文档库 最新最全的文档下载
当前位置:文档库 › 多不饱和脂肪酸调控脂肪基因表达的研究进展_陈英_宋凡_黄萍_罗敏

多不饱和脂肪酸调控脂肪基因表达的研究进展_陈英_宋凡_黄萍_罗敏

多不饱和脂肪酸调控脂肪基因表达的研究进展_陈英_宋凡_黄萍_罗敏
多不饱和脂肪酸调控脂肪基因表达的研究进展_陈英_宋凡_黄萍_罗敏

资助项目:

重庆市基本科研业务费项目(12617),重庆市农发资金项目(14411

),重庆市重点实验室专项多不饱和脂肪酸调控脂肪基因表达的研究进展

陈 英 宋 凡 黄 萍 罗 敏

(重庆市畜牧科学院 农业部养猪科学重点实验室养猪科学重庆市市级重点实验室 重庆荣昌 402460)

多不饱和脂肪酸PUFAs(Poly

unsaturated Fat-ty 

Acids,PUFAs)是18,24碳脂肪酸家族,其脂肪酸链中含有2个或2个以上的双键〔

1〕

。其主要包括n-3、n-6、n-7和n-9系列,

其中具有重要生物学功能的主要有n-3和n-6两种系列〔

2〕

。n-3系列主要包括α-亚麻酸(ALA)

、二十碳五烯酸(EPA)、二十二碳六烯酸(DHA);n-6系列主要包

括亚油酸(LA)、γ-亚麻酸(

GLA)、花生四烯酸(AA)

等,其结构特点及在人体内代谢的相互转化方式不同〔

3〕。膳食中的多不饱和脂肪酸对维持正常的身体健康和防治一些慢性疾病有多种生理作用,如同维生素、矿物质一样,是人体的必需品,不足、过量或比例失调容易导致心脏和大脑等重要

器官障碍〔

4〕

。由于多不饱和脂肪酸在人体健康方面的重要作用,许多多不饱和脂肪酸强化产品被不断开发。多不饱和脂肪酸的研究与应用越来越

受到人们的关注〔

5〕

。本文阐述了多不饱和脂肪酸的生物学特性,综述了多不饱合脂肪酸对与脂肪代谢相关的脂肪细胞定向分化因子1(Adipocy

tedetermination and differentiation factor 

1,ADDl)、脂代谢相关酶脂肪酸合成酶(Fatty Acid Synthase,FAS)、脂肪组织甘油三酯水解酶(adipose trigly

c-eride lip

ase,ATGL)基因表达和细胞分化的调控机制。

1 多不饱和脂肪酸的生物学特性

多不饱和脂肪酸对动脉血栓形成和血小板功

能有明显影响,Mozaffarian(2012)

等研究n-3多不饱和脂肪酸对心脑血管疾病中,同时添加EPA和DHA对心脑血管疾病比单一添加一种效果更好,降低TG含量和调节血小板功能,减少动脉血栓、心律失常的范围,减少炎症通路和氧化应激的发生,而DHA又增加LDH(低密度脂蛋白)和HDL(

高密度脂蛋白)含量,但是EPA和DHA对机体影响

的独立机理尚不清楚,有待进一步研究〔

6〕

。生物体内许多代谢过程都与膜功能有关,细胞膜组分的正

常和结构的稳定是其发挥生理功能的前提〔7〕

,多不

饱和脂肪酸,尤其是DHA,大量存在于磷脂中,是构成细胞膜的重要成分,对于维持细胞膜功能有着重要的作用,n-3和n-6多不饱和脂肪酸对细胞

膜脂质均具有极高的亲和性,并直接参与膜脂的构

成,Schley等(

2007)研究表明,n-3和n-6多不饱和脂肪酸的摄入能够影响脂膜的结构,调节脂膜中胆固醇和鞘磷脂的含量以及连接蛋白的组成和分布〔8〕

;EPA和DHA能预防肿瘤的发生,抑制癌细胞的生长,且摄入的n-3和n-6的比值与癌症死

亡率呈负相关〔9〕

,丰富的鱼油饮食,可改变细胞膜磷

脂组分,

从而改变膜相关信号转导分子分布和膜功能,改变蛋白激酶C的结构,保护机体〔10〕

,通过脂质

过氧化作用,引起癌细胞DNA损伤,诱导癌细胞凋亡〔1

1〕,增强药物对肿瘤细胞的细胞毒活性作用〔12〕

;多不饱和脂肪酸是构成细胞膜磷脂的重要成分,通过影响类二十烷酸的产生、细胞膜的流动性和基因

的表达等发挥其免疫调节作用〔

13〕

。2 多不饱和脂肪酸对脂肪基因合成代谢的

影响2.1 多不饱和脂肪酸对脂肪合成代谢基因的表达影响机制

近年来,

人们发现多不饱和脂肪酸在动物体脂肪品质以及脂肪细胞发育过程中具有调控作用,PUFA可以调控一些与脂肪代谢相关酶基因的转

录和表达〔14〕

。目前为止,已发现多种基因表达受到

PUFAs的调节,PUFAs对动物脂代谢相关基因表达的调控机制主要集中在转录水平的研究上。这些研究的根据是PUFA顺式作用元件(PUFA-RE)位于受PUFA调节基因的启动子区域。转录因子(PUFA结合蛋白,PUFA-BP)结合到PUFA-RE上,阻止或促进基因转录。PUFA抑制某些基因的

表达依赖PPAR〔15〕

。PPAR通过与基因上游的特

异PPRE结合,并与活化蛋白-1(AP-

1)、信号转导和转录活化因子(STATs)、细胞核因子-κB(NF-

κ

B)等相互作用,在转录水平上调节靶基因的表达,从而发挥其生物功能。PPARα被激活后诱导编码肝脏、心脏、骨骼肌中参与脂肪转运、氧化和生热作用的数个蛋白质,如肉毒碱棕榈酰转移酶、过氧化物酶体乙酰COA氧化酶、

解耦联蛋白-3基因表达。伴随着脂肪生成而发生的细胞脂肪积累和形态学上的改变等是由于细胞在分化中特定基因的诱导表达所致。日粮添加PUFAs对动物脂肪代谢

相关酶和蛋白基因的表达具有重要影响作用〔5〕

,能

加快脂肪细胞氧化分解和提高体内脂解酶的活

·

13·《上海畜牧兽医通讯》 2014年第6期DOI:10.14170/https://www.wendangku.net/doc/b1802010.html,31-1278/s.2014.06.011

性〔16〕。Cecile等(2011)以0.1%、0.5%和1%3种不同剂量的DHA饲喂兔子7周,测定肝脏转录物4-HHE中GC/MS/MS随剂量的增加而增加脂蛋白肝的mRNA水平〔17〕。喻礼怀(2008)研究饲粮脂肪酸n-6/n-3不同比例对扬州鹅脂肪代谢相关酶活性和基因表达的影响,结果表明:n-6/n-3为3∶1和6∶1的低比例饲粮处理组的脂肪酸合成相关的乙酰辅酶A羧化酶(ACC)、苹果酸酶(ME)和脂肪酸合成酶(FAS)的酶活性较低,与脂肪周转代谢相关的肝酯酶(HL)、脂蛋白酯酶(LPL)的酶活性较高;高n-6/n-3饲粮处理组的脂肪合成相关基因FAS、ME、ACC表达相对较高;另外,低n-6/n-3饲粮处理组的高密度脂蛋白受体(HDL-R)基因表达强度高于n-6/n-3高饲粮处理组;而高n-6/n-3饲粮处理组的低密度脂蛋白受体(LDL-R)基因表达强度高于低n-6/n-3比例饲粮处理组,表明低n-6/n-3比例饲粮能够在一定程度上抑制脂肪合成代谢〔18〕。

2.2 多不饱和脂肪酸对脂肪合成代谢基因的调控影响

脂肪酸是脂肪细胞分化主要的调节器,因此一些脂肪酸是与脂肪生成有关的基因和蛋白质的活化剂〔19〕。在脂肪组织中,多不饱和脂肪酸对磷酸烯醇式丙酮酸羧激酶(PEPCK)进行正向调节,从而为甘油三酯的合成提供磷酸甘油〔20〕。脂肪细胞特异性功能基因的转录激活与其分化密切相关〔21〕。脂肪细胞定向分化因子1(Adipocyte determinationand differentiation factor 1,ADDl),是动物脂肪细胞分化和脂肪代谢中重要的核转录因子,通过产生PPARγ内源配体促进脂肪细胞分化,调节脂肪代谢相关酶的基因表达来调控动物体内脂肪的合成。Ding等(1999)用猪的体内和体外细胞(s/v cell)对与脂肪形成有关的一些因子进行了研究,结果表明,ADDl基因表达水平与脂肪细胞的分化有着确定的连锁关系,并且随着动物日龄的增加而更加强烈〔22〕。与姜俊芳(2006)在脂肪细胞分化相关因子基因表达在猪生长过程中的变化规律研究中得出ADDl基因mRNA水平随体重增加而增加的结果一致,并且ADDl基因表达与脂肪沉积率成正相关(P<0.05)〔23〕。

脂肪酸合成酶(FAS)是由许多酶组成的大分子蛋白复合体系,FAS有多种催化功能,并以头-尾相连的方式结合形成催化中心:细胞胞浆内的FAS是FA从头合成的关键限速酶〔24〕,其表达调控主要为转录水平的调控。Clarke(1993)认为,在脂肪组织中,FAS基因的转录速度和mRNA的稳定性共同影响着FAS mRNA的水平;在肝脏中,FAS mR-NA含量主要由基因的转录速度决定〔25〕。时皎皎

等(2012)在不同膳食脂肪酸构成对大鼠肝脏脂代谢相关基因表达的影响中,大鼠用饱和脂肪酸组、单不饱和脂肪酸组、n-3多不饱和脂肪酸组、n-6多不饱和脂肪酸组、1∶1n-6/n-3组及对照组饲喂大鼠,检测肝脏组织FAS mRNA表达,得出饱和脂肪酸组显著升高(P<0.05),其余组显著降低(P<0.05)〔26〕。与韦娜等研究结果一致〔27〕。FAS蛋白的多寡、活性的高低对控制动物体脂沉积具有重要意义。刘利晓(2007)在用富含n-3多不饱和脂肪酸鸡肉的研究中,用对照组(1组)、3%亚麻油组(3%LD,2组)、5%亚麻油组(5%LO,3组)、5%微藻粉粕组(5%MA,4组)和5%微藻粉粕+3%亚麻油组(5%MA+3%LO,5组)饲喂21日龄健康雌性罗斯308肉鸡,检测肝脏FAS的活性差异均不显著(P>0.05),但是降低了FAS的活性〔28〕。FAS基因的表达增加能显著促进TG的沉积,从而导致肥胖的发生〔29〕。FAS活性及其表达受激素的调控,脂肪和肝脏是主要的调控组织。激素对FAS的影响主要集中在对其基因表达及调控的影响,对其酶活的研究则较少。胰岛素能诱导FAS的合成,从而促进FA的合成;生长激素可以抑制FAS的活性,从而降低FA的合成。在前脂肪细胞分化过程中,FAS不仅为TG的合成提供底物,同时这些产物还可作为此分化过程中的信号分子〔30〕。

脂肪组织中甘油三酯水解酶(ATGL)是催化甘油三酯第一步水解的重要脂肪酶,在脂肪代谢的调节中发挥重要作用,而甘油三酯(Triglyceride,TG)是人体内含量最多的脂类,人体内大部分组织都可以通过TG代谢产物来供能。Gruber等(2010)研究表明CGI-58(Comparative gene identi-fication 58)是ATGL活性的活化因子,这种激活作用需要CGI-58和ATGL蛋白的相互作用,并依赖于ATGL的N端序列〔31〕。Kershaw等(2006)研究表明在诱导产生糖尿病鼠的脂肪细胞中,ATGL表达由于胰岛素的缺乏而上调,但是当胰岛素恢复时表达量下降,证明ATGL承担着脂肪细胞基础脂解的作用〔32〕。祝超瑜(2011)在研究非诺贝特和吡格列酮对脂肪甘油三酯脂酶的调控及机制研究中,用棕榈酸处理C2C12细胞24h后收集细胞,棕榈酸抑制C2C12细胞ATGL的表达〔33〕。ATGL基因的表达及其酶活性受到多种因素的影响,如营养条件、激素调控、禁食等。

3 结语

PUFAs和其代谢物能在细胞水平上通过与核受体和转录因子结合来对不同的基因表达进行调控,从而发挥其生物学功能。PUFAs调控动物脂肪沉积的影响,有助于在畜牧生产中采取合理的营养调控措施来提高动物产品品质,并对了解和预防当

·

·《上海畜牧兽医通讯》 2014年第6期

今困扰人类健康的一些疾病,如肥胖、脉粥样硬化、脂肪肝、抑制肿瘤发生等生物活性功能有重要作用,从而为人类生命健康保驾护航。

参考文献

〔1〕Jump D B.The biochemistry of n-3polyunsaturated fattyacids〔J〕.J Biol Chem,2002,277(11):8755~8758.〔2〕Brenna J T.Efficiency of conversion of alpha-linolenicacid to long chain n-3fatty acid in man〔J〕.Curr OpinClin Nutr Metab Care,2002,5(2):127~132.

〔3〕钟耀光.功能食品〔M〕.北京:化学工业出版社,2004(8):121~128.

〔4〕Neuringer M,Connor W E,VanlPutten C,et al.Dietaryomega-3fatty acid deficiency and visual loss in infantrheusus monkeys〔J〕.J Clin Invest,1984,3:272~276.〔5〕张永刚,印遇龙,黄瑞林,等.多不饱和脂肪酸的营养作用及其基因表达调控〔J〕.食品科学,2006,1(27):273~279.

〔6〕Mozaffarian D,Jason H,vvu Y.(n-3)Fatty Acids andCardiovascular Health:Are Effects of EPA and DHAShared or Complementary?〔J〕.J Nutr,2012,142(3):6148~6258.

〔7〕李喜艳,王加启,卜登攀,等.多不饱和脂肪酸对细胞膜功能影响的研究进展〔J〕.2009(12):22~28.

〔8〕Schley P D,Brindley D N,Field C J,et al.(n-3)PUFAalter raft lipid composition and decrease epidermal growthfactor receptor levels in lipid rafts of human breast cancercells〔J〕.J Nutr,137(3):548~553.

〔9〕杨茜,王心听,李嫒,等.W-3多不饱和脂肪酸与慢性病关系的研究进展〔J〕.昆明医学院学报,2012(7):155~158.〔10〕刘冀红,曹伟新.w-3多不饱和脂肪酸在肿瘤防治中的意义〔J〕.肠外与肠内营养,2004,11(1):55~57.

〔11〕Le J Y.Dietary long-chain n-3fatty acids modify bloodand cardiac phospholipids and reduce protein kinase-C-delta and protein kinase-C-epsilon translocation〔J〕.Br JNutr,2007,98(6):1143~1151.

〔12〕Pan J,Keffer J,Emami A,et al.Aerolein-derived DNAadduct formation in human colon cancer cells:its role inapoDtosis induction by docosahexaenoic acid〔J〕.Chemicalresearch in toxicology,2009(22):5~9.

〔13〕黄于娟,黎海芪.多不饱和脂肪酸与机体免疫调节关系的研究进展〔J〕.国际儿科医学杂志,2008,2(35):189~193.

〔14〕颜新春,汪以真,许梓荣.动物脂肪酸合成酶(FAS)基因表达的调控〔J〕.动物营养学报,2002,14(2):1~4.〔15〕张崇本.脂肪细胞的分化及调控〔J〕.整理科学进展,2004,1(35):7~13.

〔16〕Takada R,Saiton M,Mori T.Dietary gamma-linolenicacid enriched oil reduced body fat content and induces liv-er enzyme cativies relating to fatty acid beta-oxidation inrats〔J〕.J Nutr,1994,124(4):469~474.

〔17〕Cecile G,Nicole C R,Rigaudiere J P,etal.Increasing in-take of long-chain n-3PUFA enhances lipoperoxidationand modulateshepatic gene expression in adose-depen-

dentmanner〔J〕.British Journal of Nutrition,2012,107:1254~1273.

〔18〕喻礼怀.饲粮脂肪酸n-6/n-3对鹅脂肪代谢影响及其分子机制〔D〕.扬州大学,2012.

〔19〕Grimaldi P A,Knobel S M,Whitesell R R,et al.Indudi-on of aP2gene expression by nonmetabolized longchainfatty acids.Proc Natl Acad Sci USA,1992,89:10930~10934.

〔20〕栾广春,王加启,卜登攀,等.多不饱和脂肪酸对机体脂肪代谢基因表达调控研究进展〔J〕.中国畜牧兽医,2007,12(34):5~11.

〔21〕DP Ju,LX Zhan.Developments in Regulation of Adipo-cytes Differentiation〔J〕.Chinese Journal of Cell Biology,2010,32(5):690~695.

〔22〕Ding S T,Mc Neel R L,Mersmann.Expression of por-cine adipocyte transcripts:tissue distribution and differ-entiation in vitro and in vivo〔J〕.Comparative Biochemis-try and Physiology Part B Biochemistry and MolecularBiology,1999,123(3):307~318.

〔23〕姜俊芳.脂肪细胞分化相关因子基因表达在猪生长过程中的变化规律研究〔D〕.浙江大学,2006.

〔24〕Pasta S,Witkowski A,Joshi A K,et al.Catalytic resi-dues are shared between two pseudosubunits of the de-hydratase domain of the animal fatty acid synthase〔J〕.Chemistry Biology,2007,12(14):1377~1385.

〔25〕Clarke S D.Regulation of fatty acid synthase gene ex-pression:an approach for reducing fat accumulation〔J〕.Journal of Animal Science,1993,71:1957~1966.

〔26〕时皎皎,糜漫天,韦娜,等.不同膳食脂肪酸构成对大鼠肝脏脂代谢相关基因表达的影响〔J〕.重庆医学,2012,13(41):1252~1255.

〔27〕韦娜,糜漫天.n-6/n-3多不饱和脂肪酸不同比例对乳腺癌细胞脂代谢调控基因的影响〔J〕.第三军医大学学报,2006,287:652~655.

〔28〕刘利晓.富含n-3多不饱和脂肪酸鸡肉的研究〔D〕.华中农业大学,2007.

〔29〕Nogalska A,Swierczynski J.Potential role of high ser-um leptin concentration in age-related decrease of fattyacid synthase gene expression in rat white adipose tissue〔J〕.2004,1(39):147~150.

〔30〕Schmidt R,Borner C,Pahl H L,et al.Volatile anesthet-ics induce caspase-dependent,mitochondria-mediated ap-optosis in human T lymphocytes in vitro〔J〕.AmericanSociety of Anesthesiologists,2005,102:1147~1157.〔31〕Gruber A,Cornaciu I,Lass A,et al.The N-terminal regionof comparative gene identification-58(CGI-58)is importantfor lipid droplet binding and activation of adipose triglyeeridelipase〔J〕.J Biol Chem,2010,285:12289~12298.

〔32〕Kershaw M H,Westwood J A,Parker L L,et al.APhase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer〔J〕.Clinical CancerResearch,2006,12:6106~6115.

〔33〕祝超瑜.非诺贝特和吡格列酮对脂肪甘油三酯脂酶的调控及机制研究〔D〕.苏州大学,2011.

·

·

《上海畜牧兽医通讯》 2014年第6期

发酵法生产多不饱和脂肪酸

发酵法生产多不饱和脂肪酸 技术概况:多不饱和脂肪酸(PUSA)指含有两个或两个以上双键且碳链长度为18~22个碳原子的直链脂肪酸。多不饱和脂肪酸按照从甲基端开始第1个双键的位置不同,可分为ω-3和ω-6多不饱和脂肪酸。其中ω-3同维生素、矿物质一样是人体的必需品,不足容易导致心脏和大脑等重要器官障碍。 ω-3不饱和脂肪酸中对人体最重要的两种不饱和脂肪酸是DHA和EPA。EPA 是二十碳五烯酸的英文缩写,具有清理血管中的垃圾(胆固醇和甘油三酯)的功能,俗称"血管清道夫"。DHA是二十二碳六烯酸的英文缩写,具有软化血管、健脑益智、改善视力的功效,俗称"脑黄金"。 主要功能: 1.保持细胞膜的相对流动性,以保正细胞的正常生理功能。 2.使胆固醇酯化,降低血中胆固醇和甘油三酯。 3.降低血液粘稠度,该善血液微循环。 4.提高脑细胞的活性,增强记忆力和思维能力。 近年在世界范围内掀起的第四代功能性食品,即有效成份和生理功能清楚的功能性食品之一。它可以为人类提供必需的营养补充要素和预防心脏病、高血压、炎症及某些癌症等的药物。因而,多不饱和脂肪酸是一类有重要生理活性的物质。过去人类主要从植物、动物中获取。由于人口骤增和资源减少,科学家想从微生物中获取。我们经过多年努力,已取效。 产品性能:应用于功能性食品及药品,国外有大量动植物多不饱和脂肪酸油脂产品进入我国市场。 市场前景及经济效益:投资5200万元,年产值2.27亿多元,利税1.4亿元。 几种重要的多不饱和脂肪酸: 1,α-亚麻酸(AIpha-linolenic acid,ALA),ALA的主要功能在于它是n-3多不饱和脂肪酸(EPA、DHA)合成前体。 2,二十碳五烯酸(Eicosapentaenoic acid,EPA),是一类重要的多聚不饱和脂肪酸化学信使物,在免疫和炎症反应上起至关重要的作用。 3,和二十二碳六烯酸(Docosahexaenoic acid,DHA)。动物实验显示,DHA是视网膜正常发育和发挥其正常功能所必需的。大脑和神经组织中DHA含量远远高于机体其他组织,对神经功能发挥着至关重要的作用。

饱和脂肪酸与不饱和脂肪酸

饱和脂肪酸与不饱和脂肪酸 根据其结构不同可分为三大类:饱和脂肪酸、单不饱和脂肪酸和多不饱和脂肪酸, 单不饱和脂肪酸和多不饱和脂肪酸统称不饱和脂肪酸。 (一)饱和脂肪酸 饱和脂肪酸的主要来源是家畜肉和乳类的脂肪,还有热带植物油(如棕榈油、椰子油等),其主要作用是为人体提供能量。它可以增加人体内的胆固醇和中性脂肪;但如果饱和脂肪摄入不足,会使人的血管变脆,易引发脑出血、贫血、易患肺结核和神经障碍等疾病。 (二)单不饱和脂肪酸 单不饱和脂肪酸主要是油酸,含单不饱和脂肪酸较多的油品为:橄榄油、芥花籽油、花生油等。它具有降低坏的胆固醇(LDL),提高好的胆固醇(HDL)比例的功效,所以,单不饱和脂肪酸具有预防动脉硬化的作用。 (三)多不饱和脂肪酸 多不饱和脂肪酸虽然有降低胆固醇的效果,但它不管胆固醇好坏都一起降,且稳定性差,不适合加热,在加热过程中容易氧化形成自由基,加速细胞老化及癌症的产生。多不饱和脂肪酸主要是亚油酸、亚麻酸、花生四烯酸等;其中亚油酸、亚麻酸为必需脂肪酸。含多不饱和脂肪酸较多的油有:玉米油、黄豆油、葵花油等 对健康区别 不饱和脂肪酸主要包括单不饱和脂肪酸和多不饱和脂肪酸,它们分别都对人体健康有很大益处。人体所需的必需脂肪酸,就是多不饱和脂肪酸,可以合成DHA(二十二碳六烯酸)、EPA(二十碳五烯酸)、AA(花生四烯酸),它们在体内具有降血脂、改善血液循环、抑制血小板凝集、阻抑动脉粥样硬化斑块和血栓形成等功效,对心脑血管病有良好的防治效果等等。DHA亦可提高儿童的学习技能,增强记忆。单不饱和脂肪酸可以降低血胆固醇、甘油三酯和低密度脂蛋白胆固醇(LDL-C)的作用。虽然不饱和脂肪酸虽然益处很多,但易产生脂质过氧化反应,因而产生自由基和活性氧等物质,对细胞和组织可造成一定的损伤。 饱和脂肪酸摄入量过高是导致血胆固醇、甘油三脂、LDL-C升高的主要原因,继发引起动脉管腔狭窄,形成动脉粥样硬化,增加患心脑血管疾病的风险。 稳定性区别 饱和脂肪酸由于没有不饱和键,所以很稳定,不容易被氧化;不饱和脂肪酸,尤其是多不饱和脂肪酸由于不饱和键增多,所以不稳定,容易被脂质过氧化反应。不适合加热,在加热的过程中容易氧化形成自由基,加速细胞的老化和癌症的产生。) 不饱和脂肪酸的生理功能 1.保证细胞的正常生理功能。 2.降低血液中胆固醇和甘油三酯。 3.是合成人体内前列腺素所必需。 4.降低血液粘稠度,改善血液微循环。 5.提高脑细胞的活性,增强记忆力和思维能力

多不饱和脂肪酸的生理功能及安全性.

多不饱和脂肪酸(Polyunsaturatedfattyacids,PUFA)是指含有两个或两个以上双键且碳链长为18~22个碳原子的直链脂肪酸,是研究和开发功能性脂肪酸的主体和核心,主要包括亚油酸(LA)、γ-亚麻酸(GLA)、花生四烯酸(AA)、二十碳五烯酸(EPA)、二十二碳六烯酸(DHA)等。其中,亚油酸及亚麻酸被公认为人体必需的脂肪酸(EA),在人体内可进一步衍化成具有不同功能作用的高度不饱和脂肪酸,如AA、EPA、DHA等。 多不饱和脂防酸因其结构特点及在人体内代谢的相互转化方式不同,主要可分为ω-3、ω-6两个系列。在多不饱和脂肪酸分子中,距羧基最远端的双键在倒数第3个碳原子上的称为ω-3多不饱和脂肪酸,如在第6个碳原子上,则称为ω-6多不饱和脂肪酸[1]。 1多不饱和脂肪酸的生理功能 多不饱和脂肪酸不仅因为ω-6系列的亚油酸和ω- 3系列的亚麻酸是人体不可缺少的必需脂肪酸,更重要的是因为由它们在体内代谢转化或者特定食物资源中摄入的几种多不饱和脂肪酸,在人体生理中起着极为重要的作用。 1.1不饱和脂肪酸与心血管系统疾病 多不饱和脂肪酸对动脉血栓形成和血小板功能有明显影响。亚油酸的摄入量与血浆磷脂、胆固醇酯和甘油三酯中的亚油酸含量有很强的相关关系,而且血小板的总亚油酸、α-亚麻酸、花生四烯酸、EPA,以及DHA与血浆甘油三酯、磷脂、脂肪组织中的脂肪酸浓度呈显著相关性。在芬兰进行的两项研究发现,ADP诱导的血小板聚积与脂肪组织和血浆甘油三酯中的亚油酸含量呈显著正相关,但与血小板的亚油酸含量无相关关系。γ- 亚麻酸在临床上的试验结果表明有降血脂作用,对甘油三酯、胆固醇、β-脂蛋白的下降有效性在60%以上,而且,γ-亚油酸在体内转变成具有扩张血管作

n-3多不饱和脂肪酸与恶性肿瘤

中华普通外科学文献 渊电子版冤 圆园员员 年 员圆 月第 缘 卷第 远 期 悦 澡蚤 灶 粤 则 糟 澡 郧 藻 灶 杂怎则 早渊耘 造 藻 糟 贼 则 燥 灶蚤 糟耘 凿蚤 贼 蚤 燥 灶冤袁 阅 藻 糟 藻 皂 遭藻 则圆园员员袁 灾 燥 造 缘 晕 燥 援 远 窑讲座与综述窑 DOI:10.3877/cma.j.issn.1674-0793.2011.06.016 作者单位:510080 广州,中山大学附属第一医院东山院区外科 n-3 多不饱和脂肪酸主要来源于多脂的深海冷水鱼,人类很难完整地合成 n-3 多不饱和脂肪酸,主要 通过食物摄取遥流行病学调查显示,增加 n-3 多不饱和脂肪酸摄取量可以抑制多种肿瘤的发生尧发展,减轻 进展期恶性肿瘤患者恶病质症状, 减少体重丢失甚至增加体重遥 但近年来也有学者对这一观点提出了异 议遥 人类约有 2/3 以上疾病的发生与膳食不当有关遥 越来越多的科研证据表明,危害人类健康的心血管疾 病尧糖尿病尧肥胖症以及癌症等与膳食有着不解之缘遥 根据美国的一项统计,超过 80%的患者的死亡原因 与上述几种疾病密不可分遥 血脂的含量与这些疾病的发生密切相关, 而血脂的高低又受到膳食中脂类物 质的成分及人们摄入脂类物质量的影响遥 如今西化的膳食习惯,导致人们脂肪总摄入量大大增加,此外,膳 食中 n-6 多不饱和脂肪酸(n-6 PUFAs)过量,n-3 PUFAs 严重不足,n-6/n-3 比例的失衡也是多种疾病发生 的潜在危险因素遥 目前,有关 n-3 PUFAs 对心血管疾病尧癌症尧肥胖尧糖尿病等疾病的预防作用的研究广泛 而深入,但环境对基因的作用如何,尤其是对于人体健康而言,膳食与基因存在怎样的相关性,彼此之间是 如何相互作用,相关的研究报道较少遥 现有的动物实验结果提示,膳食中脂肪的量和成份严重影响着动物 的健康,对于具有不同遗传背景以及遗传易感性的人群而言,膳食可能对基因发生的影响力,但目前尚无 明确定论遥 本文主要综述了 n-3 PUFAs 的膳食来源,在人体的代谢情况,及 n-3 PUFAs 在肿瘤防治尧临床 试验和治疗中的作用遥 一尧n-3尧n-6 PUFAs 的膳食来源 人体可以从头合成或从食物中摄取多种饱和及单不饱和脂肪酸遥 但哺乳动物缺乏合成 n-3尧n-6 PU鄄 FAs 的脱氢酶,因此这些必需脂肪酸只能从食物中摄取遥 陆生植物可以合成 n-6 系列 PUFAs 的第 1 个成员要要 要亚油酸(LA;18颐 2n-6)遥 几乎所有食用植物油如 玉米油尧 葵花油尧 红花油尧 橄榄油中 LA 的含量都很丰富遥 植物也能合成 n-3 系列 PUFAs 的第一个成 员要要 要琢 -亚麻酸(琢 -LNA,18颐 3 n-3),富含 琢 -LNA 的植物包括大豆尧核桃尧深绿色叶蔬菜如甘蓝尧菠菜尧椰 菜尧抱子甘蓝的种子等,一些油类如亚麻子油尧芥菜籽油尧菜籽油中,琢 -LNA 的含量也很丰富,同时也富含大 量 LA遥 膳食中的长链 n-3 PUFAs 主要以二十碳五烯酸(EPA,20颐 5 n-3)和二十二碳六烯酸(DHA,22颐 6 n-3) 的形式储存于冷水鱼体内遥 鱼类可以从浮游植物和浮游动物中摄取 EPA 和 DHA,不同种类尧栖息在不同 水域的鱼类,体内总脂肪及 n-3 PUFAs 的含量变化很大即便同一种类的鱼,生活在大西洋和太平洋,体内 n-3 PUFAs 含量的差异也很大遥 总之,深海冷水鱼如鲭鱼尧金枪鱼尧鲑鱼等,含 DHA 和 EPA 的量最高遥 人工 饲养的鱼类,喂食不同的饲料,其体内脂肪酸的组成也有显著区别遥 二尧n-3尧n-6 PUFAs 在人体内的代谢 虽然哺乳动物不能从头合成 n-3尧n-6 PUFAs,但哺乳动物细胞可以通过碳链的延长尧去饱和作用和逆 转等方式使 PUFAs 之间发生转化 [1] 遥 摄食后,LA 通过一系列氧化去饱和及碳链延长的交替作用被代谢,生 成花生四烯酸(AA,20颐 4 n-6)遥PUFAs 转化的主要代谢途径见图 1遥驻 6 途径负责 LA 转化为 AA,琢 -LNA 转化 为 EPA,这个步骤主要在肝脏细胞的内质网中进行遥驻 8 途径主要存在于植物中,可以生成 AA 与 EPA,但是 灶-猿 多不饱和脂肪酸与恶性肿瘤 杨婷 余红兰 石汉平 530 窑 窑

橄榄油中的单不饱和脂肪酸功能

要让低密度脂蛋白的含量降下来,最理想的办法是提升高密度脂蛋白的含量。高密度脂蛋白在血管中起着两个至关重要的作用。一是保护作用,能防止低密度脂蛋白在血管上的沉积,并能修复受损的血管内膜;二是清洁作用,高密度脂蛋白会将黏附在血管壁上的低密度脂蛋白等“垃圾”铲除下来,并携带到肝脏中去进行分解代谢,最终排出体外,从而达到降低人体内胆固醇含量的作用,是机体内唯一的抗动脉硬化的血管保护因子,因而高密度脂蛋白被誉为“血管的清道夫”。单不饱和脂肪酸能有效提升高密度脂蛋白在机体内的含量,能有效地降低人体中胆固醇的含量,因此长期摄入富含单不饱和脂肪酸的橄榄油,能有助于抑制心脑血管疾病的形成。 1.单不饱和脂肪酸的抗氧化功能 多不饱和脂肪酸可以调整人体的各种机能,有清除人体内代谢的“垃圾”等一系列有益于健康的作用。但是多不饱和脂肪酸也有一个最大的缺点,那就是怕氧化。作为植物油的多不饱和脂肪酸,一旦被氧化,就会演变成过氧化物。过氧化物与蛋白质结合,那么就会形成可怕的脂褐素,这是可以引起人的衰老、心血管疾病及老年痴呆症的有害物质,因此摄入不饱和脂肪酸还应同时考虑抗氧化的问题。而同属不饱和脂肪酸的单不饱和脂肪酸却有着得天独厚的抗氧化功能,其中最为突出的代表是橄榄油。以地中海地区的希腊克里特岛居民的脂肪摄入为例,他们的脂肪热量占总热量的比例高达40%,照理来说这样高的脂肪摄入,会导致冠心病高发。然而,令人难以置信的是,克里特岛居民的冠心病、脑卒中、癌症及糖尿病等疾病的发病率却相当低,他们的寿命较长,而且生命质量也相当好。原因是什么呢?通过大量的实地调查,发现克里特岛居民奉行地中海膳食模式,其中大量的脂肪的摄入主要是富含单不饱和脂肪酸的橄榄油。橄榄油由于采取冷榨处理,油脂中保留了抗氧化的成分,因此,橄榄油没有其他不饱和脂肪酸易被氧化的后顾之忧,也不会出现过氧化物质。 2、单不饱和脂肪酸的降血糖功能 科学家们经过研究发现,含高单不饱和脂肪酸的橄榄油,能够降低Ⅱ型糖尿病患者的血糖水平,尤其对餐后血糖水平的降低更加明显,在临床上比标准配方的营养制剂更能适合于糖尿病患者的营养需求。

不饱和脂肪酸的危害

不饱和脂肪酸的危害? 脂肪是人体必需的营养物质,是构成人体器官和组织的重要成分。不过脂肪也“好”“坏”之分,“好”脂肪可以促进人体对于糖类和蛋白质的吸收,可以维持正常的内分泌,并且帮助吸收利用各种脂溶性维生素等等,而“坏”的脂肪食用过多,却可以导致胆固醇升高。不饱和脂肪酸就是我们俗称的“好脂肪”。 “好”脂肪和“坏”脂肪有哪些区别? 脂肪是由甘油和脂肪酸组成的化合物。而脂肪酸根据结构的不同可分为饱和脂肪酸和不饱和脂肪酸。饱和脂肪酸人体可以自己合成,在很多动物性脂肪中含量较高,可以导致胆固醇的升高,因此不宜多摄入。 不饱和脂肪酸分为单不饱和脂肪酸和多不饱和脂肪酸两种,由各种食物提供,人体无法合成。单不饱和脂肪酸主要提供热量,多不饱和脂肪酸具有降低胆固醇的作用。因此,对于偏胖的准妈妈,或者患有脂肪肝的准妈妈建议可以多选择多不饱和脂肪酸含量丰富的食物。 如何补充不饱和脂肪酸? 我国规定成人膳食中脂肪提供的热量应占每日摄取总热量的25%~30%。这其中包括肉类和烹调时所含的油类。在猪油、牛油、奶油中饱和脂肪酸的含量较高,因此应该严格控制摄入量。而不饱和脂肪酸多存在于植物油(如豆油、玉米油、花生油、芝麻油和橄榄油等)、鱼油和禽类中,可以作为每日脂肪摄取的主要来源。 哪些食物中富含不饱和脂肪酸?

3.将凉粉切成1厘米左右宽的条状,加入准备好的黄瓜丝、红辣椒丝、鸡丝和所有的调料,搅拌均匀即可。 备注:放入调料前,如果能将凉粉、黄瓜丝、红辣椒丝和鸡丝放入冰箱里冷藏一会儿,口感会更好。也可以根据自己的喜好,撒上一些黑芝麻。 鲫鱼豆腐汤 原料:鲫鱼2条,豆腐1块,姜3片,葱1根 调料:料酒1大勺,盐适量,醋1大勺,香油少许,酱油适量 制作方法:1.鲫鱼洗净,沥干水分,用料酒和盐腌制20分钟,用油略煎后备用; 2.姜切成丝,葱切段,豆腐切块备用; 3.锅内放入5杯水,加入姜丝、煎过的鲫鱼和豆腐块一同用小火煮。大约20分钟左右,汤汁变白时,加入盐调味,关火盛出,撒上葱花即可。 4.将醋、香油和酱油搅拌均匀,可以用鱼肉和豆腐蘸着吃。

多不饱和脂肪酸

多不饱和脂肪酸 多不饱和脂肪酸 不饱和脂肪酸中对人体最重要的两种不饱和脂肪酸是DHA和EPA。EPA是二十碳五烯 酸的英文缩写,具有清理血管中的垃圾(胆固醇和甘油三酯)的功能,俗称"血管清道夫"。DHA是二十二碳六烯酸的英文缩写,具有软化血管、健脑益智、改善视力的功效,俗称"脑黄金"。 基本概述 多不饱和脂肪酸指含有两个或两个以上双键且碳链长度为18~22个碳原子的直链脂 肪酸。通常分为omega-3和omega-6,在多不饱合脂肪酸分子中,距羧基最远端的双键 在倒数第3个碳原子上的称为omega-3;在第六个碳原子上的,则称为omega-6。它是 由寒冷地区的水生浮游植物合成,有助于降低心脑血管疾病。 食物中每一种营养都同样重要,缺一不可。缺乏脂肪,和缺乏其它任何一种营养一样,都会造成身体的不适。脂肪经消化后,分解成甘油及各种脂肪酸。根据结构不同,脂肪酸 分为饱和脂肪酸和不饱和脂肪酸,其中不饱和脂肪酸又分成单不饱和脂肪酸和多不饱和脂 肪酸两种。多不饱和脂肪酸(PUSA)按照从甲基端开始第1个双键的位置不同,可分为 ω-3和ω-6多不饱和脂肪酸。其中ω-3同维生素、矿物质一样是人体的必需品,不足容易导致心脏和大脑等重要器官障碍。 主要功效 1.保持细胞膜的相对流动性,以保证细胞的正常生理功能。 2.使胆固醇酯化,降低血中胆固醇和甘油三酯。 3.降低血液粘稠度,改善血液微循环。 4.提高脑细胞的活性,增强记忆力和思维能力。 相关介绍 ω-3 多不饱和脂肪酸,是由寒冷地区的水生浮游植物合成,以食此类植物为生的深 海鱼类(野鳕鱼、鲱鱼、鲑鱼等)的内脏中富含该类脂肪酸。1970年,两位丹麦的医学 家霍巴哥和洁地伯哥经过研究确信:格陵兰岛上的居民患有心脑血管疾病的人要比丹麦本 土上的居民少得多。格陵兰岛位于北冰洋,岛上居住的爱斯基摩人以捕鱼为主,他们喜欢 吃鱼类食品。由于天气寒冷,他们极难吃到新鲜的蔬菜和水果。就医学常识来说,常吃动 物脂肪而少食蔬菜和水果易患心脑血管疾病,寿命会缩短。但是事实恰恰相反,爱斯基摩 人不但身体健康,而且在他们之中很难发现高血压、冠心病、脑中风、脑血栓、风湿性关 节炎等疾病。无独有偶,这种不可思议的现象同样也发生在日本的北海道岛上。当地渔民

多不饱和脂肪酸功能和应用综述

编号 食品分离技术(综述)题目:多不饱和脂肪酸功能与应用综述食品学院营养与卫生学专业 班级食硕1005 学号s100109030 学生姓名张锦 二〇一一年一月

多不饱和脂肪酸功能与应用综述 摘要:概述了多不饱和脂肪酸的种类、来源、营养和生理功能的相关研究,包括n-6系列多不饱和脂肪酸、n-3系列多不饱和脂肪酸。阐述了膳食合理比例的n-6/n-3 多不饱和脂肪酸是保持身体健康的关键。 关键词:多不饱和脂肪酸;营养;生理功能 Abstract:The kinds of polyunsaturated fatty acid including n-6 and n-3 fatty acids, nature resources, nutrition and biological functions are summarized. The balance intake n-6 and n-3 PUFA is important for keep health but not absolute amounts of PUFA. Key words:polyunsaturated fatty acid; nutrition; biological functions 多不饱和脂肪酸(polyunsaturated fatty acid,PUFA)是指有2个或2个以上不饱和双键结构的脂肪酸,也称多烯脂肪酸。根据第一个不饱和键位置不同,可分为n-6、n-3两大类。n-6 PUFA包括亚油酸(linoleic acid C18: 2n-6, LA) 、γ-亚麻酸(gamma-linolenic acid C18:3 n-6 ,GLA) 花生四烯酸(arachidonic acid C20:4 n-6, AA)等,n-3 PUFAs除α-亚麻酸(alfa-linolenic acid C18:3 n-3 ,LNA)外主要有二十碳五烯酸(eicosapentaenoic acid C20:5 n-3, EPA)和二十二碳六烯酸(docosahexaenoic acid C22:6n-3,DHA)等长链PUFA。由于人类与其它哺乳类动物自身不能合成这些脂肪酸,必需由食物提供,所以称为必需脂肪酸。脊椎动物不能在离甲基端7 个碳原子之内形成双键。所以,动物体内所有的代谢转化不能改变n-6 或n-3 双键的甲基末端的分子数。因此一旦被消化,n-3 和n-6 脂肪酸不能相互转化这些脂肪酸是不可变的并且有不同的生物化学作用。 PUFA 对人体生理作用的研究源于二十世纪二十年代末必需脂肪酸缺乏症的研究,其后沉寂了多年。五、六十年代以后,随着前列腺素(prostaglandins PGE)、白细胞三烯(leukotrienes LTB0、血栓烷素(thromboxanesTXB)等一系列PUFA代谢产物的研究取得极大的进展,PUFA 得到了更为深入的研究,其作用和功能也日益受到人们的重视[1]八十年代以后,随着流行病学研究发现心血管疾病发病率与PUFA 摄入量呈负相关的现象,PUFA 开始成为以功能性食品为首的许多领域的热点,PUFA 的研究得到了进一步的深化和拓展,特别是九十年代以后,研究发现AA 和DHA 等长链PUFA 在脑功能、婴幼儿智力及视功能发育等方面的重要意义,为PUFA 的研究和应用开辟了更广阔的天地。目前PUFA在医药、食品、精细化工、饲料等许多行业和领域都得到了广泛的应用,而且发展极为迅速,已受到越来越多行业人士的关注。 1.PUFA的分类 PUFA按照n编号系统(也ω编号系统),即从甲基端开始第1个双键的位置不同,可分为n-3组、n-6组、n-7组、n-9组。每一组成员都可转化为多不饱和或链更长的脂肪酸,其中具有重要生物学功能的是n-3组、n-6组。α-亚麻酸和亚油酸分别是n-3组、n-6组PUFA 的前体,在体内经过一系列的碳链延长和脱饱和作用衍化生成其它的PUFA。 n-3 PUFA同维生素、矿物质一样是人体的必需品,摄人不足容易导致心脏和大脑等重要

高中化学生活拓展多不饱和脂肪酸对人体的作用素材

多不饱和脂肪酸对人体的作用 多不饱和脂肪酸又叫多烯酸,是指分子结构中含有2个或2个以上不饱和双键的脂肪酸。双键愈多,不饱和程度愈高,营养价值也愈高。随着科学的发展,某些多不饱和脂肪酸对人体的作用进一步被认识,特别是以廿二碳六烯酸、廿碳五烯酸和一般植物油中的亚油酸(常与亚麻酸共存)等为代表的多不饱和脂肪酸,目前已越来越引起人们的重视。下面就多不饱和脂肪酸对人体的作用谈一下粗浅认识。 1 多不饱和脂肪酸是防治心脑血管疾病的特殊营养物质 许多人都知道这样一种现象,在现代社会心脑血管疾病日趋严重地威胁着人类的健康和生命,以高血压、高血脂、动脉硬化、冠心病、血栓等为代表的心脑血管疾病造成的死亡人数,已以40%的比例高居各类疾病之首,面临死神的威胁,许多人都在寻找病因及防治方法。60年代末,科学家们偶然发现身居北极冰原的格陵兰岛爱斯基摩人几乎不患心脑血管疾病,而欧洲和美国人的发病率最高,亚洲的日本人发病率较低。原来爱斯基摩人具有全世界独一无二的食谱“生鱼和海豹肉”,其中富含防治心脑血管疾病的最有效的物质。鱼肉的脂肪中含有独特作用的n-3系多不饱和脂肪酸──廿二碳六烯酸(DHA)、廿二碳五烯酸(NPA)、廿碳五烯酸(EPA)、廿碳四烯酸、十八碳四烯酸等。鱼类脂肪中多不饱和脂肪酸含量之高,是其他食物无法与之相比的。因心脑血管疾病主要是由动脉粥样硬比所致,而高血脂症则是动脉粥样硬化的首要危险因素。因此纠正高血脂症对于防治心脑血管疾病具有重要作用。多不饱和脂肪酸具有如下影响人体内脂质代谢的作用:(1)促进胆固醇代谢,防止脂质在肝脏和动脉壁沉积。人体血液中的胆固醇可来自食物,也可由肝脏合成,前者是外源性的,后者是内源性的。胆固醇虽然是高等真核细胞膜的组成部分,在细胞生长发育中是必需的,但是血清中胆固醇含量过高,会堆积在冠状动脉血管壁上引起冠心病。当膳食中多不饱和脂肪酸缺乏或饱和脂肪酸摄入过多时,饱和脂肪酸可刺激胆汁分泌,而促进饮食中胆固醇吸收,导致血液中胆固醇含量过高;当膳食中多不饱和脂肪酸充裕时,胆固醇便与之结合形成胆固醇酯,促其形成胆酸而从肠道排出。著名营养学家凯斯(Keys)一直认为血中胆固醇含量与膳食中胆固醇的摄取量关系不大。但血胆固醇与膳食中饱和脂肪酸的摄取量成正比,与膳食中不饱和脂肪酸的摄取量成反比。因此,在膳食中适当地摄入一定量的多不饱和脂肪酸,对促进人体胆固醇代谢,降低血清中总胆固醇含量,防止脂质在肝脏和动脉壁沉积,预防心脑血管疾病(主要是冠心病)是有益的。据研究,海鱼油中所含有的EPA和DHA,是预防冠心病的主要成分。

单不饱和脂肪酸的作用

单不饱和脂肪酸的作用 和DHA(OMEGA-3),这两者都是常见的多元不饱和脂肪酸。它们对我们的心血管起保护作用,而且也有益于大脑的健康。值得一提的是我们大脑的60%是由脂肪材料构成,神经的生长需要必需脂肪酸作为原材料。对神经和神经元的机能来讲,需要必需脂肪酸提供能量。对于学生来说,大脑中应有足够的DHA,否则,即使刻苦学习,大脑细胞也得不到良好的刺激及生长发育,因此必须摄入足量的紫苏油,这样才能有效地提高学习成绩。对于孕妇与幼儿也有健脑效果,如果孕妇缺少DHA,胎儿脑细胞数必然不足,严重时会引起弱智或流产。所以孕妇在妊娠时能长期补充DHA(紫苏油),通过母体将DHA输送到胎儿大脑,对胎儿大脑的初期发育起到关键作用。必需脂肪酸能促进核酸、蛋白质生成,帮助神经传导和促成神经突触生长、分化、成熟,对婴儿生长发育起着重要作用。如果人体缺乏必需脂肪酸会导致神经系统紊乱,从而情绪低落,麻痹,掌控能力失调和加速衰老。 二、预防心脏疾病,老年性痴呆心脏疾病是人类的第一号杀手,α-亚麻酸可降低中风的机率和心脏病的突发,预防乳癌和肠癌。α-亚麻酸可降低70%心脏病突发的风险。紫苏油中含有丰富的α-亚麻酸-OMEGA-3,它是我们人类一生需求的脂肪酸。老年性痴呆,动脉粥样硬化,心脏瓣膜的疾病甚至癌症,都是由于炎症间接引起的,老化也是体内炎症所致。必须脂肪酸可以控制慢性炎症,却没有副作用。 三、治疗风湿关节炎研究证明,OMEGA-3必需脂肪酸可以有效地

治疗风湿性关节炎和其它的一些炎症。 四、预防和治疗前列腺疾病前列腺素是我们体内生化合成的一种类似荷尔蒙的物质,它有正作用也有副作用,体内过多的饱和脂肪酸形成前列腺素E2,它促进炎症的扩散,α-亚麻酸可产生前列素E3,它能抑制E2的生成。大量坏的脂肪酸滋生肿瘤细胞,常常产生大量的前列腺素E2,同时降低免疫系统让肿瘤细胞能够躲过免疫防线,一些癌细胞支配前列腺素E2的产生促进肿瘤细胞的增殖。OMEGA-3必须脂肪酸可以降低前列腺素E2产生的风险,维持体内脂肪酸的平衡。 据文献报道,英国专家发现并分离出了导致癌症患者身体消瘦的一种物质,而且还惊奇发现这一物质的活动受到紫苏油控制。 这种名叫长奇非克因小的物质类似荷尔蒙,是由某些顽固的肿瘤所产生的,它利用脂肪来供给肿瘤,促使肿瘤的生长,从而使患者身体消瘦。而二十碳五烯酸(EPA)这种物质能控制长奇非克因小的活动,从而控制癌症患者的消瘦,还能使肿瘤缩小。此外,日本有人用紫苏油与其它油做抗大肠菌的对比实验,证明紫苏油抑制肿瘤的作用强于红花油,豆油。 传统摄取不饱和脂肪酸三种途径比较1、传统的鱼油 2、亚麻子油中的OMEGA-3 3、紫苏油传统的鱼油和亚麻子油中的OMEGA-3有引起肠道不适的副作用。但是紫苏油没有此副作用。深海鱼油可降低冠状动脉硬化的风险,除此之外鱼油还能限制非正常血小板凝聚和防止心脏病突发和血栓形成,预防中风。而在这点上,紫苏油比鱼油具有

不饱和脂肪酸

EPA 二十碳五烯酸,是鱼油的主要成分。虽然亚麻酸在人体内可以转化为EPA,但此反应在人体中的速度很慢且转化量很少,远远不能满足人体对EPA的需要,因此必须从食物中直接补充。 作用 1、治疗自身免疫缺陷。 2、促进循环系统的健康。Ω-3脂肪酸已经被证实能促进循环系统的健康和防止胆固醇和脂肪在动脉壁上积聚 3、有助于生长发育。保持身体里的Ω-3脂肪酸含量处于一个适当平衡的位置对正常的生长和发育是十分必要的。营养专家建议婴儿应从日常饮食和补充剂中吸收各种类型的Ω-3脂肪酸。根据这些建议的要求,婴儿在日常饮食中吸收的EPA应少于 0.1%。 4、其他的情况。Ω-3脂肪酸,包括EPA在内,对肺病、肾病、2型糖尿病、大肠溃疡和节段性回肠炎的治疗都会起到积极的作用。 5、EPA具有帮助降低胆固醇和甘油三酯的含量,促进体内饱和脂肪酸代谢。从而起到降低血液粘稠度,增进血液循环,提高组织供氧而消除疲劳。防止脂肪在血管壁的沉积,预防动脉粥样硬化的形成和发展、预防脑血栓、脑溢血、高血压等心血管疾病。 6、DHA与EPA组合具有保护眼睛,提高视网膜的发射机能作用。国家卫生部要求:DHA与EPA的配比必须在二点五比一以上。 参考摄入量 中国营养学会副理事长苏宜香教授表示,“相关研究已证实了DHA和EPA对人类的健康有更多益处”。 据联合国粮农组织专家委员会联合会商提出的报告显示,每日摄取250—2000毫克的EPA与DHA是构成人类健康饮食的重要组成部分。报告还指出,“成年男性和非孕期或哺乳期女性每天食用250毫克DHA+EPA; 目前中国成年人人均每天DHA+EPA摄入量仅有37.6毫克,不到美国医学研究院建议值(160mg/天)的四分之一,据国家权威调查数据分析显示,属严重缺乏状态。就是这样一个身体状况,对迎接宝宝的身体准备是不足的,据联合国粮农组织专家委员会联合会商提出的报告显示,孕期和哺乳期女性每日摄取DHA+EPA300毫克,是保证母亲和婴儿最佳健康发育水平的最低标准”。[3] 母乳中DHA:AA的配比均衡,帮助DHA和AA共同吸收,对0-6个月宝宝的头脑智力发育至关重要: 根据研究,中国妈妈母乳中DHA:AA的平均比例约为1:1.7,过多的DHA会抑制AA的吸收 实验证明-相比单独作用,DHA和AA共同作用更有利于支持宝宝脑部发育。 DHA/AA配比(1:1-1:2)亲和人体:帮助DHA和AA的有效利用;

多不饱和脂肪酸改善动物肉质的功效说明

多不饱和脂肪酸改善动物肉质的功效说明 多不饱和脂肪酸概述 脂肪中的脂肪酸按饱和程度可以分为饱和脂肪酸、单不饱和脂肪酸(分子结构中仅有一个双键)、PU?FA(分子结构中含两个或两个以上双键)。单不饱和脂肪酸包括油酸、棕榈油酸、油酸、肉豆蔻油酸、蓖麻油酸、芥酸等。PUFA包括亚油酸、亚麻酸、花生四烯酸、二十碳五烯酸、二十二碳六烯酸等。按ω编号系统,根据第一个双键所处的位置可将不饱和脂肪酸分为四个系列,即ω-3,ω-6,ω-7和ω-9系列,其中ω-6系列的亚油酸和ω-3系列的亚麻酸不能被哺乳动物机体从头合成,必须由外源提供,并且对维持机体正常机能和健康具有重要作用,因此称为必需脂肪酸(EFA),其他许多PUFA可以以这两种必需脂肪酸为前题进行合成。 C18∶2ω6(亚油酸)→C18∶3ω6(γ-亚麻油酸)→C20∶3ω6→C20∶4ω6(花生四烯酸)→ C22∶4ω6→C22∶5ω6 C18∶3ω3(α-亚麻酸)→ C18∶4ω3→C20∶4ω3→C20∶5ω3→C22∶5ω3→C22∶6ω3 多不饱和脂肪酸对动物产品中脂质含量的影响 研究表明,多不饱和脂肪酸能够降低蛋黄中胆固醇的含量。李志琼等(2007)研究报道蛋黄、各种卵泡中胆固醇(TC)均与日粮中α-亚麻酸(ALA)添加量呈显著直线或二次曲线降低;蛋黄、卵泡和肝脏的甘油三酯(TG)以及肝脏的TC 与ALA之间的线性和二次曲线降低均不显著。胡艳等(2005)报道,添加0、0.15%、1%和2%共轭亚油酸(CLA)的日粮,CLA添加组蛋黄中胆固醇含量均明显低于不加CLA的对照组(P<0.05)。郭宝海(2003)报道,蛋鸡日粮中添加月苋草油可以显著降低蛋黄中的胆固醇。王利华等(2001)报道,选用200只产蛋高峰期的新罗曼蛋鸡,结果表明,通过改变日粮中ω-3与ω-6脂肪酸的比例,可降低蛋黄中胆固醇的含量,ω-6与ω-3之比为5∶1的两个试验组鸡蛋中胆固醇含量较对照组分别下降了9.1%和9.7%。 研究发现,多不饱和脂肪酸可以减少脂肪在肉鸡腹部的沉积。贺喜(2007)报道,日粮中添加1%共轭亚油酸可以降低长沙黄或爱拔益加两个品种肉仔鸡腹脂率(P<0.05)和腹脂脂蛋白脂酶(lpl)活性及其mrna相对表达量(p<0.05)。在日粮中分别用6%和10%两个添加水平的牛羊脂(富含sfa)、橄榄油(富含mufa)、

不饱和脂肪酸对健康的影响

不饱和脂肪酸与人体健康关系探讨 摘要:本文系统的介绍了各种不饱和脂肪酸对人体健康的有利和不利影响,为人们合理的摄取油脂提供了科学依据。 关键词:长链多不饱和脂肪酸;共轭脂肪酸;反式脂肪酸;健康 膳食中油脂的来源主要有动物性脂肪和植物油,陆生动物脂肪的脂肪酸三甘油酯含高比例的饱和脂肪酸,室温下呈固态;绝大部分植物油的脂肪酸三甘油酯含较多不饱和脂肪酸,室温下呈液态;某些海洋鱼油中,其脂肪酸三甘油酯含高比例多不饱和脂肪酸,室温下也呈液态?。食品脂质中的不饱和脂肪酸的双键大都是顺式构型,氢原子在双键的同一侧,植物油氢化后熔点提高,氢化过程在加热、加压、通氢气和催化剂存在下进行,部分氢化能使脂肪酸的顺式双键转变为反式构型,反式酸键角小,致使熔点升高,食品中反式酸主要来自氢化植物油为基料制成的人造奶油和起酥油[1]。 1 不饱和脂肪酸对人体健康的影响 1.1 长链多不饱和脂肪酸对人体健康的影响 长链多不饱和脂肪酸(简称LCPUFAs)又叫多烯酸,是指分子结构中含有两个或两个以上不饱和双键且碳原子数目在20个以上的脂肪酸。与人体健康密切相关的多不饱和脂肪酸主要有两类:一类是n-3系多不饱和脂肪酸(n-3PUFAs);另一类是n一6系多不饱和脂肪酸(n一6PUFAs)。前者主要包括一亚麻酸、二十碳五烯酸(EPA)和二十二碳六烯酸(DHA);而后者主要包括亚油酸、v一亚麻酸和花生四烯酸,它是生长发育、生殖及保持皮肤健康所必需的[2]。营养学家在研究脂质对人类健康影响时,发现膳食及体内保持一定的n一6PUFAs/n一3PUFAst:g例平衡很重要。PUFAs与类脂质结构、代谢及精子的形成等有关。 多不饱和脂肪酸是组成组织细胞生物膜必不可少的成份,它在体内参与磷脂的合成,并以磷脂的形式出现在线粒体和细胞膜中。 1.1.1 n一3PUFAs对人体的生理作用 对心血管系统:多项研究表明,i"1—3PUFAsH‘L够促进人体防御系统功能,使血液中的脂肪酸谱向着对人体健康有利的方向发展,能抑制血栓形成,降低血脂,

多不饱和脂肪酸及其保健价值

多不饱和脂肪酸及其保健价值【关键词】多不饱和脂肪酸 [摘要]多不饱和脂肪酸对人体生理功能的保健价值日益受到人们的普遍关注,它是人体健康所必需的脂肪酸。本文较全面地介绍了多不饱和脂肪酸的保健价值及其对多种疾病的防治作用。 [关键词]多不饱和脂肪酸;保健价值;生理功能 多不饱和脂肪酸(poly unsaturated fatty acids,简称PUFAs)主要分为两大类:一类是ω3PUFAs,是指从脂肪酸碳链甲基端算起,第一个双键出现在第3位碳原子上的多不饱和脂肪酸,它属亚麻酸类,主要包括α亚麻酸、二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)。α亚麻酸是ω3PUFAs的前体物质,主要来源于植物油(如菜籽油和大豆油),少量来自绿叶蔬菜。EPA和DHA等长链ω3PUFAs则主要来源于海洋生物(如甲壳类和鱼类)。另一类是ω6PUFAs,是指从脂肪酸碳链甲基端算起,第一个双键出现在第6位碳原子上的多不饱和脂肪酸,它属亚油酸类,主要包括亚油酸、γ亚麻酸和花生四烯酸(AA),是植物油中最主要的PUFAs,亚油酸是ω6PUFAs的前体物质。ω3和ω6系列PUFAs在体内代谢时,彼此不能相互转化,且各自具有独特的生理功能。多不饱和脂肪酸在体内的代谢过程见表1。 表1 ω3和ω6系PUFAs在体内的代谢途径ω6系列ω3系列亚

油酸:C18:2[9 12]α亚麻酸:C18:3[9 12 15]↓↓γ亚麻酸C18:3[6.9 12]十八碳四烯酸:C18:4[6 9 12 15]↓↓二十二碳γ亚麻酸C20:3[8 11 14]二十碳四烯酸:C20:4[8 11 14 17]↓↓花生四烯酸:C20:4[5 8 11 14]二十五烯酸:C20:5[5 8 11 14 17]↓↓二十二碳四烯酸:C22:4[7 10 13 16]二十二碳五烯酸:C20:5[5 8 11 14 17]↓↓二十二碳五烯酸:C22:5[4 7 10 13 16]二十二碳六烯酸C22:6[4 7 10 13 16 19]另外,人体内不能合成亚油酸和亚麻酸,而PUFAs又是人体生长和健康所必需的物质,必须从食物中获得,故将PUFAs称为人体必需脂肪酸。近年来,由于发现ω3PUFAs 对人体具有许多重要的生理作用,越来越引起人们摄取ω3PUFAs的兴趣。 据报道,在英、日、美等国家,与DHA等相关的食品、化妆品,目前已多达上百种。我国也建议把PUFAs列入营养保健食品的发展重点。本文将全面阐述多不饱和脂肪酸的保健价值以及对多种疾病的防治作用。 1 ω3PUFAs的保健价值 有研究表明,ω3PUFAs能够加速胎儿的细胞分裂、增殖,长链多不饱和脂肪酸(LCPUFAs),其中特别是AA、DHA与胎儿和婴儿生长发育尤其与脑发育密切相关[1]。另外,母血中PUFAs水平与胎儿

饱和脂肪酸与不饱和脂肪酸有什么区别

摘自:“营养健康教育指南”北京市营养源研究所蒋峰主编 脂肪是由一个甘油分子支架和连接在其支架上的三个分子的脂肪酸组成,其中甘油的分子结构比较简单,而脂肪酸的种类和长短却各不相同,因此脂肪的性能和作用主要取决于脂肪酸。 脂肪酸是脂肪分子的基本单位,而每一种脂肪酸在结构上则有很大的差异,根据其结构不同可分为三大类:饱和脂肪酸、单不饱和脂肪酸和多不饱和脂肪酸。(一)饱和脂肪酸 饱和脂肪酸的主要来源是家畜肉和乳类的脂肪,还有热带植物油(如棕榈油、椰子油等),其主要作用是为人体提供能量。它可以增加人体内的胆固醇和中性脂肪;但如果饱和脂肪摄入不足,会使人的血管变脆,易引发脑出血、贫血、易患肺结核和神经障碍等疾病。单不饱和脂肪酸 (二)单不饱和脂肪酸 单不饱和脂肪酸主要是油酸,含单不饱和脂肪酸较多的油品为:橄榄油、芥花籽油、花生油等。它具有降低坏的胆固醇(LDL),提高好的胆固醇(HDL)比例的功效,所以,单不饱和脂肪酸具有预防动脉硬化的作用。 (三)多不饱和脂肪酸 多不饱和脂肪酸虽然有降低胆固醇的效果,但它不管胆固醇好坏都一起降,且稳定性差,不适合加热,在加热过程中容易氧化形成自由基,加速细胞老化及癌症的产生。 多不饱和脂肪酸主要是亚油酸、亚麻酸、花生四烯酸等;其中亚油酸、亚麻酸为必需脂肪酸。含多不饱和脂肪酸较多的油有:玉米油、黄豆油、葵花油等等。 1.亚油酸的作用 亚油酸是人体必需脂肪酸,它具有预防胆固醇过高、改善高血压、预防心肌梗死、预防胆固醇造成的胆结石和动脉硬化的作用。 但是,如果亚油酸摄取过多时,会引起过敏、衰老等病症,还会抑制免疫力、减弱人体的抵抗力,大量摄取时还会引发癌症。 表3-3 富含亚油酸的食物(克/100克) 名称亚油酸含量名称亚油酸含量

DHA+与+EPA+合成超长链多不饱和脂肪酸的效率比较

【通讯作者】吴峥峥 DHA与EPA合成超长链多不饱和脂肪酸的效率比较 余 曼,陈 波,张瑞帆,吴峥峥 (四川省医学科学院?四川省人民医院眼科,四川成都610072) 【摘要】 目的 比较在ELOVL4蛋白酶催化作用下,DHA和EPA合成超长链多不饱和脂肪酸VLC-PUFA的效率。方法 构建携带ELOVL4基因和绿色荧光蛋白的重组腺病毒,转入培养的PC12细胞,通过qRT-PCR定量分析ELOVL4基因的表达量,WB检测ELOVL4蛋白的表达;1∶1加入DHA和EPA,孵育48h之后进行脂肪酸提取,通过气相质谱GC-MS分析超长链脂肪酸的成分。结果 GC-MS检测到分别用DHA及EPA处理后的PC12+Ad-ELOVL4的细胞中有n3VLC-PUFA的表达,34:5n3和36:5n3分别为0畅85%和1畅11%;34:6n3和36:6n3分别为0畅16%和0畅29%;EPA所产生的五烯酸总和是DHA所产生的六烯酸总和的4倍。结论 EPA合成VLC-PUFA的效率远远高于DHA,为患者提供更高比例的EPA,而非DHA,可能是治疗STGD3疾病的方式之一。 【关键词】 二十二碳六烯酸;二十碳五烯酸;ELOVL4基因;Stargardt病;超长链多不和脂肪酸【中图分类号】R77 【文献标志码】A 【文章编号】1672-6170(2014)05-0024-04 ComparisonofelongationefficiencybetweenDHAandEPAinsynthesisofverylongchainpolyunsaturatedfattyacids YUMan,CHENBo,ZHANGRui-fan,WUZheng-zheng (DepartmentofOph- thalmology,SichuanAcademyofMedicalSciences&SichuanProvincialPeople摧sHospital,Chengdu610072,China) 【Correspondingauthor】 WUZheng-zheng 【Abstract】 Objective TocomparetheelongationefficiencybetweenDHAandEPAforsynthesisofverylongchainpolyunsat-uratedfattyacid(VLC-PUFAs)undercatalyticactionofELOVL4protease.Methods PC12cellsweretransducedwithrecombinantadenovirustype5carryingmouseElovl4andgreenfluorescentprotein(GFP).GFP-expressingandnon-transducedcellswereusedascontrols.ELOVL4geneexpressionwasquantifiedbyqRT-PCRs.ELOVL4proteinwasanalyzedbyWestern-Blot(WB).ThetransducedcellsweretreatedwithDHAorEPA(1:1).After48hofincubation,cellswerecollected,andfattyacidmethylesterswerepreparedfollowingtotallipidsextraction.Thefattyacidwasanalyzedbyusingagaschromatography-massspectrometry(GC-MS).Results GC- MSanalysisshowedthattheDHAandEPAtreatedPC12+ Ad-ELOVL4hadn3VLC-PUFAsinwhich34:5n3and36:5n3were0畅85%and1畅11%,respectively;34:6n3and36:6n3were0畅16%and0畅29%,respectively.TotalamountofpentaenoicssynthesizedfromEPAwasalmostfourtimesthanthatofhexaenoicssynthesizedfromDHA.Conclusion ElongationefficiencyofVLC-PUFAsfromEPAismuchhigherthanthatfromDHA.Therefore,dietarysupplementationofmoreEPAratherthanDHAmayprovidesometherapeuticbenefitsforpatientswithStargardts摧disease(STGD3). 【Keywords】 Docosahexaenoicacid(DHA),Eicosapentaenoicacid(EPA),ELOVL4gene,Stargardts摧disease,Verylongchainpolyunsaturatedfattyacid(VLC-PUFA) 以DHA和EPA为代表的n3PUFAs(polyunsat-uratedfattyacids,PUFAs)是指含有两个或两个以上双键的一类脂肪酸,通常按照第一个双键的位置把多不饱和脂肪酸分类,其中n3PUFAs,即从甲基端数第1个双键的位置在第3碳位的多不饱和脂肪酸,如二十二碳六烯酸(22:6n3,DHA)和二十碳五烯酸(20:5n3,EPA)。在哺乳动物神经系统中,n3PUFAs不但是重要的结构组分,而且是重要的营养 因子[1] 。DHA被认为是功能最强的n3PUFAs, DHA与人类多种神经性疾病,例如阿尔默茨症[2] 。 Stargardt病(Stargardt-likemaculardystrophy,STGD)是一种发生于青少年期的遗传性黄斑营养不良,目前尚无有效的治疗方法。近年来的研究又发现,ELOVL4基因第VI外显子上突变导致了人类的 常染色体显性遗传STGD3的发病[3] 。ELOVL4属 于超长链脂肪酸延伸酶(elongaseofELOngationofverylongchainfattyacids,ELOVL)家族,已被证实参与多不饱和脂肪酸(verylongchainPUFA,VLC-PU- FA)的C28-C38碳链延长的生化过程[4] 。McMahon等发现,ELOVL4基因突变的STGD3小鼠模型的视 网膜中的C32-C36酰基磷脂酰胆碱的水平下降[5] ,VLC-PUFA水平减少还会导师ERG波幅的下降,因此,治疗STGD3的策略之一可能是通过食物供给方式将VLC-PUFA送到视网膜组织。然而,由于VLC-PUFA结构的不稳定性,使得其很能被大量生产,那么另外一种方式就是通过提供VLC-PUFA的前体物质,体内合成VLC-PUFA。图1显示n3PUFAs的合成通路,我们看到DHA和EPA均为VLC-PUFA的前体脂肪酸,尤其是DHA占有在感光体外部节段磷 脂中大约50%的脂肪酸[6] ,它在神经系统以及视网膜中的作用曾受到广泛的关注。本研究将转基因ELOVL4蛋白在PC12细胞中过量表达,等浓度加入 4 2 实用医院临床杂志2014年9月第11卷第5期

相关文档