文档库 最新最全的文档下载
当前位置:文档库 › 数列(3)

数列(3)

数列(3)
数列(3)

龙文教育一对一个性化辅导教案

【要点梳理】

(1) 设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1·q n -1.

通项公式的推广:a n = a m ·__________,(n ,m ∈N +).

(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N +),则_____________. (3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),{1a n

},{a 2n },{a n ·b n },

{a n

b n

}仍是等比数列. (4)等比数列{a n }的公比为q (q ≠0),其前n 项和为S n ,

当q =1时,S n =na 1;

当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q

1-q

.

(5)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为___. 【自测】

1.给出下列命题:

①满足a n +1=qa n (n ∈N +,q 为常数)的数列{a n }为等比数列. ②数列{a n }是公比q ≠±1的等比数列,则{na n }是等比数列. ③如果{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列. ④如果数列{a n }为等比数列,则数列{ln a n }是等差数列. 其中错误的命题是( )

A .①②③

B .②③④

C .①④

D .①②③④

2.(2015·日照一模)已知等比数列{a n }的公比为正数,且公比a 2·a 6=9a 4,a 2=1,则a 1的值为( )

A .3

B .-3

C .-1

3

D.13

3.已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10等于( ) A .7 B .5C .-5 D .-7

4.(2015·扬州中学期中)设等比数列{a n }的各项均为正数,其前n 项和为S n , 若a 1=1,a 3=4,S k =63,则k =________.

5.(2013·北京高考)若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________.

考向一 等比数列基本量的计算

例1 (1)(2013·新课标高考全国卷)等比数列{a n }的前n 项和为S n ,已知S 3=

a 2+10a 1,a 5=9,则a 1=( )

A.13 B .-13 C.1

9

D .-1

9

(2)(2015·荆州市质检)设S n 是等比数列{a n }的前n 项和,S 3,S 9,S 6成等差数列,且a 2+a 5=2a m ,则m =________.

【活学活用】(1)(2014·大纲版高考全国卷)设等比数列{a n }的前n 项和为S n .

若S 2=3,S 4=15,则S 6=( )

A .31

B .32

C .63

D .64

(2)(2015·辽宁鞍山质检)数列{a n }的前n 项之和为S n ,S n =1-2

3

a n ,

则a n =________.

考向二 等比数列的判定或证明

例2 (2015·长安模拟)已知数列{a n }中,a 1=23,a 2=8

9

.当n ≥2时,

3a n +1=4a n -a n -1(n ∈N +).

(1)证明:{a n +1-a n }为等比数列; (2)求数列{a n }的通项.

【活学活用】(2014·新课标高考全国卷Ⅱ)已知数列{a n }满足a 1=1,a n +1=3a n +1.

(1)证明{a n +1

2}是等比数列,并求{a n }的通项公式;

(2)证明1a 1+1a 2+…+1a n <3

2.

考向三 等比数列的性质及应用

例3 (1)(2015·辽宁沈阳一模)已知各项不为0的等差数列{a n }满足 2a 2-a +2a 12=0,数列{b n }是等比数列,且b 7=a 7,则b 3b 11等于( )

A .16

B .8

C .4

D .2

(2)(2015·南昌模拟)在各项均为正数的等比数列{a n }中,(a 1+a 3)(a 5+a 7)=4a 2

4,

则下列结论中正确的是( )

A .数列{a n }是递增数列

B .数列{a n }是递减数列

C .数列{a n }是常数列

D .数列{a n }有可能是递增数列也有可能是递减数列

(3)(2015·昆明模拟)各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n 等于( )

A .80

B .30

C .26

D .16

(4)(2015·商丘模拟)已知x >1,y >1,且14ln x ,14,ln y 成等比数列,则xy 的最小

值是________.

等差、等比数列综合问题的规范答题

典例(本小题满分12分)(2013·新课标高考全国卷)已知等差数列{a n}的公差不为零,a1=25,且a1,a11,a13成等比数列.

(1)求{a n}的通项公式;

(2)求a1+a4+a7+…+a3n-2.

【答题模板】

第一步:依等差数列设未知量,依等比数列建立等式关系.

第二步:求d,求通项.

第三步:判断{a3n-2}为等差数列.

第四步:依据公式求和

类题试解

(2014·江西高考)已知首项都是1的两个数列{a n},{b n}(b n≠0,n∈N+)满足a n b n +1

-a n+1b n+2b n+1b n=0.

(1)令c n=a n

b n,求数列{

c n}的通项公式;

(2)若b n=3n-1,求数列{a n}的前n项和S n.

【提示】1.由a n+1=qa n,q≠0,并不能立即断言{a n}为等比数列,还要验证a1≠0.

2.在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形而导致解题失误.

【习题】

一、选择题

1.若等比数列{a n }满足a n a n +1=16n ,则公比为( ) A .2 B .4 C .8

D .16

2.等比数列{a n }中,|a 1|=1,a 5=-8a 2,a 5>a 2,则a n 等于( ) A .(-2)n -1 B .-(-2)n -1 C .(-2)n

D .-(-2)n

3.(2015·成都模拟)已知{a n }是等比数列,a 2=2,a 5=1

4,则a 1a 2+a 2a 3+…+a n a n +1=( )

A .16(1-4-n )

B .16(1-2-n )

C.323(1-4-n )

D.32

3

(1-2-n ) 4.在等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值为 ( ) A .1 B .-12

C .1或-12

D .-1或1

2

5.已知方程(x 2-mx +2)(x 2-nx +2)=0的四个根组成以12

为首项的等比数列,则m

n 等于( )

A.32

B.32或23

C.23

D .以上都不对

6.已知{a n }是首项为1的等比数列,若S n 是{a n }的前n 项和,且28S 3=S 6,则数列{1

a n

}

的前4项和为( )

A.15

8或4 B.40

27或4 C.4027 D.158

二、填空题

7.在数列{a n }中,已知a 1=1,a n =2(a n -1+a n -2+…+a 2+a 1)(n ≥2,n ∈N +),这个数列的通项公式是________.

8.(2015·皖南八校第三次联考)已知数列{a n }是等比数列,a 1,a 2,a 3依次位于下表中第一行,第二行,第三行中的某一格内,又a 1,a 2,a 3中任何两个都不在同一列,则a n =________(n ∈N*).

9.(2014·广东高考)等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3

+log 2a 4+log 2a 5=________.

10.设f (x )是定义在R 上恒不为零的函数,对任意x ,y ∈R ,都有f (x )·f (y )=f (x +y ),若a 1=1

2

,a n =f (n )(n ∈N +),则数列{a n }的前n 项和S n 的取值范围是________.

三、解答题

11.已知等差数列{a n }满足a 2=2,a 5=8. (1)求{a n }的通项公式;

(2)各项均为正数的等比数列{b n }中,b 1=1,b 2+b 3=a 4,求{b n }的前n 项和T n .

12.已知数列{a n }的各项均为正数,且前n 项和S n 满足S n =1

6(a n +1)(a n +2).若

a 2,a 4,a 9成等比数列,求数列{a n }的通项公式.

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

(浙江专用)2020高考数学二轮复习 专题三 数列与不等式 第3讲 数列的综合问题学案

第3讲 数列的综合问题 [考情考向分析] 1.数列的综合问题,往往将数列与函数、不等式结合,探求数列中的最值或证明不等式.2.以等差数列、等比数列为背景,利用函数观点探求参数的值或范围.3.与数列有关的不等式的证明问题是高考考查的一个热点,也是一个难点,主要涉及到的方法有作差法、放缩法、数学归纳法等. 热点一 利用S n ,a n 的关系式求a n 1.数列{a n }中,a n 与S n 的关系 a n =??? ?? S 1,n =1,S n -S n -1,n ≥2. 2.求数列通项的常用方法 (1)公式法:利用等差(比)数列求通项公式. (2)在已知数列{a n }中,满足a n +1-a n =f (n ),且f (1)+f (2)+…+f (n )可求,则可用累加法求数列的通项a n . (3)在已知数列{a n }中,满足 a n +1 a n =f (n ),且f (1)·f (2)·…·f (n )可求,则可用累乘法求数列的通项a n . (4)将递推关系进行变换,转化为常见数列(等差、等比数列). 例1 (2018·浙江)已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足 b 1=1,数列{(b n +1-b n )a n }的前n 项和为2n 2+n . (1)求q 的值; (2)求数列{b n }的通项公式. 解 (1)由a 4+2是a 3,a 5的等差中项, 得a 3+a 5=2a 4+4, 所以a 3+a 4+a 5=3a 4+4=28,解得a 4=8. 由a 3+a 5=20,得8? ?? ??q +1q =20, 解得q =2或q =1 2. 因为q >1,所以q =2. (2)设c n =(b n +1-b n )a n ,数列{c n }的前n 项和为S n . 由c n =? ?? ?? S 1,n =1, S n -S n -1,n ≥2,解得c n =4n -1(n ∈N * ). 由(1)可得a n =2 n -1 , 所以b n +1-b n =(4n -1)×? ?? ??12n -1 ,

浙江省2019高考数学精准提分练解答题通关练3数列

3.数 列 1.在等差数列{a n }中,a 1=-2,a 12=20. (1)求数列{a n }的通项a n ; (2)若b n =a1+a2+…+an n ,求数列{3b n }的前n 项和S n . 解 (1)因为a n =-2+(n -1)d ,所以a 12=-2+11d =20,于是d =2,所以a n =2n -4(n ∈N * ). (2)因为a n =2n -4,所以a 1+a 2+…+a n =n (2n -6)2=n (n -3),于是 b n =a1+a2+…+an n =n -3,令c n =,则c n =3n -3, 显然数列{c n }是等比数列,且c 1=3-2,公比q =3, 所以数列{3b n }的前n 项和S n =c1()1-qn 1-q =3n -118 (n ∈N *). 2.已知数列{a n }满足a 1=12,1an +1=1an +2(n ∈N *). (1)求数列{a n }的通项公式; (2)证明:a 21+a 2+a 23+…+a 2n <12 . (1)解 由条件可知数列???? ??1an 为等差数列,且首项为2,公差为2,所以1an =2+(n -1)×2=2n , 故a n =12n (n ∈N *). (2)证明 依题意可知a 2n =? ????12n 2=14·1n2<14·1n ·1n -1=14? ?? ??1n -1-1n ,n ≥2,n ∈N *. 又因为a 21=14 , 所以a 21+a 2+a 23+…+a 2n <14? ????1+1-12+12-13+…+1n -1-1n =14? ????2-1n <14×2=12 . 故a 21+a 2+a 23+…+a 2n <12 . 3.已知S n 为等差数列{a n }的前n 项和,且a 1=1,S 9=81.记b n =[log 5a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[log 516]=1. (1)求b 1,b 14,b 61; (2)求数列{b n }的前200项和. 解 (1)设等差数列{a n }的公差为d , 由已知S 9=81,根据等差数列的性质可知,S 9=9a 5=9(a 1+4d )=81, ∴a 1+4d =9.

数列专题复习及答案

数列、数列极限、数学归纳法综合复习 一、填空题 1、已知)(156 2 *∈+= N n n n a n ,则数列{}n a 的最大项是 2、在等差数列{}n a 中,若46101290a a a a +++=,则10 141 3 a a -= 3、已知等比数列{}n a ,若1 5 1,4a a ==,则3 a 的值为 4、数列{}n a 中,23=a ,15 =a ,则数列1{}1 n a +是等差数列,则=11 a 5、在数列{}n a 和{}n b 中,n b 是n a 与1 n a +的等差中项,1 2a =且对任 意n N * ∈都有 031=-+n n a a ,则数列{}n b 的通项公式为 ___ _______ 6、设等差数列{}n a 的公差d 不为0,1 9a d =,k a 是1a 与2k a 的等比 中项,则k = 7、等差数列{}n a 的前n 项和为n S ,若4 510,15S S ≥≤,则4a 的最大值为 8、正数数列{}n a 中,已知1 2a =,且对任意的,s t N * ∈,都有s t s t a a a ++=成立,则 12 23 1 111n n a a a a a a ++++ 9、等差数列{}n a 的前n 项和为n S ,且42358,26 a a a a -=+=,记2 n n S T n = , 如果存在正 整数M ,使得对一切正整数n ,n T M ≤都成立.则M 的最小值 是__________ 10、已知无穷等比数列1 2 {},lim[3()]4,n n n a S a a a S →∞ ++ +-=中,各项的和为且 则实 数1 a 的范围 11、设正数数列{}a 的前n 项和为S ,且存在正数t ,使得对于

(完整版)高三文科数学数列专题.doc

高三文科数学数列专题 高三文科数学复习资料 ——《数列》专题 1. 等差数列{ a n}的前n项和记为S n,已知a1030, a2050 . ( 1)求通项a n; ( 2)若S n242 ,求 n ; ( 3)若b n a n20 ,求数列 { b n } 的前 n 项和 T n的最小值. 2. 等差数列{ a n}中,S n为前n项和,已知S77, S1575 . ( 1)求数列{ a n}的通项公式; ( 2)若b n S n,求数列 {b n } 的前 n 项和 T n. n 3. 已知数列{ a n}满足a1 1 a n 1 ( n 1) ,记 b n 1 , a n . 1 2a n 1 a n (1)求证 : 数列{ b n}为等差数列; (2)求数列{ a n}的通项公式 . 4. 在数列a n 中, a n 0 , a1 1 ,且当 n 2 时,a n 2S n S n 1 0 . 2 ( 1)求证数列1 为等差数列;S n ( 2)求数列a n的通项 a n; ( 3)当n 2时,设b n n 1 a n,求证: 1 2 (b2 b3 b n ) 1 . n 2(n 1) n 1 n 5. 等差数列{ a n}中,a18, a4 2 . ( 1)求数列{ a n}的通项公式; ( 2)设S n| a1 | | a2 || a n |,求 S n;

1 (n N *) , T n b1 b2 b n (n N *) ,是否存在最大的整数m 使得对任( 3)设b n n(12 a n ) 意 n N * ,均有T n m m 的值,若不存在,请说明理由. 成立,若存在,求出 32 6. 已知数列{log2(a n1)} 为等差数列,且a13, a39 . ( 1)求{ a n}的通项公式; ( 2)证明: 1 1 ... 1 1. a2 a1 a3 a2 a n 1 a n 7. 数列{ a n}满足a129, a n a n 12n 1(n 2, n N * ) . ( 1)求数列{ a n}的通项公式; ( 2)设b n a n,则 n 为何值时, { b n } 的项取得最小值,最小值为多少?n 8. 已知等差数列{ a n}的公差d大于0 , 且a2,a5是方程x2 12 x 27 0 的两根,数列 { b n } 的前 n 项和 为 T n,且 T n 1 1 b n. 2 ( 1)求数列{ a n} , { b n}的通项公式; ( 2)记c n a n b n,求证:对一切 n N 2 , 有c n. 3 9. 数列{ a n}的前n项和S n满足S n2a n 3n . (1)求数列{ a n}的通项公式a n; (2)数列{ a n}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由 . 10. 已知数列{ a n}的前n项和为S n,设a n是S n与 2 的等差中项,数列{ b n} 中, b1 1,点 P(b n , b n 1 ) 在 直线 y x 2 上. ( 1)求数列{ a n} , { b n}的通项公式

最全高考复习数列专题及练习答案详解

高考复习数列专题: 数 列(参考答案附后) 第一节 数列的概念与数列的简单表示 一、选择题 1.已知数列{}a n 对任意的p ,q ∈N * 满足a p +q =a p +a q ,且a 2=- 6,那么a 10=( ) A .-165 B .-33 C .-30 D .-21 2.在数列{a n }中,a 1=2,a n +1=a n +ln(1+1 n ),则a n =( ) A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n 3.若数列{a n }的前n 项积为n 2 ,那么当n ≥2时,{a n }的通项公式为( ) A .a n =2n -1 B .a n =n 2 C .a n = n +12 n 2 D .a n = n 2n -1 2 4.在数列{a n }中,a n +1=a n +2+a n ,a 1=2,a 2=5,则a 6的值是( ) A .-3 B .-11 C .-5 D .19 5.已知数列{a n }中,a n =n -79n -80 (n ∈N *),则在数列{a n }的前50 项中最小项和最大项分别是( ) A .a 1,a 50 B .a 1,a 8 C .a 8,a 9 D .a 9, a 50 二、填空题 6.若数列{}a n 的前n 项和S n =n 2 -10n (n =1,2,3,…),则此数

列的通项公式为________;数列{}na n 中数值最小的项是第__________项. 7.数列35,12,511,37,7 17,…的一个通项公式是 ___________________________. 8.设数列{a n }中,a 1=2,a n +1=a n +n +1,则通项a n =__________. 三、解答题 9.如果数列{}a n 的前n 项和为S n =3 2a n -3,求这个数列的通项 公式. 10.已知{a n }是正数组成的数列,a 1=1,且点(a n ,a n +1)(n ∈N + )在函数y =x 2 +1的图象上. (1)求数列{a n }的通项公式; (2)若列数{b n }满足b 1=1,b n +1=b n +2a n ,求证:b n ·b n +2<b 2 n +1.

高考数列专题总结(全是精华)

数列专题复习(0929) 一、证明等差等比数列 1. 等差数列的证明方法: (1)定义法:1n n a a d +-=(常数) (2)等差中项法:112(2)n n n a a a n +-+=≥ 2.等比数列的证明方法: (1)定义法: 1 n n a q a +=(常数) (2)等比中项法:211(2)n n n a a a n +-=≥ 例1.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75, T n 为数列{n S n }的前n 项和,求T n . 解:设等差数列{a n }的公差为d ,则 S n =na 1+21 n (n -1)d .∴S 7=7,S 15=75,∴???=+=+,7510515,721711d a d a 即???=+=+,57,1311d a d a 解得a 1=-2,d =1.∴n S n =a 1+21(n -1)d =-2+21 (n -1). ∵ 2111=-++n S n S n n ,∴数列{n S n }是等差数列,其首项为-2,公差为2 1 , ∴T n = 41n 2-4 9n . 例2.设数列{a n }的首项a 1=1,前n 项和S n 满足关系式: 3tS n -(2t +3)S n -1=3t (t >0,n =2,3,4,…) 求证:数列{a n }是等比数列; 解:(1)由a 1=S 1=1,S 2=1+a 2,得a 2=t t a a t t 323,32312+= + 又3tS n -(2t +3)S n -1=3t ① 3tS n -1-(2t +3)S n -2=3t ② ①-②得3ta n -(2t +3)a n -1=0 ∴t t a a n n 33 21+= -,(n =2,3,…) 所以{a n }是一个首项为1,公比为 t t 33 2+的等比数列. 练习:已知a 1=2,点(a n ,a n+1)在函数f (x )=x 2+2x 的图象上,其中=1,2,3,… (1) 证明数列{lg(1+a n )}是等比数列; (2) 设T n =(1+a 1) (1+a 2) …(1+a n ),求T n 及数列{a n }的通项; 答案 .(2) 21 3 n n T -=,21 3 1n n a -=-; 二.通项的求法 (1)利用等差等比的通项公式 (2)累加法:1()n n a a f n +-= 例3.已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a 。 解:由条件知:1 1 1)1(112 1+-=+=+= -+n n n n n n a a n n 分别令)1(,,3,2,1-??????=n n ,代入上式得)1(-n 个等式累加之,即 )()()()(1342312--+??????+-+-+-n n a a a a a a a a )111()4131()3121()211(n n --+??????+-+-+-=所以n a a n 1 11-=- 211=a ,n n a n 1231121-=-+=∴ (3)构造等差或等比 1n n a pa q +=+或1()n n a pa f n +=+ 例4.已知数列{}n a 满足* 111,21().n n a a a n N +==+∈ 求数列{}n a 的通项公式; 解:*121(),n n a a n N +=+∈ 112(1),n n a a +∴+=+ {}1n a ∴+是以112a +=为首项,2为公比的等比数列。 12.n n a ∴+= 即 *21().n n a n N =-∈

3数列求和常用方法1

§3 补充:数列求和常用方法 宜黄县安石中学 万 杰 一、分组求和法: 把数列的每一项分成两项,或把数列的项“集”在一块重新组合,或把整个数列分成两部分,使其转化为等差或等比数列,这一求和方法称为分组求和法. 例、求数列1111 1,2,3,,,2482n n ++++的前n 项和. 解:1111 (1)(2)(3)()2482 n n S n =++++++++ 1111 (123)()2482 n n =++++++++ 11(1) (1)(1)1221122212 n n n n n n -++=+=+--. 说明:数列的每一项都是一个等差数列与一个等比数列的对应项的和,求解时要采用分组求和. 二、分裂通项法: 把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n 项的和变成首尾若干少数项之和,这一求和方法称为分裂通项法. 1、已知13-=n a n ,求 1 4332211....111+++++n n a a a a a a a a 2、数列,. (1) 1,..., 3 21,2 11++++n n 的前n 项和n S 等于( ) A :n n -+1 B :n n ++1 C :11-+n D :11++n 3、在数列{}n a 中,已知1...1211++ ++++= n n n n a n ,又1 2+=n n n a a b ,则数列{}n b 的前n 项和n S 等于 1 8+n n 解: )111(8)1(8,2+-=+== n n n n b n a n n 1 8)111(8+=+-=n n n S n 三、倒序相加法

高考数列专题讲解(含答案)

数列 题型一、数列的综合问题 【例1】已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且 S 3+a 3,S 5+a 5,S 4+a 4成等差数列. (1)求数列{a n }的通项公式; (2)设T n =S n -1S n (n ∈N *),求数列{T n }的最大项的值与最小项的值. 解 (1)设等比数列{a n }的公比为q , 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3, 于是q 2=a 5a 3 =14. 又{a n }不是递减数列且a 1=32,所以q =-12. 故等比数列{a n }的通项公式为a n =32×? ?? ??-12n -1 =(-1)n -1·32n . (2)由(1)得S n =1-? ????-12n =?????1+12n ,n 为奇数,1-12n ,n 为偶数, 当n 为奇数时,S n 随n 的增大而减小, 所以1S n -1S n ≥S 2-1S 2 =34-43=-712.

综上,对于n ∈N *,总有-712≤S n -1S n ≤56. 所以数列{T n }最大项的值为56,最小项的值为-712. 【分析】解决等差数列与等比数列的综合问题,既要善于综合运用等差数列与等比数列的相关知识求解,更要善于根据具体问题情境具体分析,寻找解题的突破口. 【即时应用】已知数列{a n }是公差不为零的等差数列,其前n 项和为S n ,满足S 5-2a 2=25,且a 1,a 4,a 13恰为等比数列{b n }的前三项. (1)求数列{a n },{b n }的通项公式; (2)设T n 是数列??????????1a n a n +1的前n 项和,是否存在k ∈N *,使得等式1-2T k =1b k 成立?若存在,求出k 的值;若不存在,请说明理由. 解 (1)设等差数列{a n }的公差为d (d ≠0), ∴?????? ????5a 1+5×42d -2(a 1+d )=25,(a 1+3d )2=a 1(a 1+12d ), 解得a 1=3,d =2,∴a n =2n +1. ∵b 1=a 1=3,b 2=a 4=9, ∴等比数列{b n }的公比q =3,∴b n =3n . (2)不存在.理由如下: ∵1a n a n +1=1(2n +1)(2n +3)=12? ?? ??12n +1-12n +3, ∴T n =12???? ??? ????13-15+? ????15-17+…+? ????12n +1-12n +3 =12? ?? ??13-12n +3, ∴1-2T k =23+12k +3 (k ∈N *), 易知数列?????? ????12k +3为单调递减数列, ∴23<1-2T k ≤1315,又1b k =13k ∈? ????0,13,

高三数学二轮复习:数列专题及其答案

2018届高三第二轮复习——数列 第1讲等差、等比考点 【高 考 感 悟】 从近三年高考看,高考命题热点考向可能为: 1.必记公式 (1)等差数列通项公式:a n =a 1+(n -1)d . (2)等差数列前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)d 2. (3)等比数列通项公式:a n a 1q n - 1. (4)等比数列前n 项和公式: S n =?????na 1 (q =1)a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1). (5)等差中项公式:2a n =a n -1+a n +1(n ≥2). (6)等比中项公式:a 2n =a n -1·a n +1(n ≥2). (7)数列{a n }的前n 项和与通项a n 之间的关系:a n =?????S 1(n =1) S n -S n -1 (n ≥2). 2.重要性质 (1)通项公式的推广:等差数列中,a n =a m +(n -m )d ;等比数列中,a n =a m q n - m . (2)增减性:①等差数列中,若公差大于零,则数列为递增数列;若公差小于零,则数列为递减数列. ②等比数列中,若a 1>0且q >1或a 1<0且0<q <1,则数列为递增数列;若a 1>0且0<q <1或a 1 <0且q >1,则数列为递减数列. 3.易错提醒 (1)忽视等比数列的条件:判断一个数列是等比数列时,忽视各项都不为零的条件. (2)漏掉等比中项:正数a ,b 的等比中项是±ab ,容易漏掉-ab .

【 真 题 体 验 】 1.(2015·新课标Ⅰ高考)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=( ) A.172 B.19 2 C .10 D .12 2.(2015·新课标Ⅱ高考)已知等比数列{a n }满足a 1=1 4 ,a 3a 5=4(a 4-1),则a 2=( ) A .2 B .1 C.12 D.1 8 3.(2015·浙江高考)已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=__________,d =________. 4.(2016·全国卷1)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111 ==3 n n n n b b a b b nb +++=1,,,. (I )求{}n a 的通项公式;(II )求{}n b 的前n 项和. 【考 点 突 破 】 考点一、等差(比)的基本运算 1.(2015·湖南高考)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 2.(2015·重庆高考)已知等差数列{a n }满足a 3=2,前3项和S 3=9 2 . (1)求{a n }的通项公式; (2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n .

数列专题复习教案设计

年级 数学 科辅导讲义(第 讲) 学生 授课教师: 授课时间: 数列专题复习 题型一:等差、等比数列的基本运算 例1、已知数列}{n a 是等比数列,且4622a a a =,则=53a a ( ) A .1 B .2 C .4 D .8 例2、在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11= ( ) A.58 B.88 C.143 D.176 变式 1、等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为 ( ) A.1 B.2 C.3 D.4

2、若等比数列{}n a 满足2412 a a = ,则2 135a a a = . 3、已知{}n a 为等差数列,且13248,12,a a a a +=+=(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)记{}n a 的前n 项和为n S ,若12,,k k a a S +成等比数列,求正整数k 的值。 题型二:求数列的通项公式 ⑴.已知关系式)(1n f a a n n +=+,可利用迭加法(累加法) 例1:已知数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,求数列{}n a 的通项公式; 变式 已知数列{}n a 满足122a =,12n n a a n +-=,求数列{}n a 的通项公式. (2).已知关系式)(1n f a a n n ?=+,可利用迭乘法(累积法) 例2、已知数列{}n a 满足:111 (2),21 n n a n n a a n --=≥=+,求求数列{}n a 的通项公式; 变式 已知数列{}n a 满足n n a n a 2 1=+,11=a ,求数列{}n a 的通项公式。

高考数列专题总结(全是精华)

数列专题复习(0929) 一、证明等差等比数列 1. 等差数列的证明方法: (1)定义法:1n n a a d +-=(常数) (2)等差中项法:112(2)n n n a a a n +-+=≥ 2.等比数列的证明方法: (1)定义法: 1 n n a q a +=(常数) (2)等比中项法:211(2)n n n a a a n +-=≥ 例1.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75, T n 为数列{ n S n }的前n 项和,求T n . 解:设等差数列{a n }的公差为d ,则 S n =na 1+21 n (n -1)d .∴S 7=7,S 15=75,∴???=+=+,7510515,721711d a d a 即???=+=+,57,131 1d a d a 解得a 1=-2,d =1.∴ n S n =a 1+21(n -1)d =-2+21 (n -1). ∵ 2111=-++n S n S n n ,∴数列{n S n }是等差数列,其首项为-2,公差为21 , ∴T n = 41n 2-4 9 n . 例2.设数列{a n }的首项a 1=1,前n 项和S n 满足关系式: 3tS n -(2t +3)S n -1=3t (t >0,n =2,3,4,…) 求证:数列{a n }是等比数列; 解:(1)由a 1=S 1=1,S 2=1+a 2,得a 2=t t a a t t 323,32312+= + 又3tS n -(2t +3)S n -1=3t ① 3tS n -1-(2t +3)S n -2=3t ② ①-②得3ta n -(2t +3)a n -1=0 ∴ t t a a n n 33 21+= -,(n =2,3,…) 所以{a n }是一个首项为1,公比为t t 33 2+的等比数列. 练习:已知a 1=2,点(a n ,a n+1)在函数f (x )=x 2+2x 的图象上,其中=1,2,3,… (1) 证明数列{lg(1+a n )}是等比数列; (2) 设T n =(1+a 1) (1+a 2) …(1+a n ),求T n 及数列{a n }的通项; 答案 .(2) 2 1 3n n T -=,2 1 31n n a -=-; 二.通项的求法 (1)利用等差等比的通项公式 (2)累加法:1()n n a a f n +-= 例3.已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a 。 解:由条件知:1 1 1)1(112 1+-=+=+= -+n n n n n n a a n n 分别令)1(,,3,2,1-??????=n n ,代入上式得)1(-n 个等式累加之,即 )()()()(1342312--+??????+-+-+-n n a a a a a a a a )111()4131()3121()211(n n --+??????+-+-+-=所以n a a n 1 11-=- 211=a ,n n a n 1231121-=-+=∴ (3)构造等差或等比 1n n a pa q +=+或1()n n a pa f n +=+ 例4.已知数列{}n a 满足*111,21().n n a a a n N +==+∈ 求数列{}n a 的通项公式; 解:* 121(),n n a a n N +=+∈ 112(1),n n a a +∴+=+ {}1n a ∴+是以112a +=为首项,2为公比的等比数列。 12.n n a ∴+= 即 *21().n n a n N =-∈ 例5.已知数列{}n a 中,11a =,1111 ()22 n n n a a ++=+,求n a . 解:在1111 ()22 n n n a a ++= +两边乘以12+n 得:112(2)1n n n n a a ++?=?+ 令2n n n b a =?,则11n n b b +-=,解之得:111n b b n n =+-=-,所以1 22 n n n n b n a -= =.

高三数列专题练习30道带答案

高三数列专题训练二 学校:___________姓名:___________班级:___________考号:___________ 一、解答题 1.在公差不为零的等差数列{}n a 中,已知23a =,且137a a a 、、成等比数列. (1)求数列{}n a 的通项公式; (2)设数列{}n a 的前n 项和为n S ,记,求数列{}n b 的前n 项和n T . 2.已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; 1,公比为3的等比数列,求数列{}n b 的前n 项和n T . 3.设等比数列{}n a 的前n 项和为n S ,,2S ,3S 成等差数列,数列{}n b 满足2n b n =. (1)求数列{}n a 的通项公式; (2)设n n n c a b =?,若对任意*n N ∈,求λ的取值范围. 4.已知等差数列{n a }的公差2d =,其前n 项和为n S ,且等比数列{n b }满足11b a =, 24b a =,313b a =. (Ⅰ)求数列{n a }的通项公式和数列{n b }的前n 项和n B ; (Ⅱ)记数列的前n 项和为n T ,求n T . 5.设数列{}n a 的前n 项和为n S ,且满足()21,2,3,n n S a n =-=. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足11b =,且1n n n b b a +=+,求数列{}n b 的通项公式; (3)设()3n n c n b =-,求数列{}n c 的前n 项和n T .

(完整版)高考数列专题复习

专题数列知识网络

专题训练 一.选择题 1.设数列{}n a的前n项和 2 n S n =,则 8 a的值为 (A) 15 (B) 16 (C) 49 (D)64 2.设等差数列 {} n a 的前n项和为n S,若111 a=-, 46 6 a a +=-,则当 n S取最小值时,n 等于 A.6 B.7 C.8 D.9 3.如果等差数列 {} n a 中,34512 a a a ++=,那么 127 ... a a a +++= (A)14 (B)21 (C)28 (D)35 4.已知等比数列{m a}中,各项都是正数,且1a,32 1 ,2 2 a a 成等差数列,则 910 78 a a a a + = + A.12 + B. 12 - C. 322 +D322 - 5.在等比数列 {} n a 中,11 a=,公比1 q≠ .若12345 m a a a a a a =,则m= (A)9 (B)10 (C)11 (D)12

6.等比数列 {} n a 中,15252||1,8,, a a a a a ==->则 n a = A .1 (2)n -- B .1 (2)n --- C .(2)n - D .(2)n -- 7.设{n a }是由正数组成的等比数列,n S 为其前n 项和,已知24a a =1, 37 S =, 则 5S = (A )152 (B)314 (C)33 4 (D)172 8.设 n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332 S a =-,则公比q = (A )3 (B )4 (C )5 (D )6 9.(文)设{}n a 是等比数列,则“123a a a <<”是数列{}n a 是递增数列的 (A )充分而不必要条件 (B)必要而不充分条件、 (C )充分必要条件 (D )既不充分也不必要条件 (理)设{}n a 是首项大于零的等比数列,则“12 a a <”是“数列{}n a 是递增数列”的 (A )充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不充分也不必要条件 10.已知{ n a }是首项为1的等比数列,n S 是{n a }的前n 项和,且36 9S S =。则数列 n 1a ?? ?? ??的前5项和为 (A )158或5 (B )3116或5 (C )3116 (D )15 8 11.设n S 为等比数列{}n a 的前n 项和,2580a a +=,则5 2S S = (A )11 (B )5 (C )8- (D )11- 12.设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为,,X Y Z ,则下列等式中恒成立的是

高考数学专题三数列与极限

专题三 数列与极限 问题1:等差、等比数列的综合问题 “巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条件,又要时刻注意题的目标,往往能取得与“巧用性质”解题相同的效果 例1:设等比数列{a n }的各项均为正数,项数是偶数,它的所有项的和等于偶数项和的4倍,且第二项与第四项的积是第3项与第4项和的9倍,问数列{lg a n }的前多少项和最大?(取lg2=03,lg3=04) 思路分析 突破本题的关键在于明确等比数列各项的对数构成等差数列,而等差数列中前n 项和有最大值,一定是该数列中前面是正数,后面是负数,当然各正数之和最大;另外,等差数列S n 是n 的二次函数,也可由函数解析式求最值 解法一 设公比为q ,项数为2m ,m ∈N *,依题意有 ??? ? ?+=?--?=--?)(9)()(1)1(1)1(312131122121q a q a q a q a q q q a q q a m m ,化简得?????==?????+==+10831 , ),1(9114121 a q q q a q q 解得 设数列{lg a n }前n 项和为S n ,则 S n =lg a 1+lg (a 1q 2)+…+lg (a 1q n -1)=lg (a 1n ·q 1+2+…+(n - 1)) =n lg a 1+ 21n (n -1)·lg q =n (2lg2+lg3)-21 n (n -1)lg3 =(-23lg )·n 2+(2lg2+2 7lg3)·n 可见,当n =3lg 3lg 272lg 2+时,S n 最大 而4 .024.073.043lg 3 lg 272lg 2??+?= +=5, 故{lg a n }的前5项和最大 解法二 接前,3 1,1081= =q a ,于是lg a n =lg [108(31)n -1]=lg108+(n -1)lg 31, ∴数列{lg a n }是以lg108为首项,以lg 3 1 为公差的等差数列, 令lg a n ≥0,得2lg2-(n -4)lg3≥0, ∴n ≤4 .04 .043.023lg 3lg 42lg 2?+?=+=5 5 由于n ∈N *,可见数列{lg a n }的前5项和最大 点评 本题主要考查等比数列的基本性质与对数运算法则,等差数列与等比数列之间的联系以及运算、分析能力 演变1 等差数列{a n }的前m 项和为30,前2m 项和为100,则它前3m 项的和为_______ 点拨与提示:本题可以回到数列的基本量,列出关于d 1和a 的方程组,然后求解;或

高考数学(苏教版)专题通关必杀技:5-3数列(高效作业,含详解)

一、填空题 1.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2 =________. 解析:设数列{a n }的公比为q ,由8a 2+a 5=0得 a 1q (8+q 3)=0, ∵a 1q ≠0,∴q =-2 ∴S 5S 2=1-q 51-q 2=1-(-2)51-4 =-11. 答案:-11 2.设{a n }是由正数组成的等比数列,S n 为其前n 项和,已知a 2a 4=1,S 3=7,则S 5=________. 解析:由题S 3=7可知,q ≠1.则 ????? a 1q ·a 1q 3=1a 1(1-q 3)1-q =7解得????? a 1=4q =12 ∴S 5=a 1(1-q 5)1-q =314 答案:314 3.已知数列{a n }为等比数列,S n 是它的前n 项和,若a 2·a 3=2a 1,且a 4与2a 7的等差中 项为54 ,则S 5=________. 解析:设数列{a n }的公比为q ,则 ????? a 1q ·a 1q 2=2a 1,a 1q 3+2a 1q 6=52,解得????? a 1=16, q =12. 所以S 5=a 1(1-q 5) 1-q =16????1-????1251-12=31. 答案: 31

4.设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6 =________. 解析:由等比数列的性质:S 3、S 6-S 3、S 9-S 6仍成等比数列,于是由S 6=3S 3.可得: S 9-S 6=4S 3,S 9=7S 3 ∴S 9S 6=73 . 答案:73 5.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列{1a n }的前5项和为________. 解析:∵a 1=1,9S 3=S 6,∴q ≠1. 则9·1-q 31-q =1-q 6 1-q ,得q 3=1(舍),q 3=8, ∴q =2,∴1a n =12n -1, ∴数列??????1a n 前5项和为1-????1251-12 =3116. 答案:3116 6.在等比数列{a n }中,若公比q =4,且前3项之和等于21,则该数列的通项公式a n =________. 解析:S 3=a 1(1+q +q 2)=21a 1=21, ∴a 1=1,∴a n =4n -1. 答案:4n - 1 7.(2011年广东)已知{a n }是递增等比数列,a 2=2,a 4-a 3=4,则此数列的公比q =________. 解析:由已知,得2q 2-2q =4, ∴q =2或q =-1, 又{a n }是递增数列,∴q =2. 答案:2 8.(2011年北京)在等比数列{a n }中,若a 1=12 ,a 4=4,则公比q =________;a 1+a 2+…

高考数学专题三数列与极限

专题三数列与极限 【考点聚焦】 考点1:数列的有关概念,简单的递推公式给出的数列; 考点2:等差、等比数列的概念,等差、等比数列的通项公式,前n项和公式,并运用它们解决一些问题; 考点3:数列极限的意义,极限的四则运算,公比的绝对值小于1的无穷等比数列的前n 项和的极限; 考点4:数学归纳法 【自我检测】 1、_________________叫做数列。 3、无穷等比数列公比|q|<1,则各项和S=______。 4、求数列前n项和的方法:(1)直接法;(2)倒序相加法;(3)错位相减法;(4) 分组转化法;(5)裂项相消法. 【重点?难点?热点】 问题1:等差、等比数列的综合问题 “巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条件,又要时刻注意题的目标,往往能取得与“巧用性质”解题相同的效果 例1:设等比数列{a n}的各项均为正数,项数是偶数,它的所有项的和等于偶数项和的4倍,且第二项与第四项的积是第3项与第4项和的9倍,问数列{lg a n}的前多少项和最大?(取lg2=03,lg3=04) 思路分析突破本题的关键在于明确等比数列各项的对数构成等差数列,而等差数列中前n项和有最大值,一定是该数列中前面是正数,后面是负数,当然各正数之和最大;另外,等差数列S n是n的二次函数,也可由函数解析式求最值

解法一 设公比为q ,项数为2m ,m ∈N * ,依题意有 ??? ? ?+=?--?=--?)(9)()(1)1(1)1(312131122121q a q a q a q a q q q a q q a m m ,化简得?????==?????+==+10831 , ),1(9114121 a q q q a q q 解得 设数列{lg a n }前n 项和为S n ,则 S n =lg a 1+lg (a 1q 2)+…+lg (a 1q n -1)=lg (a 1n ·q 1+2+…+(n -1)) =n lg a 1+ 21n (n -1)·lg q =n (2lg2+lg3)-21 n (n -1)lg3 =(-23lg )·n 2 +(2lg2+2 7lg3)·n 可见,当n =3lg 3lg 272lg 2+时,S n 最大 而4 .024.073.043lg 3 lg 272lg 2??+?= +=5, 故{lg a n }的前5项和最大 解法二 接前,3 1,1081= =q a ,于是lg a n =lg [108(31)n -1]=lg108+(n -1)lg 31, ∴数列{lg a n }是以lg108为首项,以lg 3 1 为公差的等差数列, 令lg a n ≥0,得2lg2-(n -4)lg3≥0, ∴n ≤4 .04 .043.023lg 3lg 42lg 2?+?=+=5 5 由于n ∈N * ,可见数列{lg a n }的前5项和最大 点评 本题主要考查等比数列的基本性质与对数运算法则,等差数列与等比数列之间的联系以及运算、分析能力 演变1 等差数列{a n }的前m 项和为30,前2m 项和为100,则它前3m 项的和为_______ 点拨与提示:本题可以回到数列的基本量,列出关于d 1和a 的方程组,然后求解;或运用等差数列的性质求解. 问题2:函数与数列的综合题 数列是一特殊的函数,其定义域为正整数集,且是自变量从小到大变化时函数值的序列。注意深刻理解函数性质对数列的影响,分析题目特征,探寻解题切入点. 例2:已知函数f (x )= 4 12 -x (x <-2) (1) 求f (x )的反函数f --1 (x ); (2) 设a 1=1, 1 1+n a =-f --1 (a n )(n ∈N * ),求a n ;

相关文档