文档库 最新最全的文档下载
当前位置:文档库 › ERDAS 遥感图像显示与数据输与输出

ERDAS 遥感图像显示与数据输与输出

ERDAS 遥感图像显示与数据输与输出
ERDAS 遥感图像显示与数据输与输出

实验一:遥感图像显示与数据输入/输出

一.实验平台:ERDAS IMAGINE 9.1

二.实验目的:初步了解与学习遥感图像处理软件ERDAS 的主要功能模块,为遥感图像处理的后续学习打下良好的基础。

三.实验内容:

1.进行ERDAS 最基础的操作,包括图像、图形显示操作、实用菜单操作、显示菜单操作、AOI菜单操作、图像剖面工具操作等。

2.数据的输入与输出。

四.实验步骤

1.图像显示操作

启动ERDAS,在视窗菜单条中点击File ,选择 Open;点击 Raster Layer,

打开 Select Layer To Add 对话框。如图1所示。在 raster options 栏设置相应参数,完成后选择相应文件,双击打开,如图2.

图 1 图 2

2.基本操作

2.1 光标查询功能

在视窗菜单条中点击Utility,

点击Inquiry Cursor,打开Inquiry

Cursor 对话框,如图3所示;拖动视

窗中出现的十字光标,可以获知光标

所在位置像元的地理坐标、地图坐标、

波段灰度值等动态信息。

图3

2.2 量测功能

在视窗菜单条中点击Utility ,点击Measure,打开Measurement Tool

视窗,如图4;进行必要的长度、周长、面积等的量测如图5.

图 4 图 5

2.3 数据叠加显示

在视窗菜单条中点击File ,选择Open,点击Raster Layer,打开Select Layer To Add 对话框,确定文件名File name:lanier.img 后,点击OK打开下层图像文件;在视窗菜单条中再次点击File,选择Open,点击Raster Layer,打开Select Layer To Add 对话框,确定文件名File name:inlandc.img;选择Raster Options 栏:不选择Clear Display,点击OK,打开上层图像文件,如图6.进行必要的混合显示(如图7)、卷帘显示、闪烁显示等操作。

图 6 图 7

2.4 三维图像操作

以eldodem.img 和eldoatm.img 为例,在Image Drape 菜单条中点击Utility,点击Option,打开Option 对话框,。在 option 对话框中进行必要的参数,例如垂直比例尺、地形颜色等的设置,如图8所示。

2.5 AOI 菜单操作

在视窗菜单中点击AOI ,点击 tools,打开 AOI style 对话框,如图9所示。AOI 工具面板几乎包含了所有的AOI 菜单操作命令,可以分为三个功能区,前两排图标是产生AOI 与选择AOI 功能区,中间三排是编辑AOI 功能区,而最后两排则是定义AOI 属性功能区。

图 8 图 9

2.5 图像剖面工具

2.5.1 光谱剖面曲线

在视窗中打开图像hyperspectral.img,如图10;点击 raster,点击profile tools ,打开select profile 对话框;在 select profile 中选择spectral,点击 ok;在 spectral profile 对话框中选择相应像元,自动生成该像元光谱剖面曲线,如图11。

图 10 图 11

2.5.2空间剖面曲线

在视窗中点击raster,点击

profile tools ,打开select profile

对话框;在 select profile 中选择

spatial,点击 ok;在spatial profile

对话框中选择相应像元,自动生成该

像元空间剖面曲线,如图12。

图 12

2.5.3三维空间曲线

在视窗中点击 raster,点击 profile tools ,打开select profile 对话框;在 select profile 中选择surface,点击 ok;在surface profile 对话框中选择相应像元,自动生成该像元三维空间剖面,如图13。

图 13

3.二进制数据图像输入(以13333文件夹下的数据为例)

3.1 输入单波段数据

(1)在ERDAS 图标面板菜单条中点击Main

(2)点击Import/Export,打开Import/Export 对话框(图14)

图 14 图 15

(3)在Import/Export 对话框中定义下列参数:选择输入数据:Import;选择输入数据类型为普通二进制:Generic Binary ;选择输入数据媒体为文件:File;确定输入文件路径和文件名:band1.dat;确定输出文件路径和文件名:band1.img。如图15.

(4)点击OK,打开Import Generic Binary Data 对话框

(5)在Import Generic Binary Data 对话框中定义下列参数(可由头文件header.dat 中查出):数据格式:BSQ;数据类型:无符号8 位Unsigned 8 Bit;图像记录长度:0;头文件字节数:0;数据文件行数Rows:5728;数据文件列数Cols:6527 ;文件波段数量:1。

(6)保存参数设置:点击Save Options,打开Save Options File 对话框,

并定义参数文件名:13333.gen,然后点击OK。

(7)预览图像效果:点击Preview,打开一个视窗显示输入图像,如果预览图像正确,说明参数设置正确,可以执行输入操作。

(8)点击OK,打开Import Generic Binary Data 进程状态条。

(9)点击OK。(关闭状态条,完成数据输入)

(10)重复上述(3)~(9)过程,依次将7 个波段数据全部输入,转换为IMG 文件。保存参数文件13333.gen是为了在输入其它波段时直接调用,无须一个个输入。

3.2 组合多波段数据

(1)在ERDAS 图标面板菜单条点击Main

(2)点击Image Interpreter,打开Image Interpreter 菜单

(3)在Image Interpreter 菜单中点击Utility,打开Utilities 菜单

(4)在Utilities 菜单中点击Layer Stack,打开Layer Selection and Stacking 对话框(图16)

图 16 图 17

(5)在Layer Selection and Stacking 对话框中依次选择并加载(Add)单波段图像:

输入单波段文件Input File(*.img):band1.img → Add

输入单波段文件Input File(*.img):band2.img → Add

输入单波段文件Input File(*.img):band3.img → Add

.......

输出多波段文件Output File(*.img):13333.img →输出数据类型:Unsigned

8 bit;波段组合选择:Union(求并

运算);输出统计忽略零值,如图17.

(6)点击 OK,打开Modeler 进

程状态条

(7)点击OK(关闭状态条,完成

数据输入)(处理结果13333.img如图

18)

图 18

3.2 landsat TM数据快速导入

(1)在ERDAS 图标面板菜单条中点击Main

(2)点击Import/Export;打开Import/Export 对话框

(3)在Import/Export 对话框定义下列参数:

选择输入数据:Import;

选择输入数据类型为:TM Landsat Acres Fast Format;

选择输入数据媒体为文件:File;

确定输入文件路径和文件名:band1.dat;

确定输出文件路径和文件名:tm.img

图 19 图 20

(4)点击OK,打开Landsat TM 对话框(系统自动搜索并加载导入所需的信息)

(5)确定无误后点击OK,则在视窗中打开tm.img(图21)

图 21

四.实验总结

通过本次实验,对遥感图像处理软件ERDAS 有了一定的了解;并且初步掌握了ERDAS 诸如AOI菜单操作等等一系列基本操作和二进制数据图像的输入。

遥感影像图像处理流程

遥感影像图像处理(processing of remote sensing image data)是对遥感图像进行辐射校正和几何纠正、图像整饰、投影变换、镶嵌、特征提取、分类以及各种专题处理等一系列操作,以求达到预期目的的技术。 一.预处理 1.降噪处理 由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。 (1)除周期性噪声和尖锐性噪声 周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。一般可以用带通或者槽形滤波的方法来消除。

消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。 (2)除坏线和条带 去除遥感图像中的坏线。遥感图像中通常会出现与扫描方向平行的条带,还有一些与辐射信号无关的条带噪声,一般称为坏线。一般采用傅里叶变换和低通滤波进行消除或减弱。

2.薄云处理 由于天气原因,对于有些遥感图形中出现的薄云可以进行减弱处理。 3.阴影处理 由于太阳高度角的原因,有些图像会出现山体阴影,可以采用比值法对其进行消除。二.几何纠正

通常我们获取的遥感影像一般都是Level2级产品,为使其定位准确,我们在使用遥感图像前,必须对其进行几何精纠正,在地形起伏较大地区,还必须对其进行正射纠正。特殊情况下还须对遥感图像进行大气纠正,此处不做阐述。 1.图像配准 为同一地区的两种数据源能在同一个地理坐标系中进行叠加显示和数学运算,必须先将其中一种数据源的地理坐标配准到另一种数据源的地理坐标上,这个过程叫做配准。 (1)影像对栅格图像的配准 将一幅遥感影像配准到相同地区另一幅影像或栅格地图中,使其在空间位置能重合叠加显示。 (2)影像对矢量图形的配准 将一幅遥感影像配准到相同地区一幅矢量图形中,使其在空间位置上能进行重合叠加显示。2.几何粗纠正

6-遥感图像特征和解译标志

上次课主要内容 4.4简单自然地物可识别性分析 4.5复杂地物识别概率(重点理解) ①要素t 的价值②要素总和(t 1,t 2,…,t m )t 的价值 K -K E ∑ = ③复杂地物识别概率的计算理解p70~71例子

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 5.2 遥感图像特征与解译标志的关系 5.3 遥感图像的时空特性 5.4 遥感图像中的独立变量 5.5 地物统计特征的构造

第五章遥感图像特征和解译标志 地物特征 电磁波特性 影像特征 遥感图像记录过程 n 图像解译就是建立在研究地物性质、电磁波性质 及影像特征三者的关系之上 n 图像要素或特征,分“色”和“形”两大类:?色:色调、颜色、阴影、反差; ?形:形状、大小、空间分布、纹理等。“形”只有依靠“色”来解译才有意义。

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 n两个定义: ?解译标志定义:遥感图像光谱、辐射、空间和时间特征决定 图像的视觉效果、表现形式和计算特点,并导致物体在图像上 的差别。 l给出了区分遥感图像中物体或现象的可能性; l解译标志包括:色调与色彩、形状、尺寸、阴影、细部(图 案)、以及结构(纹理)等; l解译标志是以遥感图像的形式传递的揭示标志; ?揭示标志定义:在目视观察时借以将物体彼此分开的被感知 对象的典型特征。 l揭示标志包括:形状、尺寸、细部、光谱辐射特性、物体的阴 影、位置、相互关系和人类活动的痕迹; l揭示标志的等级决定于物体的性质、他们的相对位置及与周围 环境的相互作用等;

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 n解译标志和揭示标志的关系: ?解译标志是以遥感图像的形式传递的揭示标志; ?虽然我们是通过遥感图像识别地物目标的,但是大多数情况 下,基于遥感图像识别地物并作出决定时,似乎并不是利用解 译标志,而是利用揭示标志。 例如,很多解译人员刚看到图像就差不多在脑海中形成地物的形象, 然后仅仅分析这个形象就能作出一定的决定。实际上,有经验的解译人 员,在研究图像的解译标志并估计到传递信息的传感系统的影响以后, 思想中就建立起地物的揭示标志,并在这些标志的基础上识别被感知物 体。解译人员在实地或图像上都没见过的地物或现象是例外。 n解译标志和揭示标志可以按两种方式进行划分:?直接标志和间接标志; ?永久标志和临时标志;

遥感影像处理步骤

3.2.3 遥感影像数据的获取 目前世界上用于民用的卫星很多,最常用于作物长势监测的是美国发射的一系列陆地卫星。本文使用的是2013年2月11日,NASA发射的Landsat 8卫星数据,Landsat 8上携带有两个主要载荷:OLI(陆地成像仪)和TIRS(热红外传感器)。OLI包括9个波段,空间分辨率为30米,其中包括一个15米的全色波段,成像宽幅为185×185 km。OLI包括了ETM+传感器所有的波段,为了避免大气吸收特征,OLI对波段进行了重新调整,比较大的调整是OLI Band5(0.845–0.885 μm),排除了0.825 μm处水汽吸收特征;OLI全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和无植被特征;此外,还有两个新增的波段:蓝色波段(band1:0.433–0.453 μm)主要应用海岸带观测,短波红外波段(band9:1.360–1.390 μm) 包括水汽强吸收特征可用于云检测;近红外band5和短波红外band9与MODIS对应的波段接近。 表3-2 Landsat8各波段的名称与用途 Table 3-2 The name and purpose of each band of Landsat8 (引自:张玉君,国土资源遥感,2013) 波段No 波段名称波长范围/nm 数据用途GSD地面 采样距离 /nm 辐射率/ (W·m-2sr-1u m-1)典型 SNR (典型) 1 NewDeep Blue 433-453 海岸区气溶胶30 40 130 2 Blue 450-515 基色/散射/海岸30 40 130 3 Green 525-600 基色/海岸30 30 100 4 Red 630-680 基色/海岸30 22 90 5 NIR 845-885 植物/海岸30 14 90 6 SWIR2 1560-1660 植物30 4.0 100 7 SWIR3 2100-2300 矿物/干草/无散射30 1.7 100 8 PAN 500-680 图像锐化15 23 80 9 SWIR 1360-1390 卷云测定30 6.0 130 10 TIR 10300-11300 地表温度100 11 TIR 11500-12500 地表温度100 本实验获取条带号和行编号为143/029,选取棉花蕾期、花铃期、吐絮期内无云、质量较好的影像数据,过境时间分别为2013年6月25日,8月5日,8月29日。 3.2.4 卫星影像处理 地面目标是个复杂的多维模型,具有一定的空间位置、形状、大小和相互关

ERDAS的操作手册

ERDAS的操作手册 纠正,融合,镶嵌是遥感处理中比较常见的三种处理方法。对于初学遥感的人来说,掌握这三种方法是十分必要的。下面,我们通过一些实例,在ERDAS 中的操作,来分别介绍这三种处理方法。 1、纠正 纠正又叫几何校正,就是将图像数据投影到平面上,使其符合地图投影系统的过程;而将地图坐标赋予图像数据的过程,称为地理参考(Geo-referencing)由于所有地图投影系统都遵从于一定的地图坐标系统,所以几何校正包含了地图参考。 (1)启动 在ERDAS中启动几何校正有三种方法: A、菜单方式 B、图标方式 C、窗口栅格操作 窗口启动这种方法比较常用,启动之前在窗口中打开需要纠正的图像,然后在栅格操作菜单中启动几何校正模块。建议使用这种启动方法,更直观简便。

(2)设置几何校正模型 常用模型:功能 Affine 图像仿射变换(不做投影变换) Camera 航空影像正射校正 Landsat Landsat卫星影像正射校正 Polynomial 多项式变换(同时做投影变换) Rubber Sheeting 非线性、非均匀变换 Spot Spot卫星图像正射校正 其中,多项式变换(Polynomial)在卫星图像校正过程中应用较多,在调用多项式模型时,需要确定多项式的次方数(Order),通常整景图象选择3次方。次方数与所需的最少控制点数是相关的,最少控制点数计算公式为((t+1)*(t+2))/2,公式中t为次方数,即1次方最少需要3个控制点,2次方需要6个控制点,3次方需要10个控制点,依此类推。

(3)几何校正采点模式 A、Viewer to Viewer 已经拥有需要校正图像区域的数字地图、或经过校正的图像,就可以采用Viewer to Viewer的模式。 B、File to Viewer 事先已经通过GPS测量、或摄影测量、或其它途径获得了控制点坐标,并保存为ERDAS IMAGINE的控制点格式或ASCII数据文件,就可以采用File to Viewer模式,直接在数据文件中读取控制点坐标。 C、Map to Viewer 只有印制地图或坐标纸,则只好采用Map to Viewer的模式,在地图上选点并量算坐标,然后通过键盘输入坐标数据。 最常用的是第一种模式,视图对视图的窗口采点模式。

遥感数字图像处理教程复习分析

第一章. 遥感概念 遥感(Remote Sensing,简称RS),就是“遥远的感知”,遥感技术是利用一定的技术设备和系统,远距离获取目标物的电磁波信息,并根据电磁波的特征进行分析和应用的技术。 遥感技术的原理 地物在不断地吸收、发射(辐射)和反射电磁波,并且不同物体的电磁波特性不同。 遥感就是根据这个原理,利用一定的技术设备和装置,来探测地表物体对电磁波的反射和地物发射的电磁波,从而提取这些物体的信息,完成远距离识别物体。 图像 人对视觉感知的物质再现。图像可以由光学设备获取,如照相机、镜子、望远镜、显微镜等;也可以人为创作,如手工绘画。图像可以记录、保存在纸质媒介、胶片等等对光信号敏感的介质上。随着数字采集技术和信号处理理论的发展,越来越多的图像以数字形式存储。因而,有些情况下“图像”一词实际上是指数字图像。 物理图像:图像是人对视觉感知的物质再现 数字图像:图像以数字形式存储。 图像处理 运用光学、电子光学、数字处理方法,对图像进行复原、校正、增强、统计分析、分类和识别等的加工技术过程。 光学图像处理 应用光学器件或暗室技术对光学图像或模拟图像(胶片或图片)进行加工的方法技术 数字图像处理 是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。图像处理能做什么?(简答) 是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理主要目的:提高图像的视感质量,提取图像中所包含的某些特征或特殊信息,进行图像的重建,更好地进行图像分析,图像数据的变换、编码和压缩,更好图像的存储和传输。数字图像处理在很多领域都有应用。 遥感图像处理(processing of remote sensing image data )是对遥感图像进行辐射校正和几何纠正、图像整饰、投影变换、镶嵌、特征提取、分类以及各种专题处理的方法。常用的遥感图像处理方法有光学的和数字的两种。

ERDAS遥感图像处理教程,绝对给力

《遥感数字图象处理实验指导书》 实习须知 实验室资源: 1 硬件设备: 局域网系统; 高级PC 计算机(每人一台,在规定时间使用); 2 软件系统 Windows 2000 或Windows XP ERDAS IMAGINE 8.6 ArcToolbox ArcMap Microsoft Word Microsoft Excel Zip program 3 数据资源 数据源: ERDAS IMAGINE 8.6软件附带的examples; XX地区TM、ETM、Spot遥感数据 XX区部分矿山企业基础数据

实习目的与内容 1 实习目的 本实习为已具有RS的基本概念和理论基础的学生设计,目的是帮助学生在了解RS基本组成与数据结构模型的基础上,重点学习使用ERDAS IMAGINE8.6软件进行视窗操作、数据数据预处理、图像解译、图像分类和矢量功能;了解地图投影系统的使用;学习多种数据输入的方法,不同数据格式转换,数据库模式的定义等多种前后期处理工作;掌握遥感图像前后处理和解译、分类地理的技术流程和方法,数据库建设以及地理数据的编辑和管理;配合具体实例运用GIS空间分析工具。通过系列实习过程,重点培养学习者掌握RS提取信息的基本过程和技巧,并可初步用来解决运用遥感提取信息的问题。 2 实习内容 实习1:ERDAS IMAGINE 8.6系统简介与入门;包括:软件概述,视窗操作中的菜单工具条的介绍,数据的输入输出。 实习2:数据预处理;包括:图像分幅剪裁,图像几何校正,图像拼接处理,图像投影变换; 实习3:图像解译;包括功能简介,辐射增强处理(去霾处理)、常用的光谱增强处理(假彩色合成与指数计算)、空间增强处理(分辨率融合)。 实习4:图像分类;包括;非监督分类和监督分类,专家分类器(在高级练习中学习) 实习5:地理信息系统分析和矢量功能介绍,综合运用GIS工具解决实例提出的问题。 实习6:专题制图输出全过程学习。 3 本书有关约定 实习所用原始数据存放在%sampledata目录下;

遥感数字图像处理要点

遥感数字图像处理-要点 1.概论 遥感、遥感过程 遥感图像、遥感数字图像、遥感图像的数据量 遥感图像的数字化、采样和量化 通用遥感数据格式(BSQ、BIL、BIP) 遥感图像的模型:多光谱空间 遥感图像的信息内容: 遥感数字图像处理、遥感数字图像处理的内容 遥感图像的获取方式主要有哪几种? 如何估计一幅遥感图像的存储空间大小? 遥感图像的信息内容包括哪几个方面? 多光谱空间中,像元点的坐标值的含义是什么? 与通用图像处理技术比较,遥感数字图像处理有何特点? 遥感数字图像处理包括那几个环节?各环节的处理目的是什么? 2.遥感图像的统计特征 2.1图像空间的统计量 灰度直方图:概念、类型、性质、应用 最大值、最小值、均值、方差的意义 2.2多光谱空间的统计特征 均值向量、协方差矩阵、相关系数、相关矩阵的概念及意义 波段散点图概念及分析 主要遥感图像的统计特征量的意义 两个重要的图像分析工具:直方图、散点图 3.遥感数字图像增强处理 图像增强:概念、方法 空间域增强、频率域增强

3.1辐射增强:概念、实现原理 直方图修正,线性变换、分段线性变换算法原理 直方图均衡化、直方图匹配的应用 3.2空间增强 邻域、邻域运算、模板、模板运算 空间增强的概念 平滑(均值滤波、中值滤波)原理、特点、应用 锐化、边缘增强概念 方向模板、罗伯特算子、索伯尔算子、拉普拉斯算子的算法和特点 ?计算图像经过下列操作后,其中心象元的值: –3×3中值滤波 –采用3×3平滑图像的减平滑边缘增强 –域值为2的3×1平滑模板 –Sobel边缘检测 –Roberts边缘检测 –模板 3.3频率域处理 高频和低频的意义 图像的傅里叶频谱 频率域增强的一般过程 频率域低通滤波 频率域高通滤波 同态滤波的应用

ENVI遥感图像处理方法

《ENVI遥感图像处理方法》科学出版社2010年6月正式出版 上一篇/ 下一篇 2010-05-26 15:02:30 / 个人分类:ENVI 查看( 643 ) / 评论( 5 ) / 评分( 0 / 0 ) 从上个世纪六十年代E.L.Pruitt提出“遥感”这个词至今,遥感已经成为人类提供了从多维和宏观角度去认识宇宙世界的新方法与新手段。目前,遥感影像日渐成为一种非常可靠、不可替代的空间数据源。ENVI (The Environment for Visualizing Images)是由遥感领域的科学家采 用交互式数据语言IDL(Interactive Data Language)开发的一套功能强大的遥感图像处理软件。ENVI以其强大的图像处理功能,尤其是与ArcGIS 一体化集成,使得众多的影像分析师和科学家选择ENVI来处理遥感图像和获得图像中的信息,从而全面提升了影像的价值。ENVI已经广泛应用于科研、环境保护、气象、石油矿产勘探、农业、林业、医学、国防&安全、地球科学、公用设施管理、遥感工程、水利、海洋、测绘勘察和城市与区域规划等众多领域。与此形成鲜明对比的是,目前关于ENVI 的中文教程非常少,给广大用户学习软件和应用软件带来诸多不便。 针对上述情况,在ESRI中国(北京)有限公司的大力支持下,根据多年遥感应用研究和软件操作经验,历时一年半编著完成本书。全书按照遥感图像处理流程由浅到深逐步引导读者掌握ENVI软件操作。各个章节相对独立,读者可视个人情况进行选择阅读。全书分为17章,第1、2、3章介绍了ENVI软件的基础知识,可作为ENVI软件入门,也可作为参考内容;第4、5、6、7、8章介绍了遥感图像处理一般流程,包

基于erdas的图像增强处理

图像增强处理 ●实习目的:掌握常用的图像增强处理的方法 ●容:空间、辐射、光谱增强处理的主要方法 ·空间增强:包括卷积增强处理、纹理分析 ·辐射增强:LUT拉伸处理、直方图均衡化处理 ·光谱增强:主成份变换、缨穗变换、色彩变换 图像增强处理包括空间、辐射、光谱增强处理,本练习做几种常用的增强处理方法,在实际运用中,不是所有的图象增强处理方法都要用到,具体采用哪种图象增强处理方法,视具体的研究区域,研究容和对象而定。 一、图像解译功能简介 利用ERDAS IMAGINE进行图像增强主要采用ERADS IMAGINE的图像解译器(Image Interpreter)模块,该模块包含了50多个用于遥感图像处理的功能模块,这些功能模块在执行过程中都需要通过各种按键或对话框定义参数,多数功能都借助模型生成器(Model Maker)建立了图形模型算法,容易调用或编辑。 图像解译器(Image Interpreter或Interpreter),可以通过两种途径启动: ERDAS图标面板菜单条: Main/Image Interpreter----Image Interpreter菜单(图1.1) ERDAS图标面板工具条:点击Interpreter图标----Image Interpreter菜单(图1.1) 图1.1 Image Interpreter菜单 从上图可以看出,ERDAS图像解译模块包含了8个方面的功能,依次是遥感图像的空间增强(Spatial Enhancement)、辐射增强(Radiometric Enhancement)、光谱增强(SpectralEnhancement)、高光谱工具(Hyper Spectral Tools)、傅立叶交换(Fourier Analysis )、地形分析(Topographic Analysis)。地理信息系统分析(GlS Analysis)、以及其它实用功能(Utilities)。每一项功能菜单中又包含若干具体的遥感图像处理功能。

中国地质大学遥感图像处理上机实习报告

遥感图像处理课程实习报告 学生姓名:王蜀越 班学号: 学号: 指导教师:王红平、许凯 中国地质大学信息工程学院 2017年7月1日

目录 目录 ............................................................................................................................................... - 1 - 实习一:影像融合........................................................................................................................ - 2 - 1.1【实习目的】 (2) 1.2【实习步骤】 (2) 1.3【实习过程】 (2) 实习二:几何校正........................................................................................................................ - 6 - 2.1【实习内容】 (6) 2.2【实习步骤】 (6) 2.3【实习过程】 (6) 实习三:影像分类(一).......................................................................................................... - 10 - 3.1【实习内容】 (10) 3.2【实习步骤】 (10) 3.3【实习过程】 (10) 实习四:影像分类(二).......................................................................................................... - 14 - 4.1【实习内容】 (14) 4.2【实习步骤】 (14) 4.3【实习过程】 (14) 心得与感想 ................................................................................................................................. - 18 -

ERDAS基本操作入门

ERDAS基本操作入门 1、图像导入 在erdas的Import/Export模块中,分别导入TM图像的第1、2、3、4、5、7波段,具体操作步骤为 ① 点击import模块,打开对话框 ②选择type类型为TIFF ③ media为file; ④ 然后选择输入、输出文件名路径和文件名 ⑤ 分别对123457波段进行导入; ⑥在此之前可以选择session->preference,选择输入、输出主目录。 2、图像波段合成 在erdas的interpreter模块中将单波段影像进行合成,生成多波段文件,具体操作步骤为: interpreter->utilities->layer stack, ① 在出现的对话框中import框中依次选择需要合成的波段,每选择输入一个波段用Add添加一次; ② output file选择导出文件路径及命名文件。 ③ Data type 设为 Unsigned 8 bit; ④Output option 设置为Union ,选中 ignore zero stats; ⑤进行操作。 3、用shape文件进行图像切割 3.1 Shape文件制作AOI文件: ①在ERDAS中点击Import图标,出现Import/Export对话框 ②选中Imput,Type栏选择Shapefile,Media栏选择File,在Input File (*.shp)中确定要转换的shape文件,在Output File(*.arcinfo)中确定输

出路径及名称,单击OK按钮,出现Import Shapefile对话框,单击Import Shapefile Now。 ③注意此步骤中输出路径及输出名称均为英文字母 ④建立拓扑多边形 ⑤在Arcgis中打开ArcToolbox,Data Management Tools—>Topology—>Build,双击Build,出现Build对话框,在Input 中填入*.arcinfo文件的路径,Feature选择Poly ⑥单击OK按钮。 ⑦在ERDAS中打开一个viewer窗口,打开arc coverage文件,新建一个aoi层(New—>AOI Layer) ⑧ View—>Arrange Layers Viewer打开Arrange Layers Viewer对话框,在Vector图层上单击右键,选择Show Properties,打开Properties对话框,选中Polygon,点击Apply按钮。 ⑨在View窗口中打开AOI工具栏,先选中内部区域,再点击,产生aoi,选中该aoi,单击File—>Save—AOI Layer as,保存为aoi文件。 3.2 用AOI文件进行对遥感图像切割 在ERDAS图标面板工具条中单击Data Prep图标,Subset,打开Subset对话框。在Subset对话框中需要设置下列参数: ⑩输入文件名称(Input File) ? 输出文件名称(Output File) ? 单击AOI按钮确定裁剪范围 ? 打开Choose AOI对话框 ? 在Choose AOI对话框中确定AOI的来源为File(或Viewer) ? 如果选择了文件(File),刚进一步确定AOI文件;否则,直接进入下一步 ? 输出数据类型(Output Data Type)为Unsigned 8 Bit,输出文件类型(Output Layer Type)为Themetic ? 输出象元波段(Select Layers)为1 :6(表示选择1-6六个波段) ? 输出统计忽略零值,选中Ignore Zero In Output Stats复选框

遥感数字图像处理教程实习报告

遥感数字图像处理教程实习报告

《数字图像处理》 课程实习报告 ( 2011 - 2012学年第 1 学期) 专业班级:地信09-1班 姓名:梁二鹏 学号:310905030114 指导老师:刘春国 ---------------------------------------------- 实习成绩: 教师评语: 教 师

签 名 : 年月日 实习一:图像彩色合成实习 一、实验目的 在学习遥感数字图像彩色合成基础上,应用所学知识,基于遥感图像处 理软件ENVI进行遥感数字图像彩色合成。 二、实验内容 彩色合成:利用TM图像can_tmr.img,实现灰度图像的密度分割、多波 段图像的真彩色合成、假彩色合成和标准假彩色合成。 三、实验步骤 1、显示灰度图像主要步骤: 1、打开ENVI4.7,单击FILE菜单,在下拉菜单中选择open image file 选 项,然后在弹出的对话框中选择can_tmr.img文件,单击打开。 2、在可用波段列表对话框中,选中某一波段图像,选中gray scale单选按 钮,单击LOAD BAND按钮,显示一幅灰度图像。 3、在可用波段列表对话框中,选择其他某一波段图像,进行显示。

4、利用可用波段列表中的display按钮,同时有多个窗口显示多个波段图像。 5、链接显示。利用图像窗口tool菜单下的link子菜单link display实现多图 像的链接显示。如图所示:红色方框。 6、使用tool菜单下的Cursor Location/value和pixel Locator功能在确定像 素的值和位置。

ERDAS详细操作

目录 1. 影像阅读 2. 遥感影像分幅裁剪与拼接处理 3. 影像几何校正及正射影像制作 4. 影像增强

1. 影像阅读 1.1 设置erdas的各种默认参数 1)在ERDAS IMAGINE的主菜单栏上找到sessio n→Preferences,单击出现Preferences editor对话框。 2)通过拖动Category的滚动条,可以看到右方对应出现的各个参数,同时也可以在文本编辑处修改这些参数。 3)在Category下选择Viewer,拖动滚动条查看它的各种参数。 4)查看Category的帮助信息。点击右下方的“help”和“Category Help”,则出现以下的界面,如果有不懂的地方我们就可以通过这个帮助信息寻求答案。 1.2 显示图像 1)在ERDAS主菜单上点击图标,新建一个经典窗口,如下图: 2)在Viewer界面上点击File→Open →Raster Layer,在默认路径中打开lanier.im g。

3)点击Raster Options栏设置图层的红绿蓝三个波段的分配。将原来的4 3 2 改 为4 5 3后,图象的色调明显变化了。 1.3 查询像素信息 1)使用查询功能 选择Utility→Inquire Cursor出现下图中的对话框,通过左下方的四个三角形的符号来分别调整查询指针的上下左右的位置,圆圈表示使查询指针回到中心处,指针的移动,其中的 X和Y坐标的数值也会跟着作相应的变化。指针所指的像素的信息被显示在单元格里。

选择Utility→Inquire Color,选择为黄色,则查询指针的十字框的颜色由白色变为了黄色。 选择Utility→Inquire Shape,呈现的滚动条列表中选择circle.cursor, 再点击Use Cursor button, 然后点击Apply。 4)量测 通过这个工具可以实现在所在图层中的点,线,面,矩形,椭圆形的长度(周长) 和面积。

遥感影像处理步骤

一.预处理 1.降噪处理 由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。 (1)除周期性噪声和尖锐性噪声 周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。一般可以用带通或者槽形滤波的方法来消除。 消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。 (2)除坏线和条带 去除遥感图像中的坏线。遥感图像中通常会出现与扫描方向平行的条带,还有一些与辐射信号无关的条带噪声,一般称为坏线。一般采用傅里叶变换和低通滤波进行消除或减弱。

2.薄云处理 由于天气原因,对于有些遥感图形中出现的薄云可以进行减弱处理。 3.阴影处理 由于太阳高度角的原因,有些图像会出现山体阴影,可以采用比值法对其进行消除。二.几何纠正

通常我们获取的遥感影像一般都是Level2级产品,为使其定位准确,我们在使用遥感图像前,必须对其进行几何精纠正,在地形起伏较大地区,还必须对其进行正射纠正。特殊情况下还须对遥感图像进行大气纠正,此处不做阐述。 1.图像配准 为同一地区的两种数据源能在同一个地理坐标系中进行叠加显示和数学运算,必须先将其中一种数据源的地理坐标配准到另一种数据源的地理坐标上,这个过程叫做配准。 (1)影像对栅格图像的配准 将一幅遥感影像配准到相同地区另一幅影像或栅格地图中,使其在空间位置能重合叠加显示。 (2)影像对矢量图形的配准 将一幅遥感影像配准到相同地区一幅矢量图形中,使其在空间位置上能进行重合叠加显示。2.几何粗纠正

03 遥感图像增强

实验三遥感图像增强 一、背景知识 在获取图像的过程中,由于多种因素的影响,导致图像质量多少会有所退化。图像增强的目的在于:(1)采用一系列技术改善图像的视觉效果,提高图像的清晰度;(2)将图像转换成一种更适合于人或机器进行分析处理的形式。通过处理设法有选择地突出便于人或机器分析某些感兴趣的信息,抑制一些无用的信息,以提高图像的使用价值。 增强的方法往往具有针对性,增强的结果只是靠人的主观感觉加以评价。因此,图像增强方法只能有选择地使用。 图像增强方法从增强的作用域出发,可分为空间域增强和频率域增强两种。 空间域增强是直接对图像像素灰度进行操作;频率域增强是对图像经傅立叶变换后的频谱成分进行操作,然后经傅立叶逆变换获得所需结果。 图像增强所包含的主要内容如下图。 二、实验目的: 掌握遥感图像增强的基本方法,理解不同处理方法的适用类型。能根据需要对遥感图像进行综合处理。 三、实验内容: ?辐射增强处理 ?直方图均衡化 ?直方图匹配 ?空间增强处理 ?卷积增强处理 ?自适应滤波

?锐化增强处理 ?分辩率融合 光谱增强处理 ?主成份变换(PC变换/K-L变换) ?去相关拉伸 ?缨帽变换(K-T变换) ?指数计算 ?自然色彩变换 四、实验准备 1.软件ERDAS IMAGINE8.5版本以上; 2.实验用相关数据 五、实验步骤: (一)、辐射增强处理(Radiometric Enhancement) 1.直方图均衡化(Histogram Equalization) 直方图均衡化实质上是对图像进行非线性拉伸,重新分配图像像元值,使一定灰度范围内像元的数量大致相等;这样,原来直方图中间的峰顶部分对比度得到增强,而两侧的 谷底部分对比度降低,输出图像的直方图是一较平的分段直方图,如果输出数据分段值较 小的话,会产生粗略分类的视觉效果。 打开方法:(以文件Lanier.img为例) (1).ERDAS图标面板菜单条:Main - Image Interpreter Radiometric Enhancement - Histogram Equalization,打开Histogram Equalization对话框。 (2).ERDAS图标面板工具条:点击Interpreter图标一Radiometric Enhancement一 Histogram Equalization,打开Histogram Equalization对话框。 2.直方图匹配(Histogram Match) 直方图匹配是对图像查找表进行数学变换,使一幅图像的直方图与另一幅图像类似。 直方图匹配经常作为相邻图像拼接或应用多时相遥感图像进行动态变化研究的预处理工 作,通过直方图匹配可以部分消除由于太阳高度角或大气影响造成的相邻图像的效果差异。 操作方法

实验二、ERDAS实用菜单操作

实验二、ERDAS实用菜单操作 内容一数据输入 实习目的:掌握TM图像数据输入的主要方法。 实习内容:主要包括单波段TM图像数据输入、多波段组合文件的生成。 从地面站购买的TM图像数据或其它图像数据,不一定都是img格式,要通过数据输入输出得到img格式。 1.JPEG图像数据输入 在ERDAS图标面板工具条中,点击——打开输入输出对话框,如图2.1所示。并做如下的选择: 图2.1 import对话框 1)选择数据输入操作:Import 2)选择数据输入类型(Type)为jpeg格式:JFIF(JPEG) 3)选择数据输入媒体(Media)为文件:File 4)确定输入文件路径及文件名(Input File):TM1.JPG 5)确定输出文件路径及文件名(Output File):tm1.img 6)OK

图2.2 import对话框参数设置 打开Import JFIF Files对话框,如图2.3所示 图2.3 Import JFIF Files对话框 在Import JFIF Files对话框中点击OK执行输入操作,完成数据输入,如图2.4所示。

图2.4 进程状态条 重复上述过程,可依此将多波段数据全部输入,转换为.IMG文件。 2. 组合多波段数据 为了图像处理与分析,需要将上述转换的单波段IMG文件组合为一个多波段图像文件。 第一步:在ERDAS图标面板工具条中,点击Interpreter|Utilities|Layer Stack。出现波段叠加对话框,如图2.5所示。 图2.5 Layer Selection and Stacking对话框

遥感卫星图像处理方法

北京揽宇方圆信息技术有限公司 遥感卫星图像处理方法 随着遥感技术的快速发展,获得了大量的遥感影像数据,如何从这些影像中提取人们感兴趣的对象已成为人们越来越关注的问题。但是传统的方法不能满足人们已有获取手段的需要,另外GIS的快速发展为人们提供了强大的地理数据管理平台,GIS数据库包括了大量空间数据和属性数据,以及未被人们发现的存在于这些数据中的知识。将GIS技术引入遥感图像的分类过程,用来辅助进行遥感图像分类,可进一步提高了图像处理的精度和效率。如何从GIS数据库中挖掘这些数据并加以充分利用是人们最关心的问题。GIS支持下的遥感图像分析特别强调RS和GIS的集成,引进空间数据挖掘和知识发现(SDM&KDD)技术,支持遥感影像的分类,达到较好的结果,专家系统表明了该方法是高效的手段。 遥感图像的边缘特征提取观察一幅图像首先感受到的是图像的总体边缘特征,它是构成图像形状的基本要素,是图像性质的重要表现形式之一,是图像特征的重要组成部分。提取和检测边缘特征是图像特征提取的重要一环,也是解决图像处理中许多复杂问题的一条重要的途径。遥感图像的边缘特征提取是对遥感图像上的明显地物边缘特征进行提取与识别的处理过程。目前解决图像特征检测/定位问题的技术还不是很完善,从图像结构的观点来看,主要是要解决三个问题:①要找出重要的图像灰度特征;②要抑制不必要的细节和噪声;③要保证定位精度图。遥感图像的边缘特征提取的算子很多,最常用的算子如Sobel算子、Log算子、Canny算子等。 1)图像精校正 由于卫星成像时受采样角度、成像高度及卫星姿态等客观因素的影响,造成原始图像非线性变形,必须经过几何精校正,才能满足工作精度要求一般采用几何模型配合常规控制点法对进行几何校正。 在校正时利用地面控制点(GCP),通过坐标转换函数,把各控制点从地理空间投影到图像空间上去。几何校正的精度直接取决于地面控制点选取的精度、分布和数量。因此,地面控制点的选择必须满足一定的条件,即:地面控制点应当均匀地分布在图像内;地面控制点应当在图像上有明显的、精确的定位识别标志,如公路、铁路交叉点、河流叉口、农田界线等,以保证空间配准的精度;地面控制点要有一定的数量保证。地面控制点选好后,再选择不同的校正算子和插值法进行计算,同时,还对地面控制点(GCPS)进行误差分析,使得其精度满足要求为止。最后将校正好的图像与地形图进行对比,考察校正效果。 2)波段组合及融合 对卫星数据的全色及多光谱波段进行融合。包括选取最佳波段,从多种分辨率融合方法中选取最佳方法进行全色波段和多光谱波段融合,使得图像既有高的空间分辨率和纹理特性,又有丰富的光谱信息,从而达到影像地图信息丰富、视觉效果好、质量高的目的。 3)图像镶嵌

ERDAS IMAGINE遥感图像处理教程要点

《ERDAS IMAGINE遥感图像处理教程》根据作者多年遥感应用研究和ERDAS IMAGINE软件应用经验编著而成,系统地介绍了ERDAS IMAGINE 9.3的软件功能及遥感图像处理方法。全书分基础篇和扩展篇两部分,共25章。基础篇涵盖了视窗操作、数据转换、几何校正、图像拼接、图像增强、图像解译、图像分类、子像元分类、矢量功能、雷达图像、虚拟GIS、空间建模、命令工具、批处理工具、图像库管理、专题制图等ERDAS IMAGINE Professional级的所有功能,以及扩展模块Subpixel、Vector、OrthoRadar、VirtualGIS等;扩展篇则主要针对ERDAS IMAGINE 9.3的新增扩展模块进行介绍,包括图像大气校正(ATCOR)、图像自动配准(AutoSync)、高级图像镶嵌(MosaicPro)、数字摄影测量(LPS)、三维立体分析(Stereo Analyst)、自动地形提取(Automatic Terrain Extraction)、面向对象信息提取(Objective)、智能变化检测(DeltaCue)、智能矢量化(Easytrace)、二次开发(EML)等十个扩展模块的功能。 《ERDAS IMAGINE遥感图像处理教程》将遥感图像处理的理论和方法与ERDAS IMAGINE软件功能融为一体,可以作为ERDAS IMAGINE软件用户的使用教程,对其他从事遥感技术应用研究的科技人员和高校师生也有参考价值。 目录 基础篇 第1章概述2 1.1 遥感技术基础2

1.1.1 遥感的基本概念2 1.1.2 遥感的主要特点2 1.1.3 遥感的常用分类3 1.1.4 遥感的物理基础3 1.2 ERDAS IMAGINE软件系统6 1. 2.1 ERDAS IMAGINE概述6 1.2.2 ERDAS IMAGINE安装7 1.3 ERDAS IMAGINE图标面板11 1. 3.1 菜单命令及其功能11 1.3.2 工具图标及其功能14 1.4 ERDAS IMAGINE功能体系14 第2章视窗操作16 2.1 视窗功能概述16 2.1.1 视窗菜单功能17 2.1.2 视窗工具功能17 2.1.3 快捷菜单功能18 2.1.4 常用热键功能18 2.2 文件菜单操作19 2.2.1 图像显示操作20 2.2.2 图形显示操作22 2.3 实用菜单操作23

ERDAS影像融合操作流程

影象融合流程 影像融合在影象解译模块和雷达影象处理模块中都有,但是雷达模块中的处理效果要相对好一些,下面就两个不同模块中的融合处理流程进行分别介绍。 一、影象解译模块(Interpreter) 1)单击,在弹出的Interpreter菜单中选则Spatial Enhancement (空间增强)弹出Spatial Enhancement菜单,再选择Resolution Merge(分辨率融合)选项。 弹出对话框如下

在Resolution Merge对话框中需要设置下列参数 (1)确定高分辨率输入文件(high Resolution input file); (2)选择影象波段; (3)确定多光谱输入文件(multispectral input file); (4)定义输出文件; (5)选择融合方法。在分辨率变换中,erdas提供了三种融合方法Principal Component(主成分变换法)、Multipalcative(乘积变换)、Brovey transform(比值变换)。其图象分别如下: Principal Component(主成分变换法)

Multipalcative(乘积变换) Brovey transform(比值变换) (6)选择重采样方法。系统提供了两种重采样方法Nearest Neighbor(邻近像元法)、Bilinbear Interpolation(二次线形内插)和Cubic Convolution(立方卷积)。其中 以Cubic Convolution方法最为平滑。 (7)确定Output Options输出图象选项。选择Lgnore Zero Stats,可以忽略像素值为

实验六 遥感影像增强处理

实验六遥感影像增强处理 实习目的:掌握常用的遥感影像增强处理的方法。 实习内容:遥感影像空间、辐射、光谱增强处理的主要方法 空间增强:包括卷积增强处理、纹理分析、自适应滤波等 辐射增强:LUT拉伸处理、直方图均衡化处理、直方图匹配、亮度反转处理等 光谱增强:主成份变换、缨帽变换、色彩变换、指数计算等 图像增强是改善图像质量、增加图像信息量、加强图像判读和识别效果的图像处理方法。图像增强的目的是针对给定图像的不同应用,强调图像的整体或局部特性,将原来不清晰的图像变得清晰或增强某些感兴趣区域的特征,扩大图像中不同物体特征之间的差别,满足某些特殊分析的需要。图像增强的途径是通过一定的手段对原图像附加一些信息或变换数据,有选择的突出图像中感兴趣区域的特征或抑制图像中某些不需要的特征。图像增强的方法包括空间域增强和频率域增强两类。空间域增强包括空间增强、辐射增强和光谱增强。在实际运用中,不是所有的图象增强处理方法都要用到,具体采用哪种图象增强处理方法,视具体的研究区域,研究内容和对象而定。 1.图像解译功能简介(Introduction of Image Interpreter) 利用ERADS IMAGINE 进行图像增强主要采用ERADS IMAGINE的图像解译器(Image Interpreter)模块,该模块包含了50多个用于遥感图像处理的功能模块,这些功能模块在执行过程中都需要通过各种按键或对话框定义参数,多数功能都借助模型生成器(Model Maker)建立了图形模型算法,容易调用或编辑。 图像解译器(Image Interpreter或Interpreter),可以通过两种途径启动:ERDAS图标面板菜单条: Main/Image Interpreter--Image Interpreter 菜单 ERDAS图标面板工具条:点击Interpreter图标一Image Interpreter菜单

相关文档
相关文档 最新文档