文档库 最新最全的文档下载
当前位置:文档库 › 常用的半抗原与蛋白偶联方法简介修订稿

常用的半抗原与蛋白偶联方法简介修订稿

常用的半抗原与蛋白偶联方法简介修订稿
常用的半抗原与蛋白偶联方法简介修订稿

常用的半抗原与蛋白偶

联方法简介

WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

常用的半抗原与蛋白偶联方法简介

(一)分子中含有羧基或可羧化的半抗原的偶联)

1、混合酸酐法,也称氯甲酸异丁酯法(isobutyl chloroformate method)

偶联时,半抗原分子中的羧基可与氯甲酸异丁酯在有机溶剂中形成混合酸酐(mixed acid anhydride),然后与蛋白分子中的氨基形成肽键。

氨甲喋呤(MIT)与β-半乳糖苷酶偶联的混合酐法

1、5.8mg MIT用二甲基甲酰胺溶解,冷却至10度,加2ul氯甲酸异丁酯,10度搅拌反应30分钟。

2、酶用2ml 50 m mol/L Na2CO3溶解。

3、10度反应4小时(必要时加NaOH,以维持溶液的pH为,q然后4度过夜。

4、过sephadex G-25层析柱,柱用含NaCl 100m mol/L、MgCl2 10 m mol/L、2-巯基乙醇10 m mol/L的50m mol/L Tris-醋酸缓冲液平衡和洗脱,合并含酶的洗脱管内液体,进一步纯化后,保存于含BSA %(w/v)、NaN3 %(w/v)的缓冲液中。

碳化二亚胺法制备3,3`,5-三碘甲腺氨酸-血蓝蛋白免疫原的操作步骤

1、取EDC 100mg , 用的10 m mol/L PBS液使之充分溶解(I液)

2、取3,3`,5-三碘甲腺原氨酸 25mg , 用L NaOH 溶液2ml 溶解(II液)

3、取血蓝蛋白(lemocyanin) 25mg, 溶于10mmol/L PBS ()液中(III液)

4、将II液与III液混合,在磁力搅拌下逐滴加入I液(余下)

5、室温下避光搅拌1小时,逐滴加入余下的I液

6、4度搅拌12小时

7、静置10小时(4度)

8、有蒸馏水使之充分透析(约48小时),得免疫原。

孕酮与与β-半乳糖苷酶偶联的N-羟琥珀酰亚胺酯法

1、用二垩烷(dioxane)溶解孕酮-11-半琥珀酸酯,配成浓度为100m mol/L的溶液。

2、加羟琥珀酰亚胺(N-hydroxysuccinimide) 100 m mol/L 和 DCC(二环已基碳化二亚胺),200 m mol/L, 4度反应16小时。

3、用簿层扫描方法纯化(氯仿:水=9:1)

4、按孕酮/酶摩尔浓度比约为10的比例,将上述溶液加入到酶液(用,浓度50 m mol/L的磷酸缓冲液溶解)中。

5、

(二)含有氨基或可还原硝基半抗原的偶联

芳香胺类半抗原与蛋白质重氮化偶联的操作步骤

1、用 mol/L HCl溶液配制 4 m mol/L浓度的半抗原。

2、滴加1%NaNO2(过量),4度持续搅拌。NaNO2的加入量可用淀粉-碘化物试纸或在白色磁砖上加1%淀粉和50m mol/L KI进行监控。游离亚硝酸可将氧化物氧化成碘,碘再与淀粉反应变成蓝黑色。

3、溶液变成蓝黑色后,继续反应15分钟。

4、用、浓度为200m mol/L的硼酸或碳酸缓冲液溶解蛋白。

5、边搅拌,边加入重氮化的半抗原(防止局部发生酸过量现象),调节pH到。

6、冰箱中搅拌反应2小时,不断调节pH到。

7、用PBS透析2天

8、-20度保存(浓度为20mg/mL)

双功能的酰亚胺酯(imidate esters)可以氨基反应,形成脒。例如:用二甲基已二酰亚胺酯(dimethyladipimide)将去甲基三正喋呤(desmethylmortriptyline)与β-半乳糖苷酶偶联。

应用双功能酰亚胺酯(imidate esters)制备去甲基三正喋呤-与β-半乳糖苷酶标记特的操作步骤

1、用含5%(W/V)N-乙基吗啉的无水甲醇,在室温下溶解570ug去甲基三正喋呤和488ug 二甲基已二酰亚胺酯(dimethyladipimide)(A液)

2、取与β-半乳糖苷酶 100 ug, 溶于的100 m mol/L碳酸缓冲液(含MgCl2 10m mol/L,2-巯基乙醇 10 m mol/L (B液)

3、将A液倒入B液。

4、20度反应90分钟后,加含NaCl 100 m mol/L, MgCl2 10 m mol/L和2-巯基乙醇 10 m mol/L、的Tris-醋酸缓冲液(50m mol/L) 1ml, 终止反应。

5、过sephadex G-25, 去除小分子物质,得酶标记物(约75%的酶与半抗原结合,但用三正喋呤代替去甲三正喋呤(demethylmortriptyline )进行偶联,则只有15%的酶与之结合。

(三)含巯基半抗原的偶联

可用马来酰亚胺方法与蛋白偶联。此外,将载体蛋白用溴乙酰胺(bromoacetamide)激活。或将载体蛋白与半抗原在的醋酸缓冲液中,通过过氧化氢的作用形成二硫键,也可以将半抗原连接到蛋白质分子上。

(四)含羟基的半抗原偶联

醇类羟基通过形成半琥珀酸酯转化为羧基的操作步骤

1、15g 2,2,2-三氯乙醇(2,2,2-trichloroethanol),12g 琥珀酸酐(succinic anhydride)和三乙基胺(triethylamime)用100 ml乙酰乙酯溶解。

2、加热回流1小时。

3、减压蒸馏去溶剂,,残余物用5% NaHCO3水溶液溶解。

4、用乙醚洗涤两次,然后用H2SO4进行s酸化(pH到).

5、用水洗涤固形物(为三氯乙基半琥珀酸酯)两次,用氯仿-已烷使其结晶(产量约75%,熔点88-89度)

6、取半琥珀酸酯溶于亚硫酰氯(thionyl chloride)中,65度加热30分钟。

7、减压蒸发,干燥1小时(高度真空条件下)。

8、将上述产生(2,2,2-三氯忆基琥珀酰氯)溶于15ml N,N-二甲基-乙酸乙酰胺(N,N-dimethylethylacetamide)中,室温搅拌反应2小时。

9、65度真空蒸发后,用异丙醇使结晶析出来(得盐酸化的结晶---5`-酯约84%,熔点160度)。

10、用溶于二甲基甲酰胺中的锌和醋酸解离三氯乙酯,得f半抗原-半琥珀酸酯,这样引和的羧基可与蛋白质偶联(如用碳化二亚胺化)。

半抗原用NaIO4氧化其中的糖苷醇后再与蛋白质偶联的操作步骤

1、20mg 腺苷溶于1ml 100m mol/L NaIO4溶液中,4度避光反应30分钟。

2、加1滴乙二醇(得A液)

3、将A液加入到β-半乳糖苷酶液(20mg/ml,用150m mol/L NaCl,10m mol/L MgCl2水溶液溶解,用3%K2CO3调节pH至)中

4、4度反应2小时,期间不断调节

5、加入临时配制的50 mg/ml NaBO4溶液,用量为反应体积的1/10。 4度反应过夜。

6、用含有MgCl2 10m mol/L,2-巯基乙醇 10 m mol/L、 NaCl 100 m mol/L 的50 m mol/L磷酸缓冲液透析(更换透析液数次)

(五)含酮基或酮基半抗原的偶联

是将酮基经羟胺类化合物处理变成肟类化合物,再进一步将肟类化合物中的羟基,衍变成羧基化合物,再进一步进行含羧基半抗原的偶联操作。这类羟胺类化合物主要有:氨氧乙酸aminoxy acetic acid 或羧甲氧胺carboxymethoxyl amine 或者盐酸羟胺

酮基的类固醇分子中引入羧基的操作步骤

1、在200ml 乙醇中,加入O-(羧甲基)羟胺(O-(carboxyl)hydroxylamine)和酮基半抗原,使其浓度分别为10m mol/L 和4m mol/L

2、加热回流90分钟

3、旋转蒸发,减少容积,然后加水至40ml,用乙醚抽提

4、用水洗涤乙醚抽提物,用Na2SO4干燥成白色粉末。

(六)、其他半抗原的偶联

虽含有游离基团,但因这些基团对于维其生物活性十分重要,因些不能直接用来与载体蛋白偶联。

制备雌二醇-6-肟的操作步骤

a、雌二醇二醋酸盐的制备

1、1g雌二醇溶于14ml 吡啶及醋酐中

2、加热回流1小时,冷却后倾入冰水中。

3、收集白色晶体,得产物约(熔点126到127度)

b、雌二醇-6-酮-二醋酸盐的制备

4、雌二醇二醋酸盐,滴加冰醋酸溶解后加含 CrO3的含水冰醋酸

(H2O:Hac=:

5、室温搅拌1小时,静置24小时

6、用水稀释,用乙醚提取4次

7、用蒸馏水洗2次

8、减压蒸馏,得结晶油状渣物。

9、用90度烘干20分钟,得粗制品约500mg

10、用11ml 无水乙醇溶解粗制品,再加冰醋酸及吉纳你特T试剂(Girad T),回流1小时。

11、冷却后,用冰致冷的蒸馏水稀释,用LNaOH调节pH至

12、用乙醚抽提3次,弃去乙醚。

13、水层用浓盐酸酸化(盐酸终浓度为1mol/L).

14、室温静置2小时。

15、用乙醚抽提3次。

16、合并乙醚抽提液,用L碳酸钠溶液洗1次,用蒸馏水洗3次。

17、用无水硫酸钠脱水,蒸干。

18、加7ml 醋酐,回流20分钟。

19、冷却后倾入用冰致冷的蒸馏水中,然后过滤、干燥得产物约176mg (熔点为162-166度)

c、二醇-6-酮的制备

20、用 20%的氢氧化钾-甲醇溶液(W/V)溶解雌二醇-6-酮-二醋酸盐

(176mg),在室温下于氮气中水解24小时。

21、加蒸馏水稀释,用乙醚抽提3次。

22、在乙醚提取液中无水硫酸钠进行脱水,蒸发干燥,得产物约60mg(熔点为278-282度)

d、雌二醇-6-肟的制备

23、取雌二醇-6-酮 50mg ,盐酸羧甲基羧胺50mg,溶于20%含水甲醇

(V/V)7ml 和1mol/L醋酸钠4ml中,回流小时。

24、减压、蒸馏、浓缩后,加蒸馏水20ml

25、用2 mol/L NaOH调节pH至。

26、用醋酸乙酯抽提4次

27、水层用1 mol/L盐酸酸化至。

28、用醋酸乙酯抽提4次

29、合并抽提液,蒸干,得产物约100mg(结晶熔点约186-188度)

其他半抗原如:青霉素、生物素、地高辛、荧光素等半抗原交联。

硅烷偶联剂的使用方法

一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X ,而与有机聚合物的反应活性则取于碳官能团C-丫。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeC、OOVi 及CH2-CHOCH-2O 的硅烷偶联剂;环氧树脂多选用含CH2- CHCH2及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NC0NH硅烷偶联剂;聚烯烃选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而, 光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕 3 种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中丫与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的Si—OH含量。已知,多数硅质基体的Si —OH含是来4-12 个/卩叭因而均匀分布时,1mol硅烷偶联剂可覆盖约7500m2的基体。具有多个可水解基团的硅烷偶联剂,由于自身缩合反应,多少要影响计算的准确性。若使用丫3SiX处理基体,则可得到与计算值一致的单分子层覆盖。但因丫3SiX价昂,且覆盖耐水解性差,故无实用价值。此外,基体表面的Si-OH数,也随加热条件而变化。例如,常态下Si —OH数为5.3个/卩川硅质基体,经在400C或800C 下加热处理后,则Si —OH值可相应降为2.6个/卩卅或V 1个/卩讥反之,使用湿热盐酸处理基体,则可得到高Si —OH含量;使用碱性洗涤剂处理基体表面,则可形成硅醇阴离子。硅烷偶联剂的可润湿面积(WS,是指ig硅烷偶联剂的溶液所能覆

关于半抗原制备的小结

关于半抗原制备的小结 小分子抗原现在做的最多的是农药和兽药,这方面的文献也很多。以前查过一些材料,作者觉得小分子抗原能否制备出高性能的单克隆抗体主要以下几点决定。 1、对于半抗原结构的选择,如果待测物本身含有NH ,COOH,OH等活性基团, 2 可以利用待测物活性基团加入间隔臂,然后联入载体蛋白就可以成功合成人工抗原,制备特异性良好的抗体。但大部分待测物上并不含有活性基团或活性基团对药物的特异性和极性影响很大,所以大部分用于人工抗原合成的半抗原要经过改造或从头合成。例如在关于有机磷农药倍硫磷的免疫检测方法的研究中,半抗原物的获得采用的合成方法并不是从倍硫磷开始合成,而是采用另一途径,从起始物重新合成,这样反而能取得较好的效果,这一点对于制备具有多残留检测能力的抗体来说更为重要,只需合成出几种待测药物共有的结构就有可能制备出具有多残留检测能力的抗体。 2、待测物本身的结构有时对建立方法的性能有很重要的影响,在分子量在111-1202Da的化合物制备的单克隆抗体的亲和系数的试验中,半抗原的分子量在334–374Da之间时,制备的单克隆抗体具有很高的亲和系数。但当要检测的小分子化合物的分子量小于300Da时,产生具有良好灵敏度和特异性单克隆抗体的可能性下降。这说明药物的分子量是影响抗体性能的重要因素。同时待测物的结构对于制备人工抗原的难易程度有重要影响,有些半抗原经过理论分析能制备出高质量的抗体,但从化学合成的角度,这些化合物可能是合成不出来的或工艺过于复杂,所以半抗原结构能否合成出来,也是半抗原结构设计过程中要考虑的问题。 3、如果待测物结构过于简单,可能也是不能建立免疫检测方法的。待测物的结构最好含有特征性的环状结构或侧链结构,甚至含有杂原子,都能够增加制备出高质量抗体的可能性。在对脂肪酸类物质制备抗体的试验中,对于脂肪酸类物质来说,如果含有两个以上的羰基,及与蛋白偶联之后还有多余的羰基增强亲水性,同时酰基的不饱和双键和极性的头部结构都可以做为B细胞的抗原决定簇,可以将其他抗原性很弱的部分变成强抗原性。再者如果脂肪酸含有平面结构,也可以作为抗原决定表位,使产生特异性的抗体。这说明小分子的极性以及不饱和键,

如何用碳二亚胺法将半抗原偶联到蛋白上

如何用碳二亚胺法将半抗原偶联到 【摘要】用碳二亚胺(EDC)法将14位羟基修饰的雷公藤内酯醇(TP)和不同的蛋白载体(阳离子化牛血清白蛋白、鸡卵清蛋白)偶联合成TP的人工免疫抗原和检测抗原,紫外光谱鉴定偶联效果,计算偶联率。利用免疫抗原免疫小鼠,制备小鼠多克隆抗体,用检测抗原分析血清抗体效价,利用抗原竞争ELISA分析抗体特异性,为进一步研究TP的分子作用机理以及制备TP的单克隆抗体奠定基础。 【关键词】雷公藤内酯醇;14位羟基修饰;人工抗原;多克隆抗体 雷公藤内酯醇(triptolide,TP)分子式C20H24O6,分子结构如图1,相对分子质量360.41,为二萜类三环氧内酯化合物,是从植物雷公藤(Tripterygium Wilfordii Hook.f.)中提取的有效成分里活性最强的部分,具有消炎散结、清热解毒、抗菌、免疫抑制以及抗生育等功效。长期以来,TP作为临床上公认的免疫抑制剂,主要用于各种自身免疫性疾病,如类风湿性关节炎以及器官移植排斥反应的治疗。近年来研究发现,该药对多种肿瘤细胞有诱导凋亡的作用,与化疗药物联合应用能协同杀伤肿瘤细胞或逆转肿瘤耐药,说明它具有抗肿瘤效果,因此在肿瘤治疗方面的应用也日益受到人们的关注。除此以外,它还对细胞发育增殖、细胞周期等有调控作用。近年来,国内外对TP具有如此广泛作用的分子机理产生了越来越浓厚的兴趣,从多个不同的角度进行了研究。但是,由于缺少方便快捷的TP检测手段,长期以来对TP直接作用位点的研究一直十分困难,对TP作用的靶蛋白和作用途径知之甚少。细胞免疫化学是追踪分子在细胞内作用过程的有力工具,如果能够得到TP的抗体,就为利用细胞免疫化学研究TP的作用靶点和在细胞内的定位等提供了分子探针,为最终研究TP作用机制和寻找其靶蛋白提供了可能。作为小分子半抗原,TP需要和大分子蛋白载体偶联才能成为能够诱导产生抗体的免疫原。为了不影响小分子的生物活性,提高偶联效率,我们需要选择合适的反应基团。已有的TP结构 活性研究显示,TP的不同生物效应依赖于不同的功能基团。研究证实,对于12,13位环氧进行开环反应所获得的稳定的衍生物雷公藤内酯三醇(triptriolide)会丧失免疫抑制和抗炎的生物活性。14位羟基是TP最容易被改造修饰的基团,研究表明,14位羟基被改造为水溶性的基团作为前药能极大改善小分子的水溶性,促进体内代谢,降低毒性,甚至能改善TP在体内的免疫抑制活性和抗肿瘤活性[1 2]。 综合考虑,TP的14位羟基是最合适的偶联基团。TP的水溶性不理想,且14位羟基不容易在温和条件下和蛋白载体反应,我们首先对14位羟基进行结构修饰,改造为水溶性的羧基,利用缩合反应偶联阳离子化牛血清白蛋白(cationized BSA,cBSA)和鸡卵清蛋白(OVA),合成TP的免疫抗原TP cBSA和检测抗原TP OVA。用免疫抗原免疫小鼠,顺利得到了TP的多抗。 1 实验部分 1.1 试剂和仪器 TP(购自SIGMA公司),cBSA(购自PIERCE公司),OVA,1 乙基 (3 二甲基氨

常用硅烷偶联剂介绍

常用硅烷偶联剂介绍 1. KH550 KH550硅烷偶联剂CAS号:919-30-2 一、国外对应牌号 A-1100(美国联碳),Z-6011(美国道康宁),KBM-903(日本信越)。本品有碱性,通用性强,适用于环氧、PBT、酚醛树脂、聚酰胺、聚碳酸酯等多种热塑性和热固性树脂。 二、化学名称分子式: 名称:γ-氨丙基三乙氧基硅烷 别名:3-三乙氧基甲硅烷基-1-丙胺 【3-Triethoxysilylpropylamine APTES】, γ-氨丙基三乙氧基硅烷或3-氨基丙基三乙氧基硅烷 【3-Aminpropyltriethoxysilane AMEO】分子式:NH2(CH2)3Si(OC2H5)3 分子量:221.37 分子结构: 三、物理性质: 外观:无色透明液体 密度(ρ25℃):0.946 沸点:217℃

折光率nD25: 1.420 溶解性:可溶于有机溶剂,但丙酮、四氯化碳不适宜作释剂;可溶于水。在水中水解,呈碱性。 本品应严格密封,存放于干燥、阴凉、避光的室内。 四、KH550主要用途: 本品应用于矿物填充的酚醛、聚酯、环氧、PBT、聚酰胺、聚碳酸酯等热塑性和热固体树脂,能大幅度提高增强塑料的干湿态抗弯强度、抗压强度、剪切强度等物理力学性能和湿态电气性能,并改善填料在聚合物中的润湿性和分散性。 本品是优异的粘结促进剂,可用于聚氨酯、环氧、腈类、酚醛胶粘剂和密封材料,可改善颜料的分散性并提高对玻璃、铝、铁金属的粘合性,也适用于聚氨酯、环氧和丙烯酸乳胶涂料。 在树脂砂铸造中,本品增强树脂硅砂的粘合性,提高型砂强度抗湿性。 在玻纤棉和矿物棉生产中,将其加入到酚醛粘结剂中,可提高防潮性及增加压缩回弹性。 在砂轮制造中它有助于改进耐磨自硬砂的酚醛粘合剂的粘结性及耐水性。 2. KH560 一、国外对应牌号:

常用的半抗原与蛋白偶联方法简介

常用的半抗原与蛋白偶联方法简介 (一)分子中含有羧基或可羧化的半抗原的偶联) 1、混合酸酐法,也称氯甲酸异丁酯法(isobutyl chloroformate method) 偶联时,半抗原分子中的羧基可与氯甲酸异丁酯在有机溶剂中形成混合酸酐(mixed acid anhydride),然后与蛋白分子中的氨基形成肽键。 氨甲喋呤(MIT)与β-半乳糖苷酶偶联的混合酐法 1、5.8mg MIT用0.1ml二甲基甲酰胺溶解,冷却至10度,加2ul氯甲酸异丁酯,10度搅拌反应30分钟。 2、1.5mg酶用2ml 50 m mol/L Na2CO3溶解。 3、10度反应4小时(必要时加NaOH,以维持溶液的pH为9.0,q然后4度过夜。 4、过sephadex G-25层析柱,柱用含NaCl 100m mol/L、MgCl2 10 m mol/L、2-巯基乙醇10 m mol/L的50m mol/L Tris-醋酸缓冲液(pH7.5)平衡和洗脱,合并含酶的洗脱管内液体,进一步纯化后,保存于含BSA 0.1%(w/v)、NaN3 0.02%(w/v)的缓冲液中。 碳化二亚胺法制备3,3`,5-三碘甲腺氨酸-血蓝蛋白免疫原的操作步骤 1、取EDC 100mg , 用pH8.0的10 m mol/L PBS液2.5ml使之充分溶解(I液) 2、取3,3`,5-三碘甲腺原氨酸25mg , 用0.2mol/L NaOH 溶液2ml 溶解(II液) 3、取血蓝蛋白(lemocyanin) 25mg, 溶于10mmol/L PBS (pH8.0)液中(III液) 4、将II液与III液混合,在磁力搅拌下逐滴加入I液(余下0.5ml) 5、室温下避光搅拌1小时,逐滴加入余下的I液 6、 4度搅拌12小时 7、静置10小时(4度) 8、有蒸馏水使之充分透析(约48小时),得免疫原。 孕酮与与β-半乳糖苷酶偶联的N-羟琥珀酰亚胺酯法 1、用二垩烷(dioxane)溶解孕酮-11-半琥珀酸酯,配成浓度为100m mol/L的溶液。 2、加羟琥珀酰亚胺(N-hydroxysuccinimide) 100 m mol/L 和DCC(二环已基碳化二亚胺),200 m mol/L, 4度反应16小时。 3、用簿层扫描方法纯化(氯仿:水=9:1) 4、按孕酮/酶摩尔浓度比约为10的比例,将上述溶液加入到酶液(用pH7.4,浓度50 m mol/L 的磷酸缓冲液溶解)中。 5、 (二)含有氨基或可还原硝基半抗原的偶联 芳香胺类半抗原与蛋白质重氮化偶联的操作步骤 1、用0.1 mol/L HCl溶液配制4 m mol/L浓度的半抗原。 2、滴加1%NaNO2(过量),4度持续搅拌。NaNO2的加入量可用淀粉-碘化物试纸或在白色磁砖上加1%淀粉和50m mol/L KI进行监控。游离亚硝酸可将氧化物氧化成碘,碘再与淀粉反应变成蓝黑色。 3、溶液变成蓝黑色后,继续反应15分钟。 4、用pH9.0、浓度为200m mol/L的硼酸或碳酸缓冲液溶解蛋白。 5、边搅拌,边加入重氮化的半抗原(防止局部发生酸过量现象),调节pH到9.5。

兽药人工抗原的合成方法

兽药人工抗原的合成方法 1 兽药人工抗原的合成方法 兽药人工抗原合成的基本方法为兽药半抗原与载体蛋白质的偶联。 1.1 半抗原的合成大多数的兽药小分子不具有直接与载体蛋白质交联的功能团(羧基和氨基),需要通过化学合成或衍生的方法首先制备出具有活性交联功能团的相应半抗原。理想的半抗原(合成或衍生后的半抗原)应具有待测物(待测的半抗原原型)的特征结构,且与载体连接后应保持该特征结构能在最大程度为免疫细胞识别和结合(能将该基团暴露)。兽药半抗原活性基团种类主要有-NH2、 -COOH、-OH、-SH,在与载体偶联制备人工抗原时,有些活性基团还需要先进行选择性保护和去保护,如阿维菌素半抗原的合成(李俊锁等,1999)。不同的兽药有不同的半抗原活化方法,目前获得半抗原常用的方法有:对药物分子进行改造使之产生活性基团;在药物分子内部引入活泼卤元素,达到所需反应的目的;利用原形药物的代谢产物作为活泼半抗原;利用化学合成的方法合成有活性功能团的半抗原;直接购买与半抗原结构相似的有活性基团的商品化学试剂。 1.2 兽药人工抗原合成常用的载体常用于兽药人工抗原合成的载体蛋白质包括牛血清蛋白(BSA)、卵清蛋白(OVA)、人血清蛋白(HSA)及钥孔血蓝蛋白(KLH),其中又以牛血清蛋白最为常用。因为BSA理化稳定,经济易得,分子内自由氨基多,与半抗原偶联率高,并且具有在不同pH值和离于强度下以及在含有某些有机溶剂状态下都能保持较大的溶解度。近年来,国内外都有文献介绍以人工合成的多聚肽做载体(常用多聚L赖较氨酸),自身免疫原性很差但可以增加半抗原的免疫性,有利于机体产生特异性更高的抗体,且具有比BSA更多的自由氨基(与BSA相当分子量的多聚赖氨酸的自由氨基数约是BSA所含数目的10倍),可以大大提高载体蛋白质与半抗原的偶联率。以多聚赖氨酸做载体来制备兽药人工抗原尚未见报道,这应该是一个值得探讨的方向。 1.3 兽药抗原的偶联方法活化的半抗原与载体偶联应根据半抗原功能团的不同,选用不同的偶联剂和不同的偶联方法。人工抗原合成的传统方法有:混合酸酐法、活泼酯法及碳二亚胺法,用于羧基半抗原与载体的偶联;戊二醛法或重氮化法用于氨基半抗原与载体的偶联;氨基氧乙酸化用于酮基半抗原与载体的偶联;丁二酸酐衍生化用于羟基半抗原与载体的偶联。人工抗原合成的基因工程方法:利用基因工程技术表达特定抗原蛋白或通过核苷酸序列推导合成相应编码的蛋白质抗原肽段,得到目的抗原。 2 影响兽药人工抗原质量的因素 人工抗原的质量好坏指其免疫原性的优劣,受多种因素的影响。不同药物的质量影响因素也不尽相同,一方面取决于人工抗原本身的性质,另一方面取决于接受该抗原刺激的机体的反应性。概括起来主要有以下几个方面。 2.1 抗原分子特性免疫学理论认为抗原物质除了要求具有一定的分子质量(10ku)外,其表面还必须有一定的化学组成和结构,分子结构和空间结构越复杂、支链越多,免疫原性越强,越易于诱导机体产生抗体。对于具有多个载体偶联位点的兽药半抗原,以不同位点相偶联制备的抗原,其相应的特异性、亲和性、效价也都不相同,即由于不同偶联位点制备的抗原的空间结构不同所致。所以,当一个兽药分子内部有多个不同的结合位点时,要尽可能多合成不同的人工抗原,然后通过比较筛选出最好的抗原用于抗

抗原偶联选择方法

抗原偶联选择方法-CAL-FENGHAI.-(YICAI)-Company One1

载体的选择: 1.载体表面应首先应具有化学活性基团,这些基团可以直接与抗生素或农药分子偶联, 这是化学偶联制备抗原的前提; 2.其次,载体应具备一定的容量,可以偶联足够的分子; 3.载体还应该是惰性的,不应干扰偶联分子的功能; 4.而且载体应具有足够的稳定性,且应该是廉价易得的. 载体蛋白质有牛血清白蛋白(BSA)、卵清蛋白(OA)、钥孔血蓝蛋白(KLH)、人血清白蛋白(HSA)及人工合成的多聚赖氨酸(PLL)等 这些蛋白质分子中的α和ε-氨基(等电点8和10)、苯酚基、巯基(等电点为9)、咪唑基(等电点为7)、羧基(等电点2~4,大部分来自天冬氨酸或谷氨酸的β-和γ-羧基)等在等电点pH条件下,一部分成为质子,另一部分未质子化的亲核基团则具有反应活性,可与半抗原中的对应基团结合.当然,这些基团的反应性也取决于蛋白质各种氨基酸残基的微环境.牛血清白蛋白(BSA)和人血清白蛋白(HAS)分子中含有大量的赖氨酸,故有许多自由氨基存在,且在不同pH 和离子强度下能保持较大的溶解度.此外,这些蛋白质在用有机溶剂(如吡啶、二甲基甲酰胺)溶解时,其活性基团仍呈可溶状态,因此,这两种蛋白质是最常用的载体蛋白质.近年来,有研究报道用人工合成的多聚肽(最常用的是多聚赖氨酸)作载体,表现出能增加半抗原的免疫原性,从而使产生征对半抗原的特异性抗体可能性增加,被广泛应用。 人工抗原合成方法: 小分子半抗原与载体蛋白偶联效果会到偶联物的浓度及其相对比例、偶联剂的有效浓度及其相对量、缓冲液成分及其纯度和离子强度、pH以及半抗原的稳定性、可溶性和理化特性等因素的影响.通常是在条件温和的水溶液中将半抗原与载体蛋白共价结合,不宜在高温、低温、强碱、强酸条件下进行.一般是由半抗原上的活性基团决定偶联合成的方法,常用的方法如下: 分子中含有羧基或者可羧化的半抗原的偶联 1)混合酸酐法(mixed anhydride method):也称氯甲酸异丁酯法。偶联时,半抗原分子中的羧基可与氯甲酸异丁酯在有机溶剂中形成混合酸酐(mixedacidanhydride),然后与蛋白分子中的氨基形成肽键。 2)碳二亚胺法(CDI):碳二亚胺(EDC)使羟基和氨基间脱水形成酰胺键,半抗原上的羧基先与EDC反应生成一个中间物,然后再与蛋白质上的氨基反应,形成半抗原与蛋白质的结合物(见图).EDC被称作零长度交联剂之一,因为它作为酰胺键的形成介质并没有形成手臂分子. 此连接方法十分简便,只需将载体蛋白质和抗原按一定比例混合在适当的溶液中,然后加入水溶性碳化二亚胺,搅拌1~2h,置室温24h,再经透析即可。如果半抗原分子中不含羧基,可通过某些化学反应引入羧基.在引入羧基后,也可用上述方法进行偶联。 含有氨基或可还原硝基半抗原的偶联 1)戊二醛法:双功能试剂戊二醛的两个醛基分别与半抗原和蛋白质上的氨基形成schiff键(-N=C<,在半抗原和蛋白质间引入一个5碳桥。这一反应条件温和,可在4~40℃及~内进行,操作亦简便,因此应用广泛。戊二醛受到光照、温度和碱性的影响,可能发生自我聚合,减弱其交联作用,因此最好使用新鲜的戊二醛。

常用的半抗原与蛋白偶联方法简介

常用的半抗原与蛋白偶联 方法简介 Last revision date: 13 December 2020.

常用的半抗原与蛋白偶联方法简介 (一)分子中含有羧基或可羧化的半抗原的偶联) 1、混合酸酐法,也称氯甲酸异丁酯法(isobutyl chloroformate method) 偶联时,半抗原分子中的羧基可与氯甲酸异丁酯在有机溶剂中形成混合酸酐(mixed acid anhydride),然后与蛋白分子中的氨基形成肽键。 氨甲喋呤(MIT)与β-半乳糖苷酶偶联的混合酐法 1、5.8mg MIT用二甲基甲酰胺溶解,冷却至10度,加2ul氯甲酸异丁酯,10度搅拌反应30分钟。 2、酶用2ml 50 m mol/L Na2CO3溶解。 3、10度反应4小时(必要时加NaOH,以维持溶液的pH为,q然后4度过夜。 4、过sephadex G-25层析柱,柱用含NaCl 100m mol/L、MgCl2 10 m mol/L、2-巯基乙醇10 m mol/L的50m mol/L Tris-醋酸缓冲液平衡和洗脱,合并含酶的洗脱管内液体,进一步纯化后,保存于含BSA %(w/v)、NaN3 %(w/v)的缓冲液中。 碳化二亚胺法制备3,3`,5-三碘甲腺氨酸-血蓝蛋白免疫原的操作步骤 1、取EDC 100mg , 用的10 m mol/L PBS液使之充分溶解(I液) 2、取3,3`,5-三碘甲腺原氨酸 25mg , 用L NaOH 溶液2ml 溶解(II液) 3、取血蓝蛋白(lemocyanin) 25mg, 溶于10mmol/L PBS ()液中(III液) 4、将II液与III液混合,在磁力搅拌下逐滴加入I液(余下) 5、室温下避光搅拌1小时,逐滴加入余下的I液 6、4度搅拌12小时 7、静置10小时(4度) 8、有蒸馏水使之充分透析(约48小时),得免疫原。 孕酮与与β-半乳糖苷酶偶联的N-羟琥珀酰亚胺酯法 1、用二垩烷(dioxane)溶解孕酮-11-半琥珀酸酯,配成浓度为100m mol/L的溶液。 2、加羟琥珀酰亚胺(N-hydroxysuccinimide) 100 m mol/L 和 DCC(二环已基碳化二亚胺),200 m mol/L, 4度反应16小时。 3、用簿层扫描方法纯化(氯仿:水=9:1) 4、按孕酮/酶摩尔浓度比约为10的比例,将上述溶液加入到酶液(用,浓度50 m mol/L的磷酸缓冲液溶解)中。 5、 (二)含有氨基或可还原硝基半抗原的偶联 芳香胺类半抗原与蛋白质重氮化偶联的操作步骤 1、用 mol/L HCl溶液配制 4 m mol/L浓度的半抗原。 2、滴加1%NaNO2(过量),4度持续搅拌。NaNO2的加入量可用淀粉-碘化物试纸或在白色磁砖上加1%淀粉和50m mol/L KI进行监控。游离亚硝酸可将氧化物氧化成碘,碘再与淀粉反应变成蓝黑色。 3、溶液变成蓝黑色后,继续反应15分钟。

常用硅烷偶联剂介绍

常用硅烷偶联剂介绍标准化管理部编码-[99968T-6889628-J68568-1689N]

常用硅烷偶联剂介绍 1.KH550 KH550硅烷偶联剂CAS号:919-30-2 一、国外对应牌号 A-1100(美国联碳),Z-6011(美国道康宁),KBM-903(日本信越)。本品有碱性,通用性强,适用于环氧、PBT、酚醛树脂、聚酰胺、聚碳酸酯等多种热塑性和热固性树脂。 二、化学名称分子式: 名称:γ-氨丙基三乙氧基硅烷 别名:3-三乙氧基甲硅烷基-1-丙胺 【3-TriethoxysilylpropylamineAPTES】, γ-氨丙基三乙氧基硅烷或3-氨基丙基三乙氧基硅烷【3-AminpropyltriethoxysilaneAMEO】 分子式:NH 2(CH 2 ) 3 Si(OC 2 H 5 ) 3 分子量:221.37 分子结构: 三、物理性质: 外观:无色透明液体 密度(ρ25℃):0.946

沸点:217℃ 折光率nD25:1.420 溶解性:可溶于有机溶剂,但丙酮、四氯化碳不适宜作释剂;可溶于水。在水中水解,呈碱性。 本品应严格密封,存放于干燥、阴凉、避光的室内。 四、KH550主要用途: 本品应用于矿物填充的酚醛、聚酯、环氧、PBT、聚酰胺、聚碳酸酯等热塑性和热固体树脂,能大幅度提高增强塑料的干湿态抗弯强度、抗压强度、剪切强度等物理力学性能和湿态电气性能,并改善填料在聚合物中的润湿性和分散性。 本品是优异的粘结促进剂,可用于聚氨酯、环氧、腈类、酚醛胶粘剂和密封材料,可改善颜料的分散性并提高对玻璃、铝、铁金属的粘合性,也适用于聚氨酯、环氧和丙烯酸乳胶涂料。 在树脂砂铸造中,本品增强树脂硅砂的粘合性,提高型砂强度抗湿性。 在玻纤棉和矿物棉生产中,将其加入到酚醛粘结剂中,可提高防潮性及增加压缩回弹性。 在砂轮制造中它有助于改进耐磨自硬砂的酚醛粘合剂的粘结性及耐水性。 2.KH560 一、国外对应牌号: A-187(美国联碳公司)。

羧基磁珠与蛋白偶联方法

羧基磁珠与蛋白偶联方法 来源:时间:2009-6-6 23:34:26 简介 BioMag 和BioMagPlus 超顺磁珠适用于磁分选细胞、细胞器、蛋白、免疫球蛋白、核酸及其它生物或非生物体系中的分子。BioMag 和BioMagPlus 磁珠表面不规则,因此具有比较大的表面积,可以增加磁珠与偶联分子的接触机率,提高偶联效率。此外,这两种磁珠90%以上为氧化铁,可以加快磁分选速度,这特别适用于大批量,高能量分选样品。 BioMag and BioMagPlus 磁珠采用的工艺制备,只不过BioMagPlus经过了另,外的去除细尘处理,偶联试剂盒中提供的就为此类磁珠。 BioMagPlus 羧基磁珠表面的羧基经过二亚胺EDAC活化后,即可以与蛋白偶联。 Bangs 公司的BioMagPlus Carboxy l Protein Coupling Kit 适用于蛋白与BioMagPlus 超顺磁珠的偶联,此kit提供了可供5次偶联的试剂和磁珠。 材料 ?BioMagPlus 羧基磁珠: 2.5mL,1.5μm ,20 mg/mL ?EDAC (1-ethy l-3-(3-dimethy laminopropyl)carbodiimide): 0.10g ?15mL 尖头离心管: 5 tubes ?BioMag 磁分离器 ?0.05M MES 缓冲液(pH 5.2): 2 x 175mL ?淬灭液(1M Glycine, pH 8.0): 25mL ?洗涤缓冲液: 125mL 实验步骤 活化 ?移取 0.5mL (10mg) 的 BioMagPlus 羧基磁珠至 15mL 尖头离心管内,并放置在磁分离架上直到上清液变完全透彻后,用吸管小心移弃上清。 ?加 5mL of MES 缓冲液充分混匀洗涤. 将离心管放在磁分离架上直到上清液变清后.用吸管小心移弃上清。 ?重复 Step 2, 三次. 最后一次洗涤后, 重悬磁珠于 5mL 的 MES 缓冲液中。 ?将 EDAC 从冷藏处取出置于室温30分钟。准确称取所需的EDAC (1.6mg EDAC/mg BioMagPlus 磁珠)加入装有磁珠的离心管内, ?剧烈振荡摇匀。 ?室温下,将离心管置于旋转混匀仪上活化反应 30 分钟。反应过程中,注意不让磁珠沉淀聚积在一起。 ?将离心管放在磁分离架上直到上清液变清后.用吸管小心移弃上清。 ?重复 Step 2, 四次。 蛋白偶联 计算需要偶联的蛋白,抗体量. 一般地,每mg活化的羧基磁珠可以偶联20-500ug的蛋白(抗体),

硅烷偶联剂使用说明

硅烷偶联剂使用说明 一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOO、Vi及CH2-CHOCH2O-的硅烷偶联剂;环氧树脂多选用含CH2-CHCH2O及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NCONH-硅烷偶联剂;聚烯烃多选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。 硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的

蛋白偶联操作步骤(20120503)

Bio-Plex 氨基耦联原理与操作 一、原理 Bio-Plex 氨基耦联试剂盒提供了一些缓冲液,用于将6-150kD分子量的蛋白质共价耦联到5.5um荧光染色的微珠上。耦联反应发生在微珠表面的羧基和蛋白质N末端的氨基上,进行羧胺反应。耦联后形成稳定的共价键,不会轻易脱落,甚至可保存数月。试剂盒可进行 30次反应,每次反应需要1.25×106 个羧基化的微珠(1倍浓度)。这种蛋白质耦联微珠可用 于蛋白质相互作用的研究。一般微珠反应得率为80%,即足够用在Bio-Plex上进行检测的每孔5000个微珠。 一般耦联需要3步:蛋白质准备,蛋白耦联和蛋白耦联验证。 A、蛋白质准备: 蛋白质样品的要求: 1、蛋白质分子量:6-150kD, 2、水溶性, 3、样品不得含有如叠氮钠、BSA、甘氨酸、Tris或其它任何含自由氨基的添加物。 4、蛋白质必须溶解在PBS中,pH7.4。 5、必须摸索出最佳的耦联条件,主要是摸索蛋白质的使用量。 注意,不需要用最大量的蛋白质进行反应。 B、蛋白耦联:耦联反应分2步进行,微珠上的羧基在耦联前需要活化,EDC(1-乙基-3-[3-二甲氨基丙基]炭化亚胺)与微珠上的羧基反应形成一种活化的O-酰基异脲(O-acylisourea)中间体,在水溶液中用S-NHS(N-hydroxysulfosuccinimide) (巯基乙酰基三甘氨酸N-羟基琥珀酰亚胺酯(NHS-MAG3)使这种中间体变得稳定。EDC耦联S-NHS产生了S-NHS-活化位点,O-酰基异脲和S-NHS的形成是氨基反应。但是S-NHS酯在生理pH下更稳定,随后这种中间体与蛋白质上的初级氨基反应形成酰胺键。如果这种中间体不能和氨基反应,中间体将脱水并产生羧基,释放出N-未取代脲。这些反应在数分钟内同时迅速反应。 C、蛋白质耦联验证:耦联反应结束后需要对微珠进行计数并验证耦联效率。 用PE(藻红素)标记的抗体连接到耦联的微珠上,再用Bio-Plex进行分析。 或者用生物素化的抗体反应再用Streptavidin-PE(链亲和霉素-藻红素),机器读出的荧光信号直接与耦联在微珠表面上的蛋白量相关,如果荧光信号超过2000MFI可认为耦联成功。 二、耦联操作 A、蛋白质准备:如果样品不含有叠氮钠、BSA、甘氨酸、Tris或其它含自由氨基的添加物,并且已溶在PBS,pH7.4中,可测定蛋白质浓度后直接用于耦联;如果样品含有以上任何一种添加物,需要进行如下处理:使用Micro Bio-Spin 6微型柱进行更换缓冲液,1000g,2min 离心去除缓冲液,加入500ul PBS,1000g,2min离心,重复5次,20-75ul的样品上样到柱子中,1000g,5min离心,样品冰浴,测定蛋白质浓度后可直接用于耦联。 注意:更换缓冲液可能导致多达20%的蛋白质损失, 必须准备足够耦联反应所需的5-12ug的蛋白质 B、耦联反应:在所有试剂使用前必须解冻或回复到室温

硅烷偶联剂的产品分类与用途.pdf

硅烷偶联剂介绍

目录 1 硅烷偶联剂 (1) 有机硅烷偶联剂的选择原则 (3) 偶联剂用量 (4) 硅烷偶联剂作用机理 (5) 硅烷偶联剂使用方法 (6) 硅烷偶联剂分类与用途 (7) 硅烷偶联剂A-151 (7) 硅烷偶联剂A-171 (8) 硅烷偶联剂A-172 (9) 硅烷偶联剂KH-540 (9) 硅烷偶联剂KH-550 (10) 硅烷偶联剂KH-551 (10) 硅烷偶联剂KH-560 (11) 硅烷偶联剂KH-570 (12) 硅烷偶联剂KH-580 (13) 硅烷偶联剂KH-602 (13) 硅烷偶联剂KH-791 (14) 硅烷偶联剂KH-792 (15) 硅烷偶联剂KH-901 (16) 硅烷偶联剂KH-902 (16) 硅烷偶联剂nd-22 (17) 硅烷偶联剂ND-42(南大42) (17) 硅烷偶联剂ND-43 (17) 硅烷偶联剂SI-69 (18) 苯基三甲氧基硅烷 (18) 苯基三乙氧基硅烷 (19) 甲基三乙氧基硅烷 (20)

钛酸酯偶联剂 (20) 钛酸酯偶联剂101(钛酸酯TTS) (20) 钛酸酯偶联剂102 (21) 钛酸酯偶联剂105 (21) 有机硅烷偶联剂的选择原则 有机硅烷偶联剂的选择一般凭借对有机硅烷偶联剂侧试数据进行经脸总结,准确.地预测有机硅烷偶联剂是非常困难的。使用有机硅烷偶联剂后增大的键强度是一系列复杂因素的综合,如浸润、表面能、边界层的吸附、极性吸附,酸碱相互作用等. 预选有机硅烷偶联剂可遵循以下规津:不饱和聚醋可选用乙烯纂、环氧基及甲基丙烯陈氧基型有机硅烷偶联剂;环氧树脂宜选用环氧基或氨基型有机硅烷偶联剂;酚醛树脂宜选用氨基或服基型有机硅烷偶联剂;烯烃聚合物宜选用乙烯基型右机硅烷偶联剂;硫磺硫化的橡胶宜选用疏基型有机硅烷偶联剂等, 一、选用硅烷偶联剂的一般原则已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验,预选并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOOVi及CH2-CHOCH2O的硅烷偶联剂:环氧树脂多选用含CH2CHCH2O及H2N硅烷偶联剂:酚醛树脂多选用含H2N及H2NCONH硅烷偶联剂:聚烯烃多选用乙烯基硅烷:使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接强度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。 硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应:改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性:后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 硅烷偶联剂牌号偶联剂应用领 域 偶联剂作用 KH-540 KH-550 胶黏剂行业●提高粘接力及粘接寿命 ●在潮湿和干燥的条件下仍具有良好的粘结效果●更佳的耐溶剂性、提高储存寿命 KH-560 KH-570 KH-792 Si-602 Si-563 KH-540 KH-550 涂料行业●有机聚合物和无机表面之间的附着力促进剂●粘合体系的交联剂和固化剂,共聚单体 ●填料和颜料的分散剂 ●在抗刮和抗腐蚀涂料中充当粘结组分及涂层 KH-560 KH-570 KH-792 Si-602 Si-563 A-151

常用的半抗原与蛋白偶联方法简介

常用的半抗原与蛋白偶 联方法简介 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

常用的半抗原与蛋白偶联方法简介 (一)分子中含有羧基或可羧化的半抗原的偶联) 1、混合酸酐法,也称氯甲酸异丁酯法(isobutyl chloroformate method) 偶联时,半抗原分子中的羧基可与氯甲酸异丁酯在有机溶剂中形成混合酸酐(mixed acid anhydride),然后与蛋白分子中的氨基形成肽键。 氨甲喋呤(MIT)与β-半乳糖苷酶偶联的混合酐法 1、5.8mg MIT用二甲基甲酰胺溶解,冷却至10度,加2ul氯甲酸异丁酯,10度搅拌反应30分钟。 2、酶用2ml 50 m mol/L Na2CO3溶解。 3、10度反应4小时(必要时加NaOH,以维持溶液的pH为,q然后4度过夜。 4、过sephadex G-25层析柱,柱用含NaCl 100m mol/L、MgCl2 10 m mol/L、2-巯基乙醇10 m mol/L的50m mol/L Tris-醋酸缓冲液平衡和洗脱,合并含酶的洗脱管内液体,进一步纯化后,保存于含BSA %(w/v)、NaN3 %(w/v)的缓冲液中。 碳化二亚胺法制备3,3`,5-三碘甲腺氨酸-血蓝蛋白免疫原的操作步骤 1、??取EDC 100mg , 用的10 m mol/L PBS液使之充分溶解(I液) 2、??取3,3`,5-三碘甲腺原氨酸 25mg , 用L NaOH 溶液2ml 溶解(II液) 3、??取血蓝蛋白(lemocyanin) 25mg, 溶于10mmol/L PBS ()液中(III 液) 4、??将II液与III液混合,在磁力搅拌下逐滴加入I液(余下) 5、??室温下避光搅拌1小时,逐滴加入余下的I液 6、??4度搅拌12小时 7、??静置10小时(4度) 8、??有蒸馏水使之充分透析(约48小时),得免疫原。 孕酮与与β-半乳糖苷酶偶联的N-羟琥珀酰亚胺酯法 1、??用二垩烷(dioxane)溶解孕酮-11-半琥珀酸酯,配成浓度为100m mol/L 的溶液。 2、??加羟琥珀酰亚胺(N-hydroxysuccinimide) 100 m mol/L 和 DCC(二环已基碳化二亚胺),200 m mol/L, 4度反应16小时。 3、??用簿层扫描方法纯化(氯仿:水=9:1) 4、??按孕酮/酶摩尔浓度比约为10的比例,将上述溶液加入到酶液(用,浓度50 m mol/L的磷酸缓冲液溶解)中。 5、?? (二)含有氨基或可还原硝基半抗原的偶联 芳香胺类半抗原与蛋白质重氮化偶联的操作步骤 1、??用 mol/L HCl溶液配制 4 m mol/L浓度的半抗原。 2、??滴加1%NaNO2(过量),4度持续搅拌。NaNO2的加入量可用淀粉-碘化物试纸或在白色磁砖上加1%淀粉和50m mol/L KI进行监控。游离亚硝酸可将氧化物氧化成碘,碘再与淀粉反应变成蓝黑色。

抗原偶联选择方法

载体的选择: 1.载体表面应首先应具有化学活性基团,这些基团可以直接与抗生素或农药分子偶联,这 是化学偶联制备抗原的前提; 2.其次,载体应具备一定的容量,可以偶联足够的分子; 3.载体还应该是惰性的,不应干扰偶联分子的功能; 4.而且载体应具有足够的稳定性,且应该是廉价易得的. 载体蛋白质有牛血清白蛋白(BSA)、卵清蛋白(OA)、钥孔血蓝蛋白(KLH)、人血清白蛋白(HSA)及人工合成的多聚赖氨酸(PLL)等 这些蛋白质分子中的α和ε-氨基(等电点8和10)、苯酚基、巯基(等电点为9)、咪唑基(等电点为7)、羧基(等电点2~4,大部分来自天冬氨酸或谷氨酸的β-和γ-羧基)等在等电点pH条件下,一部分成为质子,另一部分未质子化的亲核基团则具有反应活性,可与半抗原中的对应基团结合.当然,这些基团的反应性也取决于蛋白质各种氨基酸残基的微环境.牛血清白蛋白(BSA)和人血清白蛋白(HAS)分子中含有大量的赖氨酸,故有许多自由氨基存在,且在不同pH和离子强度下能保持较大的溶解度.此外,这些蛋白质在用有机溶剂(如吡啶、二甲基甲酰胺)溶解时,其活性基团仍呈可溶状态,因此,这两种蛋白质是最常用的载体蛋白质.近年来,有研究报道用人工合成的多聚肽(最常用的是多聚赖氨酸)作载体,表现出能增加半抗原的免疫原性,从而使产生征对半抗原的特异性抗体可能性增加,被广泛应用。 人工抗原合成方法: 小分子半抗原与载体蛋白偶联效果会到偶联物的浓度及其相对比例、偶联剂的有效浓度及其相对量、缓冲液成分及其纯度和离子强度、pH以及半抗原的稳定性、可溶性和理化特性等因素的影响.通常是在条件温和的水溶液中将半抗原与载体蛋白共价结合,不宜在高温、低温、强碱、强酸条件下进行.一般是由半抗原上的活性基团决定偶联合成的方法,常用的方法如下:分子中含有羧基或者可羧化的半抗原的偶联 1)混合酸酐法(mixed anhydride method):也称氯甲酸异丁酯法。偶联时,半抗原分子中的羧基可与氯甲酸异丁酯在有机溶剂中形成混合酸酐(mixed acid anhydride),然后与蛋白分子中的氨基形成肽键。 2)碳二亚胺法(CDI):碳二亚胺(EDC)使羟基和氨基间脱水形成酰胺键,半抗原上的羧基先与EDC反应生成一个中间物,然后再与蛋白质上的氨基反应,形成半抗原与蛋白质的结合物(见图1.5).EDC被称作零长度交联剂之一,因为它作为酰胺键的形成介质并没有形成手臂分子. 此连接方法十分简便,只需将载体蛋白质和抗原按一定比例混合在适当的溶液中,然后加入水溶性碳化二亚胺,搅拌1~2h,置室温24h,再经透析即可。如果半抗原分子中不含羧基,可通过某些化学反应引入羧基.在引入羧基后,也可用上述方法进行偶联。 含有氨基或可还原硝基半抗原的偶联 1)戊二醛法:双功能试剂戊二醛的两个醛基分别与半抗原和蛋白质上的氨基形成schiff键(-N=C<,在半抗原和蛋白质间引入一个5碳桥。这一反应条件温和,可在4~40℃及pH6.0~8.0内进行,操作亦简便,因此应用广泛。戊二醛受到光照、温度和碱性的影响,可能发生自我聚合,减弱其交联作用,因此最好使用新鲜的戊二醛。 2)重氮化法:用于活性基团是芳香胺基的半抗原,芳香胺基与NaNO2和HCl反应得到一个重氮盐,它可直接接到蛋白质酪氨酸羧基的邻位上,形成一个偶氮化合物。 含羟基半抗原的偶联 1)琥珀酸酐法:半抗原的羟基与琥珀酸酐在无水吡啶中反应得到一个琥珀酸半酯(带有羧基的中间体),再经碳二亚胺法或混合酸酐法与蛋白质氨基结合,在半抗原与蛋白质载体间插入一个琥珀酰基。

相关文档