差值对额定输出值的百分比。 (9)零点输出/零点平衡:在推荐激励电压下,未加载荷时传感器的输出值对额定输出的百分比。 (10)零点温漂:环境温度的变化引起的零点平衡变化。一般以温度每变化10℃时,引起的零点平衡变化量对额定输出的百分比来表示。 (11)灵敏度温漂:环境温度的变化引起的灵敏度变化。一般以温度每变化10℃时,引起的灵敏度变化量对额定输出的百分比来表示。 (12)允许使用温度:规定了此传感器能适用的场合。例常温传感器一般标注为:-20℃~+70℃。高温传感器标注为:-40℃~250℃。 (13)温度补偿范围:在此温度范围内,传感器的额定输出和零点平衡均经过严密补偿,不会超出规定的范围。例:常温传感器一般标注为-10℃~+55℃。 (14)安全过载:传感器允许施加的最大负荷。允许在一定范围内超负荷工作。一般为120%~150%。

无线传感器网络节点硬件

1 系统结构概述 本文设计的WSN硬件平台,由若干传感器节点,具有无线接收功能的汇聚节点,以及一台PC机组成。 根据无线传感器网络的应用需求以及功能要求,节点的设计主要包括如下几个基本部分:传感器单元、处理器单元、A/D单元、射频单元、供电单元以及扩展接口单元。节点的硬件体系结构框架如图1-1 所示。 图1-1 传感器单元负责对所关心的物理量进行测量并采集数据,提供给处理器单元进行处理;处理器单元负责数据处理及控制整个节点的正常工作;射频天线单元负责与其他节点进行无线通信,交换控制信息和相关数据;供电单元负责为节点提供运行所需的能量;扩展接口可以实现节点平台的功能拓展,以适应不同的应用需求。 2 节点核心模块设计: 2-1电源模块设计: 电源是设计中的关键部分,电源稳定工作是整个节点正常工作的保证,设计合理的电源电路至关重要。节点包含模拟器件和数字器件,模拟器件的抗干扰能力较差,且数字器件常常为模拟器件的噪声源,故为了 图2-1-1 提高电路的抗干扰能力,模拟器件接模拟地并采用数字地与模拟地单点共地。电源可选用电池或干电池,电源芯片可选用XC6209、XC6221系列的LDO电源芯片,分别提供3.3V和1.8V的数字与模拟电压,电路如图2-1-1所示。 2-2传感器 模块设计: 温度传感器设 计:本设计采用 LM75DM-33R2串行 可编程温度传感 器,这种传感器在 环境温度超出用户 变成设置时通知主 控制器。滞后也是 可以编程解决。它 采用2线总线方式,允许读入当前温度,并可配置器件。它是数字型温度传感器,直接从

寄存器读出温度参数,并可实现编程设置INT/CMPTR输出极性。 图2-2-1是其功能图,因为设计中只是简单的监测环境的温度,故只需一片 LM75,所以地址线A0、A1、A2置地,INT/CMPTR悬空,设计的接口电路如图2-2-2所示。 图2-2-1 图2-2-2 因为cc2431本身带有A/D模块,也可采用温度传感器AD590测量温度,其接口电路如图2-2-3。

光电传感器及应用教案.

学习情境(项目)5授课说明 学习领域名称:家电传感器应用授课教师:课程总学时: 72 项目5:节能灯与光电传感器学时数: 16 累计学时: 48 授课时间安排与执行记录 授课班级 智能家电授课地点 授课日期资讯7 10月6日1-4 节 家电产品控制 实训室 计划0.5 10月9日1-4 节 家电产品控制 实训室 决策0.5 家电产品控制 实训室 实施 6 家电产品控制 实训室 检查 1 家电产品控制 实训室 评估 1 家电产品控制 实训室 参考资料PPT、网络资源、节能灯控制电路 教学方法宏观:引导文法微观:见下 教学目标 知识目标: 1.光电式传感器的分类及工作原理 2.光电式传感器特性 3.红外热释电传感器的分类及工作原理 4.红外热释电传感器特性 5.菲尼尔透镜工作原理及作用技能目标: 6.测量电路构成; 7.光敏电阻在节能灯智能控制中的作用 8.红外热释电传感器实际应用中的安装 9.光敏与红外热释电在节能灯控制策略 中的实施 态度目标: 10.培养学生的沟通能力及团队协作精神 11.养成良好的职业道德 12.提高质量、成本、安全、环保意识 重点: 13.红外热释电传感器特性 1.测量电路 2.光敏电阻的选用与电路设计 3.光敏与红外热释电在节能灯控制策略中的实施 难点: 1.各类光电式传感器的工作原理 2.光电式传感器的特性 3.菲尼尔透镜工作原理及作用 资讯:7学时(注:1学时=45 min,下同) 教学提纲主要内容教学资源及工具教学方法参考时间备注 1.目标描述下发设计任务书,描述项目学 习目标 实物展示、PPT 设计任务书 讲授法 演示法 15 min 下发引导文 2.布置任务1)交代项目任务 2)发放相关学习资料 PPT 讲授法 演示法 15 min

紫外线强度测定仪

紫外线强度测定仪 紫外线辐射照度计是测量波长范围为254nm紫外线辐射强度的仪表。使用专用的盲管紫外线传感器技术,不受阳光灯光等其它射线干扰、测量精度高、性能稳定。具有自动电池欠压指示及数据保持功能。整机设计紧凑,使用非常方便。适用于医院、卫生防疫部门、化工、电子、食品加工厂、娱乐场所等用于消毒的紫外线灯辐照强度的监测。与目前常用的紫外线辐射照度计相比,该仪表具有巨大的技术优势,是目前常用紫外线辐射照度计的升级换代产品。具体表现在: 盲管技术紫外线辐射照度计不受阳光灯光等其它射线干扰、测量精度高,专测254nm紫外辐射强度。目前大家常用的辐照仪开机后都不指示为零,而且指示值每次开机都变化不定,因为它受到了可见光和其它波长杂紫外光的干扰,不能真正反映灯管的实际辐照强度,为紫外灯消毒效果留下隐患。 平衡电路紫外线辐射照度计性能稳定,数据不漂移。目前大家常用的紫外线辐射照度计数据的重现性通常都不好,特别是随着使用时间增加,同样强度的光源,每年的读数都不同,这样给经销商带来大量的麻烦,同时用户业觉得疑惑和苦恼。 一、紫外线强度测定仪概述 数字式紫外辐射照度计是测量波长为253.7nm紫外线辐射强度的仪表。使用专用的盲管紫外线传感器技术,不受阳光、灯光等其它射线干扰、测量精度高、性能稳定。具有自动电池欠压指示及数据保持功能。整机设讲紧凑,使用非常方便。适用于医院、卫生防疫部门、化工、电子、食品加工厂、娱乐声所等紫外线灯辐照强度的监测。 本使用入说明书包括有关的安全信息和警告提示,请仔细阅读有关内容并严格遵守所有的警告和注意事项。

二、紫外线强度测定仪开箱检查 打开包装收出仪表,仔细检查下列附件是否缺少或损坏: TN-UV-254型数字式紫外辐射照度计一台 拉杆定位器一支 使用説明书一份 护目镜一付 校正仪一台 三、紫外线强度测定仪技术指示 显示方式:位液晶显示器显示,最大读数为1999 测量原理:双积分式A/D转换 采样速度:约3次/秒 存储环境:室温、干燥的环境中存放 工作紫外线强度测定仪环境:温度10~30℃温度30℃ ≤85% RH 电池欠压指示:LCD下方显示“+ -” 超量程指示:最高位显示“OL”或“I” 数据保持功能:LCD上方显示“H” 测量波长:254±10nm 测量角度:以垂直于传感器感应面的垂线为轴心,围绕轴心±10. 量程:0~2000μw/cm2, 0~20000μw/cm2、LCD下方显示“×10”分辨率:1μw/cm2

Honeywell_传感器_技术参数 2

目录: 水系统传感器 (2) 水流开关WFS-1001-H (2) 液位开关MAC-3-5M (2) 水管式压差传感器P7620C (3) 水管式压力传感器P7620A (4) 流量变送器8550+2517 (5) VF20T浸入式温度传感器 (5) 风系统传感器 (7) DPS系列气流压差开关 (7) DPTM系列压差变送器 (7) 风管式温度传感器LF20 (8) 风管式温度传感器LF20-C (9) 室外温度传感器T7416A1022 (9) 室内温度传感器T7412A1000 (9) 室内温度传感器CTR21 (10) 风管式温湿度传感器H7050B1018 (10) 风管式温湿度变送器H7050B1117 (11) 室内温湿度变送器H7030A1000 (12) 室内温湿度传感变送器H7012B1023 (12) 室内温湿度传感器CTR21-H (13) 风管式温湿度传感器H7015B1020 (14) 室外温湿度传感变送器H7508A1042 (14) CDS2000 系列二氧化碳传感器 (15) C7110C1001(替换已停产的AQS51) 系列二氧化碳传感器 (15) AQS71-KAM(替换已停产的AQS51-KAM) 系列二氧化碳传感器 (16) GD250W3E 系列一氧化碳传感器 (17) C7110A1005系列房间空气质量传感器 (17) L4064K1006B 高温断路开关,手动复位 (18) T6950A1000 低温短路开关,手动复位 (18) 数字化挂墙模块T7560 温度传感器 (19) 数字化挂墙模块T7460 温度传感器 (19)

无线传感器网络的特点

无线传感器网络的特点 大规模网络 为了获取精确信息,在监测区域通常部署大量传感器节点,传感器节点数量可能达到成千上万,甚至更多。传感器网络的大规模性包括两方面的含义:一方面是传感器节点分布在很大的地理区域内,如在原始大森林采用传感器网络进行森林防火和环境监测,需要部署大量的传感器节点;另一方面,传感器节点部署很密集,在一个面积不是很大的空间内,密集部署了大量的传感器节点。 传感器网络的大规模性具有如下优点:通过不同空间视角获得的信息具有更大的信噪比;通过分布式处理大量的采集信息能够提高监测的精确度,降低对单个节点传感器的精度要求;大量冗余节点的存在,使得系统具有很强的容错性能;大量节点能够增大覆盖的监测区域,减少洞穴或者盲区。 自组织网络在 传感器网络应用中,通常情况下传感器节点被放置在没有基础结构的地方。传感器节点的位置不能预先精确设定,节点之间的相互邻居关系预先也不知道,如通过飞机播撒大量传感器节点到面积广阔的原始森林中,或随意放置到人不可到达或危险的区域。这样就要求传感器节点具有自组织的能力,能够自动进行配置和管理,通过拓扑控制机制和网络协议自动形成转发监测数据的多跳无线网络系统。在传

感器网络使用过程中,部分传感器节点由于能量耗尽或环境因素造成失效,也有一些节点为了弥补失效节点、增加监测精度而补充到网络中,这样在传感器网络中的节点个数就动态地增加或减少,从而使网络的拓扑结构随之动态地变化。传感器网络的自组织性要能够适应这种网络拓扑结构的动态变化。动态性网络传感器网络的拓扑结构可能因为下列因素而改变:①环境因素或电能耗尽造成的传感器节点出现故障或失效;②环境条件变化可能造成无线通信链路带宽变化,甚至时断时通;③传感器网络的传感器、感知对象和观察者这三要素都可能具有移动性;④新节点的加入。这就要求传感器网络系统要能够适应这种变化,具有动态的系统可重构性。 可靠的网络 传感器网络特别适合部署在恶劣环境或人类不宜到达的区域,传感器节点可能工作在露天环境中,遭受太阳的暴晒或风吹雨淋,甚至遭到无关人员或动物的破坏。传感器节点往往采用随机部署,如通过飞机撒播或发射炮弹到指定区域进行部署。这些都要求传感器节点非常坚固,不易损坏,适应各种恶劣环境条件。由于监测区域环境的限制以及传感器节点数目巨大,不可能人工“照顾每个传感器节点,网络的维护十分困难甚至不可维护。传感器网络的通信保密性和安全性也十分重要,要防止监测数据被盗取和获取伪造的监测信息。因此,传感器网络的软硬件必须具有鲁棒性和容错性。 应用相关的网络

C7012紫外线传感器资料

C7012-紫外型火焰探测器 此款火焰探测器属于整流形火焰探测器中的紫外线型的小观测管式。产品描述·C7012A、C、E、F固态紫外线型探测器,用于燃油、燃气、燃煤及其它燃料燃烧器的火焰监测上。·C7012A、E的封装满足NEMA4标准。·C7012C、F为防爆型,封装满足NEMA7、9标准。 产品描述 常用型号见下表 型号自检电压连接口径防爆环境温度 C7012A1145-120Vac50/60Hz3/4'--4~79 C7012A1152-120Vac50/60Hz1'--4~79 C7012A1160-120Vac50/60Hz1'--4~79 C7012A1186-208Vac50/60Hz3/4'--4~79 C7012A1194-240Vac50/60Hz3/4'--4~79 C7012C1042-120Vac50/60Hz1'防爆-4~79 C7012E1104自检120Vac50/60Hz3/4'--29~79 C7012E1112自检120Vac50/60Hz1'--29~79 C7012E1120自检120Vac50/60Hz1'--40~79 C7012E1146自检208Vac50/60Hz3/4'--29~79 C7012E1153自检240Vac50/60Hz3/4'--29~79 C7012E1161自检120Vac50/60Hz1'--29~79 C7012E1278自检120Vac50/60Hz1'--29~79 C7061A/F-紫外,自检型火焰检测器 此款火焰探测器属于整流形火焰探测器中的紫外线型的小观测管式。 产品描述 C7061A/F-紫外,自检型火焰检测器 ·C7061A/F固态紫外线型探测器,用于燃油、燃气、燃煤及其它燃料燃烧器的火焰监测上。·C7061A的封装满足NEMA4标准。 ·C7061F为防爆型,封装满足NEMA7、9标准。 常用型号有: C7061A1012使用环境温度-40~80℃,引线长1.8米 C7061A1038同C7061A1012,带插头 C7061F2001使用环境温度-40~70℃,防爆,自检电压:120Vac

带你认识基本的传感器特性参数

带你认识基本的传感器特性参数 复性、精度、分辨率、零点漂移、带宽,本文将对这些参数进行一一介绍。 量程 每个传感器都有自身的测量范围,被测量处在这个范围内时,传感器的输出信号才是有一定的准确性的。 传感器的量程X FS、满量程输出值Y FS、测量上限X max、测量下限X min的关系见下图。 灵敏度 传感器的灵敏度是指其输出变化量ΔY与输入变化量ΔX的比值,可以用k表示。对于一个线性度非常高的传感器来说,也可认为等于其满量程输出值Y FS与量程X FS的比值。灵敏度高通常意味着传感器的信噪比高,这将会方便信号的传递、调理及计算。 k=ΔY ΔX

线性度 传感器的线性度又称非线性误差,是指传感器的输出与输入之间的线性程度。理想的传感器输入-输出关系应该是程线性的,这样使用起来才最为方便。但实际中的传感器都不具备这种特性,只是不同程度的接近这种线性关系。 实际中有些传感器的输入-输出关系非常接近线性,在其量程范围内可以直接用一条直线来拟合其输入-输出关系。有些传感器则有很大的偏离,但通过进行非线性补偿、差动使用等方式,也可以在工作点附近一定的范围内用直线来拟合其输入-输出关系。 选取拟合直线的方法很多,上图表示的是用最小二乘法求得的拟合直线,这是拟合精度最高的一种方法。实际特性曲线与拟合直线之间的偏差称之为传感器的非线性误差δ,其最大值与满量程输出值Y FS的比值即为线性度γL。 γL=± δ Y FS ×100% 迟滞

当输入量从小变大或从大变小时,所得到的传感器输出曲线通常是不重合的。也就是说,对于同样大小的输入信号,当传感器处于正行程或反行程时,其输出值是不一样大的,会有一个差值ΔH,这种现象称为传感器的迟滞。 产生迟滞现象的主要原因包括传感器敏感元件的材料特性、机械结构特性等,例如运动部件的摩擦、传动机构间隙、磁性敏感元件的磁滞等等。迟滞误差γH的具体数值一般由实验方法得到,用正反行程最大输出差值ΔH max的一半对其满量程输出值Y FS的比值来表示。 γH=±?H max FS ×100% 重复性 一个传感器即便是在工作条件不变的情况下,若其输入量连续多次地按同一方向(从小到大或从大到小)做满量程变化,所得到的输出曲线也是会有不同的,可以用重复性误差γR 来表示。 重复性误差是一种随机误差,常用正行程或反行程中的最大偏差ΔY max的一半对其满量程输出值Y FS的比值来表示。

无线传感器网络复习总结

复习 题型:共计38~39题,计算题较少,原理题很多 (1)选择题15’ (2)填空题10’ (3)名词解释3’x5 (4)作图题10’x1 (5)问答题20’x1(根据原理应用自主进行选择作答) 第1章 1.P3 图1.1无线网络的分类 2.无线传感器的定义P3 无线传感器网络(WSN)是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,目的是协作地采集、处理和传输网络覆盖地域内感知对象的监测信息,并报告给用户。 无线传感器网络的三个基本要素:传感器、感知对象、用户; 无线传感器网络的基本功能:协作式的感知、采集、处理和发布感知信息。

3.P4 图1.2现代信息技术与无线传感器网络之间的关系 无线传感器网络三个功能:数据采集、处理和传输; 对应的现代信息科技的三大基础技术:传感器技术、计算机技术和通信技术;对应的构成了信息系统的“感管”、“大脑”和“神经”。 4.P5P6 ★图1.3无线传感器网络的宏观架构 传感器网络网关原理是什么?

无线传感器通常包括传感器节点(sensor node),汇聚节点(sink node)和管理节点(manager node)。汇聚节点有时也称网关节点、信宿节点。 传感器节点见后2要点介绍。 Sink node:网关节点通过无线方式接收各传感器节点的数据并以互联网、移动通信网等有线的或无线的方式将数据传送给最终用户计算机。网关汇聚节点只需要具有处理器模块和射频模块、通过无线方式接收探测终端发送来的数据信息,再传输给有线网络的PC或服务器。汇聚节点通常具有较强的处理能力、存储能力和通信能力,它既可以是一个具有足够能量供给和更多内存资源与计算能力的增强型传感器节点,也可以是一个带有无线通信接口的特殊网关设备。汇聚节点连接传感器网络和外部网络。通过协议转换实现管理节点与传感器网络之间的通信,把收集到的数据信息转发到外部网络上,同时发布管理节点提交的任务。 5.传感器网络节点的组成P5 图1.4传感器网络节点的功能模块组成 传感器网络节点由哪些模块组成?---作图、简答 传感器模块负责探测目标的物理特征和现象,计算机模块负责处理数据和系统管理,存储模块负责存放程序和数据,通信模块负责网络管理信息和探测数据两种信息的发布和接受,电源模块负责节点供电,节点由嵌入式软件系统支撑,运行网络的五层协议。 6.传感器网络的协议分层P5 1.5传感器网络的协议分层 每一层的作用是什么?---作图、简单

光电传感器原理及应用

光电传感器原理及应用 院系:电气与机械工程学院 班 级: 13级电气2班 姓 名: 李 刚 学号: 131050147 PINGDINGSHANUNIVERSITY

前言 随着科技的发展,人类越来越注重信息和自动化,在日常的生产学习过程中,人们常常要进行自动筛选、自动传送,安全防护,而为了实现这些,光电传感发挥了不可磨灭的作用。光敏传感器的物理基础是光电效应,即光敏材料的电学特性因受到光的照射而发生变化。 光电传感器的原理 理论基础——光电效应 光电效应通常分为外光电效应和内光电效应两大类。外光电效应是指在光照射下,电子逸出物体表面的外发射的现象,也称光电发射效应,基于这种效应的光电器件有光电管、光电倍增管等。内光电效应是指入射的光强改变物质导电率的物理现象,称为光电导效应,大多数光电控制应用的传感器,如光敏电阻、光敏二极管、光敏三极管、硅光电池、光电耦合器件等都属于内光电效应类传感器。 1.外光电效应 光照在照在光电材料上,材料表面的电子吸收的能量,若电子吸收的能量足够大,电子会克服束缚逸出表面,从而改变光电子材料的导电性,这种现象成为外光电效应。 根据爱因斯坦的光电子效应,光子是运动着的粒子流,每种光子的能量为hv(v 为光波频率,h 为普朗克常数),由此可见不同频率的光子具有不同的能量,光波频率越高,光子能量越大。假设光子的全部能量交给光子,电子能量将会增加,增加的能量一部分用于克服正离子的束缚,另一部分转换成电子能量。根据能量守恒定律: 式中,m 为电子质量,v 为电子逸出的初速度,w 为逸出功。 由上式可知,要使光电子逸出阴极表面的必要条件是hv>w 。由于不同材料具有不同的逸出功,因此对每一种阴极材料,入射光都有一个确定的频率限,当入射光的频率低于此频率限时,不论光强多大,都不会产生光电子发射,此频率限称 为“红限”。相应的波长为 式中,c 为光速,w 为逸出功。 2.内光电效应 在光线作用下,物体的导电性能发生变化或产生光电电动势的效应称为内光电效应。内光电效应可分为以下两类: (1)光电导效应 在光线作用下,对于半导体材料吸收了入射光子能量,若光子能量大于或等于半导体材料的禁带宽度,就激发出电子—空穴对,使载流子浓度增加,半导体的导电性增加,阻值减低,这种现象称为光电导效应。光敏电阻就是基于这种效应的光电器件。 (2)光生伏特效应 在光线的作用下能够使物体产生一定方向的电动势的现象称为光生伏特效应。基于该效应的光电器件有光电池。 w hv -=2mv 21w hc K =λ

传感器技术期末考试--试题库

一、填空题(每题3分) 1、传感器静态性是指 传感器在被测量的各个值处于稳定状态时 ,输出量和输入量之间的关系称为传感器的静态特性。 2、静态特性指标其中的线性度的定义是指 。 3、静态特性指标其中的灵敏度的定义是指 。 4、静态特性指标其中的精度等级的定义式是 传感器的精度等级是允许的最大绝对误差相对于其测量范围的百分数 ,即A =ΔA/Y FS *100%。 5、最小检测量和分辨力的表达式是 。 6、我们把 叫传感器的迟滞。 7、传感器是重复性的物理含意是 。 8、传感器是零点漂移是指 。 9、传感器是温度漂移是指 。 10、 传感器对随时间变化的输入量的响应特性 叫传感器动态性。 11、动态特性中对一阶传感器主要技术指标有 时间常数 。 12、动态特性中对二阶传感器主要技术指标有 固有频率 、阻尼比。 13、动态特性中对二阶传感器主要技术指标有 固有频率、 阻尼比。 14、传感器确定拟合直线有 切线法、端基法和最小二乘法 3种方法。 15、传感器确定拟合直线切线法是将 过实验曲线上的初始点的切线作为按惯例直线的方法 。 16、传感器确定拟合直线端基法是将 把传感器校准数据的零点输出的平均值a 0和滿量程输出的平均值b 0连成直线a 0b 0作为传感器特性的拟合直线 。 17、传感器确定拟合直线最小二乘法是 用最小二乘法确定拟合直线的截距和斜率从而确定拟全直线方程的方法 。 25、传感器的传递函数的定义是 H(S)=Y(S)/X(S) 。 29、幅频特性是指 传递函数的幅值随被测频率的变化规律 。 Y K X ?= ?CN M K =max max 100%100%H H F S F S H H Y Y δδ????=±?=±?2或23100%K F S Y δδδ?-=± ????0F S 100% Y Y 零漂=max 100%F S T Y ???? max *100% L F S Y Y σ??=±

无线传感器网络知识点归纳

一、无线传感器网络的概述 1、无线传感器网络定义,无线传感器网络三要素,无线传感器网络的任务,无线传感器网 络的体系结构示意图,组成部分(P1-2) 定义:无线传感器网络(wireless sensor network, WSN)是由部署在监测区域内大量的成本很低、微型传感器节点组成,通过无线通信方式形成的一种多跳自组织的网络系统,其目的是协作地感知、采集和处理网络覆盖范围内感知对象的信息,并发送给观察者或者用户 另一种定义:无线传感器网络(WSN)是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,目的是协作地采集、处理和传输网络覆盖地域内感知对象的监测信息,并报告给用户 三要素:传感器,感知对象和观察者 任务:利用传感器节点来监测节点周围的环境,收集相关的数据,然后通过无线收发装置采用多跳路由的方式将数据发送给汇聚节点,再通过汇聚节点将数据传送到用户端,从而达到对目标区域的监测 体系结构示意图: 组成部分:传感器节点、汇聚节点、网关节点和基站 2、无线传感器网络的特点(P2-4) (1)大规模性且具有自适应性 (2)无中心和自组织 (3)网络动态性强 (4)以数据为中心的网络 (5)应用相关性 3、无线传感器网络节点的硬件组成结构(P4-6) 无线传感器节点的硬件部分一般由传感器模块、处理器模块、无线通信模块和能量供应模块4部分组成。

4、常见的无线传感器节点产品,几种Crossbow公司的Mica系列节点(Mica2、 Telosb) 的硬件组成(P6) 5、无线传感器网络的协议栈体系结构(P7) 1.各层协议的功能 应用层:主要任务是获取数据并进行初步处理,包括一系列基于监测任务的应用层软件 传输层:负责数据流的传输控制 网络层:主要负责路由生成与路由选择 数据链路层:负责数据成帧,帧检测,媒体访问和差错控制 物理层:实现信道的选择、无线信号的监测、信号的发送与接收等功能 2.管理平台的功能 (1)能量管理平台管理传感器节点如何使用能源。 (2)移动管理平台检测并注册传感器节点的移动,维护到汇聚节点的路由,使得传感器节点能够动态跟踪邻居的位置。 (3)任务管理平台在一个给定的区域内平衡和调度监测任务。 6、无线传感器网络的应用领域(P8-9) (1)军事应用 (2)智能农业和环境监测 (3)医疗健康 (4)紧急和临时场合 (5)家庭应用 (6)空间探索

光电传感器应用

浙江工业职业技术学院

消除或削弱背景光及温度等因素的影响。 二、应用举例 1.光电比色温度计(光源本身是被测物) (1)问题的提出:高温测量,物体辐射出的光波与温度有关。(2)原理:根据热辐射定律,使用光电池进行非接触测温。根据有关的辐射定律,物体在两个特定波长λ1、λ2上的辐射程度 Iλ1、Iλ2之比与该物体的温度成指数关系。 Iλ1/Iλ2=K1e-K2/T 由光路图及电路原理框图介绍其原理,注意参比信号。2.光电式烟尘浓度计(透射式) (1)问题的提出:为了控制和减少烟尘的排放量和节能 的要求,对烟尘的监测是必须的。 (2)通过光路及电路原理框图介绍其原理,注意参比信 号,由于两个通道结构完全一样,所以在最后运算U1/U2值时,上述误差可自动抵消,减小了测量误差。 3.光电式转速表(反射式) (1)问题的提出:由于机械式转速表和接触式电子转速 表精度不高,且影响被测物的运转状态,已不能满足自动化的要求。光电式转速计可用于测量高转速而又不影响被测物; (2)通过光路及电路原理框图介绍其原理: a)选用光电二极管(响应时间短)用于高频调制信号测量;

b)数字量测量,不用参比信号。 4.光电式边缘位置检测器(遮挡式) (1)问题的提出:光电式边缘位置检测器是用来检测带 型材料在生产过程中偏离正确位置的大小及方向,从而为纠偏控制电路提供纠偏信号。 (2)通过光路及转换电路介绍其原理: a)光路一半遮挡一半透过; b)桥路及运算放大器组成,接入参比光敏电阻; c)光敏电阻一般不能作模拟量测量,这里限用于控制。 三、总结以上各例使学生建立光路系统与电路结合的概念,并能 举一反三、灵活应用。 小结: 1、光电式传感器的应用类型 2、应用举例

轮胎实车测试配套设备介绍

轮胎实车测试配套设备介绍 试车场中试验道路是实际存在的各种各样的道路经过集中、浓缩、不失真的强化并典型化的道路,由于测试条件相对稳定,能够得到再现性良好的数据。同时试车场是相对安全及干扰较少的环境,可以进行车辆及轮胎的极限测试。汽车及轮胎在试车场进行实车测试比在实验室或一般行驶条件下的试验更严格、更科学、更迅速、更实际。这些方面的优势让汽车及轮胎厂愈加重视及依赖在试车场进行实车测试。由于各汽车试验场地主要面向汽车整车厂,目前国内大型轮胎厂也逐步开始建立自己的试车场,本文就进行轮胎实车测试所需配备的部分仪器设备做简单介绍。 一轮胎牵引力试验机Dynatest995 轮胎牵引力试验机Dynatest995是由美国Dynatest设计生产,是试车场测试道μ值与轮胎μ-s值测试 设备。Dynatest995包含一辆装置各 项量测仪器的车辆及跟随的拖车。 传感器使用Dynatest的双轴向力传 感器量测垂直荷重力及水平力牵引 力。Dynatest995符合所有的标准 包含ASTM-E274、ASTM-F408、ECE R117Wet Grip及EU228Wet Grip。全球各试验场皆采用此套设备。

二VBOX VBOX是车辆感测系统总成,VBOX所包含的子系统包含方向盘角度及扭力计、踏力计、踏力显示器、煞车变位计、角度扭力显示器、陀螺仪、加速规、对地速度计、携带小型信号撷取器、减速度计等,可依照客户需求选配。 三自动驾驶系统 这套系统最初用于车辆的撞击测试等比较危险的测试项目,由自动机械手臂控制方向盘、变速箱、油门及剎车。而在轮胎方面,与VBOX或六分力搭配测试,在测试相同规格或是相同规格更改结构或

紫外线传感器的工作原理及应用

紫外线传感器的工作原理及应用 紫外线传感器的工作原理 紫外线传感器是利用光敏元件将紫外线信号转换为电信号的传感器,它的工作模 式通常分为两类:光伏模式和光导模式。光伏模式是指不需要串联电池,串联电阻中 有电流,而传感器相当于一个小电池,输出电压,但是制作比较难,成本比较高;光 导模式是指需要串联一个电池工作,传感器相当于一个电阻,电阻值随光的强度变化 而变化,这种制作容易,成本较低。 紫外线传感器的发展历程 最早的紫外线传感器是基于单纯的硅,但是根据美国国家标准与技术研究院的研究,单纯的硅二极管也响应可见光,形成本来不需要的电信号,导致精度不高。 在十几年前,日本某公司生产出了GaN系的晶体,成为GaN系的开拓者,并由此开辟了GaN系的市场,也由此产生了GaN的紫外线传感器,其精度远远高于单晶 硅的精度,成为最常用的紫外线传感器材料。 后来,二六族ZnS材料也已被研发出来,也应用到了紫外线传感器领域。从研发的角度及性能测试上看,其精度比GaN系的传感器提高了近10^5倍。在一定程度上,ZnS系的紫外线传感器将与GaN系的平分秋色。 紫外线传感器的作用 1、在医疗领域中的作用 科学家发现波长在310nm左右的紫外线对皮肤有强烈的黑斑效应,能够加速皮肤的新陈代谢,提高皮肤的生长力,从而可以有效治疗白癜风、玫瑰糠疹、多形性 日光疹、慢性光化性皮炎、光线性痒疹等光照性皮肤病,因此在医疗行业,紫外光

疗目前得到了越来越多的应用。使用时,要对紫外线的强度进行很好的把控,这就需要使用紫外线传感器进行监测。 2.在火焰探测领域中的作用 紫外线火焰探测器是紫外火焰探测器的俗称。紫外火焰探测器是通过探测物质燃烧所产生的紫外线来探测火灾的,除了紫外火焰探测器之外,市场上还有红外火焰探测器,也就是术语是线型光束感烟火灾探测器。紫外火焰探测器适用于火灾发生时易发生明火的场所,对发生火灾时有强烈的火焰辐射或无阴燃阶段的场所均可采用紫外火焰探测器,火焰探测紫外线传感器需要传感器本身耐高温且灵敏度高。 3. 在电弧探测领域中的作用 高压设备由于绝缘缺陷会产生电弧放电,放电时会伴随有大量的光辐射,其中含有丰富的紫外光,通过检测电弧放电产生的紫外光辐射,可以判断高压电力设备的安全运行状况。紫外成像是一种有效的电弧放电检测方法,形象直观,并且具有良好的检测定位能力,但是紫外光的信号比较微弱,在检测上面还有一些难度。 4.纸钞识别 紫外线识别技术主要是利用紫外线传感器检测纸币的荧光印记防伪标志及纸币的哑光反应。此类识别技术能够识别大部分假币(如洗涤、漂白、粘贴等纸币)。它不仅在ATM机的存款识别时用到,还在点钞机、验钞机等金融机具上用到。一般情况下运用荧光及紫光对纸币进行全方位的反射、透射检测。根据纸币与其它纸张

相关文档
相关文档 最新文档