文档库 最新最全的文档下载
当前位置:文档库 › 天津市第一中学2015_2016学年高中数学2.1指数函数讲义新人教A版必修1

天津市第一中学2015_2016学年高中数学2.1指数函数讲义新人教A版必修1

天津市第一中学2015_2016学年高中数学2.1指数函数讲义新人教A版必修1
天津市第一中学2015_2016学年高中数学2.1指数函数讲义新人教A版必修1

第二章 基本初等函数(Ⅰ)

2.1指数函数

一、指数与指数幂的运算 课型A

例1.求下列各式的值:

(1

)3

1

2a -?÷ ?1a

)

(2)()()22222a a a a ---+÷- 2211a a ??

- ?+??

(3)1211133442436x x y x y ---????-÷- ? ????? (1

32xy )

例2. 已知13x x -+=,求1122x x -+;3

3

22x x -+的值。

例3. 已知31x a -+=,求2362a ax x ---+的值。 (1)

例4.已知11

223x x -+=,求2233

222

3

x x x x --+-+-的值 解:∵11223x x -+=,∴1

1

222()9x x -+=,∴129x x -++=,∴17x x -+=,

∴12()49x x -+=,∴2247x x -+=,

又∵331

1

12222()(1)3(71)18x x x x x x ---+=+?-+=?-=,

∴2233

222

47231833

x x x x --+--==-+-

二、指数函数及其性质 课型A

例1. 判断下列函数哪些是指数函数:

(1)4x y = (2)4y x = (3)4x y =-

(4)(4)x y =- (5) x y π= (6)24y x =

(7) x y x = (8) 1(21),(1)2x y a a a =->

≠且 其中(1),(5),(8)是指数函数。

例2. 若2(4)x y a =-是一个指数函数,求a 的取值范围。

例3.设5.1344.029.01)21(,8,4

-===y y y ,则 ( D ) A .y 3>y 1>y 2 B .y 2>y 1>y 3

C .y 1>y 2>y 3

D .y 1>y 3>y 2 例4.当x ∈[-2,2)时,y =3-x -1的值域是

( A ) A .(-98,8] B .[-

98,8] C .(91,9) D .[91,9] 例5.函数()2()1x f x a =-在R 上是减函数,则a 的取值范围是 ( D )

A .1>a

B . 2

C .a <

.1a <<

例6.函数||x a y =的图象是(01)a << ( D )

A B C D 例7.下列说法中,正确的是

( B ) ①任取x R ∈都有3x >2x

②当a >1时,任取x R ∈都有a x >a -x

③y =(3)-x 是增函数

④y =2|x |的最小值为1

⑤在同一坐标系中,y =2x 与y =2-x 的图象对称于y 轴

A .①②④

B .④⑤

C .②③④

D .①⑤

例8.求函数2233x x y -++=的定义域、值域和单调区间.

解:定义域:x R ∈

值域:(0,81]y ∈

单调区间:y 在(,1)-∞上单调增,在(1,)+∞上单调减。

三、指数函数性质综合 课型B

例1.若21(5)2x f x -=-,则(125)f = 。0

例2.若函数y =a

2x +b +1(a >0且a ≠1,b 为实数)的图象恒过定点(1,2),则b = 。-2

例3.已知093109≤+?-x x ,求函数2)2

1(4)41

(1+-=-x x y 的最值 最大值2,最小值1

例4.已知奇函数:22()21

x x a a f x ?+-=+ ()x R ∈ (1) 求实数a 的值;

(2) 判断函数的单调性;

(3) 求函数的值域。

解:(1)(0)01f a =∴=

(2)212()12121

x x x f x -==-++ ()f x ∴在R 上单调增

(3)值域:()(1,1)f x ∈-

例5.已知函数)1,0()(≠>+-=--a a a a a a x f x

x x

x (1)求函数值域 (2)讨论函数的奇偶性 (3)讨论函数的单调性。

解:(1)值域:()(1,1)f x ∈-

(2)()f x 为奇函数

(3)∴当1a >时,()f x 在定义域范围内单调增

当01a <<时,()f x 在定义域范围内单调减。

高一数学指数函数知识点及练习题

2.1.1指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次 当n 是偶数时,正数a 的正的n 负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数 时,0a ≥. n a =;当n a =;当n (0)|| (0) a a a a a ≥?==?-∈且1)n >.0的正分数指数幂等于0.② 正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0 的负分数指 数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ① (0,,) r s r s a a a a r s R +?=>∈ ② ()(0,,) r s rs a a a r s R =>∈ ③ ()(0,0,)r r r ab a b a b r R =>>∈ 2.1.2指数函数及其性质 指数函数练习

1.下列各式中成立的一项 ( ) A .71 7 7)(m n m n = B .31243)3(-=- C .4 343 3)(y x y x +=+ D . 33 39= 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 6 B .a - C .a 9- D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是 ( ) A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)(+∈=N n y f x f xy f n n n 4.函数2 10 ) 2()5(--+-=x x y ( ) A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.函数2 2)2 1(++-=x x y 得单调递增区间是 ( ) A .]2 1,1[- B .]1,(--∞ C .),2[+∞ D .]2,2 1 [ 10.已知2 )(x x e e x f --=,则下列正确的是 ( ) A .奇函数,在R 上为增函数 B .偶函数,在R 上为增函数

高中数学完整讲义指数与指数函数1指数基本运算

题型一 指数数与式的运算 【例1】 求下列各式的值: ⑴ 33(5)-;⑵ 2(3)-; ⑶ 335; ⑷ 2()()a b a b -<; ⑸ 4334(3)(3)ππ---.⑹2 3 8;⑺12 25- ;⑻5 12-?? ???;⑼34 1681- ?? ??? . 【例2】 求下列各式的值: ⑴ 44100;⑵ 55 (0.1)-;⑶ 2(4)π-;⑷ 66 ()()x y x y ->. 【例3】 用分数指数幂表示下列各式: (1)3 2x (2)43)(b a +(a +b >0) (3)32 )(n m - (4)4 )(n m -(m >n ) (5) 5 6 q p ?(p >0) (6)m m 3 典例分析 板块一.指数基本运算

【例4】 用分数指数幂表示下列分式(其中各式字母均为正数) (1)43a a ? (2)a a a (3)3 22b a ab + (4)4233)(b a + 【例5】 用分数指数幂的形式表示下列各式(其中0)a >:3a ;2a . 【例6】 用根式的形式表示下列各式(a >0) 15 a ,34 a ,35 a -,23 a - 【例7】 用分数指数幂的形式表示下列各式: 2 a a ,3 3 2a a ,a a (式中a >0) 【例8】 求值:23 8,12 100 -,314-?? ???,3 41681- ?? ??? . 【例9】 求下列各式的值: (1)12 2 (2)1 2 6449- ?? ??? (3)34 10000- (4)23 12527- ?? ???

2020年人教版高中数学必修一全套精品教案(完整版)

2020年人教版高中数学必修一全套精品教 案(完整版) 第一章集合与函数 §1.1.1集合的含义与表示 一. 教学目标: l.知识与技能 (1)通过实例,了解集合的含义,体会元素与集合的属于关系; (2)知道常用数集及其专用记号; (3)了解集合中元素的确定性.互异性.无序性; (4)会用集合语言表示有关数学对象; (5)培养学生抽象概括的能力. 2. 过程与方法 (1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义. (2)让学生归纳整理本节所学知识. 3. 情感.态度与价值观 使学生感受到学习集合的必要性,增强学习的积极性. 二. 教学重点.难点

重点:集合的含义与表示方法. 难点:表示法的恰当选择. 三. 学法与教学用具 1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标. 2. 教学用具:投影仪. 四. 教学思路 (一)创设情景,揭示课题 1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗? 引导学生回忆.举例和互相交流. 与此同时,教师对学生的活动给予评价. 2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容. (二)研探新知 1.教师利用多媒体设备向学生投影出下面9个实例: (1)1—20以内的所有质数; (2)我国古代的四大发明; (3)所有的安理会常任理事国; (4)所有的正方形;

(5)海南省在2004年9月之前建成的所有立交桥; (6)到一个角的两边距离相等的所有的点; (7)方程2560 -+=的所有实数根; x x (8)不等式30 x->的所有解; (9)国兴中学2004年9月入学的高一学生的全体. 2.教师组织学生分组讨论:这9个实例的共同特征是什么? 3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义. 一般地,指定的某些对象的全体称为集合(简称为集).集合中的 每个对象叫作这个集合的元素. 4.教师指出:集合常用大写字母A,B,C,D,…表示,元素常 用小写字母,,, a b c d…表示. (三)质疑答辩,排难解惑,发展思维 1.教师引导学生阅读教材中的相关内容,思考:集合中元素有 什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的 三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是 一样的,我们就称这两个集合相等. 2.教师组织引导学生思考以下问题: 判断以下元素的全体是否组成集合,并说明理由: (1)大于3小于11的偶数;

指数函数与对数函数(讲义)

指数函数与对数函数(讲义) ? 知识点睛 1. 指数函数及对数函数的图象和性质: 2. 利用指数函数、对数函数比大小 (1)同底指数函数,利用单调性比较大小; (2)异底指数函数比大小,可采用化同底、商比法、取中间值、图解法; (3)同底数对数函数比大小,直接利用单调性求解;若底数为字母,需分类讨论; (4)异底数对数函数比大小,可化同底(换底公式)、寻找中间量(-1,0,1),或借助图象高低数形结合. 3. 换底公式及常用变形: log log log c a c b b a =(a >0,且a ≠1;c >0,且c ≠1;b >0) 1 log log a b b a = (a >0,且a ≠1;b >0,且b ≠1) log log m n a a n b b m = (a >0,且a ≠1;b >0,且b ≠1) log a b a b =(a >0,且a ≠1;b >0) ? 精讲精练 1. 若a ,b ,c ∈R +,则3a =4b =6c ,则( )

A .b a c 111+= B . b a c 122+= C .b a c 221+= D .b a c 212+= 2. 计算: (1)若集合{lg()}{0||}x xy xy x y =,,,,,则228log ()x y +=_________; (2)设0()ln 0x e x g x x x ?=?>?≤(), ()则1 (())2g g =_____________; (3)若2(3)6()log 6f x x f x x x +

高一数学指数函数经典例题

高一数学 指数函数平移问题 ⑴y =12+x 与y =22+x . ⑵y =12-x 与y =22-x . f (x )的图象 向左平移a 个单位得到f (x +a )的图象;向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象;向下平移a 个单位得到f (x )-a 的图象. 指数函数·经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3,∴值域是≤<.0y 3 及时演练求下列函数的定义域与值域 (1)4 12 -=x y ; (2)|| 2()3 x y =; (3)12 41 ++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 及时演练 指数函数① ② 满足不等式 ,则它们的图象是 ( ). 【例3】比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 358945 12--()

高中数学人教版必修一知识点总结归纳

第一章集合与函数概念 一:集合的含义与表示 1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东 西,并且能判断一个给定的东西是否属于这个整体。 把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。 2、集合的中元素的三个特性: (1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。 (2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。 (3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合 3、集合的表示:{…} (1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 a、列举法:将集合中的元素一一列举出来 {a,b,c……} b、描述法: ①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。 {x∈R| x-3>2} ,{x| x-3>2} ②语言描述法:例:{不是直角三角形的三角形} ③Venn图:画出一条封闭的曲线,曲线里面表示集合。 4、集合的分类: (1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合 (3)空集:不含任何元素的集合 5、元素与集合的关系: (1)元素在集合里,则元素属于集合,即:a∈A (2)元素不在集合里,则元素不属于集合,即:a¢A 注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 6、集合间的基本关系 (1).“包含”关系(1)—子集 定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合 A?(或B?A) A是集合B的子集。记作:B A?有两种可能(1)A是B的一部分; 注意:B (2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A?/B或B?/A (2).“包含”关系(2)—真子集 A?,但存在元素x∈B且x¢A,则集合A是集合B的真子集 如果集合B 如果A?B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)读作A真含与B (3).“相等”关系:A=B “元素相同则两集合相等” 如果A?B 同时 B?A 那么A=B (4). 不含任何元素的集合叫做空集,记为Φ

人教版高中数学必修一知识点总结

高一数学必修1各章知识点总结 第一章集合与函数概念 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰 洋} (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 ◆注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……} 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。 {x∈R| x-3>2} ,{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形} 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 A?有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 注意:B ?/B或B?/A 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A) ③如果 A?B, B?C ,那么 A?C ④如果A?B 同时 B?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集。 ◆有n个元素的集合,含有2n个子集,2n-1个真子集

人教高一数学指数函数讲义

第四节、指数函数 一、初中根式的概念; 如果一个数的平方等于a ,那么这个数叫做a 的平方根,如果一个数的立方等于a ,那么这个数叫做a 的立方根; (一)指数与指数幂的运算 1.根式的概念 一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. 当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.此时,a 的n 次方根用符号n a 表示。 . 式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数。 当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数.此时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号-n a 表示.正的n 次方根与负的n 次方根可以合并成±n a (a >0)。 由此可得:负数没有偶次方根;0的任何次方根都是0,记作00=n 。 思考:n n a =a 一定成立吗? 结论:当n 是奇数时,a a n n = 当n 是偶数时,???<≥-==) 0()0(||a a a a a a n n 例1、(1)=-+125.08 33-4 1633 (2)7722)(2y x y xy x -+ +-=

2.分数指数幂 正数的分数指数幂的意义 规定: )1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(11 *>∈>==-n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂. 3.有理指数幂的运算性质 (1)r a ·s r r a a += ),,0(Q s r a ∈>; (2)rs s r a a =)( ),,0(Q s r a ∈>; (3)s r r a a ab =)( ),0,0(Q r b a ∈>>. 无理指数幂:一般地,无理数指数幂),0(是无理数αα>a a 是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂. 对于根式的运算,简单的问题可以根据根式的意义直接计算,一般要将根式化为分数指数幂,利用分数指数幂的运算性质来进行计算。 例2、化简(1)=÷?----32 11321 32)(a b b a b a b a (2)=?÷?363342b ab a

高一数学讲义完整版

高一数学复习讲义09年版 函数部分(1) 重点:1把握函数基本知识(定义域、值域) x(a>0、<0) 主要是指数函数y=a x(a>0、<0),对数函数y=log a 2二次函数(重点)基本概念(思维方式)对称轴、 开口方向、判别式 考点1:单调函数的考查 2:函数的最值 3:函数恒成立问题一般函数恒成立问题(重点讲) 4:个数问题(结合函数图象) 3反函数(原函数与对应反函数的关系)特殊值的取舍 4单调函数的证明(注意一般解法) 简易逻辑(较容易) 1. 2. 3. 4.

启示:对此部分重点把握第3题、第4题的解法(与集合的关系) 问题1:恒成立问题解法及题型总结(必考) 一般有5类:1、一次函数型:形如:给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m, n]内恒有f(x)>0(<0) 练习:对于满足0-4x+p-3恒成立的x的取值范围 2、二次函数型:若二次函数y=ax2+bx+c=0(a≠0)大于0恒成立,则有a>0Δ<0若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解 练习:1设f(x)=x2-2ax+2,当x∈[-1, +∞)时,都有f(x)>a恒成立, a的取值范围 2关于x的方程9x+(4+a)3x+4=0恒有解,求a的范围。 3、变量分离型 若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解 练习:若1-ax>1/(1+x),当对于x∈[0, 1]恒成立,求实数a的取值范围。 4利用图象 练习:当x∈(1, 2)时,不等式(x-1)2

指数以及指数函数的整理讲义经典-(含答案)

指数与指数函数 一、指数 (一)n 次方根: 1的3次方根是( ) A .2 B .-2 C .±2 D .以上都不对 2、若4 a -2+(a -4)0有意义,则实数a 的取值范围是( ) A .a ≥2 B .a ≥2且a ≠4 C .a ≠2 D .a ≠4 (二)、 n 为奇数,a a n n = n 为偶数,?? ?<-≥==0 ,0 ,a a a a a a n n 1.下列各式正确的是( ) =-3 =a =2 D .a 0=1 2、.(a -b )2+5 (a -b )5的值是( ) A .0 B .2(a -b ) C .0或2(a -b ) D .a -b 3、若xy ≠0,那么等式 4x 2y 2=-2xy y 成立的条件是( ) A .x >0,y >0 B .x >0,y <0 C .x <0,y >0 D .x <0,y <0 4、求下列式子 (1).33 4433)32()23()8(---+- (2)223223--+ (三)、分数指数幂 1、求值 4 3 52 13 2811621258- --?? ? ????? ??;;; 243 的结果为 A 、5 B 、5 C 、-5 D 、-5 3、把下列根式写成分数指数幂的形式: (1)32ab (2)()42 a - (3) 3432x x x (四)、实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. 1.对于a >0,b ≠0,m 、n ∈N *,以下运算中正确的是( )

(完整word)人教版经典高一数学必修一试题

人教版经典高一数学必修一试卷 共120分,考试时间90分钟. 第I卷(选择题,共48 分) 一、选择题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合 题目要求的. 1 ?已知全集U {1,2,345,6.7}, A {2,4,6}, B {1,3,5,7}.则A (QB )等于 ( ) A. {2,4,6} B. {1,3,5} C. {2,4,5} D. {2,5} 2. 已知集合A {x|x2 1 0},则下列式子表示正确的有( ) ① 1 A ②{ 1} A ③ A ④{1, 1} A A. 1个 B. 2个 C. 3个 D. 4个 3. 若f : A B能构成映射,下列说法正确的有 ( ) (1)A中的任一元素在B中必须有像且唯一; (2)A中的多个元素可以在B中有相同的像; (3)B中的多个元素可以在A中有相同的原像; (4)像的集合就是集合B. A 1个 B 、2个 C 、3个 D 、4个 4. 如果函数f(x) x 2(a 1)x 2在区间,4上单调递减,那么实数a的取值范围是 ( ) A、a w 3 B 、a》3 C 、a w 5 D 、a》5 5. 下列各组函数是同一函数的是 ( ) ① f (x) J 2x3与g(x) x42x :② f (x) x 与g(x) V x2; 1 ③ f (x) x0与g(x) 0:④ f(x) x2 2x 1 与g(t) t2 2t 1。 x A、①② B 、①③ C 、③④ D 、①④ 6. 根据表格中的数据,可以断定方程e x x 2 0的一个根所在的区间是

( )

高一数学讲义-指数运算与指数函数

指数运算和指数函数 要求层次重点难点幂的运算 C ①根式的概念 ②有理指数幂 ③实数指数幂 ④幂的运算 ①分数指数幂的概 念和运算性质 ②无理指数幂的理 解 ③实数指数幂的意 义 指数函数的概念 B 在理解实数指数幂 的意义的前提下理 解指数函数 在理解实数指数幂 的意义的前提下理 解指数函数 指数函数的图象和 性质 C ①对于底数1 a>与 01 a <<时指数函 数的不同性质 ②掌握指数函数的 图象和运算性质 ①对于底数1 a>与 01 a <<时指数函 数的不同性质 ②掌握指数函数的 图象和运算性质 ③掌握指数函数作 为初等函数与二次 函数、对数函数结 合的综合应用问题 板块一:指数,指数幂的运算 (一)知识内容 1.整数指数 ⑴正整数指数幂:n a a a a =???,是n个a连乘的缩写(N n + ∈),n a叫做a的n次幂,a叫做幂的底数,n叫做幂的指数,这样的幂叫做正整数指数幂. ⑵整数指数幂:规定:01(0) a a =≠, 1 (0,) n n a a n a - + =≠∈N. 高考要求 第4讲 指数运算与指数函数 知识精讲

2.分数指数 ⑴ n 次方根:如果存在实数x ,使得n x a =(R,1,N )a n n +∈>∈,那么x 叫做a 的n 次方根. ⑵ 求a 的n 次方根,叫做a 开n 次方,称做开方运算. ① 当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.这时, a 的n 表示. ② 当n 是偶数时,正数的n 次方根有两个,它们互为相反数.正数a 的正、负n 0)a >. ⑶正数a 的正n 次方根叫做a 的n 次算术根. 负数没有偶次方根.0的任何次方根都是0 0. n 叫做根指数,a 3.根式恒等式: n a =;当n a =;当n ||a a a ?=?-? 0a a <≥. 4.分数指数幂的运算法则 ⑴正分数指数幂可定义为:1(0)n a a > 0,,,)m m n m a a n m n +==>∈N 且 为既约分数 ⑵负分数指数幂可定义为:1(0,,,)m n m n m a a n m n a - += >∈N 且 为既约分数 5.整数指数幂推广到有理指数幂的运算性质: ⑴(0,,Q)r s r s a a a a r s +=>∈ ⑵()(0,,Q)r s rs a a a r s =>∈ ⑶()(0,0,Q)r r r ab a b a b r =>>∈ 6.n 次方根的定义及性质:n 为奇数时 a =,n 为偶数时 a =. 7. m n a = m n a - =(0a >,,*m n N ∈,且1n >) 零的正分数指数幂为0,0的负分数指数幂没有意义. 8.指数的运算性质:r s r s a a a +=,()r r r ab a b =(其中,0a b >,,r s ∈R ) 9.无理数指数幂 ⑴ 无理指数幂(0,a a αα>是无理数)是一个确定的实数. ⑵ 有理数指数幂的运算性质同样适用于无理数指数幂. 10.一般地,当0a >,α为任意实数值时,实数指数幂a α都有意义. 对任意实数α,β,上述有理指数幂的运算法则仍然成立.

高中数学指数与指数函数练习题及答案

高中数学指数与指数函数练习题及答案 2019级数学单元同步试题 (指数与指数函数) 姓名____学号____ 一、选择题(12*5分) 1.()4()4等于() (A)a16 (B)a8 (C)a4 (D)a2 2.函数f(x)=(a2-1)x在R上是减函数,则a的取值范围是() (A)(B)(C)a (D)1 3.下列函数式中,满足f(x+1)= f(x)的是( ) (A) (x+1) (B)x+ (C)2x (D)2-x 4.已知ab,ab 下列不等式(1)a2b2,(2)2a2b,(3) ,(4)a b ,(5)( )a( )b 中恒成立的有() (A)1个(B)2个(C)3个(D)4个 5.函数y= 的值域是() (A)(- )(B)(- 0)(0,+ ) (C)(-1,+ )(D)(- ,-1)(0,+ ) 6.下列函数中,值域为R+的是() (A)y=5 (B)y=( )1-x (C)y= (D)y=

7.下列关系中正确的是() (A)()()()(B)()()() (C)()()()(D)()()() 8.若函数y=32x-1的反函数的图像经过P点,则P点坐标是() (A)(2,5)(B)(1,3)(C)(5,2)(D)(3,1)9.函数f(x)=3x+5,则f-1(x)的定义域是() (A)(0,+)(B)(5,+) (C)(6,+)(D)(-,+) 10.已知函数f(x)=ax+k,它的图像经过点(1,7),又知其反函数的图像经过点(4,0),则函数f(x)的表达式是()(A)f(x)=2x+5 (B)f(x)=5x+3 (C)f(x)=3x+4 (D)f(x)=4x+3 11.已知01,b-1,则函数y=ax+b的图像必定不经过()(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 12.一批设备价值a万元,由于使用磨损,每年比上一年价值降低b%,则n年后这批设备的价值为() (A)na(1-b%) (B)a(1-nb%) (C)a[(1-(b%))n (D)a(1-b%)n 答题卡 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 二、填空题(4*4分)

完整word版,人教高一数学指数函数讲义

第四节、指数函数 、初中根式的概念; 如果一个数的平方等于a,那么这个数叫做a的平方根,如果一个数的立方等于a,那么这个数叫做a的立方根; (一)指数与指数幕的运算 1.根式的概念 一般地,如果x" a,那么x叫做a的n次方根,其中n >1,且n € N . 当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.此时,a的n次方根用符号n a表示。 .式子R'a叫做根式,这里n叫做根指数,a叫做被开方数。 当n是偶数时,正数的n次方根有两个,这两个数互为相反数.此时,正数a 的正的n次方根用符号n a表示,负的n次方根用符号一:a表示?正的n次方根与负的n 次方根可以合并成土:a ( a>0)。 由此可得:负数没有偶次方根;0的任何次方根都是0,记作n0 0 思考:x a n=a 一定成立吗? 结当n是奇数时,n a n a 当n是偶数时,n a n| a | a (a 0) a (a 0) (2) . x2 2xy .(x y)7=

2 ?分数指数幕 正数的分数指数幕的意义 规定: m a n Va m (a 0, m, n N *, n 1) -1 1 * a n r 尸帛 (a °, m,n N ,n 1) a 7 va 0的正分数指数幕等于0, 0的负分数指数幕没有意义 指出:规定了分数指数幕的意义后,指数的概念就从整数指数推广到了有理 数指数,那么整数指数幕的运算性质也同样可以推广到有理数指数幕. 3 ?有理指数幕的运算性质 (1) r r a ?a s a (a 0,r,s Q) ; (2) r s (a ) rs a (a 0,r,s Q) ; (3) r (ab) r s a a (a 0,b 0,r 无理指数幕:-般地,无理数指数幕a (a 0,是无理数)是一个确定的 实数?有理数指数幕的运算性质同样适用于无理数指数幕. 对于根式的运算,简单的问题可以根据根式的意义直接计算, 一般要将根式化为 分数指数幕,利用分数指数幕的运算性质来进行计算。 2 例2、化简(1)丰匚(旦 a 2?V b 2 (2) 2?3a a ?2 , x 0 x (, a R ), 若 f[ f ( 1)] 1,则 a=( 2 x ,x 0 例 3 、已知函数 f ( x )

人教版高中数学必修一教案

课题:§1.1 集合 教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础。许多重要的数学分支,都是建立在集合理论的基础上。此外,集合理论的应用也变得 更加广泛。 课型:新授课 课时:1课时 教学目标:1.知识与技能 (1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系; (2)牢记常用的数集及其专用的记号。 (3)理解集合中的元素具有确定性、互异性、无序性。 (4)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的问题。 2.过程与方法 (1)学生经历从集合实例中抽象概括出集合共同特征的过程,深入理解集合的含义。 (2)学生自己归纳本节所学的知识点。 3.情感态度价值观 使学生感受学习集合的必要性和重要性,增加学生对数学学习的兴趣。教学重点:集合的概念与表示方法。 教学难点:对待不同问题,表示法的恰当选择。 教学过程: 一、引入课题

军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生? 在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。 阅读课本P2-P3容 二、新课教学 (一)集合的有关概念 1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到 这些东西,并且能判断一个给定的东西是否属于这个总体。 2.一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集 合(set)(简称为集)。 3.关于集合的元素的特征 (1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。 例: (2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。 例: (3)无序性:只要构成两个集合的元素一样,我们称这两个集合是相等的。 例: 4.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学

高中数学指数函数及其性质(一)

课题: 指数函数及其性质(一) 课 型:新授课 教学目标: 使学生了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;理解指数函数的的概念和意义,能画出具体指数函数的图象,掌握指数函数的性质. 教学重点:掌握指数函数的的性质. 教学难点:用数形结合的方法从具体到一般地探索、概括指数函数的性质. 教学过程: 一、复习准备: 1. 提问:零指数、负指数、分数指数幂是怎样定义的? 2. 提问:有理指数幂的运算法则可归纳为几条? 二、讲授新课: 1.教学指数函数模型思想及指数函数概念: ① 探究两个实例: A .细胞分裂时,第一次由1个分裂成2个,第2次由2个分裂成4个,第3次由4个分裂成8个,如此下去,如果第x 次分裂得到y 个细胞,那么细胞个数y 与次数x 的函数关系式是什么? B .一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84%,那么以时间x 年为自变量,残留量y 的函数关系式是什么? ② 讨论:上面的两个函数有什么共同特征?底数是什么?指数是什么? ③ 定义:一般地,函数(0,1)x y a a a =>≠且叫做指数函数(exponential function ),其中x 是自变量,函数的定义域为R . ④讨论:为什么规定a >0且a ≠1呢?否则会出现什么情况呢?→ 举例:生活中其它指数模型? 2. 教学指数函数的图象和性质: ① 讨论:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗? ② 回顾:研究方法:画出函数的图象,结合图象研究函数的性质. 研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. ③ 作图:在同一坐标系中画出下列函数图象: 1 ()2 x y =, 2x y = (师生共作→小结作法) ④ 探讨:函数2x y =与1()2x y =的图象有什么关系?如何由2x y =的图象画出1 ()2 x y =的图 象?根据两个函数的图象的特征,归纳出这两个指数函数的性质. → 变底数为3或1/3等后? ⑤ 根据图象归纳:指数函数的性质 (书P 56) 3、例题讲解 例1:(P 56 例6)已知指数函数()x f x a =(a >0且a ≠1)的图象过点(3,π),求(0),(1),(3)f f f -的值. 例2:(P 56例7)比较下列各题中的个值的大小 (1)1.72.5 与 1.73

高一数学指数函数知识点及练习题含答案

指 数函数 2.1.1指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次 当n 是偶数时,正数a 的正的n 负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数 时,0a ≥. n a =;当n a =;当n (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分数指数幂等于0.② 正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0 的负分数指 数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ① (0,,) r s r s a a a a r s R +?=>∈ ② ()(0,,) r s rs a a a r s R =>∈ ③ ()(0,0,)r r r ab a b a b r R =>>∈ 2.1.2指数函数及其性质

2.1指数函数练习 1.下列各式中成立的一项 ( ) A .71 7 7)(m n m n = B .31243)3(-=- C .4 3433)(y x y x +=+ D . 33 39= 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 6 B .a - C .a 9- D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是 ( ) A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)(+∈=N n y f x f xy f n n n 4.函数2 10 ) 2()5(--+-=x x y ( ) A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0 ,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.函数2 2)2 1(++-=x x y 得单调递增区间是 ( )

人教版高一数学必修一知识点总结大全

一 集合与函数 1 集合的含义及表示* ???? ?? ????? ∈??? ????? ??? 确定性集合中元素的特征 互异性无序性 集合与元素的关系 : 列举法 集合的表示 描述法常见的数集 N N Z Q R 2,,A B B A A B A B A A A A B A B A B οο φ≠ ??=????? ?????≠??1定义:A=B 2若且则子集: , 集合相等: 集合间的基本关系真子集: 若且 则 空集φ的特殊性: 空集是任何集合的子集,任何非空集合的真子集 *结论 含有n 个元素的集合,其子集的个数为2n ,真子集的个数为21n - 3集合的基本运算{}{}{}|||U A B x x A x B A B x x A x B C A x x U x A ??=∈∈? ?=∈∈??=∈?? 并集:或 交集:且 补集:且 在集合运算中常借助于数轴和文氏图(*注意端点值的取舍) *结论 (1)A A A ?= A A A ?=, A A φ?= A φφ?= (2)A B B A B ?=?若则 A B A A B ?=?若则 (3)()U A C A φ?= ()U A C A U ?= (4)若A B φ?= 则A φ=或A φ≠

4函数及其表示?? ?? ??????? ?????? ?????? 函数的定义 定义域函数的三要素对应法则值域区间的表示 解析式法函数的表示法列表法图像法 5 函数的单调性及应用 (1) 定义: 设[]2121,,x x b a x x ≠∈?那么: 1212,()()x x f x f x <?0) ()(2 121>--x x x f x f []b a x f ,)(在?上是增函数; 1212,()()x x f x f x <>?[]1212()()()0x x f x f x --

相关文档
相关文档 最新文档