文档库 最新最全的文档下载
当前位置:文档库 › 添加剂对高炉热风炉用镁质材料抗蠕变性能的影响

添加剂对高炉热风炉用镁质材料抗蠕变性能的影响

添加剂对高炉热风炉用镁质材料抗蠕变性能的影响
添加剂对高炉热风炉用镁质材料抗蠕变性能的影响

添加剂对高炉热风炉用镁质材料抗蠕变性能的影响

游杰刚1) 张国栋1) 刘海啸1) 罗旭东1) 袁政禾2)

1)辽宁科技大学材料科学与工程学院 辽宁鞍山114044

2)鞍钢集团耐火材料公司 辽宁鞍山114001

摘 要 以粒度分别为3~1、≤1和≤0.088mm的电熔镁砂为主要原料,在颗粒与细粉质量比固定为67.5∶32.5的条件下,分别加入3%(w)的α2A l2O3粉、Cr2O3粉、钛白粉、脱硅锆粉、铁磷粉等添加剂,在高温隧道窑中于1760℃110m in烧成后,研究添加剂种类对镁质材料蠕变性能的影响;然后,选择抗蠕变性能较好的添加剂α2A l

2

O3和Cr2O3,研究分别单独添加α2A l2O3粉(其质量分数分别为0、2.5%、5%、7.5%和10%)和复

合添加α2A l

2

O3粉与Cr2O3粉(在α2A l2O3粉质量分数为5%的基础上,再分别添加1%、3%和5%的Cr2O3粉)

对镁质材料抗蠕变性能的影响。结果表明:(1)添加α2A l

2

O3粉、Cr2O3粉和铁鳞粉对高炉热风炉用镁质材料的抗蠕变性有利,但添加铁鳞的抗热震性较差,不适合作高炉热风炉用镁质材料的添加剂;添加钛白粉和脱硅锆

不利于材料的高温抗蠕变性。(2)在添加5%的α2A l

2

O3粉基础上复合添加Cr2O3粉时,其质量分数以1%~3%为宜;以5%α2A l2O3+3%Cr2O3作为镁质材料的复合添加剂,材料的抗蠕变性优于热风炉用低蠕变高铝砖的,其1450℃保温50h的蠕变率仅为低蠕变高铝砖的一半。

关键词 镁质材料,高炉热风炉,抗蠕变性,添加剂,氧化铝,氧化铬

镁质耐火材料与硅质和高铝质耐火材料相比,具有热容量大,热传导性好,抗碱性杂质侵蚀能力强的特点,有利于高炉的“大风量、高风温”操作,同时还有利于降低燃料消耗,提高高炉利用系数,增加产铁量,能够满足现代大型高炉热风炉的高风温与长寿命的要求。但是,由于镁质耐火材料基质中硅酸盐玻璃相的润湿,使其抗蠕变性较差;同时,由于方镁石的各向异性,且方镁石的热膨胀系数较大(40×10-6℃-1),使得镁质耐火材料的抗热震性较差。这两方面是镁质耐火材料在高炉热风炉上应用和发展的最大障碍。因此,研究镁质材料的高温蠕变性能对扩大我国镁资源的综合利用和炼铁产业的技术进步都有着重大的意义。目前,国外有关于镁质耐火材料用于热风炉的报道[2],国内有关于玻璃窑蓄热室用抗蠕变镁橄榄石砖的研究报道[3-4],而有关镁质耐火材料抗蠕变性研究的报道不多[5]。本工作针对镁质耐火材料抗蠕变性能差的缺点,研究了添加剂种类及添加形式对其抗蠕变性的影响。

03

1 试验

1.1 原料

选用的主要原料为电熔镁砂颗粒(3~1、≤1mm)和细粉(≤0.074mm),添加剂为α2A l2O3粉(≤0.043mm)、Cr

2

O3粉(≤0.043mm)、钛白粉(≤0.074mm)、脱硅锆粉(≤0.074mm)、铁鳞粉(≤0.074mm)。上述原料的化学组成见表1。

表1 原料的化学组成(w)

Ta b l e1C hem i ca l com po s iti o n s o f s ta rti ng m a te ri a ls%

原 料Mg O A l2O3Si O2Fe2O3Ca O Ti O2灼减

电熔镁砂97.470.160.680.45 1.02-0.15

α2A l

2

O3粉0.0199.220.030.050.12

0.07

(Na

2

O)

0.34 Cr2O3粉

99.0

(Cr

2

O3)

-----0.14钛白粉0.010.160.450.090.3798.510.23脱硅锆粉

91.41

(Zr O

2

) 5.80 1.370.100.390.29-

铁鳞粉

58.23

(Fe)

--35.13-- 2.35 1.2 试验方案

试验采用的镁质材料基础配方(w)如下:3~1mm电熔镁砂37.5%,≤1mm电熔镁砂30%,≤0.088mm电熔镁砂32.5%。首先,在基础配方

2009年2月

第43卷第1期

39~41

3游杰刚:男,1975年生,硕士,讲师。

E2mail:youjiegang@https://www.wendangku.net/doc/b51093094.html,

收稿日期:2008-04-16

修回日期:2008-07-28编辑:柴剑玲

2009/1耐火材料/NAI H UO CAI L I A O39

 

(记为试样M)的基础上分别用3%(w)的α2A l

2

O3粉

(记为试样A)、Cr

2

O3粉(记为试样K)、钛白粉(记为试样T)、脱硅锆(记为试样Z)、铁鳞(记为试样F)等添加剂替代镁砂粉,研究添加剂种类对镁质材料蠕变性能的影响;然后,在此基础上选择抗蠕变性能较好

的添加剂α2A l

2

O3和Cr2O3,研究改变其加入量和加入形式对镁质材料蠕变性能的影响,试验配方见表2。

表2 选择添加剂加入量和加入形式的试验配方(w)

Tab l e2Te s t p r opo rti o n f o r se l e c te d a dd iti o n s and f o r m s o f

a dd iti ve s%

试样编号

电熔镁砂

3~1mm≤1mm≤0.088mm

α2A l

2

O3粉Cr2O3粉

A037.53032.500

A137.53030 2.50

A237.53027.550

A337.530257.50

A437.53022.5100

AK137.53026.551

AK237.53024.553

AK337.53022.555

1.3 制样及性能检测

首先将各原料按配比称量后,用湿碾机混练。混料时,先加入电熔镁砂预混2m in,使镁砂颗粒料均匀混合,然后加入结合剂亚硫酸纸浆废液(密度为1.10 g?c m-3,pH值为4.44)混3m in,以润湿颗粒表面,最后加入预混过的混合粉料,继续混练15m in。混练好的物料在液压机下以300MPa的压力压制成中心带有<12~13mm的通孔的<50mm×50mm圆柱试样,干燥后在高温隧道窑中于1760℃保温110m in 烧成。

烧后试样采用G B/T5073-2005《耐火制品压蠕变试验方法》进行蠕变率测试,施加压力0.2MPa,蠕变温度1450℃,蠕变时间50h。在试验过程中测量试样在不同蠕变时间下的蠕变率。同时,为了对比材料的抗蠕变性能,本试验还与目前高炉热风炉中常用的低蠕变高铝砖进行了抗蠕变性对比试验。所用低蠕变高铝砖(记为G A)的主要化学组成(w)如下: A l2O376.2%,Si O222.1%,Fe2O30.8%。

2 结果与讨论

2.1 添加剂种类对镁质材料蠕变性能的影响

图1示出了添加剂对镁质材料蠕变性能的影响。从图可以看出,添加α2A l

2

O3、Cr2O3和Fe2O3的蠕变率较低,且比较接近于现热风炉常用低蠕变高铝砖

的。纯镁质试样M和添加Zr O

2、Ti O

2

的试样抗蠕变

性较差,尤其是添加Ti O

2的抗蠕变性最差,在10h内

就碎裂了。这是由于试验所用主要原料是

m(Ca O)∶m(Si O2)>2的高钙镁砂,根据Ca O

-Mg O

-Ti O2三元相图[6],其低共熔温度仅为1350℃,故

添加Ti O

2

的试样在1450℃的蠕变测试温度下会有

液相形成,而且试样在蠕变过程中还同时施有0.2

MPa的载荷,因此导致试样碎裂。

图1 添加剂种类对镁质材料蠕变性能的影响

F i g.1R e l a ti o n sh i p be t w ee n add iti ve s a nd c reep ra te o f m ag2

ne s i a m a te ri a l

从图1还可看出,添加α2A l

2

O3、Cr2O3和Fe2O3

的试样在20h时的蠕变率比低蠕变高铝砖(试样

G A)的还要低:添加α2A l2O3的试样20h时的蠕变率

仅为-0.584%,蠕变速率为0.029%?h-1;而高铝砖

G A在20h时的蠕变率为-0.690%,蠕变速率为

0.035%?h-1。由此可明显看出,添加α2A l2O3的试

样在20h内的抗压蠕变效果较好。50h的蠕变率与

高铝砖G A最接近的是添加Fe

2

O3、Cr2O3的试样,其

蠕变率分别为-1.024%、-1.191%。但进一步的抗

热震试验发现,加入铁鳞的试样在1100℃风冷(风

压为0.1MPa)4次便碎裂了,抗热震性较差,不适合

作高炉热风炉用镁质材料的添加剂,而其他试样4次

热震后的强度保持率均在80%以上(无添加剂的试

样M强度保持率为75%)。因此,在后续的试验中没

有再考虑加入铁鳞的情形。

2.2 α2A l2O3和Cr2O3加入量和加入形式对镁质材

料蠕变性能的影响

图2示出了单独添加不同量的α2A l

2

O3对镁质

材料蠕变性能的影响。由图2可以看出:α2A l

2

O3的

加入明显改善了镁质材料的抗蠕变性,且随着

α2A l

2

O3加入量的增加,材料的抗蠕变性提高;加入

α2A l

2

O3的试样在前20h的抗蠕变性就接近甚至要好

于对比试样高铝砖G A的。这主要是因为随α2A l

2

O3

加入量的增大,在镁质耐火材料中形成的镁铝尖晶石

量也增多,使得材料的直接结合程度提高,从而提高

了制品的抗蠕变能力。

耐火材料/NA I HUO CA I L I A O 2009年第43卷

40 NAI H UO CAI L I A O/耐火材料2009/1

2009/1

耐火材料/NAI H UO CAI L I A O

41

 

图2 α2A l 2O 3加入量对镁质复合材料蠕变性能的影响

F i g.2R e l a ti o n sh i p be t w ee n α2A l 2O 3a nd c re ep ra te o f m ag 2

ne s i a m a te ri a l

图3示出了在5%α2A l 2O 3的基础上,复合添加不同量的Cr 2O 3对镁质材料蠕变性能的影响。从图

中可以看出:在含有5%α2A l 2O 3的镁质材料中再添加Cr 2O 3,对其抗蠕变性的影响远比单独添加A l 2O 3或Cr 2O 3的好得多,且随Cr 2O 3加入量的增加,

镁质材料

图3 复合添加剂A l 2O 3+Cr 2O 3对镁质材料蠕变性能的影响F i g.3R e l a ti o n sh i p be t w ee n A l 2O 3+C r 2O 3and c re ep ra te o f

m agne si a m a te ri a l

的抗蠕变性能提高。同时还可以看出,试样AK1、AK2在20h 和50h 时的抗蠕变性都要好于低蠕变高

铝砖G A 的,且试样AK2在50h 时的蠕变率仅为G A 的一半,只有-0.47%。

3 结论

(1)添加α2A l 2O 3粉、Cr 2O 3粉和铁鳞粉对高炉热

风炉用镁质材料的抗蠕变性有利,添加钛白粉和脱硅

锆不利于镁质复合材料的高温抗蠕变性。但添加铁鳞粉的试样抗热震性较差,不适合作热风炉镁质蓄热材料的添加剂。

(2)在含有5%的α2A l 2O 3镁质材料中再添加Cr 2O 3时,Cr 2O 3的加入量以1%~3%为宜;以5%A l 2O 3+3%Cr 2O 3作为镁质材料的添加剂,其抗蠕变

性能优于热风炉用低蠕变高铝砖的。参考文献

[1] 饶东生.硅酸盐物理化学[M ].北京:冶金工业出版社,1991:5.[2] 王元化,译.高炉热风炉格子房砖采用镁质耐火材料[J ].国外耐

火材料.1983,19(1):40-43.

[3] 程兆侃,任德和,张用宾,等.优质镁橄榄石砖的研制[J ].硅酸

盐通报,1997(1):25-30.

[4] 王晓红,高险峰.镁橄榄石砖在玻璃窑中的开发应用[J ].硅酸盐

通报,1997(1):77-99.

[5] 石干,孙庚辰.抗蠕变镁质耐火制品的研究[J ].耐火材料,2007,

41(增刊):75-77.

[6] EmestM L,Howard F M.Phase diagra m s for cera m ists 1975supp le 2

ment[M ].Columbus:American Cera m ic Society,1975:200.

I nfluences of additives on creep resistance of magnesia material f or hot blast st ove /You J iegang,Zhang Guodong,L iu Haixiao,et al //Naihuo Cailiao .-2009,43(1):39

The m a g ne s ia m a te ria l fo r ho t b la s t s tove w a s p rep a re d w ith fus e d m a g ne s ite (3-1,≤1a nd ≤0.088m m )a s m a in s ta rting m a te ria l ,fixing the m a s s ra tio of p a rtic le a nd p ow d e r a t 67.5∶32.5,a d d ing 3w t%α2A l 2O 3,C r 2O 3,Ti O 2,d e s ilic a te d Z r O 2o r iron s c a le,re sp e c tive ly,firing a t 1760℃fo r 110m in in h ig h tem p e ra 2tu re tunne l fu rna c e.The e ffe c ts of a d d itive s on the c re ep re s is ta nc e of m a g ne s ia m a te ria l w e re s tud ie d.The n a d d itive s α2A l 2O 3a nd C r 2O 3w h ic h ha d the b e tte r c re ep re s is ta n t e ffe c t w e re s e le c te d.The e ffe c ts of

α2A l 2O 3a d d ition a lone (0,2.5%,5%,7.5%a nd 10%)a nd the a d d itions of b o th α2A l 2O 3a nd C r 2O 3(α2A l 2O 3:5%,C r 2O 3:1%,3%a nd 5%)on the c re ep re s is ta nc e w e re s tud ie d.The re s u lts s how e d tha t:(1)The a d d ition of α2A l 2O 3,C r 2O 3a nd iron s c a le e nha nc e d the c re ep re s is ta nc e of the m a te ria l .H ow e ve r,iron s c a le w e a ke ne d the the r m a l s hoc k re s is ta nc e.The a d d itions of Ti O 2a nd d e s ilic a te d Z r O 2w e re no t b e n 2e fic ia l to e nha nc ing the c re ep re s is ta nc e.(2)W he n fixing the α2A l 2O 3a d d ition in 5%,the ap p rop ria te a d d i 2tion of C r 2O 3w a s 1%-3%;w he n a d d ing 5%A l 2O 3a nd 3%C r 2O 3,the m a te ria l ha d a b e tte r c re ep re s is t 2a nc e tha n the low c re ep h ig h a lum ina b ric k us e d in ho t b la s t s tove,a nd the c re ep ra te a t 1450℃fo r 50h

of the m a g ne s ia m a te ria l w a s on ly ha lf of the low c re ep h ig h a lum ina b ric k .

Key words:M a g ne s ia m a te ria l ,C re ep p rop e rty re s is ta nc e,A d d itive,A lum ina,C h rom e oxid e

Author ’s address:C o lle g e of M a te ria ls s c ie nc e a nd e ng ine e ring ,L ia on ing U n ive rs ity of S c ie nc e a nd

Te c hno log y,A ns ha n 114044,L ia on ing ,C h ina

第1期 游杰刚,等:添加剂对高炉热风炉用镁质材料抗蠕变性能的影响 2009年2月

炼铁高炉热风炉现状及发展方向

炼铁高炉热风炉现状及发展方向 张振峰冯晓军 摘要:根据国家《钢铁产业发展政策》,以及国家节能减排政策的实施,对我国钢铁工业健康发展提出相关要求,技术装备现代化、大型化,高效节能是高炉炼铁生产的发展方向,而做为高炉炼铁生产,热风炉的效率、装备水平对炼铁生产能耗降低起到重要作用。本文对我国高炉炼铁热风炉装备水平及运行现状和发展方向做以总结分析。 关键词:高炉、热风炉、现状及发展方向 1、引言:目前,我国高炉炼铁生产技术步入了飞速发展阶段,随着国家节能减排,以及淘汰落后产能的步伐加大,对于高炉炼铁能耗降低、热风炉提供高风温、增加煤粉喷吹量,节能降低焦比的有效措施,随着高炉大型化装备水平的现代化,热风炉各种新技术的应用,使热风炉逐渐走向节能、高效、长寿的步伐。改进内燃式、外燃式均取得了1200℃以上的高风温。随着顶燃式热风炉的发展,特别是卡鲁金顶燃式热风炉的引进,其高效、长寿、投资成本低的特点,逐渐为大型高炉所采用,并取得成功,已成为热风炉发展方向。 2、目前我国炼铁高炉热风炉现状: 2.1 现代热风炉的分类: 热风炉做为高炉炼铁重要组成设备,随着高炉炼铁技术的发展进步,热风炉结构形成发展的步伐从来就没有停止,其历史久远,现代热风炉分为以下几类: ①按燃烧室位置分:内燃式、外燃式和顶燃式。 ②按燃烧入口位置分:低架式(落地式)和高架式。 ③按燃烧室形状分:眼睛形、苹果型和圆形。 ④按蓄热体形状分、板状、块状和球状。 本文以现代主流热风炉分类依据,按燃烧室位置来分别讨论内燃式、外燃式、顶燃式热风炉的现状及发展方向。 2.2国内炼铁高炉装备内燃式热风炉的现状。 2.2.1内燃式热风炉结构特点: 热风炉的燃烧室(又叫火井)和蓄热室同置于一个圆型炉壳内,称之为内燃式热风炉,内燃式热风炉又分为传统内燃式和改进内燃式,传统内燃式热风炉的风温低、寿命短,已被改进内燃式所代替,改进内燃式的主要特点:①采用悬链线型拱顶结构,优化拱顶高温稳定性及气流分布;②采用圆型火井及新型隔墙;③采用陶瓷燃烧器和弧形炉衬板。 2.2.2内燃式热风炉在国内高炉的装备情况: 目前,内燃式热风炉是在国内炼铁高炉装备最为广泛的热风炉之一,经过改进优化热风炉结构,新技术的应用,平均风温达到了1150——1200℃的水平,具有代表性的有:

包钢1号高炉热风炉的高风温及长寿技术的介绍

包钢1号高炉热风炉的高风温及长寿技术的介 绍 方平 摘要介绍了为配合包钢1号高炉扩容而易地新建的4座改造内燃式热风炉,为保证高炉获得高风温并保证热风炉的长寿,设计中采用了多项先进和实用的技术。 关键词内燃式热风炉高风温长寿技术 INTRODUCTION TO HIGH BLAST TEMPERATURE LONG LIFE TECHNIQUE FOR HOT BLAST STOVE OF NO.1 BF AT BAOTOU IRON & STEEL CORP. Fang Ping Baotou Iron & Steel Corp. Synopsis The present paper described 4 modified internal combustion type hot blast stoves which were rebuilt in the new site in the volumetric enlargement of No.1 BF at Baotou Iron & Steel Corp. To ensure high blast temperature as well as long service life of the hot blast stoves a number of advanced application techniques have been adopted in the design. Keywords internal combustion type hot blast stove high blast temperature long life technology 1 前言 包钢1号高炉于1959年9月建成,有效容积为1513m3。在1981年4月至1985年3月间进行了1号高炉的改造性大修。从上次大修后高炉已生产10余年时间,其间虽经几次中修但并未根本改变炉子的状况。随着包钢原料条件的不断改善,炼钢、轧钢生产规模的不断扩大,炼铁生产能力已不能满足要求。为此,包钢公司决定对1号高炉实施扩容改造大修,将炉容由1513m3扩容至2200m3。 实践证明,对于包钢的原料条件,高炉容积达到1800m3时,就需要有2个出铁口才能满足高炉的正常生产,所以1号高炉扩容改造需新建出铁场,将热风炉易地建,为新建北出铁场提供场地。 基于上述原因,决定在1号高炉东北侧新建4座改造内燃式热风炉。 2 热风炉主要技术参数 新建4座改造内燃式热风炉是按高炉扩容至2200m3进行设计的,热

讲课内容,国内高炉热风炉现状,高炉热风炉设计思路

我们能不能干得比外国人更好一些 ——中冶京城吴启常大师于2015年4月,做客于山东慧敏科技公司,讲授热风炉的相关知识,同时对目前钢铁行业热风炉的情况进行讲解,受益匪浅,仅此上传吴大师的讲授资料,大家共同学习,向吴大师致敬! 1. 格子砖热工特性: 对于没有影响热交换过程横向凸台和水平通道的格子砖,都可以通过两个基本参数——格子砖的水力学直径d Э和相应的活面积f ——来表述,即: 单位加热面积(m 2/m 3) 4f H d = 1m 3格子砖中砖的容积(m 3/m 3) k 1V =-f 烟气辐射的厚度(cm ) 3.41004 d S =ЭЭФ 砖的半当量厚度(mm ) (1)4f d R f -=ЭЭ 格孔间最小壁厚(mm ) m i n 1d f ?=-??? Эδ 2.高炉风温有没有上限? 上一世纪70年代,西方国家的高炉设计纷纷高喊要使用1350℃以上的高风温,试图获得提高风温给高炉带来的最大好处。但实际的结果是热风炉拱顶钢壳 出现了大量裂纹,给高炉生产带 来了极大的困难。欧洲人深入研 究了此问题之后认为:这是高炉 采用高风温高压操作之后,燃烧 产物中出现了大量的NO X 和SO X 造成钢壳出现晶间应力腐蚀的缘 故。 尤其是炉壳在高应力状态下 工作时,晶粒之间的腐蚀更为严重。此外,NO X 和SO X 对于环境污染也是极大的

挑战。它们是PM2.5指标的重要组成部分。 NO X 生成量与拱顶温度之间关系 欧洲人从防止热风炉炉壳出现晶间应力腐蚀以及保护大气环境的角度出发,他们以热风炉的拱顶温度水平来对热风炉进行分类(详见图2)。按欧洲人的观念,拱顶温度范围:>1420℃属超高风温热风炉;1350~1420℃属高温热风炉;1250~1350℃属中温热风炉;1100~1250℃属低温热风炉。 晶间应力腐蚀是怎么回事? 晶间应力腐蚀的定义:在腐蚀介质和应力的双重作用下,没有产生变形而出现沿晶间方向的开裂,最终导致材料的破坏。热风炉出现晶间应力腐蚀开裂破坏的主要部位在拱顶的焊缝附近,并且工地焊缝比工厂焊缝出现开裂的频率要高。可见焊接产生的残余应力对于腐蚀开裂有很大的影响。 晶间应力腐蚀产生的原因:在高温条件下,N 2和O 2分解成单体的N 和O 并生成NO x 。NO x 产生的化学反应式如下: N 2 + xO 2 = 2NO x x 22111N O +O =N O x 2x x 如果热风炉炉壳没有特殊的隔热层,炉壳的温度会低于100℃,其内表面会形成冷凝水。氧化氮与这些冷凝水接触便会生成硝酸根离子水溶液,这样,腐蚀介质就形成了。其反应式如下: 2NO 2 + H 2O = HNO 2 + HNO 3 2NO 2 + H 2O + 0.5O 2 = 2HNO 3 硝酸对钢板产生化学侵蚀破坏,反应式如下: 2Fe + 6HNO 3 =Fe 2O 3 + 3N 2O 4 + 3H 2O 研究还表明,在有SO 2介质的存在条件下,应力腐蚀的速度将加快。 为了防止热风炉高温区炉壳出现晶间应力腐蚀,人们曾经采用过一些技术措施: 1)拱顶温度控制在1420℃的水平上; 2)拱顶外壳内表面喷砂除锈后涂刷耐酸高温漆并喷涂耐酸耐火材料; 3)适当加厚拱顶外壳钢板,采用‘低应力设计’,并选用细晶粒耐龟裂钢板作为炉壳材料;

高炉炼铁工艺流程(经典)61411

本文是我根据我的上传的上一个文库资料继续修改的,以前那个因自己也没有吃透,没有条理性,现在这个是我在基本掌握高炉冶炼的知识之后再次整理的,比上次更具有系统性。同时也增加了一些图片,增加大家的感性认识。希望本文对你有所帮助。 本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档:

一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中还原出来的过程。 炼铁方法主要有高炉法、直 接还原法、熔融还原法等,其原 理是矿石在特定的气氛中(还原 物质CO、H2、C;适宜温度等) 通过物化反应获取还原后的生 铁。生铁除了少部分用于铸造外, 绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主要 方法,钢铁生产中的重要环节。 这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降

高炉热风炉岗位安全操作规程(新版)

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 高炉热风炉岗位安全操作规程 (新版) Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

高炉热风炉岗位安全操作规程(新版) (1)上岗前工作要求: ①上岗前人员要按规定穿戴好工作服、安全帽、劳保皮鞋、皮手套;帽带、袖口必须系好。 ②检查便携式煤气报警仪,固定式煤气报警器,现场煤气探头使用正常,进入热风炉煤气区域必须2人以上,佩戴好防护器材,上风口进入。 ③煤气区域与液压站应有明显的警示标志,标识保持好清洁。严禁烟火,严禁堆放易燃易爆物品。 ④煤气设施严禁有泄露煤气现象,各种承压管道、介质管道防跑冒滴漏。 ⑤热风炉平台及走道应经常清扫,不准堆放任何物品占用通道。 ⑥岗位所有人员须知煤气常识及煤气中毒急救知识和应采取的

措施,会使用检测仪和空气呼吸器等防护用品。 ⑦其他岗位进入煤气区域,必须进行出入登记。 (2)热风炉日常操作安全要求: ①岗位人员至少2小时检查一次热风炉,发现炉皮发红、开焊或有裂纹时要立即停用并报告及时处理。岗位人员现场巡检时严禁长时间在点火孔区域、拱顶区域长时间逗留,各层平台上下走梯手抓稳,脚踏牢避免滑到摔碰伤。 ②煤气系统蒸汽管道如冻结,不准用明火烘烤,煤气系统所属设备,发现有堵塞、溢水、断水时要及时汇报处理;煤气系统严禁泄露煤气。蒸汽、氮气吹扫管道作业完毕后,确认阀门关闭后,必须与煤气管道断开。 ③热风炉润滑登高作业按规定佩戴好安全带,润滑设施需挂“严禁操作、有人作业”牌,现场人员和室内人员做好上下确认,阀门开动时人员必须撤离方可操作。 ④高炉突然停风时,有大量煤气回压到热风炉及冷风管道内,应立即关闭混风阀、热风阀,打开热风炉烟道阀,抽出积存煤气后,

高炉热风炉安全操作规程

高炉热风炉安全操作规程 1、上班时必须规范穿戴好劳保用品,按章作业。 2、进入煤气区域必须二人同行,并带好煤气检测仪。设备检修时必须通知煤防人员到现场监护。如需动火时,应办好动火证方可进行。 3、进入布袋箱体内工作时,必须待箱体内温度降到60℃以下,并用仪器测得箱体确无煤气、氮气方可入内;同时箱体内设专人监护。关闭箱体入孔前必须清点人员和工具。 4、热风炉煤1#、2#插板阀之间,送风与烧炉前必须严格按要求进行氮气吹扫,没有吹扫不得进行送风;送风与烧炉前确认氮气压力不低于0.3MPa,如遇停氮气或氮气压力低于0.3MPa,禁止换炉操作,氮气压力正常后,方可进行换炉操作。 5、热风炉烧炉时,煤气压力波动较大,应及时调节煤气与空气流量,煤气压力低于3Kpa,应立即停止烧炉并与上级联系。 6、煤气1#、2#插板放散伐因故障打不开的情况下,临时手动打开进行煤气放散,严禁在不进行煤气放散的情况下由烧炉转送风。 7、助燃风机故障突然停风,按停烧程序操作,但关闭助空阀与烟道阀前要利用烟窗抽气10分钟以上,打开风机放散阀,重新启动风机前必须放散10分钟时间以上,在确保安全的前提下方可启动风机。 8、煤气系统应保持密封性,发现有煤气泄漏应临时采取防范措施,并通知相关上级部门。 9、高炉休风前必须关闭混风阀,严禁同时用热风炉与倒流阀倒流

休风,高炉复风严禁用休风时倒流过的炉子送风。 10、高炉煤气的安全着火为800℃,过低应用引火棒或木柴点燃,并站在侧面上风方向。 11、在热风炉布袋高空作业时,应注意风向,不允许单人作业;严禁空投工具、材料及其他杂物。 12、阀门断水时,应间断缓慢给水冷却,并站在侧面方向,以免烫伤人员及损坏设备。 13、修理工在所管辖设备维修时,操作工与修理工应实施挂牌维修与安全确认制度,两方配合好,确保安全。送风炉不得进行检修,如需处理必须停炉进行。 14、进行煤气含粉检测时,必须二人同行,并注意风向,不允许站在防爆孔正面方向。 15、煤气区域内非操作人员不允许在此停留,严禁在煤气区域内休息。 16、认真落实公司、铁厂及车间各项班组安全生产及安全教育制度;认真落实新工人与转岗人员的班组安全教育。 1280高炉 2008年3月29日

高炉常见问题

高炉本体常见问题剖析及解决方法 王道久马钢合肥公司炼铁厂 摘要:对我3#高炉主体各部位耐火材料选材及其使用过程中损毁现象进行了分析,列出了高炉压入材料的性能指标和应用范围,并就高炉本体常见问题提出了3种解决方案,在实际应用中取得了较好的效果。 关键词:3#高炉本体;耐火材料;解决方案 现代高炉内衬是由各种耐火材料砌体砌筑成为一个密闭的整体,经过一段时间生产运行后,在高风温和强化冶炼情形下,耐火材料内衬在热状态环境中,难免受热应力、气流冲刷等因素的影响,而使内衬受热变形、开裂和收缩,出现贯通裂纹,炉渣和煤气随缝隙逐渐向炉壳处渗透和冲刷,由此使高炉填料层和喷涂层逐渐被破坏,使得高炉炉壳温度过高,炉壳发红,热量损失过大。高炉在生产过程中出现煤气向炉壳外泄漏,恶化了生产环境,威胁生产人员的安全,甚至发生因炉壳内压过大造成炉壳撕裂的事故。目前2#高炉炉壳渣口左上方炉壳开裂严重,煤气泄漏严重,严重威胁着生产人员的安全, 针对上述问题,目前冶金行业提出了高炉灌浆维修的设想,即利用高炉生产过程的短时休风机会,针对高炉的外部结构,对生产过程中产生煤气泄露、炉壳过热和发红部位进行系统的压力灌浆处理,通过压人材料填充被损的部位和封闭缝隙通道,使耐火材料内衬重新成为一个密闭的整体,阻塞热气流对炉壳的直接传导和向炉外泄漏,保证高炉正常工作。经过几年实践,这一举措得到了广大炼铁同行的首肯,为高炉的稳产、高产、降低热能耗以及保证高炉的正常生产提供了保证。 1 高炉主体 1.1耐热基墩 高炉耐热基墩主要承载整个高炉耐火材料内衬的重量,其区域由高炉混凝土基座至水冷管下表面,其内部结构形式为耐热混凝土,外部结构形式为高炉炉壳+相应厚的碳质填料层+耐火黏土砖+耐热混凝土。生产过程中承受的温度(50~60℃)影响不大,主要维修原因为浇注、砌筑材料的收缩形成气流通道引起的煤气泄漏。 1.2炉底和炉缸 高炉炉底水冷管至陶瓷杯底部属炉底区域,炉底和炉缸是高炉的重要部位,炉龄的长短主要取决于这两个部位的使用寿命。因此,近代高炉在此部位均采用炭砖+陶瓷杯的混合结构,炉底下部全部使用炭砖,上部靠周边冷却壁砌筑环形炭砖,炉缸部位也采用炭砖砌筑,在炉底中央和炭砖内侧砌筑陶瓷质材料的陶瓷杯。大、中型高炉常用炭砖炉底,内部炭砖用碳质泥浆砌筑,外部结构形式为炉壳、冷却壁和碳质捣打料层与炭砖相连,炉壳与冷却壁之间由填料层(也有用压浆料层)填充。高炉炉缸区域从炉底炭砖表面至风口组合砖下缘,主要工作特征是盛装高炉生产时不断产生的铁水和铁渣,是高炉的关键部位和高温区域,炉龄的长短主要取决于此部位的使用寿命。其结构形式为:内部由刚玉等陶瓷组合砖砌筑成杯体,杯体外由炭砖、渣口组合砖、铁口组合砖和风口组合砖环砌筑而成的炉缸,外部由炉壳、冷却壁和炭砖组成,炉壳与冷却壁之间用填料层(也有用压入料或自流浇注料)填充,炭砖与冷却壁和陶瓷杯之间的间隙用碳质捣打料填充。该区域内部组合砖在高炉生产过程中受温度、渣、铁水冲刷和化学侵蚀等影响,外部则出现各类材料的收缩,造成煤气泄露,也有冷却壁循环水泄露使循环水被封闭,造成冷却壁循环水水温过高,导致炉壳表面温度过高 以及局部炉壳过热发红和变形现象,经常被迫采用外喷水冷却补救。 小型高炉炉底内部采用高铝砖或高铝砖与黏土砖混合炉底,外部结构形式与大、中型高炉相似。采用该结构形式目的是利用炭砖热传导性能好的特点,加强炉底冷却散热,将铁水

高炉热风炉设计说明书

} 目录 第一章热风炉热工计算 (2) 热风炉燃烧计算 (2) 热风炉热平衡计算 (4) 热风炉设计参数确定 (5) 第二章热风炉结构设计 (6) 设计原则 (6) 工程设计内容及技术特点 (6) ; 设计内容 (6) 技术特点 (6) 结构性能参数确定 (7) 蓄热室格子砖选择 (7) 热风炉管道系统及烟囱 (8) 顶燃式热风炉煤气主管包括: (8) 顶燃式热风炉空气主管包括: (9) 顶燃式热风炉烟气主管包括: (9) 《 顶燃式热风炉冷风主管道包括: (9) 顶燃式热风炉热风主管道包括: (10) 热风炉附属设备和设施 (10)

热风炉基础设计 (11) 热风炉炉壳 (11) 热风炉区框架及平台(包括吊车梁) (11) 第三章热风炉用耐火材料的选择 (12) 耐火材料的定义与性能 (12) < 热风炉耐火材料的选择 (12) 参考文献 (14) 第一章热风炉热工计算 热风炉燃烧计算 燃烧计算采用发生炉煤气做热风炉燃料,并为完全燃烧。已知煤气化验成分见表。 表煤气成分表 热风炉前煤气预热后温度为300℃,空气预热温度为300℃,干法除尘。发生炉利用系数为m3d,风量为3800m3/min,t热风=1100℃,t冷风=120℃,η热=90%。 热风炉工作制度为两烧一送制,一个工作周期T=,送风期Tf=,燃烧期Tr=,换炉时间ΔT=,出炉烟气温度tg2=350℃,环境温度te=25℃。 煤气低发热量计算 查表煤气中可燃成分的热效应已知。0.01m3气体燃料中可燃成分热效应如下:《 CO: , H2:, CH4:, C2H4:。则煤气低发热量: QDW=×+×+×+×= KJ 空气需要量和燃烧生成物量计算 (1)空气利用系数b空=La/Lo计算中取烧发生炉煤气b空=。燃烧计算见表。 (2)燃烧1m3发生炉煤气的理论Lo为Lo=21=1.23 m3。

(完整word版)高炉热风炉工艺技术操作规程

高炉热风炉工艺技术操作规程 1. 岗位职责 1.1 在值班工长的指挥下,做好本班人员的生产、安全、设备等各项工作。 1.2 服从班长的调配和分工,做好日常的烧炉、换炉、休风、复风、停气、引气等工作。 1.3 负责调整燃烧,以按时达到规定的温度,满足生产需要。 1.4 做好设备维护加油和点检工作,及检修后的试车调试等,发现设备异常,应及时汇报值班室和联系处理。 1.5 参加班务会议和业务学习,坚持安全活动,努力提高技术操作水平。 2. 2#高炉球式热风炉操作规程 2.1 燃烧制度 炉顶温度<1300℃,废气温度<350℃(综合废气) 净煤气支管压力5-12KPa 换炉前后拱顶温度<120℃(特殊情况例外) 水压≥0.3MPa 2.2 采取快速燃烧法烧炉 2.3 拱顶温度达到规定值时,进行保温燃烧。 2.4 拱顶温度达到规定值时,首先进行燃烧调节,必要时提前换炉或停烧。 2.5 换炉时只能缓慢开冷风阀,以保证高炉风压波动不超过±5%。 2.6 拱顶温度不得低于1000℃。 2.7 发现煤气含尘量超标时,应立即通知工长和布袋除尘操作工,查找原因,同时停烧。 2.8 当废气温度达到350℃时,为保护预热器,必须提前换炉或停烧。 3. 换炉操作 3.1 燃烧→焖炉→送风 3.1.1 发出换炉指令。 3.1.2 关二个煤气切断阀及二个煤气调节阀。 3.1.3 关二个燃烧阀,开二个放散阀。 3.1.4 关二个空气切断阀及二个空气调节阀。 3.1.5 关烟道阀(热风炉处于焖炉状态)。 3.1.6 开均压阀。 3.1.7 发出均压完毕信号,开热风阀。 3.1.8 开冷风阀,关均压阀换炉完毕。 3.1.9 开二个助燃空气调节阀。 3.1.10 开二个煤气调节阀。 3.1.11 在一烧一送情况下焖炉,应注意防止蹩风造成助燃风机损坏。 3.2 送风→焖炉→燃烧 3.2.1 发出换炉指令。 3.2.2 关冷风阀。 3.2.3 关热风阀(热风炉处于焖炉状态)。 3.2.4 开废气阀排压。

高炉用耐火材料

高炉用耐火材料的发展与应用 摘要:高炉设计中要根据容积大小和不同部位的使用性能要求,合理地选用耐火材料。在研究高炉长寿技术中,高炉内衬用耐火材料是高炉寿命的决定因素。本文以高炉的耐火材料的使用为出发点,介绍高炉用耐火材料应用与发展。 关键词:高炉耐火材料合理选用发展与应用 Abstract:In the design of blast furnace,it is necessary to choose refractory reasonably according to the blast furnace volume as well as special requirements of service properties in different blast furnace regions.In the study of technology of long life of blast furnace, blast furnace refractory for the lining of blast furnace life is the determinant. The blast furnace lining damage mechanism as the starting point, introduces the application and development of refractory for blast furnace. Key words:blast furnace;refractory;reasonable choice 耐火材料的使用性能是影响高炉寿命很重要的一个因素。20世纪80年代以前,国内高炉炉衬一般采用高铝砖、粘土砖和普通炭砖砌筑,寿命很短。当时对高炉耐火材料使用性能的研究很少,因为产品标准中只有几项常规指标,如炭砖的灰分、抗压强度、气孔率、体积密度,高铝砖的抗压强度、气孔率、体积密度、耐火度、荷重软化点、AlO3含量、Fe2O3含量等。这些常规指标不能反映生产过程中高炉炉衬的实际工作状态,因而这些指标的高低与高炉寿命的关系并不密切。随着钢铁生产的高速发展,我国高炉炉衬用耐火材料取得了很大的进步,在生产技术、产品品种、质量水平方面,正逐步追赶世界先进水平,取代某些进口产品。延长高炉寿命是我国冶金工业的重要技术政策,炼铁和耐火材料工作者为此做出了很大的努力,并取得了显著的成效。 高炉用的耐火材料主要包括炭砖和硅铝质耐火材料等。高炉炭砖有半石墨炭砖、微孔炭砖、超微孔炭砖、石墨砖和模压小炭砖等。 国外、国内各牌号炭砖目前国内高炉陶瓷杯用砖有复合棕刚玉砖、刚玉莫来石砖、塑性相结合棕刚玉砖、微孔刚玉砖、法国陶瓷杯砖(浇注块)等5种,复合棕刚玉砖的抗碱性较差,一般大型高炉已不采用。陶瓷杯炉缸结构是法国首先开发的,是一种不经高温烧成的浇注块,其主要优点抗碱性优良,抗炉渣侵蚀性较好,抗铁水熔蚀性很好,是微气孔砖,适用于炉

高炉热风炉介绍.

一、高炉热风炉结构与性能简介 热风炉顾名思义就是为工艺需要提供热气流的集燃烧与传热过程于一体的热工设备,一般有两个大的类型,即间歇式工作的蓄热式热风炉和连续换热式热风炉。在高温陶瓷换热装置尚不成熟的当今,间歇式工作的蓄热式热风炉仍然是热风炉的主流产品。蓄热式热风炉为了持续提供热风最起码必须有两座热风炉交替进行工作。热风炉被广泛应用在工业生产的诸多领域,因工艺要求不同、燃料种类不同、热风介质不同而派生出不同用途与不同结构的热风炉。这里要介绍的是为高炉冶炼提供高温热风的热风炉,且都是蓄热室热风炉,因其间歇式的工作方式,必须多台配合以实现向高炉连续提供高风温。 1.1高炉热风炉的分类 高炉热风炉从结构可以分为外燃结构的热风炉和内燃结构的热风炉两个大类,前者是燃烧室设置在蓄热室的外面,而后者是燃烧室与蓄热室在一个结构里面。在内燃结构的热风炉中因燃烧室与蓄热室之间的相对位置不同而分成顶燃式(燃烧室放置在蓄热室上部)热风炉和侧燃式(火井燃烧室与蓄热室并行放置)热风炉,通常我们也将侧燃式热风炉称为一般意义上的内燃式热风炉,因而在目前使用的热风炉中主要是外燃式热风炉、内燃式热风炉和顶燃式热风炉。在这三种典型的热风炉中,外燃式热风炉结构最复杂而材料用量大,故实现结构稳定和提高风温的技术要求也就较高;而内燃式热风炉的火井墙结构稳定性差、且存在燃烧震荡、热风温度不易提高等问题;至于顶燃式热风炉,因其结构简单而材料用量少,也便于高风温实现。因此,随着热风炉技术的发展,顶燃式热风炉正在逐步取代内燃式热风炉和外燃式热风炉而成为热风炉的主流产品。在顶燃式热风炉中,随着卡鲁金旋流分层混合燃烧技术的应用,与该技术相适应的带旋流混合预燃室的顶燃式热风炉得到了人们的普遍认同,逐步成为顶燃式热风炉中的主流产品。 A 、外燃式热风炉 B 、内燃式热风炉 C 、1型顶燃式热风炉 D 、1型顶燃式热风 炉 E 、3型顶燃式热风炉 F 、3型顶燃式热风炉

耐火材料在钢铁工业的的用途

我国在高炉使用寿命方面,巩义五耐以刚玉为主原料。采用微气孔结构的特殊工艺研制的高炉陶瓷杯用微孔刚玉砖,解决了抗碱浸蚀性、抗炉渣浸蚀性和微气孔三个技术关键,其综合使用性能达到或超过了国外陶瓷杯壁用棕刚玉浇注块的性能指标。他们研制的莫来石、硅线石、低蠕变砖三大类9个牌号的高炉热风炉系列高性能耐火材料产品。在武钢5号(3200 m3)高炉使用,寿命达16年。中钢集团洛阳耐火材料研究院自主研发的赛隆结合刚玉产品,成功应用于宝钢。 COREX——C3000装置,打破了国外公司产品在COREX熔融炉用耐火材料的垄断地位,扭转了我国炼钢关键部位用耐火材料依靠进口的被动局面。中钢集团耐火材料公司研制的高炉风口区快干高强刚玉——氮化硅——碳化硅复合浇注料,在炼铁高炉使用效果良好,通过了省级科技鉴定。北京科技大学研发的金属复合氧化物非氧化物耐火材料,是具有自主知识产权的新型耐火材料,Si—SiC—棕刚玉高炉陶瓷杯材料已在国内多个大钢的100多座高炉使用。同时研制的Si3N4高炉铁沟料和Si3N4复合高炉喷补料也先后问世,对炼铁高炉的维护和使用寿命的延长起到了积极作用。首钢二耐与北科大共同研发的“新型高性能大型高炉用无水泡泥”在使用性能上克服了传统产品的缺陷,在满足大型高炉冶炼及延长使用寿命方面取得了突破性提高。经首钢炼铁厂等大型高炉使用,其拔泡时间,平均出铁次数,吨铁泥耗和钻杆用量等指标均大幅下降。 在炼钢方面,转炉炉龄是耐火材料质量、冶炼条件及筑炉维护的综合反映,耐火材料质量是炉龄的基础。改革开放前,我国炼钢转炉炉龄一直很低,上世纪70年代末,原鞍钢大石桥镁矿研发的烧成油浸镁白云石砖,才使鞍钢150t大型转炉炉龄提高到1000次以上。随着宝钢引进项目所需耐火材料的逐步国产化,我国自己引进、移植、研发的镁碳砖问世(原辽镁公司、上海二耐及丹东四兴的镁碳砖产品首先在宝钢使用),使转炉炉龄大幅提高,也使我国炼钢转炉用耐火材料跃上了一个新台阶。到2003年转炉平均炉龄4674炉,溅渣护炉技术的推广,使转炉炉龄的世界记录不断刷新,全国已有20家重点企业转炉的炉龄突破一万炉大关。武钢耐火公司研制生产的镁碳砖,1999年8月在武钢二炼钢厂2号转炉创下了15208炉的顶底复吹炉龄记录,2002年12月以29942炉刷新了世界记录,2003年3月,在武钢二炼钢1号转炉又创下了30368炉的最新世界记录,实现了在溅渣护炉条件下,耐火材料使用寿命与转炉炉龄同步的突破。营口青花集团自主研制的CaO含量15%—50%镁钙砖系列产品,2007年生产12.69万吨,在太钢、宝钢、酒钢等一百多家钢厂的AOD炉上使用,产量仅次于LWB,居世界第二位,被列为国家星火计划项目。该公司等单位研制生产的RH炉用电熔再结合镁铬砖在武钢等大型钢铁企业使用,替代进口,取得了良好的使用效果。 在高效连铸方面,濮阳濮耐高温材料有限公司研制的“中包透气上水口”,生产成本低,生产效率高,被国家认定为享有知识产权的产品,他们采用板状刚玉,氧化锆,碳化硅等为原料研制的不烧优质滑板,具有扩孔小,抗氧化性能好,耐热震性好的特点。山东省耐火原材料公司,先后研制开发了“洁净钢用无碳无硅水口”、“高效连铸用长寿命整体复合塞棒”、“长寿命铝锆碳浸入式水口”和“长寿命不烘烤薄壁长水口”等新产品,进入市场后很快得到了用户的肯定,也顺利通过了省级科技鉴定。洛阳耐火材料研

高炉热风炉安全操作规程标准范本

操作规程编号:LX-FS-A15444 高炉热风炉安全操作规程标准范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

高炉热风炉安全操作规程标准范本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1、上班时必须规范穿戴好劳保用品,按章作业。 2、进入煤气区域必须二人同行,并带好煤气检测仪。设备检修时必须通知煤防人员到现场监护。如需动火时,应办好动火证方可进行。 3、进入布袋箱体内工作时,必须待箱体内温度降到60℃以下,并用仪器测得箱体确无煤气、氮气方可入内;同时箱体内设专人监护。关闭箱体入孔前必须清点人员和工具。 4、热风炉煤1#、2#插板阀之间,送风与烧炉前必须严格按要求进行氮气吹扫,没有吹扫不得进行

(完整word版)高炉热风炉自动控制系统

高炉热风炉自动控制系统 1.l 概述 1.1.1 研究背景 高炉热风炉是给高炉燃烧提供热风以助燃的设备,是一种储热型热交换器。国内大部分高炉均采用每座高炉带3至4台热风炉并联轮流送风方式,保证任何瞬时都有一座热风炉给高炉送风,而每座热风炉都按:燃烧-休止-送风-休止-燃烧的顺序循环生产。当一座或多座热风炉送风时,另外的热风炉处于燃烧或休止状态。送风中的热风炉温度降低后,处于休止状态的热风炉投入送风,原送风热风炉即停止送风并开始燃烧、蓄热直至温度达到要求后,转入休止状态等待下一次送风。 热风炉是一个非线性的、大滞后系统,影响热风炉的因素有很多,并且各种因素相互牵制,因此导致它的控制过程非常复杂,很难用精确的数学模型描述。用传统的方法建模,使整个控制系统置于模型框架下,缺乏灵活性及应变性,很难胜任对复杂系统的控制。 1.1.2 国内热风炉控制系统现状及存在的问题 目前许多钢厂热风炉控制系统采用由可编程控制器(PLC)与过程控制器(或集散系统)分别完成电气与仪表控制的方法进行控制。例如改造前的广钢3#高炉热风炉采用HONEYWELL S9000过程控制器完成仪表控制,采用西门子S5115U可编程控制器完成换炉控制;莱钢1#750M3高炉热风炉控制系统采用美国MODICON公司的E984-685 PLC完成顺序控制和回路控制;鞍钢10号高炉热风炉采用英国欧陆公司生产的网络6000过程自动化(DCS)控制系统完成热风炉燃烧控制,通过接口与MODICON(PLC)通讯,由PLC完成热风炉自动换炉、送风控制;宝钢1#高炉热风炉电控系统采用日本安川CP-3500H PLC,仪表控制系统采用日本横河CENTUM-CS集散控制系统,上位机采用HP-9000,电气的PLC和仪表的现场控制站间以V-NET 网连接,上位机间通过以太网连接,V-NET网和以太网间通过ACG(通信接口)连接。 这类热风炉存在的问题主要有两方面: (1)基础自动化控制系统设计不合理 大都采取用可编程序控制器和过程控制器(或集散系统)分别完成的方法进行控制。这种方法的缺点是为了将各部分连接成一个统一的系统,必须投入相当大的工程费用、时间和专门知识将不同类型的软件和用户接口予以配置、编程、调试和测试。这使得整个控制系统变得复杂、维护困难。 (2)热风炉燃烧控制问题 传统的高炉热风炉燃烧自动化系统采用数学模型计算所需的加热煤气流量和助燃空气流量,并计算出空燃比。热风炉流量设定数学模型的基本原理是使燃烧时热风炉格子砖的蓄热量能够满足热风温度和流量的要求,以获得最佳经济效益。由于热风炉的燃烧过程是一个连续的动态变化过程,控制的主要困难是不能及时得到控制作用的反馈信息,等到控制效果能通过输出测量体现时,此时的控制作用强度往往已过头了。因此,欲实现燃烧过程的实时控制,所需的数学模型相当复杂。此外,对于燃烧高炉煤气和焦炉煤气的具有三眼燃烧器的热风炉来说,由于高炉煤气和焦炉煤气分别送入,因此需分别进行高炉煤气和焦炉煤气流量控制,且需进行高炉煤气和焦炉煤气流量比例控制,这使得系统回路更多、更复杂,同时还需设置煤气成分分析仪,这种仪器不仅昂贵,而且还需要良好的维护。一座高炉通常都带有4个(或3

热风炉施工组织设计

酒钢1#高炉热风炉技术改造 耐火材料内衬砌筑工程施工组织设计 1、编制说明 由于1号高炉热风炉系统原来由包钢设计院设计,现在由武汉钢铁设计院设计,这部分有关技术资料、图纸不齐全。所以,在编写过程中,我们主要结合武钢高炉大修改造工程的施工方式,加以综合,并根据以往高炉施工的成熟经 验编制而成。 在编制过程中,受技术资料不全的限制,难免有一些缺陷,我们将在图纸、技术资料到齐后,再予以修改、补充。 编制依据: ⑴酒钢1#热风炉改造施工承包合同技术附件及初步设计; ⑵国家现行有关规范GBJ211—87《工业炉砌筑工程施工及验收规范》; ⑶GB50309—92《工业炉砌筑工程质量检验评定标准》; ⑷GB/T19002—ISO9002 质量体系标准; ⑸原冶金部(94)冶建字079号文; ⑹建设部第29号令《建筑工程质量管理办法》。 ⑺其它有关资料:武钢几个高炉砌筑施工组织设计、作业设计、1994年新版《工业炉手册》等有关文献。 2、工程概况 酒钢1号高炉(1800m3)热风炉系统技术改造工程由武汉设计院总承包,其改造内容为:将原有热风炉4座全部折除,利用1#、2#、3#热风炉基础新建3座热风炉,原4#热风炉处新建1座双预热设施。热风主管改造后内径加大、标高上抬约6m。烟气支管也由地下改为地上。新建

1座70m钢筋砼结构烟囱。 2.1 炉型参数 炉型:高温长寿内燃式热风炉 热风炉筒身直径:9.34 m 拱顶园柱段直径:10.74 m 蓄热室面积: > 36.8 m2燃烧室面积: > 10.5 m2每座热风炉加热面积: > 51000 m2 2.2结构特点 2.2.1热风炉结构形式 ⑴采用自立式悬链线拱顶: 拱顶与热风炉墙体分开,其重量由设在炉壳内壁的金属托架分层支承。在拱顶内衬与墙体之间设置滑动缝,避免墙体与拱顶内衬相对位移产生阻力起破坏作用。高温内燃式拱顶耐火砖采用板块结构可以吸收拱顶砌体的热膨胀,消除温差应力破坏。 ⑵“眼睛”形燃烧室: 燃烧室独立于热风炉内,与大墙完全脱开。采用滑动结构,内设滑动缝,将燃烧室周围的砌体分成几个区段,各区段砌体自由膨胀。 ⑶自立式燃烧室隔墙结构: 隔墙是组合式的自立式结构,为加强密封,隔墙内设置密封耐热钢板,具有绝热、密封、滑动功能。 2.2.2热风炉内衬砌筑结构 热风炉内衬采用膨胀结构和滑动结构。耐火砖的相互锁紧结构加强内衬整体稳定性。孔洞处采用组合砖砌筑。蓄

高炉热风炉岗位安全操作规程(最新版)

The prerequisite for vigorously developing our productivity is that we must be responsible for the safety of our company and our own lives. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 高炉热风炉岗位安全操作规程 (最新版)

高炉热风炉岗位安全操作规程(最新版)导语:建立和健全我们的现代企业制度,是指引我们生产劳动的方向。而大力发展我们生产力的前提,是我们必须对我们企业和我们自己的生命安全负责。可用于实体印刷或电子存档(使用前请详细阅读条款)。 (1)上岗前工作要求: ①上岗前人员要按规定穿戴好工作服、安全帽、劳保皮鞋、皮手套;帽带、袖口必须系好。 ②检查便携式煤气报警仪,固定式煤气报警器,现场煤气探头使用正常,进入热风炉煤气区域必须2人以上,佩戴好防护器材,上风口进入。 ③煤气区域与液压站应有明显的警示标志,标识保持好清洁。严禁烟火,严禁堆放易燃易爆物品。 ④煤气设施严禁有泄露煤气现象,各种承压管道、介质管道防跑冒滴漏。 ⑤热风炉平台及走道应经常清扫,不准堆放任何物品占用通道。 ⑥岗位所有人员须知煤气常识及煤气中毒急救知识和应采取的措施,会使用检测仪和空气呼吸器等防护用品。 ⑦其他岗位进入煤气区域,必须进行出入登记。

(2)热风炉日常操作安全要求: ①岗位人员至少2小时检查一次热风炉,发现炉皮发红、开焊或有裂纹时要立即停用并报告及时处理。岗位人员现场巡检时严禁长时间在点火孔区域、拱顶区域长时间逗留,各层平台上下走梯手抓稳,脚踏牢避免滑到摔碰伤。 ②煤气系统蒸汽管道如冻结,不准用明火烘烤,煤气系统所属设备,发现有堵塞、溢水、断水时要及时汇报处理;煤气系统严禁泄露煤气。蒸汽、氮气吹扫管道作业完毕后,确认阀门关闭后,必须与煤气管道断开。 ③热风炉润滑登高作业按规定佩戴好安全带,润滑设施需挂“严禁操作、有人作业”牌,现场人员和室内人员做好上下确认,阀门开动时人员必须撤离方可操作。 ④高炉突然停风时,有大量煤气回压到热风炉及冷风管道内,应立即关闭混风阀、热风阀,打开热风炉烟道阀,抽出积存煤气后,方可关闭冷风阀,防止管道爆炸。 ⑤当热风炉出现机械或电气故障时,应联系检修人员处理,如需自己处理时,应注意触电和机械绞伤。 ⑥煤气区域动火作业前必须按规定办理动火证,确认CO检测合格

高炉热风炉凉炉方案

炼铁厂技术科(2012-117号) 高炉热风炉凉炉技术方案 由于6#高炉3座热风炉使用寿命到了更换周期,格子砖上部积灰、渣化现象较为严重,目前送风温度1100℃,下滑至880℃,已经满足不了生产工艺要求,根据厂部安排,现对6#高炉1#热风炉进行停炉检修,为了确保1#热风炉凉炉工作的顺利进行,特制定此方案: 一、凉炉前的准备工作: ①对热风炉系统及助燃风机进行全面检查、维护,确保凉炉过程中风机正常运行。(责任人:) ②由检修车间负责制作好冷风阀、热风阀、煤气切断阀、烟道阀、废气阀盲板。(责任人:) 二、1#热风炉凉炉操作:(责任人:) 1、并风凉炉阶段 ①在停用前最后一次送风,尽量延长送风时间,一直到不能供给高炉指定的风温为止。 ②与其他热风炉并风当作混风使用,冷风阀当作混风调节阀。 2、强制凉炉阶段 ①当1#热风炉拱顶温度不断下降,无法再与其他热风炉并风使用时,

即可将此座热风炉退出进行强制凉炉。 ②依次关冷风阀、关热风阀、开烟道阀(先开废气阀将废气放净)、开空气阀,通助燃空气进行强制凉炉。 ③强制凉炉阶段,要将烟道阀和助燃空气阀固定好,防止误操作。 3、自然凉炉阶段 ①当拱顶温度不在下降时,关助燃空气阀停止强制凉炉,进入自然凉炉阶段。 ②关烟道阀、废气阀、助燃空气阀,使1#热风炉处于焖炉状态。 ③打开热风炉下部烟道处人孔,打开热风炉拱顶上部的人孔和下部点火孔进行自然凉炉。 三、安全注意事项及其它要求 1、热风炉凉炉期间,禁止对热风炉炉体进行检修工作。 2、进入强制凉炉阶段前6#高炉和安全科要对烟道防爆孔检查确认。强制凉炉阶段,6#高炉要控制好2#、3#热风炉的烧炉工作,使用比较合理的空气过剩系数,防止烧炉废气中CO过剩。 3、自然凉炉前开热风炉上部的人孔时,要做好可靠的安全防护措施,防止跌落物伤人。 4、1#热风炉凉炉期间,各阀门处要有明确的标识,防止误操作引起

高炉用耐火材料的发展历史与现状

高炉用耐火材料的发展历史与现状 摘要:介绍了我国高炉用耐火材料的历史进程,以及高炉大型化的建设状况,重点介绍了高炉各部位用耐 火材料情况,我国大型高炉耐火材料应用发展情况,高炉耐火材料的合理选用。 关键词:高炉衬火材料历史与现状 1 前言 实现高炉长寿化、大型化是炼铁工业的重要目标。随着我国钢铁冶金行业节能降耗和节能减排工作的不断深化和强力推进, 开发适应高炉长寿用耐火材料是亟待解决的问题。高炉长寿是系统工程, 高炉本体用耐火材料在其中发挥着重要作用, 如何提高和改进其使用性能, 是科技工作者广为关注的问题。 2 高炉用耐火材料的发展历史 高炉本体用耐火材料经历了从氧化物到氧化物-非氧化物复合的历程: 氧化物是从高铝矾土到刚玉-莫来石和刚玉等系列产品演变的过程; 非氧化物复合材料是从Al2O3 - C、Al2O3 - SiC、Al2O3 - SiC- Si(刚玉塑性相复合材料)等复合材料到Si3N4 - Al2O3 - Si3N4、Al2O3 -Si3N4-SiC-Si等演变的过程。其中, SiAlON-Al2O3已由棕刚玉为基体演变为以板状刚玉为基体的新型SiAlON-Al2O3制品。近几年, 我国拥有自主知识产权的廉价且可大规模生产的 Si3N4 和氮化硅铁原料的出现, 加速了Al2O3-Si3N4、Al2O3-Si3N4- SiC-Si等新一代产品的发展。这类产品的显著特点是不需要繁杂的氮化烧成设备, 同时克服了氮化烧成产品不易生产大型或超大型产品的困难, 目前已成功试用于国3000m3以上的大型高炉上。而且采用 Si3N4原料生产的刚玉-莫来石系高炉喷补料, 以及用Si3N4或氮化硅铁原料生产的高炉炮泥, 均在大型高炉上取得了很好的使用效果。 3 国内外高炉大型化建设状况 截止到2010 年,全国重点钢铁企业共有1 000m3以上高炉206 座,其中4 000 m3以上高炉14 座,3 000~3 999 m3以上高炉19 座,2 000~2 999 m3高炉57 座,1 000~1 999 m3高炉116 座。宝钢4966m3高炉、曹妃甸5 500 m3、沙钢5 800 m3高炉的投产,标志着我国在世界特大型高炉领域占据了一席之地。目前世界上正常运行的5 500 m3以上高炉共14座。 4 高炉用耐火材料质量水平及要求 4.1 炉腹、炉身和炉腰用砖 炉腹、炉腰和炉身中下部,炉衬的工作条件相近,主要侵蚀原因是炉渣侵蚀、碱金属侵蚀、炉料和渣铁的冲刷、磨损等。这些部位的炉衬发展趋势是,主要靠强化冷却形成渣壁保持正常生产,砖衬仅留有很薄的镶砖,耐火材料的用量很小。比较典型的设计如武钢1号高炉的铜冷却壁薄炉衬结构。这一区域选用耐火砖的原则是,抗炉渣侵蚀性能好,抗碱性较好,导热系数较高,强度要高。在成渣带以下可选用Si3N4结合SiC砖、赛隆结合刚玉砖或赛隆结合SiC砖。炉身中部无渣区可选用烧成微孔铝炭砖。炉身上部可用磷酸浸渍粘土砖。这几种砖的强度很高,抗碱侵蚀性和抗炉渣侵蚀性很好,导热系数也高,适用于砌筑炉身到炉腹区域。上述几种耐火材料国内都已能生产,一般不需要用进口产品。 4.2 炉底、炉缸用耐火材料 国内外高炉调查研究表明,绝大多数高炉是因为炉底、炉缸侵蚀严重而被迫停炉,因此,高炉设计非常重视炉底、炉缸设计的合理性,基本措施包括三个方面:一是增加死铁层深度,

相关文档