文档库 最新最全的文档下载
当前位置:文档库 › Compressive and tensile behaviour of aluminum foams

Compressive and tensile behaviour of aluminum foams

Compressive and tensile behaviour of aluminum foams
Compressive and tensile behaviour of aluminum foams

Materials Science and Engineering A270(1999)113–124

Compressive and tensile behaviour of aluminum foams

E.Andrews,W.Sanders,L.J.Gibson *

Department of Materials Science and Engineering ,Massachusetts Institute of Technology ,Cambridge ,MA 02139,USA

Received 4November 1998

Abstract

The uniaxial compressive and tensile modulus and strength of several aluminum foams are compared with models for cellular solids.The open cell foam is well described by the model.The closed cell foams have moduli and strengths that fall well below the expected values.The reduced values are the result of defects in the cellular microstructure which cause bending rather than stretching of the cell walls.Measurement and modelling of the curvature and corrugations in the cell walls suggests that these two features account for most of the reduction in properties in closed cell foams.?1999Elsevier Science S.A.All rights reserved.

Keywords :Compessive behaviour;Tensile behaviour;Aluminum foams;Cellular microstructure

https://www.wendangku.net/doc/b0687371.html, /locate /msea

1.Introduction

The recent development of a number of cost-effective processes for making metallic foams has increased their potential for application in sandwich panels for lightweight structural components,in energy absorption systems for protection from impacts,in heat sinks for electronic devices and in acoustic insulation.In this study,we report on the compressive and tensile proper-ties of aluminum foams made by a variety of techniques.

Open cell aluminum foams can be made by in?ltrat-ing an open cell foam such as polyurethane with a heat resistant material,removing the polyurethane by heat-ing,casting liquid metal into the resulting form and then removing the heat resistant material [1].Closed cell foams can be made by several techniques.In the Alcan process,gas is injected into a mixture of molten aluminum and ceramic particles (either SiC or Al 2O 3).The volume fraction of ceramic particles is between 5and 15%;the size of the particles is 1–20m m.The injected air causes bubbles to rise to the surface of the melt,forming a liquid foam which is stabilized by the presence of the ceramic particles.The liquid foam is then mechanically conveyed off the surface of the melt

and allowed to cool.Aluminum foams of relative densi-ties ranging from 0.03to 0.15have been produced using this technique [2].Closed cell aluminum foams can also be made by adding titanium hydride powder to either molten or powdered aluminum.The titanium hydride decomposes at 400°C,well below the melting tempera-ture of aluminum (T m =660°C),releasing hydrogen gas to form bubbles in the foam.In the Shinko Wire process,0.2–8wt%calcium and 1–3wt%titanium hydride are added to molten aluminum,which is then mixed with an impeller in a special casting chamber [3].The calcium acts to increase the viscosity of the melt,assisting in stabilization of the foam.The Shinko Wire foam is available at a relative densities of 0.08–0.13.In both the Fraunhofer and Mepura processes,powdered titanium hydride and aluminum are mixed,pressed,and then heated to release the hydrogen gas [4].This pro-cess generally produces foams of higher relative density,between 0.1and 0.25.Additional techniques for pro-ducing metallic foams are reviewed by Davies and Zhen [5]and Shapovalov [6].

The Young’s modulus and compressive strength of each of these foams have been measured in a number of studies [7–15].The results of several of these studies are summarized in Figs.1and 2,which plot the modulus and strength of aluminum foams normalized by those of the solid cell wall material against the foam density normalized by the solid density.Values for the normal-izing parameters are given by Simone and Gibson [14].

*Corresponding author.Tel.:+1-617-253-7107;fax:+1-617-258-6275.

E -mail address :ljgibson@https://www.wendangku.net/doc/b0687371.html, (L.J.Gibson)

0921-5093/99/$-see front matter ?1999Elsevier Science S.A.All rights reserved.PII:S 0921-5093(99)00170-7

E.Andrews et al./Materials Science and Engineering A270(1999)113–124 114

The unloading moduli of the Alporas,Alcan and

Alulight foams are signi?cantly higher than the initial

loading modulus,suggesting that local yielding occurs

almost immediately on loading[10,13,14].The localized

yielding is thought to result from local inhomogeneities

(e.g.variations in density,cell shape,cell orientation,

cell wall curvature).The ERG foam is different:the

unloading modulus is identical with the initial loading

modulus and microcomputed tomography observations

suggest that yielding is widespread throughout the foam

[16].The mechanism of failure depends on the be-

haviour of the cell wall material.The open cell ERG

foam,made from a ductile6101-T6aluminum,fails by

the formation of plastic hinges within the edges[14,16].

The initial yield point of the Alcan foam corresponds to

debonding between the SiC particles and the aluminum

matrix,which is then followed by ductile tearing of the matrix.Once a number of cells have yielded,a defor-mation band forms and subsequent cell collapse is by membrane tearing and the growth of interfacial cracks [11].

Previous comparisons of the tensile and compressive strengths of aluminum foams have yielded different results for different foams.In one of the?rst studies of aluminum foams,Thornton and Magee[17]found that the tensile strengths of their materials was less than the compressive strengths due to different failure mecha-nisms:local fracture in tension and buckling in com-pression.An indirect measurement of the tensile stress–strain curve of Alporas aluminum foam,from extensometer measurements on the tensile and compres-sive faces of a four-point bend specimen,suggested that it was stiffer and stronger in tension than in compres-Fig.2.Plastic collapse strength of aluminum foams normalized by the yield strength of the solid aluminum,|pl*/|ys,plotted against relative density,z*/z s(from Ref.[14]).A?nite element model for te-trakaidecahedral closed cells and the Gibson and Ashby[18]model for open cells are also shown.

sion[13].Von Hagen and Bleck[15]have found the tensile and compressive strengths of Alcan foam to be almost identical over a range of densities.

The mechanical properties of foams can be modelled by considering the mechanisms by which the cells de-form and fail[18].Under uniaxial stress,open cell, elastic–plastic foams deform by bending followed,at suf?ciently large loads,by the formation of plastic hinges within the cell walls.Simple dimensional argu-ments give the Young’s modulus,E*,and plastic col-lapse strength,|pl*as:

E*

E s

=C1

z*

z s

2(1)

|pl*

ys

=C2

z*

s

3/2(2)

where z*,E*and|pl*are the density,Young’s modulus and strength of the foam and z s,E s and|ys are those of the solid cell wall material.C1and C2are constants related to the cell geometry.A more detailed structural mechanics analysis of a low density,open cell,Kelvin foam with tetrakaidecahedral cells and struts with a Plateau border shape gives C1=0.98[19].Comparison with experimental data suggests that C1=1and C2= 0.3for a wide variety of foams.In closed cell foams, bending of the cell edges is accompanied by stretching of the cell faces.The equation for Young’s modulus then has a linear density term,related to face stretch-ing,as well as the squared term,related to edge bend-ing.Similarly,the equation for the plastic collapse strength has an additional linear term in density related to yielding by cell face stretching:

Fig.1.Young’s modulus of aluminum foams normalized by that of the solid aluminum,E*/E s plotted against relative density,z*/z s (from Ref.[14]).The Hashin–Shtrikman upper bound,a?nite ele-ment model for tetrakaidecahedral closed cells and the Gibson and Asbhy[18]model for open cells are also shown.

E.Andrews et al./Materials Science and Engineering A270(1999)113–124115

E* E s =C1 2

z*

z s

2

+C1’(1? )

z*

z s

(3)

|pl*

|ys=C2

z*

z s

3/2

+C2’(1? )

z*

z s

(4)

where is the volume fraction of solid contained in the cell edges.Finite element simulations of a unit te-trakaidecahedral closed cell with?at faces give[20]:

E E s =0.32

z*

z s

2

+0.32

z*

z s

(5)

|pl* ys =0.33

z*

s

2

+0.44

z*

s

(6)

for relative densities less than0.2.For such low relative densities,the second linear density term dominates, implying that cell face stretching is the more signi?cant mechanism of deformation in closed cell foams.Similar simulations,on both tetrakaidecahedral closed cells and Weaire–Phelan closed cells give E*/E s=0.311(z*/z s) [21].

The data for the open cell,ERG aluminum foam are well described by the model(Figs.1and2).The data for both the modulus and strength of most of the closed cell foams lie below the estimates of the model.Mi-crostructural observation of the Alporas and Alcan foams has identi?ed a number of irregularities not accounted for in the models.Many of the cell walls in the Alporas foam have some initial curvature as well as small voids within them[13,14].There are local regions of higher density where the cell walls are thicker at the nodes.The cell walls in the Alcan foam are sometimes corrugated,especially in the lower density materials [11,13,14].The shape and orientation of the cells in the lower density Alcan foams vary throughout the thick-ness of the panel due to processing conditions[14]. There is a density gradient throughout the thickness of the lower density Alcan foams due to drainage of the liquid before solidi?cation[12,14].

The effect cell wall curvature and corrugations on the modulus and yield strength have been modelled using ?nite element simulations of a periodic unit tetrakaidec-ahedral cell[22].The results suggest that the observed cell wall curvature and corrugations may account for up to a70%drop in the modulus and strength of some aluminum foams below the ideal values estimated for planar cell walls.Similar results are found by consider-ing changes in the effective stiffness of individual corru-gated beams and plates[23].The effect of local thickening of the cell walls at the nodes(Plateau bor-ders)on the modulus and strength of a foam has also been modelled using?nite element simulations[20];for typical distributions of solid material,the change in modulus and strength is less than10%.

Here,we examine the compressive and tensile proper-ties of aluminum foams made by?ve manufacturers: Alcan,Shinko Wire(trade name Alporas),Fraunhofer,Mepura(trade name Alulight),and ERG(trade name Duocel).The microstructure of both the cell walls and the cellular structure are characterized,including mea-surements of cell wall curvature and corrugations.The compressive and tensile Young’s moduli and strength are measured and compared with the models.The properties of closed cell aluminum foams are found to fall well below that suggested by models for foams with ideal https://www.wendangku.net/doc/b0687371.html,ing measured values for cell wall curvature and corrugations in the?nite element simula-tions,we?nd that such defects in the cell structure account for most of the reduction below the ideal values for modulus and strength.

Fig.3.Optical photographs of each of the?ve foams studied.(a) Alcan,(b)Alporas,(c)Alulight,(d)Fraunhofer and(e)ERG.

E.Andrews et al./Materials Science and Engineering A270(1999)113–124 116

2.Materials and methods

Aluminum foams were obtained from?ve manufac-

turers:Cymat(Mississauga,Ont.,Canada;using the

Alcan process,nominal density=380kg/m3),Shinko

Wire(Amagasaki,Japan;trade name Alporas,nominal

density=216kg/m3),ERG(Oakland,CA;trade name

Duocel,nominal density=216kg/m3),Mepura(Ran-

shofen,Austria;trade name Alulight,nominal den-

sity=260–470kg/m3)and Fraunhofer Institut Fuer

Angewandte Materialforschung(IFAM,Bremen,Ger-

many;nominal density=375–750kg/m3)(Fig.3).The

Alporas and Alcan foams were obtained in large panels

from which specimens were cut.The Duocel foam was

machined by the manufacturer to the specimen sizes

used in the mechanical tests.The Alulight and Fraun-

hofer foams were available in smaller sections(100mm

cubes and450mm×125mm×40mm panels,respec-

tively),from which test specimens were cut.The Duocel

material is open cell;all of the others are closed cell.

The Alcan,Fraunhofer and Alulight materials all had a

solid skin on the outer surfaces,which was removed

before testing.Specimens were cut using one of three

techniques:band sawing followed by milling of the

surface,diamond sawing,or electric discharge machin-

ing(EDM).The surface preparation technique had little effect on the mechanical test results[24].

The density of individual specimens was calculated by weighing the specimens on a balance and measuring their dimensions using a digital caliper.The cell size of each of the foams was measured using the mean inter-cept length technique.The cell wall composition was determined using wavelength dispersive X-ray analysis (JEOL JXA-733electron probe microanalyzer;JEOL USA Peabody,MA).The volume fraction of each phase was found using NIH image on back-scattered scanning electron micrographs.At least three cell walls were examined for each type of foam.For all the foams except the Alcan,the composition was similar in all the walls examined.Drainage of liquid aluminum during processing decreases the volume fraction of silicon car-bide in the cell walls towards the bottom of the panel in the Alcan material;the composition of the cell walls in the Alcan foam was measured on14walls taken from different depths within the panel.The cell wall density was estimated using a rule of mixtures approach.The yield strength of the cell wall of all of the closed cell foams was measured by indentation.Individual cell walls were cut,mounted in epoxy and polished with a ?nal step of1m m diamond paste.Indentations were made by Nano Instruments(Oak Ridge,TN)using a Berkovich indenter with loads between200and700 mN.Ten indentations were made in each material.The size of the indentations was measured with an optical microscope.The yield stress was taken to be one-third of the hardness value.The thin cell edges in the open Fig.4.Methods used to measure(a)cell wall curvature and(b)cell wall corrugation.

cell ERG made indentation testing more dif?cult;the yield strength of its cell edges was taken to be the handbook value of the yield strength of the6101-T6 aluminum alloy it is made from.

Curvature of the cell walls was measured in the Alcan,Alporas and Alulight foams.Additional curva-ture measurements were also made on previously tested panels of lower density(80and160kg/m3)Alcan foams [14].No cell edge curvature was observed in the open cell ERG foam.The Fraunhofer foams had a variety of major defects including:large cracks spanning more than10cells,large voids spanning a signi?cant fraction of the specimen and sheared cells.In these specimens, the cell wall curvature,although evident,was not thought to be the primary feature responsible for the degradation in mechanical properties.No further char-acterization of its cell microstructure was made. Samples of the Alcan,Alporas and Alulight foams were cut using EDM(Omega Series Electric Discharge Machine;EDM Technology,Central Islip,NY).The contrast of the foam surfaces was improved by spraying them with matte black paint and then grinding the surface to remove paint from the cell walls.The image of the foam surface was digitized using an optical scanner(Apple Color OneScanner600/27;Apple Com-puter,Cupertino,CA)and the contrast improved using NIH Image Version 1.59.Microstructural measure-

E .Andrews et al ./Materials Science and Engineering A 270(1999)113–124117

ments were made using Canvas Version 5.0.The curva-tures of at least 300cell walls were measured for each foam.The curvature of a cell wall was obtained from measurement of the chord length,L ,and the triangular area,A ,shown in Fig.4.The angle,q ,enclosed by the normals at the ends of the cell wall is related to the chord length L and triangular area A (Fig.4)by:q =4tan ?1

4A L 2

(7)

The normalized cell wall curvature,L /2R ,is then:L

2R

=sin

q 2

The Alcan foam properties vary through the thick-ness of the sheet due to density variations resulting

from drainage during processing.Previous microstruc-tural measurements of the cell shape,cell orientation and foam density through the thickness of the panel indicated that there were three approximately homoge-neous sections in the panel [14];curvature measure-ments were made on three corresponding horizontal sections.The Alporas and Alulight materials were found to have roughly equiaxed cells;curvature mea-surements were made on sections cut without reference to panel or block orientation.

Corrugations in the cell walls were previously ob-served on sections cut in the rise direction in the 80and 160kg /m 3Alcan foam [14].They are thought to result from partial cell collapse while the cell walls are solidi-fying during processing.As part of this study,we also measured the length L ,average amplitude h and num-ber of corrugations for each corrugated cell wall for samples from the panels from the previous study,as shown in Fig.4(b).The corrugation data was measured for 44cell walls of the 80kg /m 3foam and 82cell walls for the 160kg /m 3foam.Average and 95th percentile values of the normalized amplitude,h /L ,and normal-ized frequency,L /u ,were calculated for each https://www.wendangku.net/doc/b0687371.html,pression tests were carried out on cubic speci-mens.The size of the specimens varied depending on the available material:the edge lengths of the Alcan,Alporas,ERG,Alulight and Fraunhofer foams were 50,50,25,45and 40mm,respectively.In each case,the edge length was at least seven times the cell size:the results of a separate study indicated that this is the minimum specimen size required to avoid edge effects which reduce the measured values of Young’s modulus and compressive strength [24].Between three and six specimens were tested for each material.The ERG material was loaded both parallel (X 1)and perpendicu-lar (X 2)to the axis of cell elongation;previous data suggests that the ERG material is roughly transversely isotropic [25].The Alcan material was loaded in three perpendicular directions:X 1,in the plane of the sheet of foam,in the direction of the conveyor motion;X 2,in the direction of the thickness of the sheet;and X 3,in the plane of the sheet,perpendicular to the conveyor motion.Although the Alporas cells are equiaxed,the mechanical properties depend on loading direction [14].

Table 1

Solid cell wall properties of aluminum foams Solid density z s Reference yield Foam

Composition

Measured yield Volume fraction

Reference Young’s modulus E s (GPa)(kg /m 3)strength |ys (MPa)strength,|ys (MPa)Al 0.6Mg 0.5Si ERG (6101/T6)2690a –69a –193a Al 0.8192760

93b

Alcan

330

310b SiC

0.152390c

Al matrix only

0.013Al /Si /Mg /Fe Al /Si /Fe 0.0062710Alporas

69Al

120

130d 0.831172c 0.163Al /Ti /Ca Al /Fe 0.006Al

0.6952860Alulight

69250

250d

0.260Al /Si /Fe Al /Ti 0.0250.018Si Ti 0.002Fraunhofer

Al

0.891272069215

173e Al /Si /Fe 0.096250c

0.012Al /Si /Ti Ti 0.002

a

Davies and Zhen [5].b

Alcan data.c

Simone and Gibson [14].d

Sugimura et al.[13].e

Weber et al.[9].

E.Andrews et al./Materials Science and Engineering A270(1999)113–124

118

Table2

Cell size and cell wall curvature for aluminum foams

Average L/2R E/E o95th percentile L/2R

Cell size(mm)|*/|o* Foam

2.5

ERG––––

0.330.52

13.2a0.69

Alcan3%0.15

7.5a

Alcan6%0.280.620.620.34 Alcan14%0.34

3.4a0.660.640.48

0.210.72

4.5a0.56

Alporas0.45

4.2

Alulight0.370.630.740.32

–––

Fraunhofer–

2.6

a Data for cell size of Alcan and Alporas from Simone and Gibson[14].

Table3

Corrugation frequency and amplitude for aluminum foams

Foam Average h/L

Average L/u E/E o95th percentile L/u95th percentile h/L|*/|o*

0.067

Alcan3%0.46

1.67 3.00.050.71

0.0580.65 3.20.19

1.140.22 Alcan6%

The compressive strength of Alporas in three orthogo-nal directions was measured on a separate set of cubes. Compression testing was performed by deforming the specimen between two parallel platens in an Instron model1321(Canton,MA)load frame with a50kN load cell.For the Alporas,Alulight and Fraunhofer foams,up to a strain of approximately10%,displace-ment was measured by two LVDTs(Trans-Tek,Elling-ton,CT)on either side of the specimen;at higher strains the displacement was measured from the Instron crosshead displacement.Up to a strain of approxi-mately10%,the displacement rate was0.01mm/s, while at higher strains,the rate was increased to0.05 mm/s.For the ERG,Alcan and Alporas foams,two extensometers(gauge length32mm)were centrally mounted on the specimen to measure both the applied and transverse strains,from which Poisson’s ratio was calculated.In all of the mechanical testing,load and displacement were recorded using a National Instru-ments SCB-68data acquisition unit,Labview(National Instruments,Austin TX)and a personal computer.The Young’s modulus of the foam was calculated from the slope of the unloading load–de?ection curve taken at approximately75%of the expected plastic collapse stress of the foam,which was found from preliminary tests.The plastic collapse stress was calculated from the initial peak load on the specimen.Densi?cation strain was taken as the strain at which the stress was equal to 1.5times the stress at50%strain:although somewhat arbitrary,this gives a consistent method.

Direct tension tests were performed on the ERG material on dogbone specimens with a waisted region 90mm in length and20mm×20mm in cross-section. Five specimens were tested for loading in each of two directions:parallel and perpendicular to the long axis of the cells.Standard Instron grips with large,custom-made grip faces to accommodate the large foam sam-ples were used.The ends of the specimens were initially potted with epoxy to minimize crushing of the material. Subsequent tests showed that inserting a?ne piece of sandpaper,folded over,between the specimen and the grip faces allowed for suf?cient grip force to avoid slip without excessive clamping force;this technique elimi-nated the need to pot the ends of the specimen with epoxy.The specimens were loaded at a rate of0.01 mm/s.The Young’s modulus was calculated from the slope of the unloading load–de?ection curve.Periodic unloadings and reloadings were performed,both before and after the onset of initial failure in the material.In the?rst set of tests,two extensometers with a gauge length of50.8mm were used to measure axial strain on either side of the https://www.wendangku.net/doc/b0687371.html,parison of the strains on either side of the specimen con?rmed that no bend-ing occurred.In subsequent tests,the second exten-someter,with a gauge length of12.7mm,was used to measure the transverse strain,allowing Poisson’s ratio to be calculated.In all cases,the specimens were loaded until complete tensile failure(separation)occurred. Direct tension tests on dogbone specimens of Alporas and Alcan were performed in a similar manner.The waisted region was nominally125mm in length and25 mm×25mm in cross-section.Four specimens of the Alcan foam and three specimens of the Alporas foam were tested in the X1direction.The dimensions of the Alulight and Fraunhofer materials available were in-suf?cient to produce dogbone specimens for tensile testing.

E.Andrews et al./Materials Science and Engineering A270(1999)113–124119

3.Results

The solid cell wall composition and properties are listed in Table1.The volume fraction of silicon car-bide in the Alcan foams varied from3to48%de-pending on the location of the cell wall:during processing,the liquid aluminum drains to the bottom of the sheet,increasing the concentration of SiC at the top and decreasing it at the bottom.The value of 15.2%represents an average for cell walls taken throughout the sheet.The densities of the cell wall vary only slightly from the value of2700kg/m3for pure aluminum.The Young’s modulus of the cell wall was taken to be the reference value for aluminum(69 GPa)for the ERG,Alporas,Alulight and Fraunhofer foams.The Young’s modulus of the Alcan foam was taken to be93GPa,a reference value given by the manufacturer,which lies close to the lower bound for a composite of SiC particles in an aluminum matrix. The measured values of the yield strength of the cell wall from indentation tests are close to those reported in the literature.

Data for the average cell size,and for the average and95th percentile cell wall curvature are reported in Table2.The orientation of the cells in the Alcan foam was found to vary throughout the thickness of the sheet [14];average cell sizes are reported here.The mean intercept length measurement of cell size was repeated on the Alporas foam and found to be within2%of the previously reported value.The cell size of the Alporas, Alulight and Fraunhofer foams is the same in all direc-tions.The ERG foam is transversely isotropic:the cells are elongated in one direction(2.7mm)and roughly equiaxed in the perpendicular plane(2.4mm).The average cell wall curvature is used to estimate the reduction in Young’s modulus below that for an ideal closed cell foam(Eq.(5)),using the?nite element simulations of Simone and Gibson[22].The95th per-centile cell wall curvature is used to estimate the reduc-tion in the compressive strength below that for an ideal closed cell foam(Eq.(6)),again using the?nite element simulations of Simone and Gibson[22].The corre-sponding values of the modulus and strength reduction are also shown in Table2.

Fig.5.Frequency distribution of cell wall curvature for(a)Alulight,(b)Alporas,(c)3%dense Alcan,(d)6%dense Alcan and(e)14%dense Alcan aluminum foams.

E .Andrews et al ./Materials Science and Engineering A 270(1999)113–124

https://www.wendangku.net/doc/b0687371.html,pressive stress–strain curves for aluminum foams (a)up to strain of 5%and (b)up to densi?cation strain.

Fig.7.Tensile stress–strain curves for aluminum foams.

wall curvature for the Alcan,Alporas and Alulight foams are shown in Fig.5.The histograms for horizon-tal slices taken from the top,middle and bottom of the Alcan panels showed similar distributions,indicating that the distribution of curvature remains roughly con-stant throughout the depth of the panel;Fig.5shows the histogram for the combined data for each density of Alcan foam.

Compressive stress–strain curves for loading up to a strain of 5%and up to the densi?cation strain are shown in Fig.6.All but one unloading slope have been omitted for clarity.The slope of the unloading curve was greater than that for the loading curve except for the ERG foam,for which the two are equal.The peak stress is reached at a strain of between 0.5and 4%.The plateau stress for the ERG and Alporas foams are roughly constant with increasing strain until the densi?-cation occurs.The stress plateau of the Alcan foam is serrated,as is typical of a brittle foam:the serrations correspond to fracture of cell walls.The plateau stress for the Fraunhofer foam gradually increases with strain.Tensile stress–strain curves are shown in Fig.7.The results of the compression and tension tests are summarized in Table 4.The variations in density for each set of test specimens is low except for the Fraun-hofer material,in which the densities ranged from 376to 671kg /m 3;for this material,individual test results are listed.The density of the 14%dense Alcan speci-mens is much less than the nominal value of 380kg /m 3since the specimens were taken from the central region through the thickness of the plate which had a density of about 220kg /m 3.The ERG foam had similar Young’s moduli and strengths in tension and compres-sion for each loading direction.The Young’s modulus and strength in the X 1direction were much higher than those in the X 2direction.The Alcan foam appears to be transversely isotropic from the compressive test results,with much higher moduli and strength in the X 3direc-tion.In tension,it is brittle with a ductility of only 0.17%.Its tensile strength is less than half its compres-sive strength in the X 1direction.The Alporas foam has a slightly lower Young’s modulus in compression than in tension,and slightly higher strength in compression than in tension.The Alporas foam has a lower Young’s modulus in the X 1direction than in the X 2direction.The compressive strengths in the two directions are similar once density differences are accounted for.Pre-vious tests indicated that the Alporas foam is an-isotropic with moduli and strengths of 870and 1.60MPa in one direction and 1210and 1.36MPa in the other [14].The Alulight and Fraunhofer foams were tested without regard for orientation since there was no preferred axis of cell elongation and there was no indication of the orientation of the specimens from the manufacturer.Although these materials were denser than the other foams tested,their mechanical properties were of the same magnitude.

The data for the cell wall corrugations in the low density Alcan foams were treated in a similar manner (Table 3).The average as well as the 95th percentile values of the corrugation frequency and amplitude are reported and used to estimate the reductions in Young’s modulus and compressive strength,respec-tively,below those for an ideal closed cell foam.

Histograms showing the frequency of normalized cell

E .Andrews et al ./Materials Science and Engineering A 270(1999)113–124

121

Table 4

Compressive and tensile test results a Alcan X 1

Alcan X 2

Alcan X 3

Alporas X 1b

Alporas X 2

ERG X 1

Property

ERG X 2

Compression 4

4

4

4

4

4Number of 3

specimens

217(10)212(5)

232(27)

250(4)

220(6)

220(6)

Density (kg /m 3)249(9)

1.18(0.20)Young’s mod- 3.16(1.14)0.634(0.03)

1.00(0.07) 1.14(0.13)0.236(0.05) 1.52(0.33)ulus (GPa) 4.35(0.65) 1.84(0.04) 1.46(0.07)

2.30(0.41) 2.34(0.14)1.39(0.11)2.17(0.12)Strength (MPa)0.65(0.01)

0.63(0.01)0.66(0.02)

0.68(0.02)

0.63(0.1)

0.60(0)

Densi?cation strain Tension ––3(*2)4

6Number of 5

specimens

193(9)––244(3)

–190(6)

Density (kg /m 3)217(14)

Young’s mod-–0.502(0.084)

– 1.37(0.03)*–0.184(0.023) 1.33(0.49)ulus (GPa)– 1.44(0.02)–0.93(0.13)1.08(0.18)–Strength (MPa) 1.93(0.29)–

0.012(0.002)

0.0120.024(0.005)

0.0017(0.001)

Ductility (0.0001)*

Fraunhofer

Property Alulight Fraunhofer c Fraunhofer Fraunhofer Compression 15111Number of specimens

544Density (kg /m 3)274(17)3764295020.82 1.330.691.17(0.47)

0.61Young’s mod-ulus (GPa) 3.01(1.01) 2.50 2.821.88Strength (MPa) 2.300.60

0.60

Densi?cation 0.65(0.01)0.61

0.60

strain

a

ERG:X 1,parallel to elongated cell axis;X 2,perpendicular to elongated cell axis.Alcan:X 1,in plane,along conveyor motion;X 2,along thickness of the plate;X 3,in plane,perpendicular to conveyor motion.Alporas:X 1,perpendicular to the thickness of the plate;X 2,parallel to the thickness of the plate.b

Data from Andrews et al.[24]on prismatic specimens 24mm ×24mm ×48mm.c

Due to the large variation in densities of the Fraunhofer specimens tested,results for individual specimens are reported,rather than the average values.

*No extensometer data for one test.

Fig.8.Relative Young’s modulus plotted against relative density for aluminum foams.The dashed and solid lines represent Eqs.(1)and (5)for ideal open and closed cell foams,respectively.The dash–dot line represents the reduction in the moduli of the ideal closed cell foam resulting from the measured cell wall curvature.

E.Andrews et al./Materials Science and Engineering A270(1999)113–124 122

Fig.9.Relative compressive strength plotted against relative density for aluminum foams.The dashed and solid lines represent Eqs.(2) and(6)for ideal open and closed cell foams,respectively.The dash–dot line represents the reduction in the strength of the ideal closed cell foam resulting from the measured cell wall curvature.Data are shown for the open cell ERG foam as well as the closed cell foams for which the cell wall curvature was the only major defect in the cell structure(14% Alcan,Alporas and Alulight).The solid lines represent the equations for the modulus and strength of ideal closed cell foams(Eqs.(5)and(6)).The dashed lines represent the equations for the modulus and strength of ideal open cell foams(Eqs.(1)and(2)).The dash–dot lines represent the reduction in the modulus and strength below the values for an ideal closed cell foam due to cell wall curvature.The modulus and strength reduction was based on the average of the modulus and strength reduction factors(Table2)for the closed cell foams shown in Figs.8and9.

4.Discussion

The data for the modulus and strength of the ERG foam lie very close to the values given by the model for open cell foams.The data for the modulus and strength of the closed cell foams lies well below the model for an ideal tetrakaidecahedral cell(Eqs.(5)and(6)).Previous ?nite element calculations suggest that cell wall curva-ture can produce signi?cant reductions in modulus and strength below the ideal values for a perfect structure [22].The effect of cell wall curvature on modulus and strength was estimated by assuming that the modulus was related to the average curvature in the cell walls, while the strength was related to the weakest cells with the most cell wall curvature.Since failure can be trig-gered by a small fraction of weak cells[11,26],we selected the95th percentile value of cell wall curvature. The average modulus and strength reductions result-ing from the average and95th percentile values of cell wall curvature for the14%dense Alcan,the Alporas and the Alulight foams were0.67and0.42,respectively. The data for both properties lie slightly below the lines representing the closed cell model corrected for cell wall curvature,suggesting that other imperfections in the cell structure(e.g.cell shape,local density variations) also play a role.

The3and6%dense Alcan foams tested by Simone and Gibson[14]have moduli and strengths one to two orders of magnitude below the model predictions for a

We de?ne Poisson’s ratio as w ij=?m j/m i.Mean

measured values of the elastic Poisson’s ratio were:

ERG(com-w12=0.65,w21=0.25

pression,n=2)

ERG(tension,w12=0.74

n=3)

Alcan(com-w12=0.40,w21=0.23,w13=0.25,

pression,w31=0.38w23=0.13,w32=0.17

n=2)

Alcan(tension,w12=0.35

n=2)

Alporas(com-w=0.37

pression,

n=3)

Alporas(ten-w=0.40

sion,n=2)

We note that the compressive elastic moduli data for

the ERG foam obeys the reciprocal relation E1w21=

E2w12.The data for the Alcan foam do not;the reason

for this is not clear.

Young’s modulus and compressive strength,normal-

ized by the values for the solid cell wall material(Table

1),are plotted against relative density in Figs.8and9.

Table5

Reduction in Young’s modulus and strength of low density Alcan foams due to density variations,curvature and corrugations

3%E(MPa)3%|pl*(MPa)6%E(MPa)6%|pl*(MPa)

945 4.57

Average density17808.55

3.97

1.81

641

Density correction1290

3330.27

+Curvature correction800 1.35

1530.30

+Corrugation correction520

0.19

270.0671090.20 Measured

E.Andrews et al./Materials Science and Engineering A270(1999)113–124123

closed cell foam(Figs.1and2).The discrepancies arise from several sources:density variations within a specimen,cell wall curvature and corrugation,as well as variations in cell shape.The contribution of den-sity variations and cell wall curvature and corruga-tions to the reduction in modulus and strength can be estimated as follows.The density of each of the foams was found to vary through the depth of the specimens;Simone and Gibson report the densities of three horizontal layers of roughly equal thickness through the depth of the specimens.The isostress Young’s modulus was calculated using Eq.(5)and their measurements of layer density.The strength was assumed to be controlled by the lowest density layer; the theoretical strength of the lowest density layer was found using Eq.(6).The modulus and strength reductions corresponding to the average and95th per-centile cell wall curvature and the average and95th percentile corrugation frequency and amplitude(Ta-bles2and3)were then applied.The cumulative ef-fect of density variations,cell wall curvature and cell wall corrugations on the model predictions are given in Table5,along with the measured values of mod-ulus and strength.The cumulative effect of all three imperfections accounts for about80%of the differ-ence between measured E and the ideal closed cell foam model,and about98%of the difference be-tween measured strength and the ideal closed cell foam model.

5.Conclusions

The reduction in the measured values of Young’s modulus and plastic collapse stress of closed cell alu-minum foams below those predicted by models of ideal tetrakaidecahedral cells is associated with imper-fections in the cellular structure,including density variations,cell wall curvature and cell wall corruga-tions.There is potential for substantial improvement in their mechanical properties if such defects could be reduced through improved processing techniques. Acknowledgements

We gratefully acknowledge the?nancial support of ARPA Contract Number N00014-96-1-1028.Toby Freyman made the cell size measurements on the Al-poras,Alulight and Fraunhofer foams.Gael Gioux performed the tension tests on the Alporas foam. Emma Shepherdson performed the compression tests on the Alulight and the Fraunhofer foams.We are grateful to all for their assistance.References

[1]J.Banhart,J.Baumeister,Production methods for metallic

foams,Porous and Cellular Materials for Structural Applica-tions:symposium held April13–15,1998,San Francisco,CA, USA,MRS Symposia Proceedings,D.S.Schwartz,D.S.Shih,

H.N.G.Wadley,A.G.Evans,(Eds.),Vol.521,the Materials

Research Society,Pittsburgh,PA,(1998),pp.121–132.

[2]I.Jin,L.D.Kenny,H.Sang,Method of producing lightweight

foamed metal,US Patent4,973,358,1990.

[3]S.Akiyama,H.Ueno,K.Imagawa,A.Kitahara,S.Nagata,

K.Morimoto,T.Nishikawa,M.Itoh,Foamed metal and method of producing the same,US Patent4,713,277,1987. [4]J.Banhart,J.Baumeister,M.Weber,Powder metallurgical

technology for the production of metallic foams,Proceedings of the Powder Metallurgy European Congress Euro PM95, 1995,pp.201–208.

[5]G.J.Davies,S.Zhen,Metallic foams:their production,prop-

erties and applications,J.Mater.Sci.18(1983)1899–1911. [6]V.Shapovalov,Porous metals,Mater.Res.Soc.Bull.19

(1991)24–28.

[7]P.S.Dubbelday,Poisson’s ratio of foamed aluminum deter-

mined by laser Doppler vibrometry,J.Acoust.Soc.Am.91 (1992)1737–1744.

[8]P.S.Dubbelday,K.M.Rittenmyer,Shear modulus determina-

tion of foamed aluminum and elastomers,Ultrasonics Sympo-sium,IEEE,New York,1985,pp.1052–1055.

[9]M.Weber,J.Baumeister,J.Banhart,H.-D.Kunze,Selected

mechanical and physical properties of metal foams,Proceed-ings of the Powder Metallurgy World Congress PM94,Paris, 1994,pp.585–588.

[10]R.Gradinger,F.Simancik,H.P.Degischer,Determination of

mechanical properties of foamed metals,International Confer-ence Welding Technology,Materials and Materials Testing, Fracture Mechanics and Quality Management,Vienna Univer-sity of Technology,1997.[Published by Vienna University of Technology,Vienna,Austria].

[11]O.Prakash,H.Sang,J.D.Embury,Structure and properties

of Al-SiC foam,Mater.Sci.Eng.A199(1995)195–203. [12]J.T.Beals,M.S.Thompson,Density gradient effects on alu-

minum foam compression behaviour,J.Mater.Sci.32(1997) 3595–3600.

[13]Y.Sugimura,J.Meyer,M.Y.He,H.Bart-Smith,J.Grenest-

edt,A.G.Evans,On the mechanical performance of closed cell foams,Acta Mater.45(1997)5245–5259.

[14]A.E.Simone,L.J.Gibson,Aluminum foams produced by liq-

uid state processes,Acta Mater.46(1998)3109–3123.

[15]H.von Hagen,W.Bleck,Compressive,tensile and shear test-

ing of melt-foamed aluminum,Porous and Cellular Materials for Structural Applications:symposium held April13–15, 1998,San Francisco,CA,USA, D.S.Schwartz, D.S.Shih,

H.N.G.Wadley,A.G.Evans(Eds.),MRS Symposia Proceed-

ings,Vol.521,the Materials Research Society,Pittsburgh,PA, (1998),pp.59–64.

[16]G.Gioux,T.M.McCormack,L.J.Gibson,Failure of alu-

minum foams under multiaxial loads,Int.J.Mech.Sci.(in press).

[17]P.H.Thornton, C.L.Magee,The deformation of aluminum

foams,Met.Trans6A(1975)1253–1263.

[18]L.J.Gibson,M.F.Ashby,Cellular Solids:Structure and Prop-

erties,2nd ed.,Cambridge University Press,Cambridge,1997.

[19]W.E.Warren,A.M.Kraynik,Linear elastic behavior of a low

density Kelvin foam with open cells,ASME J.Appl.Mech.64 (1997)787–794.

E.Andrews et al./Materials Science and Engineering A270(1999)113–124 124

[20]A.E.Simone,L.J.Gibson,Effects of solid distribution on the

stiffness and strength of aluminum foams,Acta Mater.46(1998) 2139–2150.

[21]A.M.Kraynik,M.K.Neilsen,D.A.Reinelt,W.E.Warren,Foam

micromechanics,Foams and Emulsions,in:J.F.Sadoc,N.Riv-ier(Eds.),Proceedings of the NATO Advanced Study Institute on‘Foams,Emulsions and Cellular Materials,Cargese,Corsica, 12–24May,1997,Kluwer Academic Publishers,Dordrecht, 1999,pp.259–286.

[22]A.E.Simone,L.J.Gibson,The effects of cell face curvature and

corrugations on the stiffness and strength of metallic foams, Acta Mater.46(1998)3929–3935.[23]J.L.Grenestedt,In?uence of wavy imperfections in cell walls on

elastic stiffness of cellular solids,J.Mech.Phys.Solids46(1998) 29–50.

[24]E.W.Andrews,G.Gioux,P.Onck,L.J.Gibson,Size effects I

ductile cellular solids,part II:experimental results,Mater.Sci.

Eng.(in press).

[25]T.C.Trianta?llou,Multiaxial failure criteria for cellular materi-

als,Ph.D.thesis,Department of Civil Engineering,Massachu-setts Institute of Technology,1989.

[26]M.J.Silva,L.J.Gibson,The effect of non-periodic microstruc-

ture and defects on the compressive strength of two-dimensional cellular solids,Int.J.Mech.Sci.39(1997)549–563.

.

智能存包柜(储物柜)产品技术说明书

条码式寄存柜(储物柜)产品技术说明 一、适用范围 自助行李寄存柜,用于高效率、规范化且消费群体较密集的高档公共场所,如:超市、学校、机场、俱乐部、游泳馆、健身房、超市、大卖场、商场、事业单位等。客户可根据自身特点选择不同类型的机组,有条码型、指纹型、IC卡、条形码卡、磁卡、射频卡以及TM扣等,或者使用客户各自所持有的会员卡。 二、基本组成 自助行李寄存柜,是由嵌入式计算机进行控制,具有管理功能的小件物品寄存系统。主要由输入设备(条码阅读器)、输出设备(如中文液晶显示)、嵌入式计算机处理中心、管理软件以及电源组成。 三、结构、材料、钣金说明 寄存柜柜体选用0.8mm以上优质冷轧板,经冷加工成形后,用二氧化碳气体保护焊焊接装配而成,柜体结构坚固结实。箱体表面经除锈、除油、打磨、磷化处理后喷塑,塑面的颜色可由用户选定。?箱门背面增加纵向加强筋,提高箱门的防撞击能力;能有效防止和降低使用者因疏忽碰伤、磕伤,电控锁采用360度具有防撬、带防软片插入装置。 四、元器件说明 1)电控锁:经过10万次寿命测试无故障,性能可靠稳定。部件的表面均作热 涂锌防锈处理,装配成形后每把锁均作电气绝缘试验和开启试验,并按加工批量的1%作寿命试验。 2)扫描枪:台湾欣技C1000,性能稳定,读码速度快。 3)液晶显示屏:3.5寸彩色显示屏。例如:

表示:空箱,顾客可以存入的箱子 表示:满箱,有合法密码,箱内有物 4)打印机:自主研发使用日本精工打印机芯。 5)控制主板:自主研发生产。 6)切纸刀:自主研发生产、10万次寿命测试,性能稳定,配有走纸导向。 7)控制芯片:采用国际上著名大公司的工业级产品,有ATMEL公司、INTEL公 司、日立公司、德州公司等。 8)键盘:选用电话机水晶键盘,工作可靠,永不退色,使用寿命长。 五、常规技术指标 (1)功率-待机:25W 开箱:60W (2)电源电压:AC110V—AC240V 50HZ (3)后备电源(可选):18V 7AH (4)打印速度:35mm/s (5)打印机寿命:50Km (6)柜体冷轧钢板厚度:0.8mm (7)读码速度:<0.4s (8)显示分辨率:3.5寸彩色液晶屏(可定制显示LOGO) 六、条码寄存柜主要功能说明 ?大屏幕液晶显示屏 操作步骤提示、箱门5种状态显示、时钟显示、常规故障指示、设置菜单、管理界面、工作状态显示等。 在现场安装就位后,确认各个部件正常后,即可上电开机,完整的显示: ?全开放式中文设置菜单(可定制多国语言、语音) 寄存柜的各个管理参数全部面向客户开放,客户可选择相应的菜单进行设置。设有三级管理密码,方便不同级别的管理要求。 ?快捷管理员管理菜单 在管理模式下,管理快捷菜单可应急开启箱门、清除箱门ID、查询箱门状态等操作。可设置500位管理员进行管理,每个管理员可根据自己的用户号及管

脐带干细胞综述

脐带间充质干细胞的研究进展 间充质干细胞(mesenchymal stem cells,MSC S )是来源于发育早期中胚层 的一类多能干细胞[1-5],MSC S 由于它的自我更新和多项分化潜能,而具有巨大的 治疗价值 ,日益受到关注。MSC S 有以下特点:(1)多向分化潜能,在适当的诱导条件下可分化为肌细胞[2]、成骨细胞[3、4]、脂肪细胞、神经细胞[9]、肝细胞[6]、心肌细胞[10]和表皮细胞[11, 12];(2)通过分泌可溶性因子和转分化促进创面愈合;(3) 免疫调控功能,骨髓源(bone marrow )MSC S 表达MHC-I类分子,不表达MHC-II 类分子,不表达CD80、CD86、CD40等协同刺激分子,体外抑制混合淋巴细胞反应,体内诱导免疫耐受[11, 15],在预防和治疗移植物抗宿主病、诱导器官移植免疫耐受等领域有较好的应用前景;(4)连续传代培养和冷冻保存后仍具有多向分化潜能,可作为理想的种子细胞用于组织工程和细胞替代治疗。1974年Friedenstein [16] 首先证明了骨髓中存在MSC S ,以后的研究证明MSC S 不仅存在于骨髓中,也存在 于其他一些组织与器官的间质中:如外周血[17],脐血[5],松质骨[1, 18],脂肪组织[1],滑膜[18]和脐带。在所有这些来源中,脐血(umbilical cord blood)和脐带(umbilical cord)是MSC S 最理想的来源,因为它们可以通过非侵入性手段容易获 得,并且病毒污染的风险低,还可冷冻保存后行自体移植。然而,脐血MSC的培养成功率不高[19, 23-24],Shetty 的研究认为只有6%,而脐带MSC的培养成功率可 达100%[25]。另外从脐血中分离MSC S ,就浪费了其中的造血干/祖细胞(hematopoietic stem cells/hematopoietic progenitor cells,HSCs/HPCs) [26, 27],因此,脐带MSC S (umbilical cord mesenchymal stem cells, UC-MSC S )就成 为重要来源。 一.概述 人脐带约40 g, 它的长度约60–65 cm, 足月脐带的平均直径约1.5 cm[28, 29]。脐带被覆着鳞状上皮,叫脐带上皮,是单层或复层结构,这层上皮由羊膜延续过来[30, 31]。脐带的内部是两根动脉和一根静脉,血管之间是粘液样的结缔组织,叫做沃顿胶质,充当血管外膜的功能。脐带中无毛细血管和淋巴系统。沃顿胶质的网状系统是糖蛋白微纤维和胶原纤维。沃顿胶质中最多的葡萄糖胺聚糖是透明质酸,它是包绕在成纤维样细胞和胶原纤维周围的并维持脐带形状的水合凝胶,使脐带免受挤压。沃顿胶质的基质细胞是成纤维样细胞[32],这种中间丝蛋白表达于间充质来源的细胞如成纤维细胞的,而不表达于平滑肌细胞。共表达波形蛋白和索蛋白提示这些细胞本质上肌纤维母细胞。 脐带基质细胞也是一种具有多能干细胞特点的细胞,具有多项分化潜能,其 形态和生物学特点与骨髓源性MSC S 相似[5, 20, 21, 38, 46],但脐带MSC S 更原始,是介 于成体干细胞和胚胎干细胞之间的一种干细胞,表达Oct-4, Sox-2和Nanog等多

音响入门到高手必看知识

音响入门到高手必看知识音箱作为声频的终端器材,仿佛人的嗓门,在很大程度上决定了一套音响的好坏。可以毫不夸张地说:选择一对好的音箱是一套音响成功的关键所在,来不得半点马虎。然而纵观当今音响市场,成品音箱品牌不下数百种,其中不乏著名的国际品牌:如美国的BOSE(博士)、JBL、INFINITY(燕飞利仕)、Westlake Audio(西湖)、PolkAudio(音乐之声):英国的ATC(皇牌)、B&W、T annoy(天朗)、MonitorAudio(猛牌)、KEF、HARBETH(雨后初晴):丹麦的(皇冠)DYNAUD10(丹拿)、DALI(丹尼)、Jamo(尊宝):德国的Heco(德高)、密力(Maagnat)、ELAC(意力);法国的梦幻之声(VIS10NACOUSTIQUE)、JMLab(劲浪):国产精品有美之声战神系列、金琅、惠威、新德克、福音、小旋风等等,林林总总、不胜枚举。质量参差不齐,价格天差地别。即便是同品牌同系列的音箱,往往音质高出一丁点,价格就会成几何积数倍上升。这正是因为自人类发明电子声频工程以来,唯音箱进步最慢、技术最薄弱。据英国《发烧天书》记载:一部成名多年的英国老牌长青树音相Rogersls 3/5自六十年代推出,畅销近四十年,其音色这纯正优雅,至今仍为众多资深Hi-Fi发烧友视为炙手可热的抢手货。在音响科技高度发展的今天,实在有些令人费解。所以您可千万别小看了音箱的打造,别以为音箱只不过是把几个喇叭与几个Hi-Fi或Hi-END箱。音箱的学问大了,大到没法用

书写,各家各派众说纷纭。正如医学界的中医与西医之争,或如医治一些疑难杂症:说得明白的治不好病,治得好病的却说不明白。然而对消费者而言,我们只要学会如何鉴别与挑选就成。那么有没有一种通俗简便的方法,让毫无经验的大多数消费者不是凭贵价、不是碰运气,而是凭下面介绍的音箱试听“七要点”来学会判断一对音箱的好坏: 1.试听前对音箱的初步了解 对于一对音箱的最初了解,可用“观、掂、敲、认”的步骤来鉴别:即一观工艺,二掂重量、三敲箱体、四认铭牌。 外观工艺就是从音箱外表的第一部象来判断该次和品质优劣:用天然原木精工打造的音箱当然最好,许多天价级的世界名牌至尊音箱,包括意大利的Chario(卓丽)、Guarneri Homage(名琴)等,但此类好箱因环保、资源匮乏加工工艺难度大,时间长等因素,绝不会普及得象随处可见的“飘柔”洗发水,价格肯定没法低。故常见的音箱均是以MDF中密度纤维板表面敷以一层薄薄的木皮做装饰:敷真木皮精工外饰的音箱,尤其是如酸枝、雀眼、花梨、胡桃、桢楠、红橡等珍稀木皮,其天然木纹视觉效果极好,手感滑腻舒适。尤其以对称蝴蝶花纹真木皮经多层涂复打磨钢琴亮漆者,大多均可视为中高档精品音箱,仿冒品极少。用PVC塑料贴皮的箱子属大路货,虽做工精细,最好也只能算中低档货色。而以本纹纸贴面装饰的箱子虽然看上去极时应多注意箱体背后的贴皮接缝和喇叭安装位挖扎工艺是否精确到位。假冒伪

精神分裂症的病因及发病机理

精神分裂症的病因及发病机理 精神分裂症病因:尚未明,近百年来的研究结果也仅发现一些可能的致病因素。(一)生物学因素1.遗传遗传因素是精神分裂症最可能的一种素质因素。国内家系调查资料表明:精神分裂症患者亲属中的患病率比一般居民高6.2倍,血缘关系愈近,患病率也愈高。双生子研究表明:遗传信息几乎相同的单卵双生子的同病率远较遗传信息不完全相同 的双卵双生子为高,综合近年来11项研究资料:单卵双生子同病率(56.7%),是双卵双生子同病率(12.7%)的4.5倍,是一般人口患难与共病率的35-60倍。说明遗传因素在本病发生中具有重要作用,寄养子研究也证明遗传因素是本症发病的主要因素,而环境因素的重要性较小。以往的研究证明疾病并不按类型进行遗传,目前认为多基因遗传方式的可能性最大,也有人认为是常染色体单基因遗传或多源性遗传。Shields发现病情愈轻,病因愈复杂,愈属多源性遗传。高发家系的前瞻性研究与分子遗传的研究相结合,可能阐明一些问题。国内有报道用人类原癌基因Ha-ras-1为探针,对精神病患者基因组进行限止性片段长度多态性的分析,结果提示11号染色体上可能存在着精神分裂症与双相情感性精神病有关的DNA序列。2.性格特征:约40%患者的病前性格具有孤僻、冷淡、敏感、多疑、富于幻想等特征,即内向

型性格。3.其它:精神分裂症发病与年龄有一定关系,多发生于青壮年,约1/2患者于20~30岁发病。发病年龄与临床类型有关,偏执型发病较晚,有资料提示偏执型平均发病年龄为35岁,其它型为23岁。80年代国内12地区调查资料:女性总患病率(7.07%。)与时点患病率(5.91%。)明显高于男性(4.33%。与3.68%。)。Kretschmer在描述性格与精神分裂症关系时指出:61%患者为瘦长型和运动家型,12.8%为肥胖型,11.3%发育不良型。在躯体疾病或分娩之后发生精神分裂症是很常见的现象,可能是心理性生理性应激的非特异性影响。部分患者在脑外伤后或感染性疾病后发病;有报告在精神分裂症患者的脑脊液中发现病毒性物质;月经期内病情加重等躯体因素都可能是诱发因素,但在精神分裂症发病机理中的价值有待进一步证实。(二)心理社会因素1.环境因素①家庭中父母的性格,言行、举止和教育方式(如放纵、溺爱、过严)等都会影响子女的心身健康或导致个性偏离常态。②家庭成员间的关系及其精神交流的紊乱。③生活不安定、居住拥挤、职业不固定、人际关系不良、噪音干扰、环境污染等均对发病有一定作用。农村精神分裂症发病率明显低于城市。2.心理因素一般认为生活事件可发诱发精神分裂症。诸如失学、失恋、学习紧张、家庭纠纷、夫妻不和、意处事故等均对发病有一定影响,但这些事件的性质均无特殊性。因此,心理因素也仅属诱发因

外阴疾病

外阴疾病 外阴:阴道口外边的外露部分肛门、阴道口及尿道邻近,经常受阴道分泌物及尿液的浸渍,容易发炎。 常见病症:外因瘙痒、外阴炎、外阴白色病变、外因溃疡、外阴癌 外阴疾病 外阴:阴道口外边的外露部分肛门、阴道口及尿道邻近,经常受阴道分泌物及尿液的浸渍,容易发炎。 常见病症:外因瘙痒、外阴炎、外阴白色病变、外因溃疡、外阴癌 外因瘙痒 外阴瘙痒是妇科疾病中很常见的一种症状,外阴是特别敏感的部位,妇科多种病变及外来刺激均可引起瘙痒,使人寝食难安、坐卧不宁。外阴瘙痒多发生于阴蒂、小阴唇,也可波及大阴唇、会阴和肛周 病因:1.慢性局部刺激,外阴、阴道、宫颈炎症的异常分泌物的刺激; 2.外阴不清洁及紧身化纤内裤、卫生巾等致通透不良; 3.外阴寄生虫病,如阴虱、蛲虫、疥疮等; 4.各种外阴皮肤病和外阴肿瘤等; 5.全身性疾病的外阴局部症状,如糖尿病、尿毒症、维生素缺乏等。 症状:外因皮肤瘙痒、烧灼感和疼痛瘙痒部位多生与阴帝、小阴唇、也可波及大阴、会阴、甚至肛周围 危害:(1)性外阴部瘙痒严重时,不但使人坐卧不宁,影响工作、学习、生活和睡眠。 (2)由于女性外阴瘙痒,会影响夫妻生活,所以极有导致夫妻感情不和,严重的 甚至造成感情破裂,婚姻走向终点。 (3)诱发生殖器感染,盆腔炎、肾周炎、性交痛等,日久不愈还可导致多种疾病 同时发生,疾病的危害严重的会危害女性健康,甚至还会造成女性不孕等严重后果。 (4)女性外阴瘙痒严重时,不易根治,易反复,引发早产、胎儿感染畸形等,造 成终身遗憾。 治疗1.外阴涂药

使用有止痒作用的洗剂、膏霜等,如炉甘石洗剂、苯海拉明软膏、皮质醇类软膏等。 2.局部封闭或穴位注药 如皮质醇激素、维生素B12、非那根等。 3.针对病因治疗。 4.预防1. 注意经期卫生,勤清洗。 2.不要冲洗阴道,因为阴道有自清的功能,如果刻意冲洗反而不利 3.忌乱用、烂用药物,忌抓搔及局部摩擦。 4.忌酒及辛辣食物,不吃海鲜等及易引起过敏的药物 6 .久治不愈者应作血糖检查。少吃糖类可避免常常感染霉菌,如少吃淀粉类、糖类以及刺激性的食物(例如酒、辛辣物、油炸类),多吃蔬菜水果类,水份要充足。 5、不穿紧身兜裆裤,内裤更须宽松、透气,并以棉制品为宜。 6.就医检查是否有霉菌或滴虫,如有应及时治疗,而不要自己应用“止痒水”治疗。 8.保持外阴清洁干燥,尤其在经期、孕期、产褥期,每天用女性护理液清洗外阴更换内裤。 9.不穿化纤内裤、紧身裤,着棉织内衣裤。局部坐浴时注意溶液浓度、温度及时间、注意事项。 10.外阴瘙痒者应勤剪指甲、勤洗手,不要搔抓皮肤,以防破溃感染从而继发细菌性感染。 11.上完厕所请记得由前往后擦,因为肛门可能会带来不少细菌,所以如厕后请不要由肛门擦到阴部,才能减少感染的机会。 12.内裤要和其他的衣物分开洗,最好暴晒,可以减少细菌的滋生。如果患有霉菌性阴道炎的话,最好内裤都有热水煮 外阴溃疡外阴溃疡是发生于外阴部的皮肤黏膜发炎、溃烂、缺损。病灶多发生于小阴唇和大阴唇内侧,其次为前庭黏膜及阴道口周围。病程有急性及慢性。 大小阴唇、阴道口周围、阴蒂等处(外阴疾病发展中出现的一个过程,不是一个独立的疾病,有急性和慢性)急性外阴溃疡:非特异性外阴炎病情较轻,多在搔抓之后出现一般比较表浅,但疼痛比较厉害 慢性外阴溃疡:持续时间较长,或者反复发作 癌症引起的溃疡,与结核性溃疡很难鉴别,需做确诊

脐带血造血干细胞库管理办法(试行)

脐带血造血干细胞库管理办法(试行) 第一章总则 第一条为合理利用我国脐带血造血干细胞资源,促进脐带血造血干细胞移植高新技术的发展,确保脐带血 造血干细胞应用的安全性和有效性,特制定本管理办法。 第二条脐带血造血干细胞库是指以人体造血干细胞移植为目的,具有采集、处理、保存和提供造血干细胞 的能力,并具有相当研究实力的特殊血站。 任何单位和个人不得以营利为目的进行脐带血采供活动。 第三条本办法所指脐带血为与孕妇和新生儿血容量和血循环无关的,由新生儿脐带扎断后的远端所采集的 胎盘血。 第四条对脐带血造血干细胞库实行全国统一规划,统一布局,统一标准,统一规范和统一管理制度。 第二章设置审批 第五条国务院卫生行政部门根据我国人口分布、卫生资源、临床造血干细胞移植需要等实际情况,制订我 国脐带血造血干细胞库设置的总体布局和发展规划。 第六条脐带血造血干细胞库的设置必须经国务院卫生行政部门批准。 第七条国务院卫生行政部门成立由有关方面专家组成的脐带血造血干细胞库专家委员会(以下简称专家委

员会),负责对脐带血造血干细胞库设置的申请、验收和考评提出论证意见。专家委员会负责制订脐带血 造血干细胞库建设、操作、运行等技术标准。 第八条脐带血造血干细胞库设置的申请者除符合国家规划和布局要求,具备设置一般血站基本条件之外, 还需具备下列条件: (一)具有基本的血液学研究基础和造血干细胞研究能力; (二)具有符合储存不低于1 万份脐带血的高清洁度的空间和冷冻设备的设计规划; (三)具有血细胞生物学、HLA 配型、相关病原体检测、遗传学和冷冻生物学、专供脐带血处理等符合GMP、 GLP 标准的实验室、资料保存室; (四)具有流式细胞仪、程控冷冻仪、PCR 仪和细胞冷冻及相关检测及计算机网络管理等仪器设备; (五)具有独立开展实验血液学、免疫学、造血细胞培养、检测、HLA 配型、病原体检测、冷冻生物学、 管理、质量控制和监测、仪器操作、资料保管和共享等方面的技术、管理和服务人员; (六)具有安全可靠的脐带血来源保证; (七)具备多渠道筹集建设资金运转经费的能力。 第九条设置脐带血造血干细胞库应向所在地省级卫生行政部门提交设置可行性研究报告,内容包括:

音响和音箱有什么区别_音响和音箱的区别介绍

音响和音箱有什么区别_音响和音箱的区别介绍 一、音箱简介音箱指可将音频信号变换为声音的一种设备。通俗的讲就是指音箱主机箱体或低音炮箱体内自带功率放大器,对音频信号进行放大处理后由音箱本身回放出声音,使其声音变大。 音箱是整个音响系统的终端,其作用是把音频电能转换成相应的声能,并把它辐射到空间去。它是音响系统极其重要的组成部分,担负着把电信号转变成声信号供人的耳朵直接聆听的任务。 音箱的组成:市面上的音箱形形色色,但无论哪一种,都是由喇叭单元(术语叫扬声器单元)和箱体这两大最基本的部分组成,另外,绝大多数音箱至少使用了两只或两只以上的喇叭单元实行所谓的多路分音重放,所以分频器也是必不可少的一个组成部分。当然,音箱内还可能有吸音棉、倒相管、折叠的迷宫管道、加强筋/加强隔板等别的部件,但这些部件并非任何一只音箱都必不可少,音箱最基本的组成元素只有三部分:喇叭单元、箱体和分频器。 音箱是的分类:音箱的分类有不同的角度与标准,按音箱的声学结构来分,有密闭箱、倒相箱(又叫低频反射箱)、无源辐射器音箱、传输线音箱之分,它们各自的特点详见相关问答。倒相箱是目前市场的主流;从音箱的大小和放置方式来看,有落地箱和书架箱之分,前者体积比较大,一般直接放在地上,有时也在音箱下安装避震用的脚钉。落地箱由于箱体容积大,而且便于使用更大、更多的低音单元,其低频通常比较好,而且输出声压级较高、功率承载能力强,因而适合听音面积较大或者要求较全面的场合使用。书架箱体积较小,通常放在脚架上,特点是摆放灵活,不占空间,不过受箱体容积以及低音单元口径和数量的限制,其低频通常不及落地箱,承载功率和输出声压级也小一些,适合在较小的听音环境中使用;按重放的频带宽窄来分,有宽频带音箱和窄频带音箱之分,大多数音箱其设计目标都是要覆盖尽量宽的频带,属于宽频带音箱。窄频带音箱最常见的就是随家庭影院而兴起的超低音音箱(低音炮),仅用于还原超低频到低频很窄的一个频段;按有无内

音响参数分析及图片大全

音响 扬声器材质与尺寸 低档塑料音箱因其箱体单薄、无法克服谐振,无音质可言(也有部分设计好的塑料音箱要远远好于劣质的木质音箱);木制音箱降低了箱体谐振所造成的音染,音质普遍好于塑料音箱。 通常多媒体音箱都是双单元二分频设计,一个较小的扬声器负责中高音的输出,而另一个较大的扬声器负责中低音的输出。 挑选音箱应考虑这两个喇叭的材质:多媒体有源音箱的高音单元现以软球顶为主(此外还有用于模拟音源的钛膜球顶等),它与数字音源相配合能减少高频信号的生硬感,给人以温柔、光滑、细腻的感觉。多媒体音箱现以质量较好的丝膜和成本较低的PV膜等软球顶的居多。 低音单元它决定了音箱的声音的特点,选择起来相对重要一些,最常见的有以下几种:纸盆,又有敷胶纸盆、纸基羊毛盆、紧压制盆等几种。 纸盆音色自然、廉价、较好的刚性、材质较轻灵敏度高,缺点是防潮性差、制造时一致性难以控制,但顶级HiFi系统中用纸盆制造的比比皆是,因为声音输出非常平均,还原性好。 防弹布,有较宽的频响与较低的失真,是酷爱强劲低音者之首选,缺点是成本高、制作工艺复杂、灵敏度不高轻音乐效果不甚佳。 羊毛编织盆,质地较软,它对柔和音乐与轻音乐的表现十分优异,但是低音效果不佳,缺乏力度与震撼力。 PP(聚丙烯)盆,它广泛流行于高档音箱中,一致性好失真低,各方面表现都可圈可点。此外还有像纤维类振膜和复合材料振膜等由于价格高昂极少应用于普及型音箱中。 扬声器尺寸自然是越大越好,大口径的低音扬声器能在低频部分有更好的表现,这是在选购之中可以挑选的。用高性能的扬声器制造的音箱意味着有更低的瞬态失真和更好的音质。普通多媒体音箱低音扬声器的喇叭多为3~5英寸之间。用高性能的扬声器制造的音箱也意味着有更低的瞬态失真和更好的音质。 音箱: 有源和无源 有源音箱(ActiveSpeaker)又称为“主动式音箱”。通常是指带有功率放大器的音箱,如多媒体电脑音箱、有源超低音箱,以及一些新型的家庭影院有源音箱等。有源音箱由于内置了功放电路,使用者不必考虑与放大器匹配的问题,同时也便于用较低电平的音频信号直接驱动。

精神分裂症的发病原因是什么

精神分裂症的发病原因是什么 精神分裂症是一种精神病,对于我们的影响是很大的,如果不幸患上就要及时做好治疗,不然后果会很严重,无法进行正常的工作和生活,是一件很尴尬的事情。因此为了避免患上这样的疾病,我们就要做好预防,今天我们就请广州协佳的专家张可斌来介绍一下精神分裂症的发病原因。 精神分裂症是严重影响人们身体健康的一种疾病,这种疾病会让我们整体看起来不正常,会出现胡言乱语的情况,甚至还会出现幻想幻听,可见精神分裂症这种病的危害程度。 (1)精神刺激:人的心理与社会因素密切相关,个人与社会环境不相适应,就产生了精神刺激,精神刺激导致大脑功能紊乱,出现精神障碍。不管是令人愉快的良性刺激,还是使人痛苦的恶性刺激,超过一定的限度都会对人的心理造成影响。 (2)遗传因素:精神病中如精神分裂症、情感性精神障碍,家族中精神病的患病率明显高于一般普通人群,而且血缘关系愈近,发病机会愈高。此外,精神发育迟滞、癫痫性精神障碍的遗传性在发病因素中也占相当的比重。这也是精神病的病因之一。 (3)自身:在同样的环境中,承受同样的精神刺激,那些心理素质差、对精神刺激耐受力低的人易发病。通常情况下,性格内向、心胸狭窄、过分自尊的人,不与人交往、孤僻懒散的人受挫折后容易出现精神异常。 (4)躯体因素:感染、中毒、颅脑外伤、肿瘤、内分泌、代谢及营养障碍等均可导致精神障碍,。但应注意,精神障碍伴有的躯体因素,并不完全与精神症状直接相关,有些是由躯体因素直接引起的,有些则是以躯体因素只作为一种诱因而存在。 孕期感染。如果在怀孕期间,孕妇感染了某种病毒,病毒也传染给了胎儿的话,那么,胎儿出生长大后患上精神分裂症的可能性是极其的大。所以怀孕中的女性朋友要注意卫生,尽量不要接触病毒源。 上述就是关于精神分裂症的发病原因,想必大家都已经知道了吧。患上精神分裂症之后,大家也不必过于伤心,现在我国的医疗水平是足以让大家快速恢复过来的,所以说一定要保持良好的情绪。

基于单片机的自动存包系统设计

基于单片机的自动存包系统设计 摘要 近年来,随着生活水平的提高,人们对于社会消费品的质量和数量的要求也在逐渐增加。为了更好的为广大顾客服务,在一些商场、影院、超市等公共场合通常设置有自动存包柜,本次便是针对这一现象进行设计。 本文详细介绍了国内自动存包控制系统的发展现状,发展中所面临的问题。并详细介绍了本系统采用的AT89S52单片机做控制器,可以同时管理四个存包柜。柜门锁是由继电器控制,当顾客需要存包的时候,可以自行到存包柜前按“开门”键,需要顾客向光学指纹识别系统输入个指纹,然后通过继电器进行开门(用亮灯表示),顾客即可存包,并需将柜门关上。当顾客需要取包时,要将只要将之前输入的指纹放置于指纹识别器前方,指纹识别器采集到指纹信息输出相应的高低电平信号传给单片机,系统比较密码一致后,发出开箱信号至继电器将柜门打开,顾客即可将包取出。它具有功能实用、操作简便、安全可靠、抗干扰性强等特点。 关键词:自动存包柜,单片机,指纹识别器

李少鹏:基于单片机的自动存包系统设计 Based on single chip microcomputer automatic package design Abstract In recent years, with the improvement of living standards, people for social consumer goo ds quality and quantity requirements are to increase gradually. In order to better service for the g eneral customers, in some stores, movie theaters, supermarkets public Settings are to be put auto matically usually bag ark, it is functional practical, simple operation, safe and reliable, anti-jamm ing strong sexual characteristics. Domestic deposit automatic control system are introduced in detail in this paper the development of the status quo, problems faced in the development of. And introduces in detail the system adopts single chip microcomputer controller, can simultaneously manage multiple pack ark. Cupboard door lock controlled by relay, when customers need to save package, will be allowed to save package before the ark according to the "open" button, need customer to the system input fingerprint, and then through the relay to open the door (with lighting), customers can save package, and the cupboard door must be closed. When customers need to pick up package, as long as before the input fingerprint should be placed on the fingerprint recognizer, fingerprint recognizer collecting to the fingerprint information and output the corresponding high and low level signal to the microcontroller, the system is password consistent, signal out of the box to the relay Key words: Automatic Storage Bag, Microcontroller, Fingerprint recognizer。

音响常识

第一部分:音响基础知识 音箱参数 1.阻抗(想知道具体这个物流单位是什么意思,百度的知道一下,下同) 阻抗不是电阻,大家在这里常常犯错误,其实阻抗是电阻和电抗的总和。电阻是指在直流电中,物体对电流的阻碍作用。在交流点中,除了电阻会阻碍电流,电容和电感也会阻碍电流,这就是电抗了。据我查到的资料,阻抗值其实对音质没有关键性影响。但是,如果阻抗过低,造成电流过大,也容易使声音失真,对喜欢听音乐的玩家来说,阻抗就显得相对敏感。音箱常见的值有,4、6、8、16国际推荐值为8○(这个是物流欧姆的符号,找不到……用圈代替) 2.灵敏度 灵敏度,指的是音箱输入1W电功率时,在音箱正面,各个有事情的集合中心1M的距离,测试得来的声压级,单位是DB。换个简单的说法,就是灵敏度关系到音箱的音量大小。在同等音量条件下,灵敏度越高的音箱,声音失真的可能性要小得多。音箱高保真音箱的灵敏度在86db,专业级别的音箱在96db以上,选购音箱时可以参考。 3.功率 额定功率:(RMS)简而言之,称为有效功率,即不失真情况下,音箱长期安全使用的最大功率值。通常情况下,只有一些大型多媒体音箱的厂商才有标出该值,大部分厂商标注的是峰值音乐输出功率。 峰值音乐输出功率(PMPO):多数厂商标的是这个参数,即不考虑失真的情况下,功放的瞬间最大输出功率。这个值即没有考虑失真,又超过一定范围,那它是否有意义呢?其实也可以通过换算得到我们需要的它与额定功率的比值,具体的我也不清楚,资料显示换算比是1比8. 4.信噪比 指的是音箱回放正常声音信号与无信号时噪声信号的比值,也用DB表示。这个值越高,代表音质越好,但是价格也越高…一般2.0音箱的信噪比达到80db 即可,大一点也可以。至于X.1音箱,只要大于75db就ok! 5.扬声器口径 有的人认为,扬声器口径是越大越好,其实呢?当然不是。因为扬声器口径增大的同时,纸盆在振动的时候就容易变形、损坏,同样会影响音质。所以,低频扬声器口径一般为20-38cm,当然也有60或72cm的超大口径的大炮。中高音扬声器口径通常在2-6cm之间,偶尔有大于9cm的家伙 6.失真度 就是指没有经过放大器放大前的信号,与经过放大的信号作比较,被放大过的信号与未放大过的信号的差别。单位是百分比。对于多媒体音箱来说,失真无法避免,只要控制在一个合理的范围内就好。比如,2.0音箱必需在1%以下,X.1也要在5%以下2.0音箱必需在1%以下,X.1也要在5%以下。 7.重量 音箱越重,说明用的木材比较好,内部的磁钢比较大,这样可以有效提升音质。所以简而言之,重的好,因为舍得用料。(不排除无良商家塞砖块之类的事情,好像发生过……)

精神分裂症的病因是什么

精神分裂症的病因是什么 精神分裂症是一种精神方面的疾病,青壮年发生的概率高,一般 在16~40岁间,没有正常器官的疾病出现,为一种功能性精神病。 精神分裂症大部分的患者是由于在日常的生活和工作当中受到的压力 过大,而患者没有一个良好的疏导的方式所导致。患者在出现该情况 不仅影响本人的正常社会生活,且对家庭和社会也造成很严重的影响。 精神分裂症常见的致病因素: 1、环境因素:工作环境比如经济水平低低收入人群、无职业的人群中,精神分裂症的患病率明显高于经济水平高的职业人群的患病率。还有实际的生活环境生活中的不如意不开心也会诱发该病。 2、心理因素:生活工作中的不开心不满意,导致情绪上的失控,心里长期受到压抑没有办法和没有正确的途径去发泄,如恋爱失败, 婚姻破裂,学习、工作中不愉快都会成为本病的原因。 3、遗传因素:家族中长辈或者亲属中曾经有过这样的病人,后代会出现精神分裂症的机会比正常人要高。 4、精神影响:人的心里与社会要各个方面都有着不可缺少的联系,对社会环境不适应,自己无法融入到社会中去,自己与社会环境不相

适应,精神和心情就会受到一定的影响,大脑控制着人的精神世界, 有可能促发精神分裂症。 5、身体方面:细菌感染、出现中毒情况、大脑外伤、肿瘤、身体的代谢及营养不良等均可能导致使精神分裂症,身体受到外界环境的 影响受到一定程度的伤害,心里受到打击,无法承受伤害造成的痛苦,可能会出现精神的问题。 对于精神分裂症一定要配合治疗,接受全面正确的治疗,最好的 疗法就是中医疗法加心理疗法。早发现并及时治疗并且科学合理的治疗,不要相信迷信,要去正规的医院接受合理的治疗,接受正确的治 疗按照医生的要求对症下药,配合医生和家人,给病人创造一个良好 的治疗环境,对于该病的康复和痊愈会起到意想不到的效果。

自动存包柜的设计与仿真

自动存包柜的设计与仿真 摘要 本课题是基于单片机的自动存包柜设计。自动存包柜是新一代的存包柜,具有功能实用、操作简单、管理方便、安全可靠等特点,能够更好的服务于不同市场的广大群众,使用者可以根据简明清晰的操作说明自行完成存包取包工作。本系统由MCS-51单片机构成核心控制系统,整个系统由主控部分、键盘显示控制部分、执行部分三部分组成,通过随机密码的产生和核对完成自动存包取包过程。本设计中各元器件便于安装且操作简单,能基本实现存包取包功能。 关键词:自动存包柜;单片机;随机密码

Design and Simulation of Automatic Lockers ABSTRACT This topic is microcontroller-based automatic lockers.Automatic lockers is a new generation of lockers, with a practical, simple operation, easy management, safe and reliable, able to better serve the broad masses of the different markets, users are based on a clear and concise instructions to complete the deposit bags to take the package. The system consists of MCS-51 microcontroller core control system, the entire system from the main section, the keyboard display control part of the implementation of some of the three-part composition, random password generation and check completed automatically save the package to take the package process. Various components of this design is easy to install and easy to operate, can basically save the package to take package function. Key words :Automatic lockers; microcontroller; random password

外阴白色病变的症状表现有哪些

外阴白色病变的症状表现有哪些 外阴白色病变是慢性外阴的营养不良。属于营养不良的一种。而这也有分为好几个类型,混合型、增生型和硬化苔藓型等等都是外阴白色病变的类型。 外阴奇痒为主要症状,搔痒时间从发病到治疗有2~3月之内,也有达20 年之久,搔痒剧烈程度不分季节与昼夜,如伴有滴虫性或霉菌性阴道炎,分泌物会更多,局部烧灼感,刺痛与搔痒所致的皮肤粘膜破损或感染有关,局部有不同程度的皮肤粘膜色素减退,常有水肿,皲裂及散在的表浅溃疡。 一、增生型营养不良 一般发生在30~60岁的妇女,主要症状为外阴奇痒难忍,抓伤后疼痛加剧,病变范围不一,主要波及大阴唇,阴唇间沟,阴蒂包皮和后联合处,多呈对称性,病变皮肤增厚似皮革,隆起有皱襞,或有鳞屑,湿疹样改变,表面颜色多暗红或粉红,夹杂有界限清晰的白色斑块,一般无萎缩或粘连。 二、硬化苔藓型营养不良 可见于任何年龄,多见于40岁左右妇女,主要症状为病变区发痒,但一般远较增生型病变为轻,晚期出现性交困难,病变累及外阴皮肤,粘膜和肛周围皮肤,除皮肤或粘膜变白,变薄,干燥易皲裂外,并失去弹性,阴蒂多萎缩,且与包皮粘连,小阴唇平坦消失,晚期皮肤菲薄皱缩似卷烟纸,阴道口挛缩狭窄,仅容指尖。 幼女患此病多在小便或大便后感外阴及肛周不适,外阴及肛周区出现锁孔状珠黄色花斑样或白色病损,一般至青春期时,病变多自行消失。 三、混合型营养不良 主要表现为菲薄的外阴发白区的邻近部位,或在其范围内伴有局灶性皮肤增厚或隆起。 四、增生型或混合型伴上皮非典型增生 一般认为在增生型及混合型病变中,仅5、10例可出现非典型增生,且此非典型增生仅限于增生的上皮细胞部分。非典型增生多无特殊临床表现,局部组织活体组织检查为唯一的诊断方法。但如外阴局部出现溃疡。或界限清楚的白色隆起时,在该处活检发现非典型增生,其癌变的可能性较大。

卫生部办公厅关于印发《脐带血造血干细胞治疗技术管理规范(试行)

卫生部办公厅关于印发《脐带血造血干细胞治疗技术管理规 范(试行)》的通知 【法规类别】采供血机构和血液管理 【发文字号】卫办医政发[2009]189号 【失效依据】国家卫生计生委办公厅关于印发造血干细胞移植技术管理规范(2017年版)等15个“限制临床应用”医疗技术管理规范和质量控制指标的通知 【发布部门】卫生部(已撤销) 【发布日期】2009.11.13 【实施日期】2009.11.13 【时效性】失效 【效力级别】部门规范性文件 卫生部办公厅关于印发《脐带血造血干细胞治疗技术管理规范(试行)》的通知 (卫办医政发〔2009〕189号) 各省、自治区、直辖市卫生厅局,新疆生产建设兵团卫生局: 为贯彻落实《医疗技术临床应用管理办法》,做好脐带血造血干细胞治疗技术审核和临床应用管理,保障医疗质量和医疗安全,我部组织制定了《脐带血造血干细胞治疗技术管理规范(试行)》。现印发给你们,请遵照执行。 二〇〇九年十一月十三日

脐带血造血干细胞 治疗技术管理规范(试行) 为规范脐带血造血干细胞治疗技术的临床应用,保证医疗质量和医疗安全,制定本规范。本规范为技术审核机构对医疗机构申请临床应用脐带血造血干细胞治疗技术进行技术审核的依据,是医疗机构及其医师开展脐带血造血干细胞治疗技术的最低要求。 本治疗技术管理规范适用于脐带血造血干细胞移植技术。 一、医疗机构基本要求 (一)开展脐带血造血干细胞治疗技术的医疗机构应当与其功能、任务相适应,有合法脐带血造血干细胞来源。 (二)三级综合医院、血液病医院或儿童医院,具有卫生行政部门核准登记的血液内科或儿科专业诊疗科目。 1.三级综合医院血液内科开展成人脐带血造血干细胞治疗技术的,还应当具备以下条件: (1)近3年内独立开展脐带血造血干细胞和(或)同种异基因造血干细胞移植15例以上。 (2)有4张床位以上的百级层流病房,配备病人呼叫系统、心电监护仪、电动吸引器、供氧设施。 (3)开展儿童脐带血造血干细胞治疗技术的,还应至少有1名具有副主任医师以上专业技术职务任职资格的儿科医师。 2.三级综合医院儿科开展儿童脐带血造血干细胞治疗技术的,还应当具备以下条件:

原车汽车音响喇叭尺寸对照表

1. 帕萨特前门6.5寸后门6.5寸多数喇叭需要垫喇叭圈原车1DIN可 安装2DIN 2.马自达6前门5*7后门5*7需要垫喇叭圈主机为非规则面板, 和空调共用显示部分 3.广本2.4前门6.5后台板6*9部分喇叭安装时,前门需垫喇叭圈 主机为非规则面板 4.普桑前门4*6后门5拆前喇叭只需翘下喇叭面盖主机1DIN 5.林宝坚尼MURCIELAGO前门 6.5后面6.5主机1DIN 6.保时捷911前门5*7后5*7主机1DIN面板 7.长安之星面包车前仪表台4寸后没有主机1DIN卡带 8.宝马Z4前门5后?主机非标准面板(横向狭长外型) 9.尼桑天籁JK版前6.5后6.5主机非标准 10别克君威:前门5寸套装,后门6×9机头2DIN 11.奥迪,前门6.5分体后门6.5分体 12.宝来前6。5中6。5一D 13.富康、爱丽舍前门:5"同轴后门:5"同轴(简装车型没有)主机:不规则 14.风神蓝鸟前门:6.5"同轴后门:6.5"同轴主机:1DIN(可装2DIN) 15.中华前门5.5代高音后门5.5或没主机1DIN可装2DIN 16.千里马前面5寸后面6.5寸主机1DIN 17.依蓝特前门6.5寸后面6X9 2DIN主机 18.捷达仪表3寸或高音前门没有或6.5寸后台5寸主机1DIN

19.两厢广本飞度前后门6.5寸部分喇叭需要加垫圈增高主机1DIN、2DIN均可 20.风度-2.0前门6寸后门6寸后窗台8寸低音主机2DIN 21.哈飞路宝,前5.25。后4 22.北斗星前5.25。后无 23.qq前4,后4*6 24.2000,仪表台4,前门可改6.5。后6.5但是喇叭罩是方型,最好改6*9 25.五菱之光前4后4 26.三菱帕杰罗v63000老款仪表台4后6*9 27.风神蓝鸟老款前门5*7后台6.5注意喇叭深度,小心碰到尾箱盖的钢簧 28.赛欧前门加垫4*6后台5.25 29.哈飞赛马前门6寸半后门6寸半 30.北斗星前门5寸后门5寸 31.新马自达6前门6寸半后门6寸半 32.凌志400前门4寸(带音箱)后台6X9 33.派里奥前门6寸半后台4X6 34.奇瑞(奇云)前门6寸半后台4X6 35.奇瑞QQ前门4寸后台4X6 36.307前门6寸分体,后门5寸分体头枕后6×9 1DIN可装2DIN 37.长城SAFE 04款前门四寸后侧车壁4寸同轴带小喇叭箱。主机双DIN换后厢喇叭时非常费劲,要把整个门板扒开。还容易断卡笋。

精神分裂症应该怎么治疗

精神分裂症应该怎么治疗 1、坚持服药治疗 服药治疗是最有效的预防复发措施临床大量统计资料表明,大多数精神分裂症的复发与自行停药有关。坚持维持量服药的病人复发率为40%。而没坚持维持量服药者复发率高达80%。因此,病人和家属要高度重视维持治疗。 2、及时发现复发的先兆,及时处理 精神分裂症的复发是有先兆的,只要及时发现,及时调整药物和剂量,一般都能防止复发,常见的复发先兆为:病人无原因出现睡眠不好、懒散、不愿起床、发呆发愣、情绪不稳、无故发脾气、烦躁易怒、胡思乱想、说话离谱,或病中的想法又露头等。这时就应该及时就医,调整治疗病情波动时的及时处理可免于疾病的复发。 3、坚持定期门诊复查 一定要坚持定期到门诊复查,使医生连续地、动态地了解病情,使病人经常处于精神科医生的医疗监护之下,及时根据病情变化调整药量。通过复查也可使端正人及时得到咨询和心理治疗解除病人在生活、工作和药物治疗中的各种困惑,这对预防精神分裂症的复发也起着重要作用。 4、减少诱发因素 家属及周围人要充分认识到精神分裂症病人病后精神状态的薄弱性,帮助安排好日常的生活、工作、学习。经常与病人谈心,帮助病人正确对待疾病,正确对待现实生活,帮助病人提高心理承受能力,学会对待应激事件的方法,鼓励病人增强信心,指导病人充实生活,使病人在没有心理压力和精神困扰的环境中生活。 首先是性格上的改变,塬本活泼开朗爱玩的人,突然变得沉默寡言,独自发呆,不与人交往,爱干净的人也变的不注意卫生、生活

懒散、纪律松弛、做事注意力不集中,总是和患病之前的性格完全 相悖。 再者就是语言表达异常,在谈话中说一些无关的谈话内容,使人无法理解。连最简单的话语都无法准确称述,与之谈话完全感觉不 到重心。 第三个就是行为的异常,行为怪异让人无法理解,喜欢独处、不适意的追逐异性,不知廉耻,自语自笑、生活懒散、时常发呆、蒙 头大睡、四处乱跑,夜不归宿等。 还有情感上的变化,失去了以往的热情,开始变的冷淡、对亲人不关心、和友人疏远,对周围事情不感兴趣,一点消失都可大动干戈。 最后就是敏感多疑,对任何事情比较敏感,精神分裂症患者,总认为有人针对自己。甚至有时认为有人要害自己,从而不吃不喝。 但是也有的会出现难以入眠、容易被惊醒或睡眠不深,整晚做恶梦或者长睡不醒的现象。这些都有可能是患上了精神分裂症。 1.加强心理护理 心理护理是家庭护理中的重要方面,由于社会上普遍存在对精神病人的歧视和偏见,给病人造成很大的精神压力,常表现为自卑、 抑郁、绝望等,有的病人会因无法承受压力而自杀。家属应多给予 些爱心和理解,满足其心理需求,尽力消除病人的悲观情绪。病人 生活在家庭中,与亲人朝夕相处,接触密切,家属便于对病人的情感、行为进行细致的观察,病人的思想活动也易于向家属暴露。家 属应掌握适当的心理护理方法,随时对病人进行启发与帮助,启发 病人对病态的认识,帮助他们树立自信,以积极的心态好地回归社会。 2.重视服药的依从性 精神分裂症病人家庭护理的关键就在于要让病人按时按量吃药维持治疗。如果不按时服药,精神病尤其是精神分裂症的复发率很高。精神病人在医院经过一系统的治疗痊愈后,一般需要维持2~3年的

相关文档