文档库 最新最全的文档下载
当前位置:文档库 › 北邮数据结构实验报告 图

北邮数据结构实验报告 图

北邮数据结构实验报告 图
北邮数据结构实验报告 图

北邮数据结构实验报告图

一、实验报告规范

实习报告的开头应给出题目、班级、姓名、学号和完成日期,并包括以下七个内容:

1.需求分析

以无歧义的陈述说明程序设计的任务,强调的是程序要做什么?明确规定:

(1)输入的形式和输入值的范围;

(2)输出的形式;

(3)程序所能达到的功能;

(4)测试数据:包括正确的输入及其输出结果和含有错误的输入及其输出结果。

2.概要设计

说明本程序中用到的所有抽象数据类型的定义、主程序的流程以及各程序模块之间的层次(调用)关系。

3.详细设计

实现概要设计中定义的所有数据类型,对每个操作只需要写出伪码算法;对主程序和其他模块也都需要写出伪码算法(伪码算法达到的详细程度建议为:按照伪码算法可以在计算机键盘直接输入高级程序设计语言程序);画出函数的调用关系图。

4.调试分析

内容包括:

(1)调试过程中遇到的问题是如何解决的以及对设计与实现的回顾讨论和分析;

(2)算法的时空分析(包括基本操作和其他算法的时间复杂度和空间复杂度的分析)和改进设想;

(3)经验和体会等。

5.用户使用说明

说明如何使用你编写的程序,详细列出每一步的操作步骤。

6.测试结果

列出你的测试结果,包括输入和输出。这里的测试数据应该完整和严格,最好多于需求分析中所列。

7.附录

带注释的源程序。如果提交源程序软盘,可以只列出程序文件名的清单。

值得注意的是,实习报告的各种文档资料,如:上述中的前三部分要在程序开发的过程中逐渐充实形成,而不是最后补写(当然也可以应该最后用实验报告纸誊清或打印)。

数据结构实验报告;实验名称:实验一线性表实现一个多项式;学生姓名:黄锦雨;班级:XX211109;班内序号:20;学号:XX210263;日期:XX年10月31日;实验目的:;1.熟

悉C++语言的基本编程方法,掌握集成编译环;2.学习指针、模板类、异常处理的使用;3.掌握线性表的操作的实现方法;4.学习使用线性表解决实际问题的能力;实验内容:;

数据结构实验报告

实验名称:实验一线性表实现一个多项式

学生姓名:黄锦雨

班级:XX211109

班内序号: 20

学号: XX210263

日期: XX年10月31日

实验目的:

1.熟悉C++语言的基本编程方法,掌握集成编译环境的调试方法

2.学习指针、模板类、异常处理的使用

3.掌握线性表的操作的实现方法

4.学习使用线性表解决实际问题的能力

实验内容:

利用线性表实现一个一元多项式Polynomial

f(x) = a0 + a1x + a2x2 + a3x3 + … + anxn

要求:

1. 能够实现一元多项式的输入和输出

2. 能够进行一元多项式相加

3. 能够进行一元多项式相减

4. 能够计算一元多项式在x处的值

5. 能够计算一元多项式的导数(选作)

6. 能够进行一元多项式相乘(选作)

7. 编写测试main()函数测试线性表的正确性

2. 程序分析

由于多项式是线性结构,故选择线性表来实现,在这个程序中我采用的是单链表结构,每个结点代表一个项,多项式的每一项可以用其系数和指数唯一的表示。如果采用顺序存储,那么对于结点的插入和删除的操作会比较麻烦,而且顺序表的结点个数固定,对于可能发生的情况无法很好的处理,而采用链表就会简单许多,还能自由控制链表的长度。

两个多项式要进行多次的计算,为了保护原始的数据,方便进行以后的计算,故选择把结果存储在一个新建的链表里。

本程序完成的主要功能:

1. 输入和输出:需要输入的信息有多项式的项数,用来向系统动态申请内存;多项式

各项的系数和指数,用来构造每个结点,形成链表。输出即是将多项式的内容

向屏幕输出。

2. 多项式相加与相减:多项式的加减要指数相同即是

同类项才能实现,所以在运算时

要注意判断指数出现的各种不同的情况,分别写出计算方法。将每项运算得到

的结果都插入到新的链表中,形成结果多项式。

3. 多项式的求导运算:多项式的求导根据数学知识,就是将每项的系数乘以指数,将

指数减1即可,将每项得到的结果插入到结果多项式的链表中。

4. 多项式在某点的值:由用户输入x的值,然后求出每项的值相加即可。

存储结构

单链表: 其定义的结点包括三部分:系数、指数以及下一个结点的地址

关键算法分析

关键算法:

1.一元多项式求和算法:

初始化工作指针p和q,以及p节点前驱节点指针p_prior

若p和q都不为空,则循环以下操作:

若p->,则p_prior=p;p=p->nenx;

否则,若p->>q->,则:

将q结点加入到A链表p结点之前

q指向B链表的下一个结点

否则:p->=p->+q->;

若p->为0,则删除结点p

p指向下一个结点

删除q结点

q指向下一个结点

若p为空并且q不为空,则将q结点及其后所有结点追

加到A链表的最后端

将B链表制成空链表

2.一元多项式求导

初始化工作指针p及p_prior

若p不为空,循环以操作

若p->=0;p_prior->next=p->next; p; p=p_prior;

否则 p->*=p->; p->;

3.一元多项式求在X处的值

初始化工作指针p,定义会参数a

若p不为空,循环以下操作

a+=p->*pow(x,p->);

p=p->next;

4.输出多项式

获取头结点;

循环n-1次(n为多项式的项数)

将指针的指向后移;

依照多项式的各种情况,设置输出方式

系数为1且指数不为1和0,输出x^expn+; 系数不为0且指数为0,输出(coef)+;

系数不为0且指数为1,输出(coef)x+;

代码详细分析:

求和算法详细分析:

1.若p->

(1)q结点不变

(2)p结点向下移

(1)p_prior=p;

(2)p=p->next;

2.若p->>q->执行一下主要操作步骤

(1) p_prior->next=q;

(2)p_prior=q;

(3)q=q->next;

(4)p_prior->next=p;

示意图

:

3.若p->==q->执行以下操作步骤:

(a)若合并系数为零,则删除p结点,主要步骤:

(1)p_prior->next=p->next;

(2) p;

(3)p=p_prior->next;

(4)Node*temp=q;

(5)q=q->next;

(6) temp;

示意图

:

(b)合并系数不为零,将其从新赋予p结点,主要步骤:

(1)p_prior=p;

(2)p=p_prior->next;

(3)Node*temp=q;

(4)q=q->next;

(5) temp;

示意图:

5. 若p为空且q不为空的情况

p_prior->next=q;

示意图:

3、计算关键算法的时间,空间复杂度

时间复杂度(1)一元多项式的构建(2)求和(3)减法(4)求导时间复杂度都为O(n)

空间复杂度为:S(1)

其他

说明:为了防止word版本不一样而可能带来的图形错乱,示意图,流程图都用截图

3. 程序运行结果

测试主函数流程:流程图如图所示

4.总结;见1实验要求中的格式要求;1.这次实现一元多项式的运算运用了模版类,单链表;版类的的继承,在掌握模版类及链表的同时又复习了上;2.这次试验另一比较大的工程是一元多项式加法的算;点打出来又截图完成的,真的是一个比较大工程!;3.这次一元多项式实验问题让我的收获很大,对链表;的更加准确,在调试代码,检验的时候,曾遇到很大的;4.通过本次

4. 总结

见1实验要求中的格式要求

1. 这次实现一元多项式的运算运用了模版类,单链表模版类,一元多项式模版类是单链表模

版类的的继承,在掌握模版类及链表的同时又复习了上学期的相应内容.

2. 这次试验另一比较大的工程是一元多项式加法的算法示意图,以上截图全是我自己一点

点打出来又截图完成的,真的是一个比较大工程!

3.这次一元多项式实验问题让我的收获很大,对链表

的构建更加熟练,对链表的向前推进把握

的更加准确,在调试代码,检验的时候,曾遇到很大的阻碍,主要是内存问题,通过自己一步步调试,解决了问题,自己也收获了很多。

4.通过本次实验,我发现自己分析问题不是很全面,容易忽略一些细节,以后分析问题时要仔细考虑认真分析,避免细节上的错误。

数据结构实验十一:图实验

一,实验题目 实验十一:图实验 采用邻接表存储有向图,设计算法判断任意两个顶点间手否存在路径。 二,问题分析 本程序要求采用邻接表存储有向图,设计算法判断任意两个顶点间手否存在路径,完成这些操作需要解决的关键问题是:用邻接表的形式存储有向图并输出该邻接表。用一个函数实现判断任意两点间是否存在路径。 1,数据的输入形式和输入值的范围:输入的图的结点均为整型。 2,结果的输出形式:输出的是两结点间是否存在路径的情况。 3,测试数据:输入的图的结点个数为:4 输入的图的边得个数为:3 边的信息为:1 2,2 3,3 1 三,概要设计 (1)为了实现上述程序的功能,需要: A,用邻接表的方式构建图 B,深度优先遍历该图的结点 C,判断任意两结点间是否存在路径 (2)本程序包含6个函数: a,主函数main() b,用邻接表建立图函数create_adjlistgraph() c,深度优先搜索遍历函数dfs() d,初始化遍历数组并判断有无通路函数dfs_trave() e,输出邻接表函数print() f,释放邻接表结点空间函数freealgraph() 各函数间关系如右图所示: 四,详细设计 (1)邻接表中的结点类型定义:

typedef struct arcnode{ int adjvex; arcnode *nextarc; }arcnode; (2)邻接表中头结点的类型定义: typedef struct{ char vexdata; arcnode *firstarc; }adjlist; (3)邻接表类型定义: typedef struct{ adjlist vextices[max]; int vexnum,arcnum; }algraph; (4)深度优先搜索遍历函数伪代码: int dfs(algraph *alg,int i,int n){ arcnode *p; visited[i]=1; p=alg->vextices[i].firstarc; while(p!=NULL) { if(visited[p->adjvex]==0){ if(p->adjvex==n) {flag=1; } dfs(alg,p->adjvex,n); if(flag==1) return 1; } p=p->nextarc; } return 0; } (5)初始化遍历数组并判断有无通路函数伪代码: void dfs_trave(algraph *alg,int x,int y){ int i; for(i=0;i<=alg->vexnum;i++) visited[i]=0; dfs(alg,x,y); } 五,源代码 #include "stdio.h" #include "stdlib.h" #include "malloc.h" #define max 100 typedef struct arcnode{ //定义邻接表中的结点类型 int adjvex; //定点信息 arcnode *nextarc; //指向下一个结点的指针nextarc }arcnode; typedef struct{ //定义邻接表中头结点的类型 char vexdata; //头结点的序号 arcnode *firstarc; //定义一个arcnode型指针指向头结点所对应的下一个结点}adjlist; typedef struct{ //定义邻接表类型 adjlist vextices[max]; //定义表头结点数组

北邮信通院数据结构实验报告三哈夫曼编码器之欧阳光明创编

数据结构实验报告 欧阳光明(2021.03.07) 实验名称:实验三树——哈夫曼编/解码器 学生姓名: 班级: 班内序号: 学号: 日期: 2014年12月11日 1.实验要求 利用二叉树结构实现赫夫曼编/解码器。 基本要求: 1、初始化(Init):能够对输入的任意长度的字符串s进行统 计,统计每个字符的频度,并建立赫夫曼树 2、建立编码表(CreateTable):利用已经建好的赫夫曼树进行编 码,并将每个字符的编码输出。 3、编码(Encoding):根据编码表对输入的字符串进行编码,并 将编码后的字符串输出。 4、译码(Decoding):利用已经建好的赫夫曼树对编码后的字符 串进行译码,并输出译码结果。 5、打印(Print):以直观的方式打印赫夫曼树(选作) 6、计算输入的字符串编码前和编码后的长度,并进行分析, 讨论赫夫曼编码的压缩效果。 测试数据: I love data Structure, I love Computer。I will try my best to study

data Structure. 提示: 1、用户界面可以设计为“菜单”方式:能够进行交互。 2、根据输入的字符串中每个字符出现的次数统计频度,对没有 出现的 字符一律不用编码。 2. 程序分析 2.1 存储结构 Huffman树 给定一组具有确定权值的叶子结点,可以构造出不同的二叉树,其中带权路径长度最小的二叉树称为Huffman树,也叫做最优二叉树。

weight lchild rchildparent 2-1-1-1 5-1-1-1 6-1-1-1 7-1-1-1 9-1-1-1 weight lchild rchild parent

(完整版)数据结构实验报告全集

数据结构实验报告全集 实验一线性表基本操作和简单程序 1 .实验目的 (1 )掌握使用Visual C++ 6.0 上机调试程序的基本方法; (2 )掌握线性表的基本操作:初始化、插入、删除、取数据元素等运算在顺序存储结构和链表存储结构上的程序设计方法。 2 .实验要求 (1 )认真阅读和掌握和本实验相关的教材内容。 (2 )认真阅读和掌握本章相关内容的程序。 (3 )上机运行程序。 (4 )保存和打印出程序的运行结果,并结合程序进行分析。 (5 )按照你对线性表的操作需要,重新改写主程序并运行,打印出文件清单和运行结果 实验代码: 1)头文件模块 #include iostream.h>// 头文件 #include// 库头文件------ 动态分配内存空间 typedef int elemtype;// 定义数据域的类型 typedef struct linknode// 定义结点类型 { elemtype data;// 定义数据域 struct linknode *next;// 定义结点指针 }nodetype; 2)创建单链表

nodetype *create()// 建立单链表,由用户输入各结点data 域之值, // 以0 表示输入结束 { elemtype d;// 定义数据元素d nodetype *h=NULL,*s,*t;// 定义结点指针 int i=1; cout<<" 建立一个单链表"<> d; if(d==0) break;// 以0 表示输入结束 if(i==1)// 建立第一个结点 { h=(nodetype*)malloc(sizeof(nodetype));// 表示指针h h->data=d;h->next=NULL;t=h;//h 是头指针 } else// 建立其余结点 { s=(nodetype*) malloc(sizeof(nodetype)); s->data=d;s->next=NULL;t->next=s; t=s;//t 始终指向生成的单链表的最后一个节点

数据结构实验报告图实验

图实验一,邻接矩阵的实现 1.实验目的 (1)掌握图的逻辑结构 (2)掌握图的邻接矩阵的存储结构 (3)验证图的邻接矩阵存储及其遍历操作的实现 2.实验内容 (1)建立无向图的邻接矩阵存储 (2)进行深度优先遍历 (3)进行广度优先遍历 3.设计与编码 MGraph.h #ifndef MGraph_H #define MGraph_H const int MaxSize = 10;

template class MGraph { public: MGraph(DataType a[], int n, int e); ~MGraph(){ } void DFSTraverse(int v); void BFSTraverse(int v); private: DataType vertex[MaxSize]; int arc[MaxSize][MaxSize]; int vertexNum, arcNum; }; #endif MGraph.cpp

#include using namespace std; #include "MGraph.h" extern int visited[MaxSize]; template MGraph::MGraph(DataType a[], int n, int e) { int i, j, k; vertexNum = n, arcNum = e; for(i = 0; i < vertexNum; i++) vertex[i] = a[i]; for(i = 0;i < vertexNum; i++) for(j = 0; j < vertexNum; j++) arc[i][j] = 0; for(k = 0; k < arcNum; k++) {

数据结构实验报告图实验

邻接矩阵的实现 1. 实验目的 (1)掌握图的逻辑结构 (2)掌握图的邻接矩阵的存储结构 (3)验证图的邻接矩阵存储及其遍历操作的实现2. 实验内容 (1)建立无向图的邻接矩阵存储 (2)进行深度优先遍历 (3)进行广度优先遍历3.设计与编码MGraph.h #ifndef MGraph_H #define MGraph_H const int MaxSize = 10; template class MGraph { public: MGraph(DataType a[], int n, int e); ~MGraph(){ void DFSTraverse(int v); void BFSTraverse(int v); private: DataType vertex[MaxSize]; int arc[MaxSize][MaxSize]; }

int vertexNum, arcNum; }; #endif MGraph.cpp #include using namespace std; #include "MGraph.h" extern int visited[MaxSize]; template MGraph::MGraph(DataType a[], int n, int e) { int i, j, k; vertexNum = n, arcNum = e; for(i = 0; i < vertexNum; i++) vertex[i] = a[i]; for(i = 0;i < vertexNum; i++) for(j = 0; j < vertexNum; j++) arc[i][j] = 0; for(k = 0; k < arcNum; k++) { cout << "Please enter two vertexs number of edge: " cin >> i >> j; arc[i][j] = 1; arc[j][i] = 1; } }

北邮数据结构实验3哈夫曼编码

数据结构实验报告 实验名称:实验3——哈夫曼编码 学生姓名: 班级: 班内序号: 学号: 日期:2013年11月24日 1.实验要求 利用二叉树结构实现赫夫曼编/解码器。 基本要求: 1、初始化(Init):能够对输入的任意长度的字符串s进行统计,统计每个 字符的频度,并建立赫夫曼树 2、建立编码表(CreateTable):利用已经建好的赫夫曼树进行编码,并将每 个字符的编码输出。 3、编码(Encoding):根据编码表对输入的字符串进行编码,并将编码后的 字符串输出。 4、译码(Decoding):利用已经建好的赫夫曼树对编码后的字符串进行译 码,并输出译码结果。 5、打印(Print):以直观的方式打印赫夫曼树(选作) 6、计算输入的字符串编码前和编码后的长度,并进行分析,讨论赫夫曼 编码的压缩效果。 2. 程序分析 2.1存储结构: struct HNode { char c;//存字符内容 int weight; int lchild, rchild, parent; }; struct HCode

{ char data; char code[100]; }; //字符及其编码结构 class Huffman { private: HNode* huffTree; //Huffman树 HCode* HCodeTable; //Huffman编码表 public: Huffman(void); void CreateHTree(int a[], int n); //创建huffman树 void CreateCodeTable(char b[], int n); //创建编码表 void Encode(char *s, string *d); //编码 void Decode(char *s, char *d); //解码 void differ(char *,int n); char str2[100];//数组中不同的字符组成的串 int dif;//str2[]的大小 ~Huffman(void); }; 结点结构为如下所示: 三叉树的节点结构: struct HNode//哈夫曼树结点的结构体 { int weight;//结点权值 int parent;//双亲指针 int lchild;//左孩子指针 int rchild;//右孩子指针 char data;//字符 }; 示意图为: int weight int parent int lchild int rchild Char c 编码表节点结构:

数据结构图的遍历实验报告

实验项目名称:图的遍历 一、实验目的 应用所学的知识分析问题、解决问题,学会用建立图并对其进行遍历,提高实际编程能力及程序调试能力。 二、实验容 问题描述:建立有向图,并用深度优先搜索和广度优先搜素。输入图中节点的个数和边的个数,能够打印出用邻接表或邻接矩阵表示的图的储存结构。 三、实验仪器与设备 计算机,Code::Blocks。 四、实验原理 用邻接表存储一个图,递归方法深度搜索和用队列进行广度搜索,并输出遍历的结果。 五、实验程序及结果 #define INFINITY 10000 /*无穷大*/ #define MAX_VERTEX_NUM 40 #define MAX 40 #include #include #include #include

typedef struct ArCell{ int adj; }ArCell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; typedef struct { char name[20]; }infotype; typedef struct { infotype vexs[MAX_VERTEX_NUM]; AdjMatrix arcs; int vexnum,arcnum; }MGraph; int LocateVex(MGraph *G,char* v) { int c = -1,i; for(i=0;ivexnum;i++) if(strcmp(v,G->vexs[i].name)==0) { c=i; break;} return c;} MGraph * CreatUDN(MGraph *G)//初始化图,接受用户输入{ int i,j,k,w; char v1[20],v2[20]; printf("请输入图的顶点数,弧数:"); scanf("%d%d",&G->vexnum,&G->arcnum);

数据结构实验

实验1 (C语言补充实验) 有顺序表A和B,其元素值均按从小到大的升序排列,要求将它们合并成一 个顺序表C,且C的元素也是从小到大的升序排列。 #include main() { intn,m,i=0,j=0,k=0,a[5],b[5],c[10];/* 必须设个m做为数组的输入的计数器,不能用i ,不然进行到while 时i 直接为5*/ for(m=0;m<=4;m++)scanf("%d",&a[m]);// 输入数组a for(m=0;m<=4;m++)scanf("%d",&b[m]);// 输入数组b while(i<5&&j<5) {if(a[i]b[j]){c[k]=b[j];k++;j++;} else{c[k]=a[i];k++;i++;j++;}// 使输入的两组数组中相同的数只输出一 个 } if(i<5) for(n=i;n<5;n++) {c[k]=a[n];k++;} elseif(j<5) for(n=j;n<5;n++) {c[k]=b[n];k++;} for(i=0;i

求A QB #include main() { inti,j,k=0,a[5],b[5],c[5];//A=a[5],B=b[5],A n B=c[5] for(i=0;i<5;i++)scanf("%d",&a[i]);// 输入a 数组 for(i=0;i<5;i++)scanf("%d",&b[i]);〃输入b 数组 for(i=0;i<5;i++) {for(j=0;j<5;j++) if(a[i]==b[j]){c[k]=a[i];k++;}// 当有元素重复时,只取一个放入 c 中} for(i=0;i #defineN4 main() { inti,j,m,k,a[N+1];//k 为最后输出数组的长度变量

北邮数据结构第四次实验题目一排序

数据结构实验报告实验名称:实验四排序(题目1) 姓名: 班级: 班内序号: 学号:

1.实验要求 实验目的:学习、实现、对比各种排序算法,掌握各种排序算法的优劣,以及各种算法使用的情况。实验内容:使用简单数组实现下面各种排序算法,并进行比较。 排序算法: 1、插入排序 2、希尔排序 3、冒泡排序 4、快速排序 5、简单选择排序 要求: 1、测试数据分成三类:正序、逆序、随机数据 2、对于这三类数据,比较上述排序算法中关键字的比较次数和移动次数(其中关键字交换 计为3次移动)。 3、对2的结果进行分析,验证上述各种算法的时间复杂度。 编写测试main()函数测试线性表的正确性。 2. 程序分析 2.1 存储结构 2.2 关键算法分析 2.2.1 插入排序 插入排序的基本方法是寻找一个指定元素在待排序元素中的位置,然后插入。一趟直接插入排序的C++描述过程如下: ①将待插入纪录赋值给哨兵r[0]:r[0]=r[i]; ②从后向前进行顺序查找:for(j=i-1;r[0]

{r[j+1]=r[j];move++; comp++;} //循环中移动计数器++ comp++; //比较计数器++ r[j+1]=r[0];move++; //移动计数器++ } comp++; //比较计数器++ } cout<<"本次直接插入排序数据长度为:"<=1;d=d/2) //以d 为增量在子序列中进行插入排序 { for(int i=d+1;i<=n;i++) //一趟希尔排序 { if(r[i]0&&r[0]

北邮数据结构实验四-链表排序

数据结构实验报告 实验名称:实验四——链表的排序 学生姓名: 班级: 班内序号: 学号: 日期: 1.实验要求 [内容要求] 使用链表实现下面各种排序算法,并进行比较。 排序算法: 1、插入排序 2、冒泡排序 3、快速排序 4、简单选择排序 5、其他 要求: 1、测试数据分成三类:正序、逆序、随机数据 2、对于这三类数据,比较上述排序算法中关键字的比较次数和移动次数(其 中关键字交换计为3次移动)。 3、对于这三类数据,比较上述排序算法中不同算法的执行时间,精确到微秒 (选作) 4、对2和3的结果进行分析,验证上述各种算法的时间复杂度 编写测试main()函数测试线性表的正确性 代码要求 1、必须要有异常处理,比如删除空链表时需要抛出异常; 2、保持良好的编程的风格: 代码段与段之间要有空行和缩近 标识符名称应该与其代表的意义一致 函数名之前应该添加注释说明该函数的功能 关键代码应说明其功能 3、递归程序注意调用的过程,防止栈溢出

2. 程序分析 2.1 存储结构 [内容要求] 存储结构:双链表 2.2 关键算法分析 [内容要求] 定义类: template class LinkList { public: LinkList(){front = new Node ;front->next=rear;front->prior=NULL;rear=new Node;rear->next=NULL;rear->prior=front;} LinkList(T a[],int n); void BackLinkList(T a[]);//恢复原链表 ~LinkList();//析构函数 void PrintList();//打印数列 void InsertSort();//插入排序 void BubbleSort();//冒泡排序 Node * Partion(Node *i,Node *j);//快速排序中寻找轴值的函数 void Qsort(Node *i,Node *j);//快速排序 void SelectSort();//选择排序 Node*front; Node*rear; }; 成员函数包括:构造函数:单链表,打印单链表,插入排序,快速排序,冒泡排序,选择排序,析构函数 公有成员:头指针和尾指针 1、构造函数: LinkList::LinkList(T a[],int n) { front=new Node; rear=new Node; front->prior=NULL;front->next=rear; rear->next=NULL;rear->prior=front; Node *s; for (int i=n-1;i>=0;i--) {

数据结构实验报告(图)

附录A 实验报告 课程:数据结构(c语言)实验名称:图的建立、基本操作以及遍历系别:数字媒体技术实验日期: 12月13号 12月20号 专业班级:媒体161 组别:无 姓名:学号: 实验报告内容 验证性实验 一、预习准备: 实验目的: 1、熟练掌握图的结构特性,熟悉图的各种存储结构的特点及适用范围; 2、熟练掌握几种常见图的遍历方法及遍历算法; 实验环境:Widows操作系统、VC6.0 实验原理: 1.定义: 基本定义和术语 图(Graph)——图G是由两个集合V(G)和E(G)组成的,记为G=(V,E),其中:V(G)是顶点(V ertex)的非空有限集E(G)是边(Edge)的有限集合,边是顶点的无序对(即:无方向的,(v0,v2))或有序对(即:有方向的,)。 邻接矩阵——表示顶点间相联关系的矩阵 设G=(V,E) 是有n 1 个顶点的图,G 的邻接矩阵A 是具有以下性质的n 阶方阵特点: 无向图的邻接矩阵对称,可压缩存储;有n个顶点的无向图需存储空间为n(n+1)/2 有向图邻接矩阵不一定对称;有n个顶点的有向图需存储空间为n2 9

无向图中顶点V i的度TD(V i)是邻接矩阵A中第i行元素之和有向图中, 顶点V i的出度是A中第i行元素之和 顶点V i的入度是A中第i列元素之和 邻接表 实现:为图中每个顶点建立一个单链表,第i个单链表中的结点表示依附于顶点Vi的边(有向图中指以Vi为尾的弧) 特点: 无向图中顶点Vi的度为第i个单链表中的结点数有向图中 顶点Vi的出度为第i个单链表中的结点个数 顶点Vi的入度为整个单链表中邻接点域值是i的结点个数 逆邻接表:有向图中对每个结点建立以Vi为头的弧的单链表。 图的遍历 从图中某个顶点出发访遍图中其余顶点,并且使图中的每个顶点仅被访问一次过程.。遍历图的过程实质上是通过边或弧对每个顶点查找其邻接点的过程,其耗费的时间取决于所采用的存储结构。图的遍历有两条路径:深度优先搜索和广度优先搜索。当用邻接矩阵作图的存储结构时,查找每个顶点的邻接点所需要时间为O(n2),n为图中顶点数;而当以邻接表作图的存储结构时,找邻接点所需时间为O(e),e 为无向图中边的数或有向图中弧的数。 实验内容和要求: 选用任一种图的存储结构,建立如下图所示的带权有向图: 要求:1、建立边的条数为零的图;

北邮信通院数据结构实验报告三哈夫曼编码器

北京邮电大学电信工程学院 数据结构实验报告 实验名称:实验三树 ----- 哈夫曼编/解码器 学生姓名: 班级: 班内序号: 学号: 日期:2014年12月11日 1. 实验要求 利用二叉树结构实现赫夫曼编/解码器。 基本要求: 1、初始化(Init):能够对输入的任意长度的字符串s进行统计,统计每个 字符的频度,并建立赫夫曼树 2、建立编码表(CreateTable)利用已经建好的赫夫曼树进行编码,并将每 个字符的编码输出。 3、编码(Encoding):根据编码表对输入的字符串进行编码,并将编码后的 字符串输出。 4、译码(Decoding):禾U用已经建好的赫夫曼树对编码后的字符串进行译 码,并输出译码结果。 5、打印(Print):以直观的方式打印赫夫曼树(选作) 6计算输入的字符串编码前和编码后的长度,并进行分析,讨论赫夫曼编码的压缩效果。 测试数据: I love data Structure, I love Computer。I will try my best to study data Structure. 提示: 1、用户界面可以设计为“菜单”方式:能够进行交互。 2、根据输入的字符串中每个字符出现的次数统计频度,对没有出现的字符 一律不用编码。

2. 程序分析 2.1存储结构 Huffman 树给定一组具有确定权值的叶子结点,可以构造出不同的二叉树,其中带权路径 长度最小的二叉树称为Huffman 树,也叫做最优二叉树 哈夫虽树示意图 root 孩子双亲表示法 _____________________ JL________________ weight Ichild rchild pare nt

北邮信通院数据结构实验报告三哈夫曼编码器

数据结构实验报告 实验名称:实验三树——哈夫曼编/解码器 学生姓名: 班级: 班内序号: 学号: 日期:2014年12月11日 1.实验要求 利用二叉树结构实现赫夫曼编/解码器。 基本要求: 1、初始化(Init):能够对输入的任意长度的字符串s进行统计,统计每个 字符的频度,并建立赫夫曼树 2、建立编码表(CreateTable):利用已经建好的赫夫曼树进行编码,并将每 个字符的编码输出。 3、编码(Encoding):根据编码表对输入的字符串进行编码,并将编码后的 字符串输出。 4、译码(Decoding):利用已经建好的赫夫曼树对编码后的字符串进行译 码,并输出译码结果。 5、打印(Print):以直观的方式打印赫夫曼树(选作) 6、计算输入的字符串编码前和编码后的长度,并进行分析,讨论赫夫曼 编码的压缩效果。 测试数据: I love data Structure, I love Computer。I will try my best to study data Structure. 提示: 1、用户界面可以设计为“菜单”方式:能够进行交互。 2、根据输入的字符串中每个字符出现的次数统计频度,对没有出现的 字符一律不用编码。

2. 程序分析 2.1 存储结构 Huffman树 给定一组具有确定权值的叶子结点,可以构造出不同的二叉树,其中带权路径长度最小的二叉树称为Huffman树,也叫做最优二叉树。 weight lchild rchild parent

2-1-1-1 5-1-1-1 6-1-1-1 7-1-1-1 9-1-1-1 weight lchild rchild parent 2-1-15 5-1-15 6-1-16 7-1-16 9-1-17 7017

数据结构实验报告无向图

《数据结构》实验报告 ◎实验题目: 无向图的建立与遍历 ◎实验目的:掌握无向图的邻接链表存储,熟悉无向图的广度与深度优先遍历。 ◎实验内容:对一个无向图以邻接链表存储,分别以深度、广度优先非递归遍历输出。 一、需求分析 1.本演示程序中,输入的形式为无向图的邻接链表形式,首先输入该无向图的顶点数和边数,接着输入顶点信息,再输入每个边的顶点对应序号。 2.该无向图以深度、广度优先遍历输出。 3.本程序可以实现无向图的邻接链表存储,并以深度、广度优先非递归遍历输出。 4.程序执行的命令包括:(1)建立一个无向图的邻接链表存储(2)以深度优先遍历输出(3)以广度优先遍历输出(4)结束 5.测试数据: 顶点数和边数:6,5 顶点信息:a b c d e f 边的顶点对应序号: 0,1 0,2 0,3 2,4 3,4 深度优先遍历输出: a d e c b f 广度优先遍历输出: a d c b e f 二概要设计 为了实现上述操作,应以邻接链表为存储结构。 1.基本操作: void createalgraph(algraph &g) 创建无向图的邻接链表存储 void dfstraverseal(algraph &g,int v)

以深度优先遍历输出 void bfstraverseal(algraph &g,int v) 以广度优先遍历输出 2.本程序包含四个模块: (1)主程序模块 (2)无向图的邻接链表存储模块 (3)深度优先遍历输出模块 (4)广度优先遍历输出模块 3.模块调用图: 三详细设计 1.元素类型,结点类型和指针类型:typedef struct node { int adjvex; struct node *next; }edgenode; typedef struct vnode { char vertex; edgenode *firstedge; }vertxnode; typedef vertxnode Adjlist[maxvernum]; typedef struct { Adjlist adjlist; int n,e; }algraph; edgenode *s; edgenode *stack[maxvernum],*p; 2.每个模块的分析: (1)主程序模块 int main()

数据结构图实验报告

数据结构教程 上机实验报告 实验七、图算法上机实现 一、实验目的: 1.了解熟知图的定义和图的基本术语,掌握图的几种存储结构。 2.掌握邻接矩阵和邻接表定义及特点,并通过实例解析掌握邻接矩阵和邻接表的类型定义。 3.掌握图的遍历的定义、复杂性分析及应用,并掌握图的遍历方法及其基本思想。 二、实验内容: 1.建立无向图的邻接矩阵 2.图的xx优先搜索 3.图的xx优先搜索 三、实验步骤及结果: 1.建立无向图的邻接矩阵: 1)源代码: #include "stdio.h" #include "stdlib.h" #define MAXSIZE 30 typedefstruct{charvertex[MAXSIZE];//顶点为字符型且顶点表的长度小于MAXSIZE intedges[MAXSIZE][MAXSIZE];//边为整形且edges为邻近矩阵

}MGraph;//MGraph为采用邻近矩阵存储的图类型 voidCreatMGraph(MGraph *g,inte,int n) {//建立无向图的邻近矩阵g->egdes,n为顶点个数,e为边数inti,j,k; printf("Input data of vertexs(0~n-1): \n"); for(i=0;ivertex[i]=i; //读入顶点信息 for(i=0;iedges[i][j]=0; //初始化邻接矩阵 for(k=1;k<=e;k++)//输入e条边{}printf("Input edges of(i,j): "); scanf("%d,%d",&i,&j); g->edges[i][j]=1; g->edges[j][i]=1;}void main(){inti,j,n,e; MGraph *g; //建立指向采用邻接矩阵存储图类型指针 g=(MGraph*)malloc(sizeof(MGraph));//生成采用邻接举证存储图类型的存储空间}2)运行结果: printf("Input size of MGraph: "); //输入邻接矩阵的大小scanf("%d",&n); printf("Input number of edge: "); //输入邻接矩阵的边数scanf("%d",&e);

北邮数据结构实验 第三次实验 排序

数据结构实验报告 1.实验要求 (1)实验目的 通过选择下面两个题目之一,学习、实现、对比各种排序算法,掌握各种排序算法的优劣,以及各种算法使用的情况。 (2)实验内容 使用简单数组实现下面各种排序算法,并进行比较。 排序算法: 1、插入排序 2、希尔排序 3、冒泡排序 4、快速排序 5、简单选择排序 6、堆排序(选作) 7、归并排序(选作) 8、基数排序(选作) 9、其他 要求: 1、测试数据分成三类:正序、逆序、随机数据 2、对于这三类数据,比较上述排序算法中关键字的比较次数和移动次数(其 中关键字交换计为3次移动)。 3、对于这三类数据,比较上述排序算法中不同算法的执行时间,精确到微秒 (选作) 4、对2和3的结果进行分析,验证上述各种算法的时间复杂度 编写测试main()函数测试排序算法的正确性。 2. 程序分析 2.1 存储结构 顺序表: 示意图: 2.2 关键算法分析 (1)测试数据的产生:正序、逆序、随机数据 用两个数组实现乱序、顺序以及逆序数据的排序。 基本思想为:随机序列产生一个指定长度的乱序序列,然后通过memcpy()函数拷贝到第

二个数组里,第二个数组作为乱序序列的保存数组,每次对第一个数组进行排序,之后拷贝第二个数组中的乱序序列到第一个数组,实现各次乱序排列。只要算法正确(第一步可以检验),之后顺序排列只需反复对第一个数组进行操作即可,再后用第二个数组保存逆序数组,然后同样在每次排序之后复制第二数组存储的乱序序列到第一组,对第一组反复排序即可。 <1> pRandom1=new long int[Max+1];pRandom2=new long int[Max+1]; <2> srand((unsigned)time(NULL)); for(int i = 1; i <= Max;i++ ) pRandom2[i]=rand(); <3> memcpy(obj.pRandom1,obj.pRandom2,(Max+1)*sizeof(long int)); (2)排序算法: <1>插入排序:依次将待排序的序列中的每一个记录插入到先前排序好的序列中,直到全部记录排序完毕。 /1/int j=0; /2/ for(int i =2; i <= Max;i++) parray[0]=parray[i];comparetimes[0]++; /4/parray[j+1]=parray[0];movetimes[0]+=2; 示意图: r1,r2,r3,…,ri-1,ri,ri+1,…,rn 有序区待插入无序区 <2>希尔排序:先将整个序列分割成若干个子列,分别在各个子列中运用直接插入排序,待整个序列基本有序时,再对全体记录进行一次直接插入排序。 int Sort::ShellSort(long int parray[]) {int j=0; for(int d=Max/2;d>=1;d/=2) {for(int i=d+1;i<=Max;i++) { parray[0]=parray[i]; comparetimes[1]++; for(j=i-d;j>0 && parray[0]冒泡排序:两两比较相邻记录的关键码,如果反序则交换,直到没有反序记录为止。 int Sort::BubbleSort(long int parray[])

数据结构实验报告图实验

图实验 一,邻接矩阵的实现 1.实验目的 (1)掌握图的逻辑结构 (2)掌握图的邻接矩阵的存储结构 (3)验证图的邻接矩阵存储及其遍历操作的实现 2.实验内容 (1)建立无向图的邻接矩阵存储 (2)进行深度优先遍历 (3)进行广度优先遍历 3.设计与编码 #ifndef MGraph_H #define MGraph_H const int MaxSize = 10; template class MGraph { public: MGraph(DataType a[], int n, int e); ~MGraph(){ } void DFSTraverse(int v); void BFSTraverse(int v); private: DataType vertex[MaxSize]; int arc[MaxSize][MaxSize]; int vertexNum, arcNum; }; #endif #include using namespace std; #include "" extern int visited[MaxSize]; template MGraph::MGraph(DataType a[], int n, int e) { int i, j, k; vertexNum = n, arcNum = e; for(i = 0; i < vertexNum; i++) vertex[i] = a[i]; for(i = 0;i < vertexNum; i++) for(j = 0; j < vertexNum; j++) arc[i][j] = 0;

数据结构实验—图实验报告

精品文档数据结构 实 验 报 告

目的要求 1.掌握图的存储思想及其存储实现。 2.掌握图的深度、广度优先遍历算法思想及其程序实现。 3.掌握图的常见应用算法的思想及其程序实现。 实验内容 1.键盘输入数据,建立一个有向图的邻接表。 2.输出该邻接表。 3.在有向图的邻接表的基础上计算各顶点的度,并输出。 4.以有向图的邻接表为基础实现输出它的拓扑排序序列。 5.采用邻接表存储实现无向图的深度优先递归遍历。 6.采用邻接表存储实现无向图的广度优先遍历。 7.在主函数中设计一个简单的菜单,分别调试上述算法。 源程序: 主程序的头文件:队列 #include #include #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 #define OVERFLOW -2 typedef int QElemType; typedef struct QNode{ //队的操作 QElemType data; struct QNode *next; }QNode,*QueuePtr; typedef struct { QueuePtr front; QueuePtr rear; }LinkQueue; void InitQueue(LinkQueue &Q){ //初始化队列 Q.front =Q.rear =(QueuePtr)malloc(sizeof(QNode)); if(!Q.front) exit(OVERFLOW); //存储分配失败 Q.front ->next =NULL; } int EnQueue(LinkQueue &Q,QElemType e) //插入元素e为Q的新的队尾元素{ QueuePtr p; p=(QueuePtr)malloc(sizeof(QNode)); if(!p) exit(OVERFLOW); p->data=e;

相关文档