文档库 最新最全的文档下载
当前位置:文档库 › 【优化指导】2016-2017学年高中物理 第16章 动量守恒定律 2 动量和动量定理课时作业 新人教版选修3-5

【优化指导】2016-2017学年高中物理 第16章 动量守恒定律 2 动量和动量定理课时作业 新人教版选修3-5

【优化指导】2016-2017学年高中物理 第16章 动量守恒定律 2 动量和动量定理课时作业 新人教版选修3-5
【优化指导】2016-2017学年高中物理 第16章 动量守恒定律 2 动量和动量定理课时作业 新人教版选修3-5

2 动量和动量定理

一、A组(20分钟)

1.下面关于物体动量和冲量的说法,正确的是()

A.物体所受合外力冲量越大,它的动量也越大

B.物体所受合外力冲量不为零,它的动量一定要改变

C.物体动量增量的方向,就是它所受合外力的冲量方向

D.物体所受合外力冲量越大,它的动量变化就越大

解析:由动量定理可知,物体所受合外力的冲量,其大小等于动量的变化量的大小,方向与动量增量的方向相同,故A项错误,B、C、D项正确。

答案:BCD

2.篮球运动员通常伸出双手迎接传来的篮球。接球时,两手随球迅速收缩至胸前。这样做可以()

A.减小球对手的冲量

B.减小球对手的冲击力

C.减小球的动量变化量

D.减小球的动能变化量

解析:由动量定理Ft=Δp知,接球时两手随球迅速收缩至胸前,延长了手与球接触的时间,从而减小了球的动量变化率,减小了球对手的冲击力,选项B正确。

答案:B

360 kg的建筑工人,不慎从高空跌下,幸好弹性安全带的保护使他悬挂起来。已知弹性安全带的缓冲时间是1.5 s,安全带自然长度为5 m,g取10 m/s2,则安全带所受的平均冲力的大小为()

A.500 N

B.1 100 N

C.600 N

D.1 000 N

解析:建筑工人下落5 m时速度为v,由v2=2gh得

v= m/s=10 m/s

设安全带所受的平均冲力为F,则由动量定理得

(mg-F)t=0-mv

所以F=mg+=60×10 N+ N=1 000 N,选项D正确,选项A、B、C错误。

答案:D

4.A、B两球质量相等,A球竖直上抛,B球平抛,两球在运动中空气阻力不计,则下列说法中正确的是()

A.相同时间内,动量的变化大小相等,方向相同

B.相同时间内,动量的变化大小相等,方向不同

C.动量的变化率大小相等,方向相同

D.动量的变化率大小相等,方向不同

解析:A、B球在空中只受重力作用,因此相同时间内重力的冲量相同,因此两球动量的变化大小相等、方向相同,A选项正确;动量的变化率为=m=mg,大小相等、方向相同,C选项正确。

答案:AC

5.质量为m的钢球自高处落下,以速度v1碰地,竖直向上弹回,碰撞时间极短,离地的速度为

v2。在碰撞过程中,地面对钢球的冲量的方向和大小为()

A.向下,m(v1-v2)

B.向下,m(v1+v2)

C.向上,m(v1-v2)

D.向上,m(v1+v2)

解析:物体以竖直速度v1与地面碰撞而又以v2的速度反弹。物体在与地面碰撞过程的初、末状态动量皆已确定。根据动量定理便可以求出碰撞过程中钢球受到的冲量。

设垂直地面向上的方向为正方向,对钢球应用动量定理得

Ft-mgt=mv2-(-mv1)=mv2+mv1

由于碰撞时间极短,t趋于零,则mgt趋于零。

所以Ft=m(v2+v1),即弹力的冲量方向向上,大小为m(v2+v1)。

答案:D

6.关于动量的变化,下列说法正确的是()

A.做直线运动的物体速度增大时,动量的变化量Δp的方向与运动方向相同

B.做直线运动的物体速度减小时,动量的变化量Δp的方向与运动方向相反

C.物体的速度大小不变时,动量的变化量Δp为零

D.物体做曲线运动时,动量的变化量一定不为零

解析:当运动物体的速度增大时,其末态动量p2大于初态动量p1,由矢量的运算法则可知

Δp=p2-p1>0,与物体运动方向相同,如图(a)所示,所以选项A正确;

当物体速度减小时,p2

当物体的速度大小不变时,其方向可能变化,也可能不变化,动量可能不变化,即Δp=0,也可能动量大小不变而方向变化,此种情况Δp≠0,选项C不正确;当物体做曲线运动时,动量的方向变化,即动量一定变化,Δp一定不为零,如图(c)所示,故选项D正确。

答案:ABD

7.

水平推力F1和F2分别作用于水平面上等质量的甲、乙两物体上,作用一段时间后撤去推力,物体将继续运动一段时间后停下来。两物体的v-t图象如图所示,图中线段AB∥CD,则()

A.F1的冲量大于F2的冲量

B.F1的冲量等于F2的冲量

C.两物体受到的摩擦力大小相等

D.两物体受到的摩擦力大小不等

解析:甲、乙先做加速运动,撤去推力后做减速运动。图中线段AB∥CD,表明甲、乙与水平面的动摩擦因数相同,又甲、乙质量相等,所以两物体受到的摩擦力大小相等,所以选项C正确,D错误;

因为整个运动过程,物体的动量改变量为零,所以推力的冲量大小等于物体受到的摩擦力的冲量大小,由图可知甲的运动时间小于乙的运动时间,所以甲的摩擦力的冲量小于乙的摩擦力的冲量,则F1的冲量小于F2的冲量,所以选项A、B错误。

答案:C

8.在水平力F=30 N的作用下,质量m=5 kg的物体由静止开始沿水平面运动。已知物体与水平面间的动摩擦因数μ=0.2,若F作用6 s后撤去,撤去F后物体还能向前运动多长时间才停止?(g

取10 m/s2)

解析:解法一:用动量定理求解,分段处理。

选物体作为研究对象,对于撤去F前物体做匀加速运动的过程,受力情况如图甲所示,始态速度为零,终态速度为v。取水平力F的方向为正方向,根据动量定理有(F-μmg)t1=mv-0,对于撤去F后,物体做匀减速运动的过程,受力情况如图乙所示,始态速度为v,终态速度为零。根据动量定理有

-μmgt2=0-mv。

以上两式联立解得

t2=t1=×6 s=12 s。

解法二:用动量定理求解,研究全过程。

选物体作为研究对象,研究整个运动过程,这个过程的始、终状态的物体速度都等于零。

取水平力F的方向为正方向,根据动量定理得(F-μmg)t1+(-μmg)t2=0

解得t2=t1=×6 s=12 s。

答案:12 s

9,与另一辆迎面驶来的轿车相撞,两车车身因相互挤压,皆缩短了0.5 m,据测算两车相撞前速度约为30 m/s,则:

(1)假设两车相撞时人与车一起做匀减速运动,试求车祸中车内质量约60 kg的人受到的平均

冲力是多大;

(2)由于人系有的安全带在车祸过程中与人体的作用时间是1 s,求这时人体受到的平均冲力为多大。

解析:(1)两车相撞时认为人与车一起做匀减速运动直到停止,位移为0.5 m,设运动的时间为t,则

由x=t得,t= s。

根据动量定理Ft=Δp=mv0

解得F= N=5.4×104 N。

(2)若人系有安全带,则

F'= N=1.8×103 N。

答案:(1)5.4×104 N(2)1.8×103 N

二、B组(20分钟)

1.物体在恒定的合力F作用下做直线运动,在时间t1内速度由0增大到v,在时间t2内速度由v 增大到2v。设F在t1内做的功是W1,冲量是I1;在t2内做的功是W2,冲量是I2,那么()

A.I1

B.I1

C.I1=I2,W1=W2

D.I1=I2,W1

解析:由动量定理得I1=Ft1=mv-0=mv,I2=Ft2=m·2v-m·v=mv,故I1=I2;由动能定理得W1=mv2-

0=mv2,W2=m(2v)2-mv2=mv2,即W1

答案:D

2.

质量为m的物体静止在光滑水平面上,从t=0时刻开始受到水平力的作用。力的大小F与时间t的关系如图所示,力的方向保持不变,则()

A.3t0时刻的瞬时功率为

B.3t0时刻的瞬时功率为

C.在t=0到3t0这段时间内,水平力的平均功率为

D.在t=0到3t0这段时间内,水平力的平均功率为

解析:方法一:0~2t0内物体的加速度为a=,2t0时刻的速度为v1=a·2t0=,在3t0时刻的瞬时速度v2=v1+3a·t0=,则3t0时刻的瞬时功率为P=3F0·,选项A错误,选项B正确;在t=0到3t0这段时间内,由动能定理可得W=ΔE k=,则这段时间内的平均功率,选项C错误,选项D正确。

方法二:根据“面积法”或动量定理,F02t0+3F0t0=mv2,得v2=,则3t0时刻的瞬时功率为P=3F0·,选项A错误,选项B正确;在t=0到3t0这段时间内,由动能定理可得W=ΔE k=,则这段时间内的平均

功率,选项C错误,选项D正确。

答案:BD

3.一粒钢珠从静止状态开始自由下落,然后陷入泥潭中。若把在空中下落的过程称为过程Ⅰ,

进入泥潭直到停止的过程称为过程Ⅱ,则以下说法正确的是()

A.过程Ⅰ中钢珠的动量的改变量等于重力的冲量

B.过程Ⅱ中阻力的冲量的大小等于过程Ⅰ中重力的冲量的大小

C.Ⅰ、Ⅱ两个过程中合外力的总冲量等于零

D.Ⅰ、Ⅱ两个过程中合外力的总冲量不等于零

E.过程Ⅱ中钢珠的动量改变量的大小等于过程Ⅰ中重力的冲量大小

解析:过程Ⅰ钢珠只受重力,故只有重力的冲量,由动量定理得,A对;整个过程的动量改变量为零,故过程Ⅱ中合力的冲量的大小等于过程Ⅰ中重力的冲量的大小,B、D错,C、E对。

答案:ACE

4.甲、乙两个物体动量随时间变化的图象如图所示,图象对应的物体的运动过程可能是()

A.甲物体可能做匀加速运动

B.甲物体可能做竖直上抛运动

C.乙物体可能做匀变速运动

D.乙物体可能做水平直线运动时遇到了一端固定的弹簧

解析:甲物体的动量随时间的变化图象是一条直线,其斜率恒定不变,说明物体受到恒定的合外力作用,由图线可以看出甲物体的动量先减小然后反向增大,则甲物体做匀变速直线运动,与竖直上抛运动类似,所以选项B正确。乙物体的动量随时间的变化规律是一条曲线,曲线的斜率先增大后减小,则乙物体在运动过程中受到的合外力先增大后减小。由图线还可以看出,乙物体的动量先正方向减小到零,然后反方向增大。由此可知乙物体的运动是一个变加速运动,与水平面上的小球运动时遇到一端固定的弹簧的情况类似,所以选项D正确。

答案:BD

5.质量为m的物体静止在足够大的水平面上,物体与桌面的动摩擦因数为μ,有一水平恒力作用于物体上,并使之加速前进,经时间t1后去掉此恒力,求物体运动的总时间t。

解析:方法一:物体的运动可分为两个阶段,第一阶段受两个力F、F f的作用,时间t1,物体由A 运动到B速度达到v1;第二阶段物体只受F f的作用,时间为t2,由B运动到C,速度由v1变为0。

设向右为正,据动量定理:

第一阶段:(F-F f)t1=mv1-0=mv1

第二阶段:-F f·t2=0-mv1=-mv1

两式相加:F·t1-F f(t1+t2)=0

因为F f=μmg,代入上式,可求出t2=

所以t总=t1+t2=。

方法二:把两个阶段当成一个过程来看:F作用t1时间,μmg则作用了t总时间,动量变化

Δp=0。

F·t1-μmgt总=0,t总=。

答案:

60.5 kg的铁锤把钉子钉进木头里,打击时铁锤的速度v=4.0 m/s,如果打击后铁锤的速度变为0,打击的作用时间是0.01 s,那么:

(1)不计铁锤受的重力,铁锤钉钉子时,钉子受到的平均作用力是多大?

(2)考虑铁锤受的重力,铁锤钉钉子时,钉子受到的平均作用力又是多大?(g取10 m/s2)

(3)比较(1)和(2),讨论是否要忽略铁锤的重力。

解析:(1)以铁锤为研究对象,不计重力时,只受钉子的作用力,方向竖直向上,设为F1,取竖直向上为正,由动量定理可得F1t=0-mv

所以F1=- N=200 N,方向竖直向上。

由牛顿第三定律知,铁锤钉钉子的作用力为200 N,方向竖直向下。

(2)若考虑重力,设此时受钉子的作用力为F2,对铁锤应用动量定理,取竖直向上为正。

(F2-mg)t=0-mv

F2=- N+0.5×10 N=205 N,方向竖直向上。

由牛顿第三定律知,此时铁锤钉钉子的作用力为205 N,方向竖直向下。

(3)比较F1与F2,其相对误差为×100%=2.5%,可见本题中铁锤的重力可忽略。

答案:(1)200 N,方向竖直向下

(2)205 N,方向竖直向下

(3)见解析

高中物理实验总结梳理

高中物理实验总结梳理 实验七:验证机械能守恒定律【实验目的】验证机械能守恒定律【实验原理】在只有重力作用的自由落体运动中,物体的重力势能和动能可以互相转化,但总机械能守恒。方法(1):若某一时刻物体下落的瞬时速度为v,下落高度为h,则应有:,借助打点计时器,测出重物某时刻的下落高度h和该时刻的瞬时速度v,即可验证机械能是否守恒,实验装置如图:方法(2):任意找两点A、B,分别测出两点的速度大小vA、vB以及两点之间的距离d。若物体的机械能守恒,应有。测定第n点的瞬时速度的方法是:测出第n点的相邻前、后两段相等时间T 内下落的距离Sn和Sn+1,由公式,或由算出。【实验器材】铁架台(带铁夹);打点计时器;重锤(带纸带夹子);纸带数条;复写纸片;导线;毫米刻度尺。除了上述器材外,还必须有电源。【实验步骤】1、按图把打点计时器安装在铁架台上,用导线把打点计时器与学生电源连接好。2、把纸带的一端在重锤上用夹子固定好,另一端穿过计时器限位孔,用手竖直提起纸带使重锤停靠在打点计时器附近。3、接通电源,松开纸带,让重锤自由下落。4、重复几次,得到3~5条打好点的纸带。5、在打好点的纸带中挑选点迹清晰的一条纸带,在起始点标上0,以后各依次标1,2,3,......用刻度尺测出对应下落高度h1、h2、h3、......。6、应用公式计算各点对应的瞬时速度v1、v2、v3、......。7、计算各点对应的势能减少量mgh和动能的增加量,进行比较。【注意事项】1、打点计时器安装时,必须使两纸带限拉孔在同一竖直线上,以减小摩擦阻力。2、实验时,需保持提纸带的手不动,待接通电源、让打点计时器工作正常后才松开纸带让重锤下落,以保证第一个点是一个清晰的小点。3、选用纸带时应尽量挑点迹清晰的纸带。4、测量下落高度时,都必须从起始点算起,不能搞错,为了减小测量h时的相对误差,选取的各个计数点要离起始点远一些,纸带也不宜过长,有效长度可在60cm~80cm以内。5、因不需要知道动能和势能的具体数值,所以不需要测量重物的质量。【实验数据记录和处理】【问题与讨论】1.比较方法(1)与方法(2)的不同,你认为用哪种方法好?2.打点计时器安装时,必须使两纸带限位孔在同一竖直线上,为什么?实验时必须选用质量较大的重锤,为什么?3.动能和重力势能都跟物体的质量 有关,本实验为什么不称物体的质量?4.本实验要用到重力加速度g。g取9.8m/s2呢?还是取当地的重力加速度值?或者通过实验打出的纸带,用计算出来?实验八:用单摆测定重力加速度【实验目的】1.利用单摆测定当地的重力加速度。2.巩固和加深对单摆周期公式的理解。【实验原理】单摆在偏角很小时的摆动,可以看成是简谐运动。其固有周期为,由此可得g=,据此,只要测出摆长和周期T,即可计算出当地的重力加速度值。【实验器材】铁架台及铁夹,中心有小孔的金属小球;约1m的细线;秒表,游标卡尺,刻度尺。【实验步骤】1.在

高中物理动量守恒定律解题技巧及练习题

高中物理动量守恒定律解题技巧及练习题 一、高考物理精讲专题动量守恒定律 1.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。已知磁场的磁感应强度B=0.5T ,导轨的间距与导体棒的长度均为L=0.5m ,导轨的半径r=0.5m ,导体棒的电阻R=1Ω,其余电阻均不计,重力加速度g=10m/s 2,不计空气阻力。 (1)求导体棒刚进入凹槽时的速度大小; (2)求导体棒从开始下落到最终静止的过程中系统产生的热量; (3)若导体棒从开始下落到第一次通过导轨最低点的过程中产生的热量为16J ,求导体棒第一次通过最低点时回路中的电功率。 【答案】(1) 210/v m s = (2)25J (3)9W 4 P = 【解析】 【详解】 解:(1)根据机械能守恒定律,可得:212 mgh mv = 解得导体棒刚进入凹槽时的速度大小:210/v m s = (2)导体棒早凹槽导轨上运动过程中发生电磁感应现象,产生感应电流,最终整个系统处于静止,圆柱体停在凹槽最低点 根据能力守恒可知,整个过程中系统产生的热量:()25Q mg h r J =+= (3)设导体棒第一次通过最低点时速度大小为1v ,凹槽速度大小为2v ,导体棒在凹槽内运动时系统在水平方向动量守恒,故有:12mv Mv = 由能量守恒可得: 22 12111()22 mv mv mg h r Q +=+- 导体棒第一次通过最低点时感应电动势:12E BLv BLv =+ 回路电功率:2 E P R =

2018高中物理实验总结【最新完整版】

2018高中物理实验总结【最新完整版】 高中物理实验总结【最新完整版】 应特别注意的问题:验证机械能守恒定律中不需要选择第一个间距等于2mm的纸带.这个实验的正确实验步骤是先闭合电源开关,启动打点计时器,待打点计时器的工作稳定后,再释放重锤,使它自由落下,同时纸带打出一系列点迹.按这种方法操作,在未释放纸带前,打点计时器已经在纸带上打出点迹,但都打在同一点上,这就是第一点.由于开始释放的时刻是不确定的,从开始释放到打第二个点的时间一定小于0.02s,但具体时间不确定,因此第一点与第二点的距离只能知道一定小于2mm(如果这段时间恰等于0.02s,则这段位移s=gt2/2=(100.022/2)m=210-3m=2mm),但不能知道它的确切数值,也不需要知道它的确切数值.不论第一点与第二点的间距是否等于2mm,它都是从打第一点处开始作自由落体运动的,因此只要测量出第一点O与后面某一点P间的距离h,再测出打P点时的速度v,如果: gh ( ), 就算验证了这个过程中机械能守恒.

(2)实验仪器 要求掌握的实验仪器主要有:刻度尺、游标卡尺、螺旋测微器(千分尺)、天平、停表(秒表)、打点计时器(电火花计时仪)、弹簧秤、温度表、电流表、电压表、多用电表、滑动变阻器、电阻箱,等等。对于使用新教材的省市,还要加上示波器等。对这些仪器,都要弄清其原理、会正确使用它们,包括测量仪器的正确读数。 (3)实验装置 对电学实验主要指电路图。 下面几个是应特别注意的: ①验证牛顿第二定律的实验,如何平衡摩擦力是关键。 ②研究平抛物体的运动及碰撞中的动量守恒的实验,这两个实验都要使用斜槽轨道,让小球从轨道上端无初速滚下,然后平抛出去,在安装装置时要注意保证轨道末端必须水平,如果实验要进行多次,每次小球应从同一高度处下落,因此

第2讲 动量守恒定律

第2讲动量守恒定律 主干梳理对点激活 知识点动量守恒定律及其应用Ⅱ 1.几个相关概念 (1)系统:在物理学中,将相互作用的几个物体所组成的物体组称为系统。 (2)内力:系统内各物体之间的相互作用力叫做内力。 (3)外力:系统以外的其他物体对系统的作用力叫做外力。 2.动量守恒定律 (1)内容:如果一个系统01不受外力,或者02所受外力的矢量和为0,这个系统的总动量保持不变,这就是动量守恒定律。 (2)表达式 ①p=03p′,系统相互作用前的总动量p等于相互作用后的总动量p′。 ②m1v1+m2v2=04m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和。 ③Δp1=05-Δp2,相互作用的两个物体动量的增量等大反向。 ④Δp=060,系统总动量的增量为零。 (3)适用条件 ①理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒。 ②近似守恒:系统受到的合外力不为零,但当内力远大于外力时,系统的动量可近似看成守恒。 ③某方向守恒:系统在某个方向上所受合外力为零时,系统在该方向上动量守恒。 知识点弹性碰撞和非弹性碰撞Ⅰ 1.碰撞 01很短,02很大的现象。 2.特点

在碰撞现象中,一般都满足内力03远大于外力,可认为相互碰撞的系统动量守恒。 3.分类 动量是否守恒机械能是否守恒 弹性碰撞守恒04守恒 非弹性碰撞守恒有损失 完全非弹性碰撞守恒损失05最大 4.散射 微观粒子相互接近时并不像宏观物体那样“接触”,微观粒子的碰撞又叫做散射。 知识点反冲爆炸Ⅰ 1.反冲现象 (1)在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。这类问题相互作用的过程中系统的动能01增大,且常伴有其他形式的能向动能的转化。 (2)反冲运动的过程中,一般合外力为零或外力的作用02远小于物体间的相互作用力,可认为系统的动量守恒,可利用动量守恒定律来处理。 2.爆炸问题 爆炸与碰撞类似,物体间的相互作用力很大,且03远大于系统所受的外力,所以系统动量04守恒,爆炸过程中位移很小,可忽略不计,爆炸后物体从相互作用前的位置以新的动量开始运动。 一堵点疏通 1.系统动量不变是指系统的动量大小和方向都不变。() 2.系统的动量守恒时,机械能也一定守恒。()

高中物理-动量守恒定律教案

高中物理-动量守恒定律(一) ★新课标要求 (一)知识与技能 理解动量守恒定律的确切含义和表达式,知道定律的适用条件和适用范围 (二)过程与方法 在理解动量守恒定律的确切含义的基础上正确区分内力和外力 (三)情感、态度与价值观 培养逻辑思维能力,会应用动量守恒定律分析计算有关问题 ★教学重点 动量的概念和动量守恒定律 ★教学难点 动量的变化和动量守恒的条件. ★教学方法 教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1 课时 ★教学过程 (一)引入新课 上节课的探究使我们看到,不论哪一种形式的碰撞,碰撞前后mυ的矢量和保持不变,因此mυ很可能具有特别的物理意义。 (二)进行新课 1.动量(momentum)及其变化 (1)动量的定义:物体的质量与速度的乘积,称为(物体的)动量。记为p=mv. 单位:kg·m/s 读作“千克米每秒”。 理解要点: ①状态量:动量包含了“参与运动的物质”与“运动速度”两方面的信息,反映了由这两方面共同决定的物体的运动状态,具有瞬时性。 师:大家知道,速度也是个状态量,但它是个运动学概念,只反映运动的快慢和方向,而运动,归根结底是物质的运动,没有了物质便没有运动.显然地,动量包含了“参与运动的物质”和“运动速度”两方面的信息,更能从本质上揭示物体的运动状态,是一个动力学概念. ②矢量性:动量的方向与速度方向一致。 师:综上所述:我们用动量来描述运动物体所能产生的机械效果强弱以及这个效果发生

的方向,动量的大小等于质量和速度的乘积,动量的方向与速度方向一致。 (2)动量的变化量: 定义:若运动物体在某一过程的始、末动量分别为p和p′,则称:△p= p′-p为物体在该过程中的动量变化。 强调指出:动量变化△p是矢量。方向与速度变化量△v相同。 一维情况下:Δp=mΔυ= mυ2- mΔυ1矢量差 【例1(投影)】 一个质量是0.1kg的钢球,以6m/s的速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿着同一直线以6m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化?变化了多少? 【学生讨论,自己完成。老师重点引导学生分析题意,分析物理情景,规范答题过程,详细过程见教材,解答略】 2.系统内力和外力 【学生阅读讨论,什么是系统?什么是内力和外力?】 (1)系统:相互作用的物体组成系统。 (2)内力:系统内物体相互间的作用力 (3)外力:外物对系统内物体的作用力 〖教师对上述概念给予足够的解释,引发学生思考和讨论,加强理解〗 分析上节课两球碰撞得出的结论的条件: 两球碰撞时除了它们相互间的作用力(系统的内力)外,还受到各自的重力和支持力的作用,使它们彼此平衡。气垫导轨与两滑块间的摩擦可以不计,所以说m1和m2系统不受外力,或说它们所受的合外力为零。 3.动量守恒定律(law of conservation of momentum) (1)内容:一个系统不受外力或者所受外力的和为零,这个系统的总动量保持不变。这个结论叫做动量守恒定律。 公式:m1υ1+ m2υ2= m1υ1′+ m2υ2′ (2)注意点: ①研究对象:几个相互作用的物体组成的系统(如:碰撞)。 ②矢量性:以上表达式是矢量表达式,列式前应先规定正方向; ③同一性(即所用速度都是相对同一参考系、同一时刻而言的) ④条件:系统不受外力,或受合外力为0。要正确区分内力和外力;当F内>>F外时,系统动量可视为守恒; 思考与讨论: 如图所示,子弹打进与固定于墙壁的弹簧相连的木块, 此系统从子弹开始入射木块到弹簧压缩到最短的过程中,

高中物理实验的开发与改进推荐

高中物理实验的改进与开发 [摘要]:物理学是一门以实验为基础的自然科学,物理实验在物理教学中有着举足轻重的作用,但在实际教学中,很多传统实验需要我们去改进、去开发。通过长期的教学实践,笔者认为实验的改进可以从实验方法、实验手段、实验设备三个方面进行;实验的开发可以从解决疑难问题,开发课本实验的空白入手。 [关键词]:物理实验改进开发 一、问题提出的背景与意义 物理学是一门以实验为基础的自然科学,一部物理学的发展历史,就是一部观察实验、总结规律、应用规律的历史。实验教学是物理学科教学的重要内容,实验教学既是物理知识教学的基础,也是物理课堂教学中实施素质教育的一种主要渠道和有效手段。 但在实际教学中,实验教学并不乐观。主要存在以下几个方面的问题: 1、仪器陈旧、更新慢、区域性差异大。 大部分学校的实验仪器陈旧,区域性差异很明显。一般来说较发达地区实验室配备较好,偏远地区的学校配备较差。像DISLab传感器,一些城市中的学校都已建立了数字化实验室,而下面的学校有些连一套都没有,好一些的有个两三套可以做演示实验。这既与学校的经费、学校的重视程度有关,也与实验员的差异有关,由于信息的相对闭塞导致很多实验员不了解一些实验的改进、新的仪器、新的材料的使用等因素,导致实验器材的更新较慢,比如传感器这一章的教学,需要的电子元件在装备中心订不到,很多学校到现在也没有相关的电子元件,无法进行演示实验,而较为发达的地区到一些电子市场就可以买到。 2、部分实验需要改进、完善 物理书中给出的实验有很大部分实际操作中很难成功,比如牛顿第二定律的演示实验和学生实验,做出来的结果误差很大;比如利用传感器显示电容的充放电,由于电流传感器非常灵敏,很多时候无法成功,原因是电路中受到的干扰较多;比如电场演示库仑定律的实验中,泡沫带电后很快就跑掉。再如电磁感应中切割磁感线时电流不明显,演示旋转的液体时,液体的转动不明显……。像这样的一些实验需要我们教师去改进,去完善。

高中物理必修2第四章综合练习试卷

第四章综合练习试卷 基础部分 一、单项选择题(每小题只有一个选项是正确的,每小题4分,共24分) 1.物体在下列运动过程中,机械能守恒的是 A.直升机载物匀速上升 B.起重机匀速下放物体 C.物体沿光滑斜面加速下滑 D.电梯载物匀加速上升 答案:C 2.在同一高度将质量相等的三个小球以大小相同的速度分别竖直上抛、竖直下抛、水平抛出,不计空气阻力.从抛出到落地过程中,三球 A.运动时间相同 B.落地时的速度相同 C.落地时重力的功率相同 D.落地时的动能相同 答案:D 3.关于功率的概念,下列说法中正确的是 A.功率是描述力对物体做功多少的物理量 B.由P =W/t 可知,W 越大,功率越大 C.由P =Fv 可知,力越大,速度越大,则功率越大 D.某个力对物体做功越快,它的功率就一定大 答案:D 4.甲、乙两物体在同一地点分别从4h 与h 的高处开始做自由落体运动.若甲的 质量是乙的4 1 倍,则下列说法中正确的是

A.甲、乙两物体落地时速度相等 B.落地时甲的速度是乙的4倍 C.甲、乙两物体同时落地 D.甲在空中运动时间是乙的4倍 答案:A 5.在距地面h 高处,以初速度v 0沿水平方向抛出一个物体,若忽略空气阻力,它运动的轨迹如图4-34所示.那么 图4-34 A.物体在c 点比在a 点的机械能大 B.物体在a 点比在c 点的动能大 C.物体在a 、b 、c 三点的机械能相等 D.物体在a 、b 、c 三点的动能相等 答案:C 6.一物体由H 高处自由落下,当物体的动能等于势能时,物体运动的时间为 A. g H 2 B. g H C.g H 2 D. H g 答案:B 二、多项选择题(每小题有两个或两个以上选项正确,每小题6分,共24分) 7.甲、乙两个质量相同的物体,用大小相等的力F 分别拉两个物体在水平面上从静止开始移动相同的距离s.如图4-35所示,甲在光滑面上,乙在粗糙面上,则对于力F 对甲、乙做的功和甲、乙两物体获得的动能,下面说法中正确的是

最牛高中物理实验电阻测量方法归纳与总结

恒定电流 电阻测量方法归纳 电阻测量一直是高中物理电学实验中的重头戏,高中物理教材中编排的电学实验对电阻的测量仅仅给出了一个大概的框架,实际上电阻的测量方法很多,了解并掌握电阻的测量方法可以使学生对电学知识的理解更加深刻和透彻。 一、基本方法-----伏安法(V-A 法) 伏安法测量电阻主要涉及测量电路的选择,控制电路的选择和实验器材的选择。 1、原理:根据部分电路欧姆定律。 2、控制电路的选择 控制电路有两种:一种是限流电路(如图1);另一种是分压电路。(如图2) (1)限流电路是将电源和可变电阻串联,通过改变电阻的阻值,以达到改变电路的 电流,但电流的改变是有一定范围的。其优点是节省能量;一般在两种控制电路都可 以选择的时候,优先考虑限流电路。 (2)分压电路是将电源和可变电阻的总值串联起来,再从可变电阻的两个接线柱引 出导线。如图2,其输出电压由ap 之间的电阻决定,这样其输出电压的范围可以从零 开始变化到接近于电源的电动势。在下列三种情况下,一定要使用分压电路: ① 要求测量数值从零开始变化或在坐标图中画出图线。 ② 滑动变阻器的总值比待测电阻的阻值小得多。 ③ 电流表和电压表的量程比电路中的电压和电流小。 3、测量电路 由于伏特表、安培表存在电阻,所以测量电路有两种:即电流表内接和电流表外 接。 (1)电流表内接和电流表外接的电路图分别见图3、图4 (2)电流表内、外接法的选择, ①、已知R V 、 R A 及待测电阻R X 的大致阻值时可以利用相对误差判断 若A X R R >X V R R ,选用内接法,A X R R <X V R R ,选用外接法 ②不知R V 、 R A 及待测电阻R X ,采用尝试法,见图5,当电压表的一端分别接在 a 、 b 两点时,如电流表示数有明显变化,用内接法;电压表示数有明显变化,用外接 法。 (3)误差分析: 内接时误差是由于电流表分压引起的,其测量值偏大,即 R 测 >R 真(R 测=R A +R X ); 外接时误差是由于电压表分流引起的,其测量值偏小,即 R 测<R 真(V X V X R R R R R += 测) 4、伏安法测电阻的电路的改进 图5 图 6 0 图 1 图2 图 3 图 4 图 7 0

高中物理动量守恒定律练习题及答案及解析

高中物理动量守恒定律练习题及答案及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,但不粘连,它们到达最低点后又一起向上运动,并恰好回到O 点(A 、B 均视为质点),重力加速度为g .求: (1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能; (3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆弧轨道与斜面相切 于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,则v 至少为多大时物块A 能沿圆弧轨道运动到Q 点.(计算结果可用根式表示) 【答案】20132v gx =01 4 P E mgx =0(2043)v gx =+【解析】 试题分析:(1)A 与B 球碰撞前后,A 球的速度分别是v 1和v 2,因A 球滑下过程中,机械能守恒,有: mg (3x 0)sin30°= 1 2 mv 12 解得:103v gx = 又因A 与B 球碰撞过程中,动量守恒,有:mv 1=2mv 2…② 联立①②得:21011 322 v v gx == (2)碰后,A 、B 和弹簧组成的系统在运动过程中,机械能守恒. 则有:E P + 1 2 ?2mv 22=0+2mg?x 0sin30° 解得:E P =2mg?x 0sin30°? 1 2?2mv 22=mgx 0?34 mgx 0=14mgx 0…③ (3)设物块在最高点C 的速度是v C ,

【高中物理实验教学案例】 高中物理实验改进案例

【高中物理实验教学案例】高中物理实验改进案例 高中物理实验对于物理学的发展、物理教学的开展和学生的成长都有很大帮助。下面小编给高中学生带来物理实验教学案例,希望对你有帮助。物理实验教学案例 一、案例研究的背景和目的 本案例的研究将结合本校的实际情况,体现时代发展对中学物理实验教学的要求。其中以中学物理教学大纲为准绳,以新课改的高中物理教材中的演示实验、学生实验为基础,坚持理论与实验相结合的原则,灵活贯彻学以致用、实事求是、因材施教、突出个性的教学方法,使学生通过实验获得物理学基础知识,形成基本的物理学观点,初步掌握研究自然科学的方法之一——实验法,为学生的终生学习和工作奠定良好的基础。 二、案例过程的总结及认识 1.建议增加演示实验,优化实验过程要持久地保持学生学习物理的兴趣,光靠课本上的演示实验是不够的,应充分挖掘身边现有器材甚至是很不起眼的器材,结合特定的物理情境,增加实验的趣味性、直观性、新颖性、科学性,激发学生的好奇心和求知欲,引发学生思维,引导学生发现问题,解决问题。教材有一些内容或实验只作为“做一做”或课外实验来处理,实际上,很多内容都可以通过仪器和方法的改进来优化为演示实验。比如在“超重和失重”一节中,课后的“做一做”就可以改进为演示实验。找一个用过的易拉罐、金属罐头盒或塑料瓶,在靠近底部的侧面打一个洞,用手指按住洞,在里面装上水。移开手指,水就从洞中射出来。如果放开手,让罐子自由落下,在下落过程中,水将不再从洞中射出。 对于演示超重失重现象还可以做如下的改进: 在易拉罐底部开一个出水孔,在罐中水位较低时,由于表面张力的作用,水不从小孔流出。若使罐子突然向上加速运动,水就会从孔中喷出,由此可以说明超重现象。 用透明的塑料可乐瓶,里面装入大半瓶水,盖上瓶塞,由于重力的作用,空气在水面的上方,水面是平的。将塑料瓶向上抛出,可以看到,瓶中的空气在水中形成了一个或几个大小不同的空气泡,呈球形。 在悬挂的木板上放一块砖,在砖和木板之间放一条纸带。静止时抽动纸带,由于有比较大的压力而使纸带断裂。如果剪断吊砖的悬挂线,而使砖块和木板自由下落,则抓住纸带的手可以不费力地把纸带完好地抽出。教材的有些章节对于公式或定律的导出几乎是灌输式的,在这种地方,我们完全有必要加入一些形象而又简单的演示实验来说明定律或公式得出的原因或用以说明验证。 2.变部分演示实验为学生实验,培养学生创新的能力把演示实验改为学生实验,让学生去做、去观察、去想、去感悟,提高学生主动参与探究的热情。这样在整个教学过程中,不仅可使学生的观察、实验能力得到培养和提高,而且能充分展现物理课教学的特点和魅力。 将部分规律课由老师演示探究过程改为学生分组探究体验高中物理教材中涉及的规律有很多,比如“牛顿第二定律”、“力的平行四边形定则”、“自由落体运动”、“机械能守恒定律”、“动量守恒定律”、“单摆的等时性”、“胡克定律”、“电阻定律”、“闭合电路欧姆定律”、“楞次定律”等等。对于这些规律课,由于以前受到实验条件的限制,及“做实验不如讲实验”观念的影响,物理教师大多的处理方法是采用“老师讲解或演示探究过程或方法,学生听、记”的模式,也就是人们常说的“填鸭式”教学。这种教学方法在很大程度上扼杀了学生的创造性和主动思考的能力。我们曾经做过这样的改革:请三位学生到讲台上演示探究某个规律的全过程,并将实验所得数据全都记录在黑板上。目的是想体现学生主体探究地位。但是我们发现这样的模式还是存在一个很大的弊端——效率太低。对于演示的同学来讲,真正是得到了主人翁式的探索体验,但是对占更多数的讲台底下的同学,效率则是很低的。从整体来讲,这种模式收到的效果仍然不理想。为此我们尝试采取了学生分组探究的模式进行尝试,

高中物理必修二知识点整理

德胜学校高一物理校本学案 粤教版高中物理必修二知识点汇总 时间 班级 姓名 第一章 抛体运动 一、曲线运动 1.曲线运动的速度方向 做曲线运动的物体,在某点的速度方向,就是通过这一点的轨迹的切线方向.物体在曲线运动中 的速度方向时刻在改变,所以曲线运动一定是变速运动.(说明:曲线运动是变速运动,只是说明物 体具有加速度,但加速度不一定是变化的,例如,抛物运动都是匀变速曲线运动.) 2.物体做曲线运动的条件: 物体所受的合外力的方向与速度方向不在同一直线上,也就是加速度方向与速度方向不在同一直 线上.当物体受到的合外力的方向与速度方向的夹角为锐角时,物体做曲线运动的速率将增大;当物 体受到的合外力的方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小;当物体受到的合 外力的方向与速度的方向垂直时,该力只改变速度方向,不改变速度的大小. 3.曲线运动的轨迹 做曲线运动的物体,其轨迹向合外力所指一方弯曲,若已知物体的运动轨迹,可判断出物体所受 合力的大致方向.速度和加速度在轨迹两侧,轨迹向力的方向弯曲,但不会达到力的方向. 二、运动的合成与分解的方法 1.运动的合成与分解:平行四边形定则,等效分解。 2.运动分解的基本方法 (1)根据运动的实际效果将描述合运动规律的各物理量(位移、速度、加速度)按平行四边形定则分别分解,或进行正交分解. (2)两直线运动的合运动的性质和轨迹,由两分运动的性质及合初速度与合加速度的方向关系决定. ①根据合加速度是否变化判定合运动是匀变速运动还是非匀变速运动:若合加速度不变则为匀变 速运动;若合加速度变化(包括大小或方向)则为非匀变速运动. ②根据合加速度与合初速度是否共线判定合运动是直线运动还是曲线运动:若合加速度与合初速 度的方向在同一直线上则为直线运动,否则为曲线运动. ③小船过河的两类问题:最短时间过河以及最短路程过河。 如图所示,用v 1表示船速,v 2表示水速.我们讨论几个关于渡河的问题. θ sin 11s v d t v == ,船渡河的位移短直河岸),渡河时间最垂直河岸时(即船头垂当以最小位移渡河:当船在静水中的速度 1v 大于水流速度2v 时,小船可以垂直渡河,显然渡河的最小位移s 等于河宽d ,船头

高中物理动量守恒定律解题技巧讲解及练习题(含答案)

高中物理动量守恒定律解题技巧讲解及练习题(含答案) 一、高考物理精讲专题动量守恒定律 1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞. ①求弹簧恢复原长时乙的速度大小; ②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N 【解析】 【详解】 (1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得: 又知 联立以上方程可得,方向向右。 (2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为 由动量定理可得,挡板对乙滑块冲量的最大值为: 2.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图象如图乙所示.求: ①物块C的质量? ②B离开墙后的运动过程中弹簧具有的最大弹性势能E P? 【答案】(1)2kg(2)9J 【解析】 试题分析:①由图知,C与A碰前速度为v1=9 m/s,碰后速度为v2=3 m/s,C与A碰撞过程动量守恒.m c v1=(m A+m C)v2 即m c=2 kg ②12 s时B离开墙壁,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大

高中物理实验的创新性设计

高中物理实验的创新性设 计 Newly compiled on November 23, 2020

高中物理实验的创新性设计 摘要:为了更好地培养学生的科学素养与创新能力,教师需要在教学中设计创新性的 实验。这要求教师提高自身的知识储量,培养自身的创新意识,掌握一定的创新方法。缺点列举法、希望点列举法、信息交合法等创新技法可为物理实验的创新性设计提供广阔的思路,但不应忘记创新性设计的目的——为教学目标的实现服务。同时,安全性、科学性、实用性、适用性等原则仍是物理创新性设计时所要考虑的最基本原则。 关键词:物理实验;创新性设计;缺点列举法;希望点列举法;信息交合法 一、物理实验创新性设计的意义 作为一门建立在实验基础上的基础自然学科,物理学在研究物质的基本结构、最普遍的相互作用、最一般的运动规律之外,也注重对所采用的实验手段和思维方法的研究。因此,物理的教学始终离不开物理实验的教学:有趣的实验现象是激发学生探索自然、理解自然的兴趣与热情的催化剂,亲手的操作是培养学生物理技能和实践能力的最佳途径;此外亲身的实验经历能让学生体验科学探究的过程、了解科学研究的方法,有助于提高学生的科学素养。 作为教学活动的主导者,教师首先要对实验在物理教学中的重要性有足够的认识,其次要充分利用教材中已有的实验资源,并能够够根据教学实际设计一些创新性的实验。这种创新性的实验设计可以是对教材已有实验的改进,以解决个别实验取材不易、操作不便、实验效果不明显等弊端;也可以是基于教学需要的全新设计,以弥补教材的不足,帮助学生构建一些重要的物理概念和物理规律。 物理实验的创新性设计,是教师秉承新课程标准课程开放性理念,由课程的复制者走向课程的创造者的有效尝试。它可以有效地促进学生自主地、富有个性地学习,对学生的科学探究能力、实践能力和创新意识的培养大有裨益。 二、物理实验创新性设计的方法

高一物理实验题解题方法归纳

高一物理实验题解题方法归纳 实验,是自然科学的研究方法之一,高中物理实验是解决物理问题的一种途径,学好高中物理实验的复就至关重要。下面是给大家带来的高一物理实验题方法,希望能帮助到大家! 高一物理实验题方法1 常用的高中物理实验方法之控制变量法 在高中物理实验中,常有多个因素在变化,造成规律不易表现出来,这时可以先控制一些物理量不变,依次研究某一个因素的影响和利用。控制变量法是科学探究中的重要思想方法,广泛地运用在各种科学探索和科学实验研究之中。 常用的高中物理实验方法之等效替代法 等效替代法是在保证某种效果相同的前提下,将实际的、复杂的物理问题和物理过程转化为等效的、简单的、易于研究的物理实验问题和物理实验过程来研究和处理的方法。等效替代法是物理方法既是科学家研究问题的方法,也是高中学生在学习物理中常用的方法。 常用的高中物理实验方法之累积法

爱高中物理实验中把某些难以用常规仪器直接准确测量的物理量用累积的方法,将小量变大量,不仅可以便于测量,而且还可以提高测量的准确程度,减小误差。 常用的高中物理实验方法之放大法 对于高中物理实验中微小量或小变化的观察,可采用放大的方法。例如游标卡尺、放大镜、显微镜等仪器都是按放大原理制成的。 高一物理实验题方法2 解题技巧1.对于多体问题,要正确选取研究对象,善于寻找相互联系 选取研究对象和寻找相互联系是求解多体问题的两个关键。选取研究对象需根据不同的条件,或采用隔离法,即把研究对象从其所在的系统中抽取出来进行研究;或采用整体法,即把几个研究对象组成的系统作为整体来进行研究;或将隔离法与整体法交叉使用。 解题技巧2.对于多过程问题,要仔细观察过程特征,妥善运用物理规律 观察每一个过程特征和寻找过程之间的联系是求解多过程问题的两个关键。分析过程特征需仔细分析每个过程的约束条件,如物体的受力情况、状态参量等,以便运用相应的物理规律

高中物理动量守恒定律练习题及答案

高中物理动量守恒定律练习题及答案 一、高考物理精讲专题动量守恒定律 1.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求: (1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ; (2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1; (3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值. 【答案】(1)2 4.610N F N -=? (2)1 1.25B T = (3)127s 360 t π = ,001290143ββ==和 【解析】 【详解】 解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111 -22 m gl m v m v μ=- 解得:17m/s v = 碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v ' =+ 取向左为正方向,由题意11m/s v =-', 解得:24m/s v =

高中物理必修2第四章 抛体运动与圆周运动 万有引力定律专题 天体运动的“四个热点”问题

专题天体运动的“四个热点”问题 双星或多星模型 1.双星模型 (1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统。如图1所示。 图1 (2)特点 ①各自所需的向心力由彼此间的万有引力提供,即 Gm1m2 L2=m1ω 2 1 r1, Gm1m2 L2=m2ω 2 2 r2 ②两颗星的周期及角速度都相同,即T1=T2,ω1=ω2 ③两颗星的半径与它们之间的距离系为r1+r2=L (3)两颗星到圆心的距离r1、r2与星体质量成反比,即 m1 m2= r2 r1。 2.多星模型 模型 三星模型(正三角形排 列) 三星模型(直线等间距 排列) 四星模型 图示 向心力 的来源 另外两星球对其万有 引力的合力 另外两星球对其万有 引力的合力 另外三星球对其万有 引力的合力

合并的引力波。根据科学家们复原的过程,在两颗中子星合并前约100 s 时,它们相距约400 km,绕二者连线上的某点每秒转动12圈。将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星( ) A.质量之积 B.质量之和 C.速率之和 D.各自的自转角速度 【试题解析】由题意可知,合并前两中子星绕连线上某点每秒转动12圈,则两中子 星的周期相等,且均为T =112 s,两中子星的角速度均为ω=2πT ,两中子星构成了双 星模型,假设两中子星的质量分别为m 1、m 2,轨道半径分别为r 1、r 2,速率分别为v 1、 v 2,则有G m 1m 2L 2=m 1ω2r 1、G m 1m 2L 2=m 2ω2r 2,又r 1+r 2=L =400 km,解得m 1+m 2= ω2L 3 G ,A 错误,B 正确;又由v 1=ωr 1、v 2=ωr 2,则v 1+v 2=ω(r 1+r 2)=ωL ,C 正确;由题中的条件不能求解两中子星自转的角速度,D 错误。 【参考答案】BC 1.(2019·吉林模拟)我国发射的“悟空”号暗物质粒子探测卫星,三年来对暗物质的观测研究已处于世界领先地位。宇宙空间中两颗质量相等的星球绕其连线中心匀速转动时,理论计算的周期与实际观测周期不符,且T 理论T 观测 =k (k >1)。因此,科学家认为,在两星球之间存在暗物质。假设以两星球球心连线为直径的球体空间中均匀分布着暗物质(已知质量分布均匀的球体对外部质点的作用,等效于质量集中在球心处对质点的作用),两星球的质量均为m 。那么暗物质的质量为( ) A.k 2-28m B.k 2-14m C.(k 2-1)m D.(2k 2-1)m 【试题解析】双星均绕它们连线的中点做匀速圆周运动,令它们之间的距离为L , 由万有引力提供向心力得G m 2L 2=m 4π2T 2理论·L 2 ,解得T 理论=πL 2L Gm 。根据观测结果,星体的运动周期T 理论T 观测 =k ,这种差异可能是由双星之间均匀分布的暗物质引起的,又均

2021鲁科版选修第2节《动量守恒定律》word教案1

2021鲁科版选修第2节《动量守恒定律》word 教案1 【教学设计思想】 动量守恒定律的传统讲法是从牛顿第二定律和牛顿第三定律推导出动量守恒定律,或是通过大量的实验事实总结出动量守恒定律。传统讲法由于没有教师的演示实验,专门多学生对导出的动量守恒定律缺乏感性认识,不利于学生顺利地去认识现象,建立概念与规律,以及应用规律去解决具体问题。事实上,动量守恒定律并不依附于牛顿第二定律和第三定律,它本身是有实验基础的独立的物理定律。因此应通过演示实验,启发学生讨论并总结规律,有利于学生对物理规律的把握。 【教学目标设计】 1、知识与技能: (1)明白得动量守恒定律的确切含义和表达,明白定律的运用条件和适用范畴; (2)会利用牛顿运动定律推导动量守恒定律; (3)会用动量守恒定律解决简单的实际问题。 2、过程与方法: (1)通过对动量守恒定律的学习,了解归纳与演绎两种思维方法的应用; (2)明白动量守恒定律的实验探究方法。 3、情感态度与价值观: (1)培养学生自觉学习的能力,积极参与合作探究的能力; (2)培养实事求是、具体问题具体分析的科学态度和锲而不舍的探究精神; (3)使学生在学习过程中体验成功的欢乐; (4)培养学生将物理知识、物理规律进行横向比较与联系的适应,养成自主构建知识体系的意识。 【教学过程设计】

【分析评判】 本教学设计有如下突出特点: 按认知规律设计教学过程,突出对动量守恒定律的明白得,从实例入手,然后实验探究,理论推导等环节,得出动量守恒定律的表达方式(文字表达和数学表达),使学生对动量守恒定律的来龙去脉、确切涵义、适用条件有了清晰的认识,并通过课堂训练反馈,使学

高中物理动量守恒定律题20套(带答案)

高中物理动量守恒定律题20套(带答案) 一、高考物理精讲专题动量守恒定律 1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以0 2 v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ; (4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能. 【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)20 1532 mv E ?= 【解析】 【详解】 (1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有: mv 0=m 2 v +2mv B 解得v B = 4 v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量 2 220001 11()2()22224 v v mgL mv m m μ?=-- 解得20 516v gL μ= (3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有: 2 mv +mv B =2mv A 、C 系统机械能守恒: 22200111 ()()222242 v v mgR m m mv +-?= 解得2 64v R g = (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒

浅谈高中物理实验改进与创新的策略

龙源期刊网 https://www.wendangku.net/doc/bc1447010.html, 浅谈高中物理实验改进与创新的策略 作者:董明主 来源:《新课程学习·下》2015年第03期 摘要:高中物理实验是理论知识体系下的实验,只要学生掌握了相关的知识点就可以很 好地完成考试中的实验题,实验不会做也完全可以得高分。实验做得好,不一定能考得好。因此有许多老师对传统的实验进行改进与创新,其目的在于唤醒人们对物理实验的重视。通过问卷调查与分析,结合教学实践提出高中物理实验改进与创新的策略,以便更有针对性地对传统的物理实验进行改进与创新。 关键词:高中物理;新奇;主体地位 以了解中学物理实验教学开展的现实情况以及教师和学生对待物理实验的态度、认识以及体会为目的,开展了高中物理实验教学调查问卷,分析了高中物理实验教学中存在的一些现实问题,我发现高中物理实验的改进与创新要注重以下几个方面: 一、实验要尽量突出学生的主体地位,在实验现象上要尽量做到新奇 高中生都有好奇心,因为好奇所以才有一探究竟的动机。课本上有很多传统而且经典的实验。这些实验大多都是以老师为中心,通过讲授的方式直接灌输给学生。实验的内容主要是让学生进行简单的、机械式的验证而已,没有什么新奇。比如断电自感实验,课本上的实验,该实验在断开电键时灯泡会变亮然后逐渐熄灭。该实验只要仔细观察,实验效果还算明显,小灯泡确实闪了一下然后逐渐熄灭,但该实验缺乏趣味性。 改进方案:若把小灯泡改为全班所有学生,以游戏的形式手拉手来代替小灯泡。再加上教师的主动设疑,实验的效果当然让参加体验的学生终生难忘,断开电键的瞬间全班几十位同学同时有触电的感觉,这样体验的机会确实很少。经过改进后,该实验不但现象明显,还能化枯燥为神秘。这节课学生将会更加努力地学习,对一节干电池使得他们同时触电这一问题将一探究竟。 二、在实验效果上尽量明显 摩擦力的方向实验,传统的实验方案是:用一个力去拉静止在地面上的物体,因为拉力较小没有拉动,根据二力平衡可以得到静摩擦力的方向跟拉力的方向相反。这种方案的好处就是理论性很强,但是如果从实验的角度看,该实验缺乏明显的实验现象。 改进措施:力的作用效果之一就是使物体发生形变。把一个皮鞋刷放置在桌面上,用力向右轻轻一拉,因为存在摩擦力,导致了皮鞋刷没有被拉动,我们会看到皮鞋刷的毛发生了弯曲。摩擦力使得毛向左弯曲,说明摩擦力的方向向左。该实验可以安排学生进行课后实验,实验效果很明显。

相关文档
相关文档 最新文档