文档库 最新最全的文档下载
当前位置:文档库 › 模式识别作业

模式识别作业

模式识别作业
模式识别作业

模式识别作业

题目:车牌识别系统

作者:

学号:

专业:

学院:

任课老师:

车牌识别系统

1 引言

对车辆牌照的识别技术可以作为辨识一辆车最为有效的方法。牌照识别应用了先进的图像处理,模式识别,人工智能技术来获取,处理,解释,记录拍照的图像。

从人的视觉特点出发,车牌目标区域具有如下特点:①车牌底色往往与车身颜色、字符颜色有较大差异;②车牌有一个连续或由于磨损而不连续的边框,车牌内字符有多个,基本呈水平排列,所以在牌照的矩形区域内存在较丰富的边缘,呈现出规则的纹理特征;

③车牌内字符之间的间隔比较均匀,字符和牌照底色在灰度值上存在跳变,而字符本身与牌照底的内部都有较均匀灰度;④不同图像中牌照的具体大小、位置不确定,但其长度比变化有一定范围,存在一个最大和最小长度比。

车牌识别系统一般包括以下几个部分。

图1 车牌识别系统

在第一部分图像采集中,主要通过CCD 摄像头与计算机的视频捕捉卡直接相连来完成图像采集,可以实时在监控图像中抓取到含有车辆的图像。汽车牌照识别(LPR)系统的关键在于后四部分。首先要对采集到的图像进行预处理,而牌照定位又决定其后的车牌字符识别,因此牌照定位是车牌识别系统的关键的关键,牌照定位就是从包含整个车辆的图像中找到牌照区域的位置。

主要研究内容如下:

1.车牌的定位研究。先进行图像的预处理,包括:RGB彩色图像的灰度化、图像灰度拉伸、图像边缘检测、灰度图的二值化等;车牌定位采用基于水平和垂直投影分布特征的方法。

2.字符分割的研究。先对定位后的车牌图像进行预处理,然后按照车牌的先验信息,用区域增长算法来确定候选车牌的字符区域。

3.字符识别的研究。对于提取出的单个字符,先进行归一化操作,再与给定的模板做对比,识别出字符。

2. 图像的定位

2.1 图像的预处理

一般情况下,由CCD采集到的图像会有不理想的情况,如光线过强,或者偏弱,这些都会对后续的图像处理产生一向。而且车牌位于车身下部,靠近散热片,对比度较差,此时若直接对灰度图像进行定位会有不小的困难,为了获得较好处理的灰度图像,在对CCD采集的原始图像进行灰度化后,要对其灰度转换。

首先对图像灰度拉伸,使灰度级占据0--255整个区域,这样做的目的是为了减少光线过强,或者偏弱时造成的灰度级过少.本文直接采用直方图均衡化,这样处理简单,运算量小,效果也较理想。

2.1.1 图像灰度化

汽车图像样本,目前大都是通过摄像机、数码相机等设备拍摄获取的,因而预处理前的图像都是彩色图像。真彩色图像又称RGB图像,它是利用R, G, B3个分量表示一个像素的颜色,R, G, B分别代表红、绿、蓝3种不同的颜色,通过三基色可以合成出任意颜色。所以对一个尺寸为m*n的彩色图像来说,存储为一个二m*n*3的多维数组。如果需要知道图像A中(x, y)处的像素RGB值,则可以使用这样的代码A (x, y,1: 3)。

彩色图像包含着大量的颜色信息,不但在存储上开销很大,而且在处理上也会降低系统的执行速度。由于图像的每个象素都具有三个不同的颜色分t,存在许多与识别无关的信息,不便于进一步的识别工作,因此在对图像进行识别等处理中经常将彩色图像转变为灰度图像,以加快处理速度。

数字图像分为彩色图像和灰度图像。在RGB模型中,如果R=G=B,则颜色表示一种灰度颜色,其中R=G=B的值叫做灰度值.由彩色转换为灰度的过程叫做灰度化处理。灰度图像就是只有强度信息,而没有颜色信息的图像,存储灰度图像只需要一个数据矩阵,矩阵的每个元素表示对应位置的像素的灰度值。彩色图像的象素色为RGB (R, G, B ),灰度图像的象素色为RGB ( r, r, r ), R, G, B可由彩色图像的颜色分解获得.而R, G, B

的取值范围是0-255,所以灰度的级别只有256级。灰度化的处理方法主要有如下三种:

(1)最大值法:使R. G, B的值等于三值中最大的一个,即

R=G=B=max(R,G,B) (3.1) (2)平均值法:使R, G, B的值值等于三值和的平均值,即

R=G=B=

3B

G

R+

+

(3.2) (3)加权平均值法:根据重要性或其它指标给R, G, B赋予不同的权值,并使R, G, B等于它们的值的加权和平均,即

R=G=B=

3WaB

WcG

WrR+

+

(3.3) 其中Wr Wc,Wa,分别为R, G, B的权值。由于人眼对绿色的敏感度最高,对红色的敏

感度次之,对蓝色的敏感度最低,当Wr=0.30, Wa=0.59, Wc=0.11时,能得到最合理的灰度图像。

2.1.2 二值化

图像二值化是指整幅图像画面内仅黑、白二值的图像。在数字图像处理中二值图像占有很重要的地位。这是因为,一方面,有些需要处理的如文字图像、指纹图像、工程图纸等图像本身是二值的;另一方面,在某些情况下即使图像本身是有灰度的,我们也设法使它变成二值图像再进行处理(即灰度图像的二值化)。这是考虑到在实用系统中,要求处理的速度高、成本低、信息量大的浓淡图像处理的花销大。此外二值化的图像能够用几何学中的概念进行分析和特征描述,比灰度图像优势大得多。

在实际的车牌处理系统中,进行图像二值化的关键使确定合适的阈值,使得字符与背景能够分割开来,而且二值变换的结果图像必须要具备良好的保形性,不丢掉有用的形状信息,不会产生额外的空缺等。同时车牌识别系统要求处理的速度高、成本低、信息量大,采用二值图像进行处理,能大大提高处理效率[1]。

二值化的关键是找到合适的阈值t来区分对象和背景。设原灰度图像为f(x,y),二值化后的图像为g(x,y),二值化的过程表示如下:

0 f(x,y)

g(x,y)= (3.4)

f(x,y)>t

二值化,基于实时性的要求,我力求寻找一种快速而且效果较好的方法,能够更有针对性的解决在不同条件下牌照图像的二值化问题。求解阈值的方法很多,微分直方图法、最大方差法、基于灰度的数学期望的方法、可变阈值法等。我们采用最简单的方法,当象素灰度级低于常数C时,[0-C]象素灰度为0,[C-255]象素灰度为255。

2.2 车牌定位

车牌图像往往是在复杂的环境中拍摄得到的,车牌由于与复杂的车身背景融为一体,由于车牌在使用中磨损与灰尘及拍摄仪器的影响以及由于拍摄角度的不同,车牌在图像中往往有很大的形变,如何在复杂背景中准确、快速找出车牌的位置成为车牌识别中的难点[2]。

目前已有不少学者在这方面进行了研究。总结起来主要有如下几类方法:

(1) 基于水平灰度变化特征的方法,这种方法主要在车牌定位以前,需要对图像进行预处理,将彩色图像转换为灰度图像,利用车牌区域水平方向的纹理特征进行车牌定位;

(2) 基于边缘检测的定位方法,这种方法是利用车牌区域丰富的边缘特征进行车牌定位[3],能够进行检测的方法有多种,如Roberts 边缘算子、Prewitt 算子、Sobel 算子以及拉普拉斯边缘检测;

(3) 基于车牌颜色特征的定位方法,这种方法主要是应用车牌的纹理特征、形状特征和颜色特征即利用车牌字符和车牌底色具有明显的反差特征来排除干扰进行车牌的定位;

(4) 基于Hough 变换的车牌定位方法,这种方法是利用车牌边框的几何特征,采取寻找车牌边框直线的方法进行车牌定位;

(5) 基于变换域的车牌定位方法,这种方法是将图像从空域变换到频域进行分析,例如采用小波变换等;

(6) 基于数学形态学的车牌定位方法,这种方法是利用数学形态学图像处理的基本思想,利用一个结构元素来探测一个图像,看是否能将这个结构元素很好的填放在图像内部,同时验证填放元素的方法是否有效。腐蚀、膨胀、开启和关闭是数学形态学的基本运算。

2.3 边缘提取

对图像进行边缘提取,边缘提取的最大好处就是能够突出边缘区域,同时使背景图像中无关的部分暗淡。由于车牌部分是边缘相对集中的区域,在对其边缘分割后,可以看到车牌部分很明显的突现出来。实现方法中,我们采用了水平差分算法,它利用图像后一列像素减去前一列像素,从而得到边缘图像。再对所得的图像二值化处理。实验结果如图2所示

图2 边缘提取后的图像

2.4 车牌边界的确定

由于车牌一般是由字符、背景和边框组成,提取图像的边缘图像后,在字符与背景处就形成了较强的边缘。再考虑汽车本身的特点,通常车牌位于汽车缓冲器上或附近,靠近整幅图像的下部,在往下便是路面,路面一般是比较光滑,因此可以在边缘提取时就很有效的将这部分杂质滤除掉,而使干扰图像的噪声处于车牌之上,如车灯,或散热片。由此,我们采用由下而上的扫描的方法。首先,对边缘图像的象素沿水平方向累加产生一个投影图,如图3所示。

图3 粗略定位的水平投影图

由投影图可以看出有车牌字符的地方,灰度值较高,而且处于图像的下部。

故此,先进行粗略定位,找寻水平投影图大于3分之2最大值的点,找到改点对应的横坐标的最大值,记录坐标。该点记为车牌的下边界。根据车牌的几何特征(在初始处对图像进行归一化处理统一成1000×800的大小),车牌高度大约占100个像素,考虑到噪声等因素的影响,粗略将上下边界分别定义为最大值-120,最大值+50。

在上下界粗定位的基础上进行精细定位,即对图像再进行水平投影,找寻大于3分之2最大值的点,记录改点所对应的横坐标的最大值和最小值,那么此两点为车牌的上下边界点。如图4所示

图4 精细定位的水平投影图

在定位出上下边界后,再对特征图像进行垂直投影, 得到投影图后,对投影图进行处理,重复水平定位的理念,找寻大于3分之2最大值的点所对应的横坐标的最大值和最小值,即为车牌的左右边界点,完成定位。如图5所示

图5 垂直投影图

3 字符分割

区域增长的基本思想是将具有相似性质的象素集合起来构成区域。首先在待分割的每个区域中选择一个种子点作为增长的起始点,然后在种子点的领域中搜索那些与种子点的相似特征度满足指定增长准则的象素,并与种子点所在区域合并。此时将新合并的象素作为新的种子点,继续以上搜索和合并过程,直到没有可以合并的象素为止。本文的算法中采用区域增长算法来确定候选车牌的字符区域。首先要确定起始的种子点。字符的像素值最大为255,基于这个信息,选定像素值为255的点为起始点。然后选择下面的增长标准:假定一个像素属于一个区域,则这个像素和这个区域里至少有八个像素点是相连的。如果一个像素同时又和其他区域相连了,则这些区域合并在一起。由于光照或者背景噪声等的影响,区域增长算法可能生错误的字符区域,就需要根据前文所述的车牌先验信息来删除错误的区域,从而准确定位字符区域。

按照车牌的先验信息字符的尺寸为45mm* 90mm,字符间隔为12mm,间隔符宽10mm,那么第二个和第三个字符的间隔为34mm,车牌的左边界和第一个字符的间隔以及车牌右边界和最后一个字符的间隔为25mm,字符到上下边界的间隔也为25mm。假定字符宽度为cw,字符高度为ch。则字符间隔为(12/45)*cw =0.27*cw,第二个和第三个字符的间隔为(34/45)*cw=0.76*cw,而车牌的左边界和第一个字符的间隔以及车牌右边界和最后一个字符的间隔就为(25/45)*cw=0.56*cw,字符到上下边界的间隔为(25/45)*ch=0.56*ch。其中cw=(45/440)*a,ch=(90/140)*b (a,b为分割车牌的宽度和高度)。根据以上的信息就可以对车牌的字符进行准确的定位。如图6所示

图6 字符分割

4 字符识别

4.1 归一化

因为扫描得到的图像的字符大小存在较大的差异,统一尺寸有助于字符识别的准确性,提高识别率,从而与模板进行匹配。归一化主要包括位置归一化、大小归一化及笔

划粗细归一化(常用细化算法)。在这里本人对大小归一化。对不同大小的字符进行变换,使之成为同一尺寸大小的字符,这个过程称为字符大小归一化。通过字符大小归一化,许多特征就可以用于识别不同字号混排的字符。具体实现方法,首先对图像二值化处理,这里的阈值根据大津法得到,然后将字符的外边框按比例线性放大或缩小成为规定尺寸的字符。如图7所示

图7 图像归一化

4.2 匹配识别字符

对分割出来的字符进行识别的方法很多,主要有以下几种方法:

(1)利用字符的结构特征和变换(如Fourier 变换、Karhunen-Loeve 变换等)进行特征提取。该方法对字符的倾斜、变形都有很高的适应性,但运算量大,对计算机性能的要求较高。

(2)利用字符统计特征进行特征提取。如提取字符的投影特征、网格特征和轮廓特征组成字符特征矢量进行匹配的方法,识别率较高。

(3)基于字符结构分析的识别方法。该方法可以识别有较大旋转、变形、缩放的字符图像,但需要进行复杂的字符笔划分析和抽取,对字符图像质量要求较高。

(4)模板匹配法。由于车辆牌照字符中只有26 个大写英文字母、10 个阿拉伯数字和约50 个汉字,所以字符集合较小,该方法对于有一定变形、污损或笔画缺损的字符图像有较好的识别效果,总体识别率较高,同时也能满足实时性的要求。

经过实验,本文采用的是第四种模板匹配算法。将分割出来的字符图像与模板图像相减,差值最小的便是与之匹配的模板,从而识别出字符。

图8 字符识别流程图

5实验结果

图9 z车牌图片定位剪切图

图10 灰度图

图11 处理后的二值图

图12 字符识别图

6总结与展望

本文对车牌识别系统的三大模块----车牌定位、字符分割和字符识别都进行了研究工作。下面将本文的主要工作及创新研究作如下的总结。

1. 车牌定位:读入图像,然后是进行图像的灰度化、灰度拉伸。接着分析了边缘算子的检测及图像差分的边缘检测后选择了图像差分的边缘检测。二值化车牌图像后,采用改进的投影法对图像进行水平定位,然后在粗定位的基础上进行了车牌精确定位。最后采用

投影法对图像进行垂直定位,定位车牌区域。

2. 字符分割:利用车牌的先验知识对字符进行分割

3. 字符识别:归一化字符图像为48×24的字符图像,比较模板图像与字符图像,找到与之匹配的模板,识别出字符。

由于客观条件及时间的限制,本文在很多方面还存在不足,有待于进一步的研究和探讨,主要有以下几点:

1.车牌定位中垂直定位容易受到噪声的影响,进而无法精确定位。

2. 字符分割直接采用的先验知识分割虽运算量小,但对定位要求高,这样通用性较弱。

3.模板匹配法虽然识别率高,但运算量较大。

在智能交通系统中,车牌自动识别系统是智能化交通系统非常重要的发展方向。它在车辆过路、过桥全自动不停车收费,交通流量控制指标的测量,车辆自动识别,高速公路上的事故自动测报,不停车检查,车辆定位,汽车防盗,稽查和追踪车辆违规、违法行为,维护交通安全和城市治安,防止交通堵塞,提高收费路桥的服务速度,缓解交通紧张状况等方面有重要作用,有重要的现实应用意义。

在车辆牌照字符识别系统的研究领域,可以看到两个明显的趋势:一是单一的预处理和识别技术都无法达到理想的结果,多种方法的有机结合才能使系统有效识别能力提高;二是在有效性和实用的原则下,结合神经网络和人工智能的新技术的应用是研究的一个方向。

北邮模式识别课堂作业答案(参考)

第一次课堂作业 1.人在识别事物时是否可以避免错识 2.如果错识不可避免,那么你是否怀疑你所看到的、听到的、嗅 到的到底是真是的,还是虚假的 3.如果不是,那么你依靠的是什么呢用学术语言该如何表示。 4.我们是以统计学为基础分析模式识别问题,采用的是错误概率 评价分类器性能。如果不采用统计学,你是否能想到还有什么合理地分类 器性能评价指标来替代错误率 1.知觉的特性为选择性、整体性、理解性、恒常性。错觉是错误的知觉,是在特定条件下产生的对客观事物歪曲的知觉。认知是一个过程,需要大脑的参与.人的认知并不神秘,也符合一定的规律,也会产生错误 2.不是 3.辨别事物的最基本方法是计算 . 从不同事物所具有的不同属性为出发点认识事物. 一种是对事物的属性进行度量,属于定量的表示方法(向量表示法 )。另一种则是对事务所包含的成分进行分析,称为定性的描述(结构性描述方法)。 4.风险 第二次课堂作业 作为学生,你需要判断今天的课是否点名。结合该问题(或者其它你熟悉的识别问题,如”天气预报”),说明: 先验概率、后验概率和类条件概率 按照最小错误率如何决策 按照最小风险如何决策 ωi为老师点名的事件,x为判断老师点名的概率 1.先验概率: 指根据以往经验和分析得到的该老师点名的概率,即为先验概率 P(ωi ) 后验概率: 在收到某个消息之后,接收端所了解到的该消息发送的概率称为后验概率。 在上过课之后,了解到的老师点名的概率为后验概率P(ωi|x) 类条件概率:在老师点名这个事件发生的条件下,学生判断老师点名的概率p(x| ωi ) 2. 如果P(ω1|X)>P(ω2|X),则X归为ω1类别 如果P(ω1|X)≤P(ω2|X),则X归为ω2类别 3.1)计算出后验概率 已知P(ωi)和P(X|ωi),i=1,…,c,获得观测到的特征向量X 根据贝叶斯公式计算 j=1,…,x

模式识别大作业02125128(修改版)

模式识别大作业 班级 021252 姓名 谭红光 学号 02125128 1.线性投影与Fisher 准则函数 各类在d 维特征空间里的样本均值向量: ∑∈= i k X x k i i x n M 1 ,2,1=i (1) 通过变换w 映射到一维特征空间后,各类的平均值为: ∑∈= i k Y y k i i y n m 1,2,1=i (2) 映射后,各类样本“类内离散度”定义为: 22 ()k i i k i y Y S y m ∈= -∑,2,1=i (3) 显然,我们希望在映射之后,两类的平均值之间的距离越大越好,而各类的样本类内离 散度越小越好。因此,定义Fisher 准则函数: 2 1222 12||()F m m J w s s -= + (4) 使F J 最大的解* w 就是最佳解向量,也就是Fisher 的线性判别式. 从 )(w J F 的表达式可知,它并非w 的显函数,必须进一步变换。 已知: ∑∈= i k Y y k i i y n m 1,2,1=i , 依次代入上两式,有: i T X x k i T k X x T i i M w x n w x w n m i k i k === ∑∑∈∈)1 (1 ,2,1=i (5) 所以:2 21221221||)(||||||||M M w M w M w m m T T T -=-=- w S w w M M M M w b T T T =--=))((2121 (6)

其中:T b M M M M S ))((2121--= (7) b S 是原d 维特征空间里的样本类内离散度矩阵,表示两类均值向量之间的离散度大 小,因此,b S 越大越容易区分。 将(4.5-6) i T i M w m =和(4.5-2) ∑∈= i k X x k i i x n M 1代入(4.5-4)2i S 式中: ∑∈-= i k X x i T k T i M w x w S 22)( ∑∈?--? =i k X x T i k i k T w M x M x w ))(( w S w i T = (8) 其中:T i X x k i k i M x M x S i k ))((--= ∑=,2,1=i (9) 因此:w S w w S S w S S w T T =+=+)(212221 (10) 显然: 21S S S w += (11) w S 称为原d 维特征空间里,样本“类内离散度”矩阵。 w S 是样本“类内总离散度”矩阵。 为了便于分类,显然 i S 越小越好,也就是 w S 越小越好。

贝叶斯决策理论-模式识别课程作业

研究生课程作业 贝叶斯决策理论 课程名称模式识别 姓名xx 学号xxxxxxxxx 专业软件工程 任课教师xxxx 提交时间2019.xxx 课程论文提交时间:2019 年3月19 日

需附上习题题目 1. 试简述先验概率,类条件概率密度函数和后验概率等概念间的关系: 先验概率 针对M 个事件出现的可能性而言,不考虑其他任何条件 类条件概率密度函数 是指在已知某类别的特征空间中,出现特 征值X 的概率密度,指第 类样品其属性X 是如何分布的。 后验概率是指通过调查或其它方式获取新的附加信息,利用贝叶斯公式对先验概率进行修正,而后得到的概率。贝叶斯公式可以计算出该样品分属各类别的概率,叫做后验概率;看X 属于那个类的可能性最大,就把X 归于可能性最大的那个类,后验概率作为识别对象归属的依据。贝叶斯公式为 类别的状态是一个随机变量.而某种状态出现的概率是可以估计的。贝叶斯公式体现了先验概率、类条件概率密度函数、后验概率三者关系的式子。 2. 试写出利用先验概率和分布密度函数计算后验概率的公式 3. 写出最小错误率和最小风险决策规则相应的判别函数(两类问题)。 最小错误率 如果12(|)(|)P x P x ωω>,则x 属于1ω 如果12(|)(|)P x P x ωω<,则x 属于2ω 最小风险决策规则 If 12(|) (|) P x P x ωλω< then 1x ω∈ If 12(|) (|) P x P x ωλω> then 2x ω∈

4. 分别写出以下两种情况下,最小错误率贝叶斯决策规则: (1)两类情况,且12(|)(|)P X P X ωω= (2)两类情况,且12()()P P ωω= 最小错误率贝叶斯决策规则为: If 1...,(|)()max (|)i i j j c p x P P x ωωω==, then i x ω∈ 两类情况: 若1122(|)()(|)()p X P p X P ωωωω>,则1X ω∈ 若1122(|)()(|)()p X P p X P ωωωω<,则2X ω∈ (1) 12(|)(|)P X P X ωω=, 若12()()P P ωω>,则1X ω∈ 若12()()P P ωω<,则2X ω∈ (2) 12()()P P ωω=,若12(|)(|)p X p X ωω>,则1X ω∈ 若12(|)(|)p X p X ωω<,则2X ω∈ 5. 对两类问题,证明最小风险贝叶斯决策规则可表示为, 若 112222221111(|)()() (|)()() P x P P x P ωλλωωλλω->- 则1x ω∈,反之则2x ω∈ 计算条件风险 2 111111221(|)(|)(|)(|)j j j R x p x P x P x αλωλωλω===+∑ 2 222112221 (|)(|)(|)(|)j j j R x p x P x P x αλωλωλω===+∑ 如果 111122(|)(|)P x P x λωλω+<211222(|)(|)P x P x λωλω+ 2111112222()(|)()(|)P x P x λλωλλω->- 211111122222()()(|)()()(|)P p x P p x λλωωλλωω->-

模式识别特征选择与提取

模式识别特征选择与提取 中国矿业大学计算机科学与技术学院电子信息科学系 班级:信科11-1班,学号:08113545,姓名:褚钰博 联系方法(QQ或手机):390345438,e-mail:390345438@https://www.wendangku.net/doc/b07257772.html, 日期:2014 年06月10日 摘要 实际问题中常常需要维数约简,如人脸识别、图像检索等。而特征选择和特征提取是两种最常用的维数约简方法。特征选择是从某些事物中提取出本质性的功能、应用、优势等,而特征提取是对特征空间进行变换,将原始特征空间映射到低维空间中。 本文是对主成分分析和线性判别分析。 关键词:特征选择,特征提取,主成分分析,线性判别分析 1.引言 模式识别的主要任务是利用从样本中提取的特征,并将样本划分为相应的模式类别,获得好的分类性能。而分类方法与分类器设计,都是在d(变量统一用斜体)维特征空间已经确定的前提下进行的。因此讨论的分类器设计问题是一个选择什么准则、使用什么方法,将已确定的d维特征空间划分成决策域的问题。对分类器设计方法的研究固然重要,但如何确定合适的特征空间是设计模式识别系统另一个十分重要,甚至更为关键的问题。如果所选用的特征空间能使同类物体分布具有紧致性,即各类样本能分布在该特征空间中彼此分割开的区域内,这就为分类器设计成功提供良好的基础。反之,如果不同类别的样本在该特征空间中混杂在一起,再好的设计方法也无法提高分类器的准确性。本文要讨论的问题就是特征空间如何设计的问题。 基于主成分分析的特征选择算法的思想是建立在这样的基础上的:主成分分析方法将原始特征通过线性变换映射到新的低维空间时,获得的主成分是去了新的物理意义,难以理解,并且主成分是所有原始特征的线性组合。所以将主成分分析与特征选择相结合,设计多种相似性度量准则,通过找到与主成分相关的关键特征或者删除冗余、不相关以及没有意义的特征,将主成分又重新映射到原始空间,来理解成主成分的实际意义。 基于线性判别分析的高维特征选择将单个特征的Fisher准则与其他特征选择算法相结合,分层消除不相关特征与冗余特征。不相关特征滤波器按照每个特征的Fisher评价值进行特征排序,来去除噪音和不相关特征。通过对高维数据特征关联性的分析,冗余特征滤波器选用冗余度量方法和基于相关性的快速过滤器算法。分别在不同情境下进行数据分类实验,验证其性能。

模式识别-作业4

第五章作业: 作业一: 设有如下三类模式样本集ω1,ω2和ω3,其先验概率相等,求S w 和S b ω1:{(1 0)T , (2 0) T , (1 1) T } ω2:{(-1 0)T , (0 1) T , (-1 1) T } ω3:{(-1 -1)T , (0 -1) T , (0 -2) T } 答案: 由于三类样本集的先验概率相等,则概率均为1/3。 多类情况的类内散布矩阵,可写成各类的类内散布矩阵的先验概率的加权和,即: ∑∑=== --= c i i i T i i c i i w C m x m x E P S 1 1 }|))(({)(ωω 其中C i 是第i 类的协方差矩阵。 其中1m = ,2m = 则=++=321S w w w w S S S 1/3 + + = 类间散布矩阵常写成: T i i c i i b m m m m P S ))(()(001 --= ∑=ω 其中,m 0为多类模式(如共有c 类)分布的总体均值向量,即:

c i m P x E m i c i i i ,,2,1,,)(}{1 0K =?= =∑=ωω 0m = = 则 T i i c i i b m m m m P S ))(()(001 --= ∑=ω=++ = 作业二: 设有如下两类样本集,其出现的概率相等: ω1:{(0 0 0)T , (1 0 0) T , (1 0 1) T , (1 1 0) T } ω2:{(0 0 1)T , (0 1 0) T , (0 1 1) T , (1 1 1) T } 用K-L 变换,分别把特征空间维数降到二维和一维,并画出样本在该空间中的位置。 答案: =+=∑∑==i i N j j N j j x x m 1 21 1)4 1 4 1 ( 21 将所有这些样本的各分量都减去0.5,便可以将所有这些样本 的均值移到原点,即(0,0,0)点。 新得到的两类样本集为:

北邮模式识别课堂作业答案(参考)

第一次课堂作业 ? 1.人在识别事物时是否可以避免错识? ? 2.如果错识不可避免,那么你是否怀疑你所看到的、听到的、嗅到的到底 是真是的,还是虚假的? ? 3.如果不是,那么你依靠的是什么呢?用学术语言该如何表示。 ? 4.我们是以统计学为基础分析模式识别问题,采用的是错误概率评价分类 器性能。如果不采用统计学,你是否能想到还有什么合理地分类器性能评价指标来替代错误率? 1.知觉的特性为选择性、整体性、理解性、恒常性。错觉是错误的知觉,是在特定条件下产生的对客观事物歪曲的知觉。认知是一个过程,需要大脑的参与.人的认知并不神秘,也符合一定的规律,也会产生错误 2.不是 3.辨别事物的最基本方法是计算.从不同事物所具有的不同属性为出发点认识事物.一种是对事物的属性进行度量,属于定量的表示方法(向量表示法)。另一种则是对事务所包含的成分进行分析,称为定性的描述(结构性描述方法)。 4.风险 第二次课堂作业 ?作为学生,你需要判断今天的课是否点名。结合该问题(或者其它你熟悉的识别问题, 如”天气预报”),说明: ?先验概率、后验概率和类条件概率? ?按照最小错误率如何决策? ?按照最小风险如何决策? ωi为老师点名的事件,x为判断老师点名的概率 1.先验概率:指根据以往经验和分析得到的该老师点名的概率,即为先验概率P(ωi ) 后验概率:在收到某个消息之后,接收端所了解到的该消息发送的概率称为后验概率。 在上过课之后,了解到的老师点名的概率为后验概率P(ωi|x) 类条件概率:在老师点名这个事件发生的条件下,学生判断老师点名的概率p(x| ωi ) 2. 如果P(ω1|X)>P(ω2|X),则X归为ω1类别 如果P(ω1|X)≤P(ω2|X),则X归为ω2类别 3.1)计算出后验概率 已知P(ωi)和P(X|ωi),i=1,…,c,获得观测到的特征向量X 根据贝叶斯公式计算 j=1,…,x 2)计算条件风险

模式识别作业(全)

模式识别大作业 一.K均值聚类(必做,40分) 1.K均值聚类的基本思想以及K均值聚类过程的流程图; 2.利用K均值聚类对Iris数据进行分类,已知类别总数为3。给出具体的C语言代码, 并加注释。例如,对于每一个子函数,标注其主要作用,及其所用参数的意义,对程序中定义的一些主要变量,标注其意义; 3.给出函数调用关系图,并分析算法的时间复杂度; 4.给出程序运行结果,包括分类结果(只要给出相对应的数据的编号即可)以及循环 迭代的次数; 5.分析K均值聚类的优缺点。 二.贝叶斯分类(必做,40分) 1.什么是贝叶斯分类器,其分类的基本思想是什么; 2.两类情况下,贝叶斯分类器的判别函数是什么,如何计算得到其判别函数; 3.在Matlab下,利用mvnrnd()函数随机生成60个二维样本,分别属于两个类别(一 类30个样本点),将这些样本描绘在二维坐标系下,注意特征值取值控制在(-5,5)范围以内; 4.用样本的第一个特征作为分类依据将这60个样本进行分类,统计正确分类的百分 比,并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志(正确分类的样本点用“O”,错误分类的样本点用“X”)画出来; 5.用样本的第二个特征作为分类依据将这60个样本再进行分类,统计正确分类的百分 比,并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志画出来; 6.用样本的两个特征作为分类依据将这60个样本进行分类,统计正确分类的百分比, 并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志画出来; 7.分析上述实验的结果。 8.60个随即样本是如何产生的的;给出上述三种情况下的两类均值、方差、协方差矩 阵以及判别函数; 三.特征选择(选作,15分) 1.经过K均值聚类后,Iris数据被分作3类。从这三类中各选择10个样本点; 2.通过特征选择将选出的30个样本点从4维降低为3维,并将它们在三维的坐标系中

模式识别作业2

作业一: 在一个10类的模式识别问题中,有3类单独满足多类情况1,其余的类别满足多类情况2。问该模式识别问题所需判别函数的最少数目是多少? 答案:将10类问题可看作4类满足多类情况1的问题,可将3类单独满足多类情况1的类找出来,剩下的7类全部划到4类中剩下的一个子类中。再在此子类中,运用多类情况2的判别法则进行分类,此时需要7*(7-1)/2=21个判别函数。故共需要4+21=25个判别函数。 作业二: 一个三类问题,其判别函数如下: d1(x)=-x1, d2(x)=x1+x2-1, d3(x)=x1-x2-1 1.设这些函数是在多类情况1条件下确定的,绘出其判别界 面和每一个模式类别的区域。 2.设为多类情况2,并使:d12(x)= d1(x), d13(x)= d2(x), d23(x)= d3(x)。绘出其判别界面和多类情况2的区域。 3. 设d1(x), d2(x)和d3(x)是在多类情况3的条件下确定的,绘 出其判别界面和每类的区域。 答案: 1

2

3 作业三: 两类模式,每类包括5个3维不同的模式,且良好分布。如果它们是线性可分的,问权向量至少需要几个系数分量?假如要建立二次的多项式判别函数,又至少需要几个系数分量?(设模式的良好分布不因模式变化而改变。) 答案:如果它们是线性可分的,则至少需要4个系数分量;如果要建立二次的多项式判别函数,则至少需要10 25 C 个系数分量。 作业四: 用感知器算法求下列模式分类的解向量w :

ω1: {(0 0 0)T, (1 0 0)T, (1 0 1)T, (1 1 0)T} ω2: {(0 0 1)T, (0 1 1)T, (0 1 0)T, (1 1 1)T} 答案:将属于ω2的训练样本乘以(-1),并写成增广向量的形式。 x①=(0 0 0 1)T,x②=(1 0 0 1)T,x③=(1 0 1 1)T,x④=(1 1 0 1)T x⑤=(0 0 -1 -1)T,x⑥=(0 -1 -1 -1)T,x⑦=(0 -1 0 -1)T,x⑧=(-1 -1 -1 -1)T 第一轮迭代:取C=1,w(1)=(0 0 0 0)T 因w T(1)x①=(0 0 0 0)(0 0 0 1)T=0≯0,故w(2)=w(1)+x①=(0 0 0 1) 因w T(2)x②=(0 0 0 1)(1 0 0 1)T =1>0,故w(3)=w(2)=(0 0 0 1)T 因w T(3)x③=(0 0 0 1)(1 0 1 1)T=1>0,故w(4)=w(3)=(0 0 0 1)T 因w T(4)x④=(0 0 0 1)(1 1 0 1)T=1>0,故w(5)=w(4)=(0 0 0 1)T 因w T(5)x⑤=(0 0 0 1)(0 0 -1 -1)T=-1≯0,故w(6)=w(5)+x⑤=(0 0 -1 0)T 因w T(6)x⑥=(0 0 -1 0)(0 -1 -1 -1)T=1>0,故w(7)=w(6)=(0 0 -1 0)T 因w T(7)x⑦=(0 0 -1 0)(0 -1 0 -1)T=0≯0,故w(8)=w(7)+x⑦=(0 -1 -1 -1)T 因w T(8)x⑧=(0 -1 -1 -1)(-1 -1 -1 -1)T=3>0,故w(9)=w(8)=(0 -1 -1 -1)T 因为只有对全部模式都能正确判别的权向量才是正确的解,因此需进行第二轮迭代。 第二轮迭代:

神经网络大作业

神经网络的基本特征及其在战斗识别领域的应用前景简介 —神经网络原理及应用报告 课程名称:神经网络原理及应用 课程编号: 指导教师: 学院: 班级: 姓名: 学号: 日期:

神经网络的基本特征及其在战斗识别领域的应用前景简介 摘要:在未来的军事对抗上,对军事打击的物理距离越来越大,对打击的反应时间的要求越来越短,对打击的精度要求越来越高。在这种情况下,迅速且精确的敌我识别系统显得尤其重要。传统的战斗识别方式早已遇到了瓶颈,而神经网络因为它在信息、信号处理、模式识别方面有些独到之处,近年来受到各国军界的普遍重视。 关键词:军事,战斗识别,模式识别,敌我识别,神经网络 1 引言 众多科学家预言,21世纪将是“生物”世纪。这说明生物学的研究和应用已进入了空前繁荣的时代。神经网络系统理论就是近十多年来受其影响而得到飞速发展的一个世界科学研究的前沿领域。这股研究热潮必然会影响到军事技术的研究。在现代战争中,因为远程制导武器的广泛应用,绝大多数军事打击都不再依靠肉眼来辨析敌我,战场上的敌我识别变成了一个重要的问题。据统计,1991年的海湾战争期间,美军与友军之间的误伤比例高达24%;在伊拉克战争期间,共发生17起误伤事件,死18人,伤47人。两场战争的伤亡结果表明,单一的敌我识别武器已不能适应现代战争复杂的作战环境和作战要求。所以提高军队战斗识别的效率是现代军事科技研究中一个极其重要的课题。神经网络作为新的热门技术,必然受到军事研究学者们的青睐。本文只选取战斗识别这一领域,简要探讨神经网络技术在战斗识别领域中的应用前景,但求管中一窥,抛砖引玉。 2 神经网络简介 2.1 神经网络的历史 神经网络的研究可以追溯到上个世纪的1890年。但真正展开神经网络理论研究却始于本世纪40年代。1943年,有心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型——MP模型,从此开创了神经网络理论研究的新时代。MP模型以集体并行计算结构来描述神经网络及网络的运行机制,可完成有限的逻辑运算。 1949年,Hebb通过对大脑神经的细胞、人的学习行为和条件反射等一系列

黄庆明 模式识别与机器学习 第三章 作业

·在一个10类的模式识别问题中,有3类单独满足多类情况1,其余的类别满足多类情况2。问该模式识别问题所需判别函数的最少数目是多少? 应该是252142 6 *74132 7=+=+ =++C 其中加一是分别3类 和 7类 ·一个三类问题,其判别函数如下: d1(x)=-x1, d2(x)=x1+x2-1, d3(x)=x1-x2-1 (1)设这些函数是在多类情况1条件下确定的,绘出其判别界面和每一个模式类别的区域。 (2)设为多类情况2,并使:d12(x)= d1(x), d13(x)= d2(x), d23(x)= d3(x)。绘出其判别界面和多类情况2的区域。

(3)设d1(x), d2(x)和d3(x)是在多类情况3的条件下确定的,绘出其判别界面和每类的区域。 ·两类模式,每类包括5个3维不同的模式,且良好分布。如果它们是线性可分的,问权向量至少需要几个系数分量?假如要建立二次的多项式判别函数,又至少需要几个系数分量?(设模式的良好分布不因模式变化而改变。) 如果线性可分,则4个 建立二次的多项式判别函数,则102 5 C 个 ·(1)用感知器算法求下列模式分类的解向量w: ω1: {(0 0 0)T , (1 0 0)T , (1 0 1)T , (1 1 0)T } ω2: {(0 0 1)T , (0 1 1)T , (0 1 0)T , (1 1 1)T } 将属于ω2的训练样本乘以(-1),并写成增广向量的形式。 x ①=(0 0 0 1)T , x ②=(1 0 0 1)T , x ③=(1 0 1 1)T , x ④=(1 1 0 1)T x ⑤=(0 0 -1 -1)T , x ⑥=(0 -1 -1 -1)T , x ⑦=(0 -1 0 -1)T , x ⑧=(-1 -1 -1 -1)T 第一轮迭代:取C=1,w(1)=(0 0 0 0) T 因w T (1) x ① =(0 0 0 0)(0 0 0 1) T =0 ≯0,故w(2)=w(1)+ x ① =(0 0 0 1) 因w T (2) x ② =(0 0 0 1)(1 0 0 1) T =1>0,故w(3)=w(2)=(0 0 0 1)T 因w T (3)x ③=(0 0 0 1)(1 0 1 1)T =1>0,故w(4)=w(3) =(0 0 0 1)T 因w T (4)x ④=(0 0 0 1)(1 1 0 1)T =1>0,故w(5)=w(4)=(0 0 0 1)T 因w T (5)x ⑤=(0 0 0 1)(0 0 -1 -1)T =-1≯0,故w(6)=w(5)+ x ⑤=(0 0 -1 0)T 因w T (6)x ⑥=(0 0 -1 0)(0 -1 -1 -1)T =1>0,故w(7)=w(6)=(0 0 -1 0)T 因w T (7)x ⑦=(0 0 -1 0)(0 -1 0 -1)T =0≯0,故w(8)=w(7)+ x ⑦=(0 -1 -1 -1)T 因w T (8)x ⑧=(0 -1 -1 -1)(-1 -1 -1 -1)T =3>0,故w(9)=w(8) =(0 -1 -1 -1)T 因为只有对全部模式都能正确判别的权向量才是正确的解,因此需进行第二轮迭代。 第二轮迭代: 因w T (9)x ①=(0 -1 -1 -1)(0 0 0 1)T =-1≯0,故w(10)=w(9)+ x ① =(0 -1 -1 0)T

《模式识别》大作业人脸识别方法

《模式识别》大作业人脸识别方法 ---- 基于PCA 和欧几里得距离判据的模板匹配分类器 一、 理论知识 1、主成分分析 主成分分析是把多个特征映射为少数几个综合特征的一种统计分析方法。在多特征的研究中,往往由于特征个数太多,且彼此之间存在着一定的相关性,因而使得所观测的数据在一定程度上有信息的重叠。当特征较多时,在高维空间中研究样本的分布规律就更麻烦。主成分分析采取一种降维的方法,找出几个综合因子来代表原来众多的特征,使这些综合因子尽可能地反映原来变量的信息,而且彼此之间互不相关,从而达到简化的目的。主成分的表示相当于把原来的特征进行坐标变换(乘以一个变换矩阵),得到相关性较小(严格来说是零)的综合因子。 1.1 问题的提出 一般来说,如果N 个样品中的每个样品有n 个特征12,,n x x x ,经过主成分分析,将 它们综合成n 综合变量,即 11111221221122221122n n n n n n n nn n y c x c x c x y c x c x c x y c x c x c x =+++?? =+++?? ? ?=+++? ij c 由下列原则决定: 1、i y 和j y (i j ≠,i,j = 1,2,...n )相互独立; 2、y 的排序原则是方差从大到小。这样的综合指标因子分别是原变量的第1、第2、……、 第n 个主分量,它们的方差依次递减。 1.2 主成分的导出 我们观察上述方程组,用我们熟知的矩阵表示,设12n x x X x ??????= ?????? 是一个n 维随机向量,12n y y Y y ??????=?????? 是满足上式的新变量所构成的向量。于是我们可以写成Y=CX,C 是一个正交矩阵,满足CC ’=I 。 坐标旋转是指新坐标轴相互正交,仍构成一个直角坐标系。变换后的N 个点在1y 轴上

模式识别作业Homework#2

Homework #2 Note:In some problem (this is true for the entire quarter) you will need to make some assumptions since the problem statement may not fully specify the problem space. Make sure that you make reasonable assumptions and clearly state them. Work alone: You are expected to do your own work on all assignments; there are no group assignments in this course. You may (and are encouraged to) engage in general discussions with your classmates regarding the assignments, but specific details of a solution, including the solution itself, must always be your own work. Problem: In this problem we will investigate the importance of having the correct model for classification. Load file hw2.mat and open it in Matlab using command load hw2. Using command whos, you should see six array c1, c2, c3 and t1, t2, t3, each has size 500 by 2. Arrays c1, c2, c3 hold the training data, and arrays t1, t2, t3 hold the testing data. That is arrays c1, c2, c3 should be used to train your classifier, and arrays t1, t2, t3 should be used to test how the classifier performs on the data it hasn’t seen. Arrays c1 holds training data for the first class, c2 for the second class, c3 for the third class. Arrays t1, t2, t3 hold the test data, where the true class of data in t1, t2, t3 comes from the first, second, third classed respectively. Of course, array ci and ti were drawn from the same distribution for each i. Each training and testing example has 2 features. Thus all arrays are two dimensional, the number of rows is equal to the number of examples, and there are 2 columns, column 1 has the first feature, column 2 has the second feature. (a)Visualize the examples by using Matlab scatter command a plotting each class in different color. For example, for class 1 use scatter(c1(:,1),c1(:,2),’r’);. Other possible colors can be found by typing help plot. (b)From the scatter plot in (a), for which classes the multivariate normal distribution looks like a possible model, and for which classes it is grossly wrong? If you are not sure how to answer this part, do parts (c-d) first. (c)Suppose we make an erroneous assumption that all classed have multivariate normal Nμ. Compute the Maximum Likelihood estimates for the means and distributions()∑, covariance matrices (remember you have to do it separately for each class). Make sure you use only the training data; this is the data in arrays c1, c2, and c3. (d)You can visualize what the estimated distributions look like using Matlab contour(). Recall that the data should be denser along the smaller ellipse, because these are closer to the estimated mean. (e)Use the ML estimates from the step (c) to design the ML classifier (this is the Bayes classifier under zero-one loss function with equal priors). Thus we are assuming that priors are the same for each class. Now classify the test example (that is only those

模式识别课程作业proj03-01

模式识别理论与方法 课程作业实验报告 实验名称:Maximum-Likelihood Parameter Estimation 实验编号:Proj03-01 姓 名: 学 号:规定提交日期:2012年3月27日 实际提交日期:2012年3月27日 摘 要: 参数估计问题是统计学中的经典问题,其中最常用的一种方法是最大似然估计法,最大似然估计是把待估计的参数看作是确定性的量,只是其取值未知。最佳估计就是使得产生已观测到的样本的概率为最大的那个值。 本实验研究的训练样本服从多元正态分布,比较了单变量和多维变量的最大似然估计情况,对样本的均值、方差、协方差做了最大似然估计。 实验结果对不同方式计算出的估计值做了比较分析,得出结论:对均值的最大似然估计 就是对全体样本取平均;协方差的最大似然估计则是N 个)'?x )(?x (u u k k --矩阵的算术平均,对方差2 σ的最大似然估计是有偏估计。 一、 技术论述

(1)高斯情况:∑和u 均未知 实际应用中,多元正态分布更典型的情况是:均值u 和协方差矩阵∑都未知。这样,参数向量θ就由这两个成分组成。 先考虑单变量的情况,其中参数向量θ的组成成分是:221,σθθ==u 。这样,对于单个训练样本的对数似然函数为: 2 12 2 )(212ln 21)(ln θθπθ θ-- - =k k x x p (1) 对上式关于变量θ对导: ???? ? ???????-+--=?=?2 2 2 12 12 2)(21 )(1 )(ln θθθθθθθθk k k x x x p l (2) 运用式l θ?=0,我们得到对于全体样本的对数似然函数的极值条件 0)?(?1 n 112=-∑=k k x θθ (3) 0?) (?11 2 2 2 112 =-+ -∑ ∑==n k k n k x θθθ (4) 其中1?θ,2?θ分别是对于1θ,2θ的最大似然估计。 把1?θ,2?θ用u ?,2?σ代替,并进行简单的整理,我们得到下述的对于均值和方差的最大似然估计结果 ∑==n k k x n u 1 1 ? (5) 2 1 2 )?(1 ?∑=-= n k k u x n σ (6) 当高斯函数为多元时,最大似然估计的过程也是非常类似的。对于多元高斯分布的均值u 和协方差矩阵∑的最大似然估计结果为: ∑=1 1 ?n k x n u (7) t k n k k u x u x )?()?(n 1 ?1 --=∑ ∑= (8) 二、 实验结果

华南理工大学《模式识别》大作业报告

华南理工大学《模式识别》大作业报告 题目:模式识别导论实验 学院计算机科学与工程 专业计算机科学与技术(全英创新班) 学生姓名黄炜杰 学生学号201230590051 指导教师吴斯 课程编号145143 课程学分2分 起始日期2015年5月18日

实验概述 【实验目的及要求】 Purpose: Develop classifiers,which take input features and predict the labels. Requirement: ?Include explanations about why you choose the specific approaches. ?If your classifier includes any parameter that can be adjusted,please report the effectiveness of the parameter on the final classification result. ?In evaluating the results of your classifiers,please compute the precision and recall values of your classifier. ?Partition the dataset into2folds and conduct a cross-validation procedure in measuring the performance. ?Make sure to use figures and tables to summarize your results and clarify your presentation. 【实验环境】 Operating system:window8(64bit) IDE:Matlab R2012b Programming language:Matlab

模式识别上机作业[1]培训课件

模式识别上机作业 队别:研究生二队 姓名:孙祥威 学号:112082

作业一: 1{(0,0),(0,1)} ω=, 2{(1,0),(1,1)} ω=。用感知器固定增量法求判别函数,设 1(1,1,1) w=,1 k ρ=。写程序上机运行,写出判别函数,打出图表。 解答: 1、程序代码如下: clc,clear w=[0 0 1; 0 1 1; -1 0 -1; -1 -1 -1]; W=[1 1 1]; rowk=1; flag=1; flagS=zeros(1,size(w,1)); k=0; while flag for i=1:size(w,1) if isempty(find(flagS==0)) flag=0; break; end k=k+1; pb=w(i,:)*W'; if pb<=0 flagS(i)=0; W=W+rowk*w(i,:); else flagS(i)=1; end end end W,k wp1=[0 0; 0 1;]; wp2=[1 0; 1 1]; plot(wp1(:,1),wp1(:,2),'o')

hold on plot(wp2(:,1),wp2(:,2),'*') hold on y=-0.2:1/100:1.2; plot(1/3*ones(1,size(y)),y,'r-') axis([-0.25 1.25 -0.25 1.25]) 2、判别函数。计算得到增广权矢量为*(3,0,1)T w =-,故判别函数表达式为: 1310x -+= 3、分类示意图: 图 1 感知器算法分类结果图 作业二: 在下列条件下,求待定样本(2,0)T x =的类别,画出分界线,编程上机。 1、二类协方差相等;2、二类协方差不等。 训练样本号k 1 2 3 1 2 3 特征1x 1 1 2 -1 -1 -2

模式识别作业

模式识别作业 班级: 学号: 姓名:

一、实验内容 (1)了解与熟悉模式识别系统的基本组成和系统识别原理。 (2)使用增添特征法对特征进行提取与选择。 (3)编写MATLAB程序,对原始数据特征进行提取与选择,并选择适当的分类器对样本进行训练和分类,得出最后的分类结果以及识别正确率。二、实验原理 模式识别系统的原理图如下: 图1.模式识别系统原理图 对原始样本数据进行一些预处理,使用增添特征法进行特征提取与选择。增添特征法也称为顺序前进法(SFS),每次从未选择的特征中选择一个,使得它与已选特征组合后判据值J最大,直到选择的特征数目达到d。特征选取后用SVM分类器对随机选取的训练样本和测试样本进行分类,最后得出不同特征维数下的最高SVM分类正确率,以及不同特征维数下的最大类别可分性判据。 三、实验方法及程序 clear; clc; load('C:\Users\Administrator\Desktop\homework\ionosphere.mat'); m1=225;m2=126; p1=m1/(m1+m2);p2=m2/(m1+m2); chosen=[]; for j=1:34 [m,n]=size(chosen);n=n+1; J1=zeros(1,33); for i=1:34 Sw=zeros(n,n);Sb=zeros(n,n); S1=zeros(n,n);S2=zeros(n,n); p=any(chosen==i); if p==0 temp_pattern1=data(1:225,[chosen i]); temp_pattern2=data(226:351,[chosen i]);

中科院模式识别大作业——人脸识别

人脸识别实验报告 ---- 基于PCA 和欧氏距离相似性测度 一、理论知识 1、PCA 原理 主成分分析(PCA) 是一种基于代数特征的人脸识别方法,是一种基于全局特征的人脸识别方法,它基于K-L 分解。基于主成分分析的人脸识别方法首次将人脸看作一个整体,特征提取由手工定义到利用统计学习自动获取是人脸识别方法的一个重要转变[1]。简单的说,它的 原理就是将一高维的向量,通过一个特殊的特征向量矩阵,投影到一个低维的向量空间中,表示为一个低维向量,并不会损失任何信息。即通过低维向量和特征向量矩阵,可以完全重构出所对应的原来高维向量。特征脸方法就是将包含人脸的图像区域看作是一种随机向量,因此,可以采用K-L 变换获得其正交K-L 基底。对应其中较大特征值的基底具有与人脸相似的形状,因此又称为特征脸。利用这些基底的线性组合可以描述、表达和逼近人脸图像,因此可以进行人脸识别与合成。识别过程就是将人脸图像映射到由特征脸张成的子空间上,比较其与己知人脸在特征空间中的位置,从而进行判别。 2、基于PCA 的人脸识别方法 2.1 计算特征脸 设人脸图像f(x,y)为二维N×M 灰度图像,用NM 维向量R 表示。人脸图像训练集为{}|1,2,...,i R i P =,其中P 为训练集中图像总数。这P 幅图像的平均向量为: _ 11P i i R R P ==∑ 对训练样本规范化,即每个人脸i R 与平均人脸_ R 的差值向量: i A =i R -_R (i= 1,2,…,P) 其中列向量i A 表示一个训练样本。 训练图像由协方差矩阵可表示为: T C AA = 其中训练样本NM ×P 维矩阵12[,,...,]P A A A A = 特征脸由协方差矩阵C 的正交特征向量组成。对于NM 人脸图像,协方差矩

相关文档
相关文档 最新文档