文档库 最新最全的文档下载
当前位置:文档库 › 电子显微镜

电子显微镜

电子显微镜

电子显微镜按结构和用途可分为透射式电子显微镜、扫描式电子显微镜、反射式电子显微镜和发射式电子显微镜等。

透射式电子显微镜常用于观察那些用普通显微镜所不能分辨的细微物质结构;扫描式电子显微镜主要用于观察固体表面的形貌,也能与X射线衍射仪或电子能谱仪相结合,构成电子微探针,用于物质成分分析;发射式电子显微镜用于自发射电子表面的研究

透射式电子显微镜镜筒的顶部是电子枪,电子由钨丝热阴极发射出、通过第一,第二两个聚光镜使电子束聚焦。电子束通过样品后由物镜成像于中间镜上,再通过中间镜和投影镜逐级放大,成像于荧光屏或照相干版上。中间镜主要通过对励磁电流的调节,放大倍数可从几十倍连续地变化到几十万倍;改变中间镜的焦距,即可在同一样品的微小部位上得到电子显微像和电子衍射图像。[

透射电子显微镜的原理与应用

透射电子显微镜的原理及应用 一.前言 人的眼睛只能分辨1/60度视角的物体,相当于在明视距离下能分辨0.1mm 的目标。光学显微镜通过透镜将视角扩大,提高了分辨极限,可达到2000A 。。光学显微镜做为材料研究和检验的常用工具,发挥了重大作用。但是随着材料科学的发展,人们对于显微镜分析技术的要求不断提高,观察的对象也越来越细。如要求分表几十埃或更小尺寸的分子或原子。一般光学显微镜,通过扩大视角可提高的放大倍数不是无止境的。阿贝(Abbe )证明了显微镜的分辨极限取决于光源波长的大小。在一定波长条件下,超越了这个极限度,在继续放大将是徒劳的,得到的像是模糊不清的。 图1-1(a )表示了两个点光源O 、P 经过会聚透镜L ,在平面上形成像O ,、P ,的光路。实际上当点光源透射会聚成像时,由于衍射效应的作用在像平面并不能得到像点。图1-1(b )所示,在像面上形成了一个中央亮斑及周围明暗相间圆环所组成的埃利斑(Airy )。图中表示了像平面上光强度的分布。约84%的强度集中在中央亮斑上。其余则由内向外顺次递减,分散在第一、第二……亮环上。一般将第一暗环半径定义为埃利斑的半径。如果将两个光源O 、P 靠拢,相应的两个埃利斑也逐渐重叠。当斑中心O ,、P ,间距等于案例版半径时,刚好能分辨出是两个斑,此时的光点距离d 称为分辨本领,可表示如下: α λs in 61.0d n = (1-1) 式中,λ为光的波长,n 为折射系数,α孔径半角。上式表明分辨的最小距离与波长成正比。在光学显微镜的可见光的波长条件下,最大限度只能分辨2000A 。。于是,人们用很长时间寻找波长短,又能聚焦成像的光波。后来的X

透射电子显微镜的原理

透射电子显微镜的原理 XXX (大庆师范学院物理与电气信息工程学院2008级物理学200801071293黑龙江大庆163712) 摘要:透射电子显微镜在成像原理上与光学显微镜类似。它们的根本不同点在于光学显微镜以可见光作照明束,透射电子显微镜则以电子为照明束。在光学显微镜中将可见光聚焦成像的玻璃透镜,在电子显微镜中相应的为磁透镜。由于电子波长极短,同时与物质作用遵从布拉格(Bragg)方程,产生衍射现象,使得透射电镜自身在具有高的像分辨本领的同时兼有结构分析的功能。 关键词:第一聚光镜;第二聚光镜;聚光镜阑;物镜光阑;选择区光阑;中间镜 作者简介:XXX(1988-),黑龙江省绥化市绥棱县,物理与电气信息工程学院学生。 0引言: 工业多相催化剂是极其复杂的物理化学体系。长期以来,工业催化剂的制备很大程度上依赖于经验和技艺,而难以从原子分子水平的科学原理方面给出令人信服的形成机制。为开发更高活性、选择性和稳定性的新型工业催化剂,通过各种表征技术对催化剂制备中的过程产物及最终产品进行表征是一个关键性的基础工作。在当前各种现代表征手段中,透射电子显微镜尤其是高分辨透射电子显微镜,可以在材料的纳米、微米区域进行物相的形貌观察、成分测定和结构分析,可以提供与多相催化的本质有关的大量信息,指导新型工业催化剂的开发。 为什么透射电子显微镜有如此高的分辨率那?本文阐述了透射电子显微镜的工作原理。 1透射电子显微镜的定义/组成 1.1定义 在一个高真空系统中,由电子枪发射电子束, 穿过被研究的样品,经电子透镜聚焦放大,在荧光 屏上显示出高度放大的物像,还可作摄片记录的一 类最常见的电子显微镜称为透射电子显微镜。[1] 1.2组成 透射电子显微镜由照明系统、成像系统、记录 系统、真空系统和电器系统组成。(如图1) 2透射电子显微镜的照明系统 照明系统的作用是提供亮度高、相干性好、束 流稳定的照明电子束。它主要由发射并使电子加速 的电子枪和会聚电子束的聚光镜组成。图1透射电子显微镜结

实验一:电镜扫描

中级仪器分析 实验报告 班级:______________________ 姓名:______________________ 学号:______________________ 指导教师: ___________________ 2007应用化学 刘远旭 070804010032 周建威

完成时间:___________________ 化学与材料科学学院 目录 实验一枪击残留物的电镜分析 实验二未知Fe浓度溶液的ICP-AES分析 实验三X射线衍射(XRD)物相分析

实验四龙脑的气质谱分析 实验五丙三醇红外分析 实验一枪击残留物的电镜分析 一、仪器简介 1仪器名称:扫描式电子显微镜

2型号:日本JSM-6490LV扫描电子显微镜(配置:英国牛津INCA-350X射线能谱仪) 3扫描电子显微镜——JSM-6490LV型介绍 在当代迅速发展的科学技术中,科学家 需要观察、分析和正确地解释在一个微米(μ m)或亚微米范围内所发生的现象,电子显 微镜是强有力的仪器,可用它们观察和检测 非均相有机材料、无机材料及在上述微米、 亚微米局部范围内的物质的显微组织、晶体 结构(电子衍射)、化学成分(X射线能谱 仪)进行表征。电子显微镜主要有扫描电子显微镜(SEM)和透射电子显微镜,都用一束精细聚焦的电子照射需要检测的区域或是需要分析的微体积,该电子束可以是静止的,或者沿着样品表面以一光栅的方式扫描。其差别仅仅在于它们感兴趣的信号不同。 在扫描电镜(SEM)中,人们最感兴趣的信号是二次电子和背散射电子,因为当电子束在样品表面扫描时,这些信号随表面形貌不同而发生变化。二次电子的发射局限于电子束轰击区附近的体积内,因而可获得相当高分辨率的图象。象的三维形态起因于扫描电镜的大景深和二次电子反差的阴影起伏效果。象的三维形态起因于扫描电镜的大景深和二次电子反差的阴影起伏效果。其它的信号在许多情况下也同样有用。在通常称为电子探针的电子探针显微分析仪(EPMA)中,人们最感兴趣的辐射是由于电子轰击而发射的特征X射线,从特征X射线的分析能够得到样品中直径小到几微米区域内的定性和定量成分信息。

透射电子显微镜的结构、原理和衍衬成像观察

透射电子显微镜的结构、原理和衍衬成像观察实验报告 一、实验目的 1、了解透射电子显微电镜的基本结构; 2、熟悉透射电子显微镜的成像原理; 3、了解基本操作步骤。

二、实验内容 1、了解透射电子显微镜的结构; 2、了解电子显微镜面板上各个按钮的位置与作用; 3、无试样时检测像散,如存在则进行消像散处理; 4、加装试样,分别进行衍射操作、成像操作,观察衍射花样和图像; 5、进行明场、暗场和中心暗场操作,分别观察明场像、暗场像和中心暗场像。 三、实验设备和器材 JEM-2100F型TEM透射电子 显微镜 四、实验原理 (一)、透射电镜的基本结构 透射电镜主要由电子光学系统、电源控制系统和真空系统三大部分组成,其中电子光学系统为电镜的核心部分,它包括照明系统、成像系统和观察记录系统组成。 (1)照明系统 照明系统主要由电子枪和聚光镜组成。

电子枪就是产生稳定的电子束流的装置,电子枪发射电子形成照明光源,根据产生电子束的原理的不同,可分为热发射型和场发射型两种。 图1 热发射电子枪图2 场发射电子枪 聚光镜是将电子枪发射的电子会聚成亮度高、相干性好、束流稳定的电子束照射样品。电镜一般都采用双聚光镜系统。 图3 双聚光镜的原理图 (2)成像系统 成像系统由物镜、中间镜和投影镜组成。 物镜是成像系统中第一个电磁透镜,强励磁短焦距(f=1~3mm),放大倍数Mo一般为100~300倍,分辨率高的可达0.1nm左右。物镜的质量好坏直接影响到整过系统的成像质量。物镜未能分辨的结构细节,中间镜和投影镜同样不能分辨,它们只是将物镜的成像进一步放大而已。提高物镜分辨率是提高整个系统成像质量的关键。

电子显微分析技术及应用

电子显微分析技术及应用 材料测试技术是材料科学与工程研究以及应用的重要手段和方法,目的就是要了解、获知材料的成分、组织结构、性能以及它们之间的关系,即材料的基本性质和基本规律。同时为发展新型材料提供新途径、新方法或新流程。在现代制造业中,测试技术具有非常重要的地位和作用。材料的组织形貌观察,主要是依靠显微镜技术,光学显微镜是在微米尺度上观察材料的组织及方法,电子显微分析技术则可以实现纳米级的观察。透射电子显微镜、扫描电子显微镜和电子探针仪等已成为从生物材料、高分子材料到金属材料的广阔范围内进行表面分析的不可缺少的工具。下面将主要介绍其原理及应用。 1.透射电子显微镜(TEM) a)透射电子显微镜 b)透射光学显微镜 图1:透射显微镜构造原理和光路 透射电子显微镜(TEM)是一种现代综合性大型分析仪器,在现代科学、技术的研究、开发工作中被广泛地使用。 所谓电子显微镜是以电子束为照明光源的显微镜。由于电子束在外部磁场或电场的作用下可以发生弯曲,形成类似于可见光通过玻璃时的折射现象,所以我们就可以利用这一物理效应制造出电子束的“透镜”,从而开发出电子显微镜。而作为透射电子显微镜(TEM)其特点在于我们是利用透过样品的电子束来成像,这一点有别于扫描电子显微镜。由于电子波的波长大大小于可见光的波长(100kV的电子波的波长为0.0037nm,而紫光的波长为400nm),根据

光学理论,我们可以预期电子显微镜的分辨本领应大大优于光学显微镜。 图l是现代TEM构造原理和光路。可以看出TEM的镜筒(Column)主要有三部分所构成:(1)照明系统,即电子枪;(2)成像系统,主要包括聚光镜、物镜、中间镜和投影镜;(3)观察系统。 通过TEM中的荧光屏,我们可以直接几乎瞬时观察到样品的图像或衍射花样。我们可以一边观察,一边改变样品的位置及方向,从而找到我们感兴趣的区域和方向。在得到所需图像后,可以利用相机照相的方法把图像记录下来。现在新一代TEM也有的装备了数字记录系统,可以将图像直接记录到计算机中去,这样可以大大提高工作效率。 2.扫描电子显微镜(SEM) 下图为扫描电子显微镜的原理结构示意图。由三极电子枪发出的电子束经栅极静电聚焦后成为直径为50mm的电光源。在2-30KV的加速电压下,经过2-3个电磁透镜所组成的电子光学系统,电子束会聚成孔径角较小,束斑为5-10m m的电子束,并在试样表面聚焦。末级透镜上边装有扫描线圈,在它的作用下,电子束在试样表面扫描。高能电子束与样品物质相互作用产生二次电子,背反射电子,X射线等信号。这些信号分别被不同的接收器接收,经放大后用来调制荧光屏的亮度。由于经过扫描线圈上的电流与显象管相应偏转线圈上的电流同步,因此,试样表面任意点发射的信号与显象管荧光屏上相应的亮点一一对应。也就是说,电子束打到试样上一点时,在荧光屏上就有一亮点与之对应,其亮度与激发后的电子能量成正比。换言之,扫描电镜是采用逐点成像的图像分解法进行的。光点成像的顺序是从左上方开始到右下方,直到最後一行右下方的像元扫描完毕就算完成一帧图像。这种扫描方式叫做光栅扫描。 图2:扫描电子显微镜的原理和结构示意图

扫描电镜的基本结构和工作原理

扫描电镜的基本结构和工作原理 扫描电子显微镜利用细聚焦电子束在样品表面逐点扫描,与样品相互作用产行各种物理 信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像。扫描电镜具有景深大、图像立体感强、放大倍数范围大、连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效分析工具。 扫描电镜所需的加速电压比透射电镜要低得多,一般约在1~30kV,实验时可根据被 分析样品的性质适当地选择,最常用的加速电压约在20kV左右。扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整,放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。 扫描电镜的基本结构可分为电子光学系统、扫描系统、信号检测放大系统、图像显示 和记录系统、真空系统和电源及控制系统六大部分。这一部分的实验内容可参照教材第十二章,并结合实验室现有的扫描电镜进行,在此不作详细介绍。 三、扫描电镜图像衬度观察 1.样品制备 扫描电镜的优点之一是样品制备简单,对于新鲜的金属断口样品不需要做任何处理,可 以直接进行观察。但在有些情况下需对样品进行必要的处理。 1) 样品表面附着有灰尘和油污,可用有机溶剂(乙醇或丙酮)在超声波清洗器中清洗。 2) 样品表面锈蚀或严重氧化,采用化学清洗或电解的方法处理。清洗时可能会失去一些 表面形貌特征的细节,操作过程中应该注意。 3) 对于不导电的样品,观察前需在表面喷镀一层导电金属或碳,镀膜厚度控制在5-10nm 为宜。 2.表面形貌衬度观察 二次电子信号来自于样品表面层5~l0nm,信号的强度对样品微区表面相对于入射束的 取向非常敏感,随着样品表面相对于入射束的倾角增大,二次电子的产额增多。因此,二次电子像适合于显示表面形貌衬度。 二次电子像的分辨率较高,一般约在3~6nm。其分辨率的高低主要取决于束斑直径,而 实际上真正达到的分辨率与样品本身的性质、制备方法,以及电镜的操作条件如高匝、扫描速度、光强度、工作距离、样品的倾斜角等因素有关,在最理想的状态下,目前可达的最佳分辩率为lnm。 扫描电镜图像表面形貌衬度几乎可以用于显示任何样品表面的超微信息,其应用已渗透 到许多科学研究领域,在失效分析、刑事案件侦破、病理诊断等技术部门也得到广泛应用。在材料科学研究领域,表面形貌衬度在断口分析等方面显示有突出的优越性。下面就以断口分析等方面的研究为例说明表面形貌衬度的应用。 利用试样或构件断口的二次电子像所显示的表面形貌特征,可以获得有关裂纹的起源、

扫描式电子显微镜观察

掃描式電子顯微鏡觀察 為觀察觀音一號井與麓山帶地層中碎屑性和自生性黏土礦物之 分佈與生長,以及隨埋藏深度增加,自生性黏土礦物(如:混層伊萊石膨潤石)之元素組成之比例有無改變,本研究使用中央大學地球物理研究所JSM-7000F熱場發射掃描式電子顯微鏡(Thermal Field Emission Scanning Electron Microscope, TFE-SEM),用以觀察碎屑性和自生性礦物之分佈與生長情形。SEM的操作條件為加速電壓15 kV、真空室壓力達2.8 × 10-4 Pa、工作距離10 mm。一般掃描式電子顯微鏡偵測主要為偵測二次電子(Secondary Electron Image, SEI)和背向散射電子(Backscattered Electron Image, BEI)成像,由於其產生電子之行為不同,所產生之影像分別為樣本之表面形貌和原子序對比(Goldstein et al., 2003)。平均原子序較高之區域,散射之背向電子訊號較強,呈現之影像較亮。本研究以背向散射電子偵測為主要觀察工具。由於黏土礦物之主要元素成份以原子序較低的矽、鋁氧化物和其他少量金屬鐵、鎂、鈣、鈉、鉀等,因此在背向散射電子影像中,黏土礦物多分佈在深暗色區域。 另外,使用加裝於SEM之元素能量分析儀(Energy Dispersion Spectrometer, EDS),可透過搜集激發電子束產生的X光進行礦物化學組成之定性和半定量分析。EDS操作環境為電子加速電壓15 kV、放大倍率為2000倍以及接收100秒X光光譜時間。使用INCA 軟體(Revision 4.09),鈦元素光譜校準,搜集測量結果之各氧化物重量百分比,混層伊萊石/膨潤石黏土礦物的化學式以22顆氧原子,計算化學式中的陽離子數,部分鋁離子納入四面體網格計算,即矽和鋁離子總和為8;剩餘鋁離子和鐵、鈦、鎂和鈉則被歸為八面體網格計算(Klein, 2002)。

扫描电子显微镜的结构原理

实验一扫描电子显微镜的结构原理及图像衬度观察 一、实验目的 1.了解扫描电镜的基本结构和工作原理。 2.通过实际样品观察与分析,明确扫描电镜的用途。 二、基本结构与工作原理简介 扫描电镜利用细聚电子束在样品表面逐点扫描,与样品相互作用产生各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像扫描电镜具有景深大、图像立体感强、放大倍数范围大且连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效工具。 扫描电镜所需的加速电压比透射电镜要低得多,一般约在1~30kV,实验时可根据被分析样品的性质适当地选择,最常用的加速电压约在20kV左右。扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整。放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。 扫描电镜的基本结构可分为六大部分,电子光学系统、扫描系统、信号检测放大系统、图像显示和记录系统、真空系统和电源及控制系统。图5-1是扫描电镜主机构造示意图。试验时将根据实际设备具体介绍。这一部分的实验内容可参照教材内容,并结合实验室现有的扫描电镜进行,在此不作详细介绍。 三、扫描电镜图像衬度观察 1.样品制备扫描电镜的优点之一是样品制备简单,对于新鲜的金属断口样品不需要做任何处理,可直接进行观察。但在有些情况下需对样品进行必要的处理。 (1) 样品表面附着有灰尘和油污,可用有机溶剂(乙醇或丙酮)在超声波清洗器中清洗。 (2) 样品表面锈蚀或严重氧化,采用化学清洗或电解的方法处理。清洗时可能会失去一些表面形貌特征的细节,操作过程中应该注意。 (3) 对于不导电的样品,观察前需在表面喷镀一层导电金属或碳,镀膜厚度控制在5~10nm 为宜。 2.表面形貌衬度观察二次电子信号来自于样品表面层5~10nm,信号的强度对样品微区表面相对于入射束的取向非常敏感。随着样品表面相对于入射束的倾角增大,二次电子的产额增多。因此,二次电子像适合于显示表面形貌衬度。

电子显微镜作业答案

电子显微镜作业 一、判断题 1.俄歇电子是从距样品表面几个埃深度范围内发射的并具有特征能量的二次电子。(√)2.透镜光阑的作用是限制扫描电子束入射试样时的发散度。(×) 3.改变扫描线圈锯齿波的振幅可改变扫描速度,改变扫描线圈电源锯齿波的频率可改变放大倍数。(×) 4.扫描电子显微镜分辨本领的测定方法有两种:一种是测量相邻两条亮线中心间的距离,所测得的最小值就是分辨本领;另一种是测量暗区的宽度,测得的最小宽度定为分辨本领。(×) 二、选择填空 1.电镜的分辨本领主要取决于(A)的分辨本领。 A.物镜;B.中间镜;C.投影镜;D.长磁透镜 2.增加样品反差的方法经常有(A、B))。 A.染色;B.重金属投影;C.超薄切片;D.复型 3.(B)是用来观察聚合物表面的一种制样方法。 A.“超薄切片”;B.“复型”技术;C.染色;D.支持膜 4.(A)是研究本体高聚物内部结构的主要方法。 A.“超薄切片”;B.“复型”技术;C.染色;D.支持膜 5.入射电子中与试样表层原子碰撞发生弹性散射和非弹性散射后从试样表面反射回来的那部分一次电子统称为(B)电子。 A.二次电子;B.背散射电子;C.反冲电子;D.透射电子。 6.扫描电子显微镜的(C)是利用对试样表面形貌敏感的物理信号作为调制信号得到的一种像衬度。 A.散射衬度;B.衍射衬度;C.表面形貌衬度;D.原子序数衬度。 7.(A)是从距样品表面10nm左右深度范围内激发出来的低能电子。 A.二次电子;B.背散射电子;C.吸收电子;D.透射电子。 8.扫描电子显微镜图像的衬度原理有(B)。 (a)散射衬度(b)表面形貌衬度(c)衍射衬度(d)相位衬度9.下面的图中(C)的二次电子信号最大。

电子显微镜技术

显微分析技术 摘要:透射电子显微镜、扫描电子显微镜以及扫描探针显微镜已经成为了分析纳米材料的重要手段之一。本文简要的介绍了透射电子显微镜、扫描电子显微镜以及扫描探针显微镜的发展以及应用。 引言 纳米科技是在20世纪80年代后才逐渐发展起来的前沿性、交叉性的新型科学领域,纳米材料的性能与其微观结构有着重要的关系,因此,纳米材料微观结构的表征对于认识纳米材料,推动纳米材料的应用有着深远的意义。 自16世纪出现了光学显微镜以后,把正常人眼睛仅能分辨约0.2mm 细节的能力,延伸到可以看细菌和微生物。20世纪30年代,科学家利用电子源制造出了扫描电子显微镜,其分辨率远远超出了光学显微镜。1932年M.Knoll和E.Ruska 研制出了第一台透射电子显微镜实验装置(TEM),1938年,V on.Ardence将扫描线圈加到透射电子显微镜上(TEM),制成了第一台扫描透射电子显微镜(STEM),放大倍数8000X,分辨率在500~1000 ?之间直到1952年,C.W.Qatley 和McMullan 在剑桥(Cambridge )制成了第一台现代的SEM,分辨率达到500?,很大程度的提高了人类认识微观世界的能力。但是,后来人们发现,当显微镜的放大率提高到1000-1500倍时,受光的衍射效应影响,图像将变得不再清晰。1982年国际商业机器公司苏黎世实验室的葛·宾尼(Gerd Binnig)博士和海·洛雷尔(Heimich Rohrer)博士及其同事们共同研制成功了世界第一台新型的表面分析仪器——扫描隧道显微镜(简称STM)。它的出现使人类第一次能够实时的观察单个原子在物质表面的排列状态和表面电子行为有关的物理、化学性质,为科学家提供了一种前所未有的直接观察单原子、单分子的手段,从而从根本上改变了人类对微观(纳米)世界的认识水平。STM的探针是由针尖与样品之间的隧道电流的变化决定的,因此要求样品表面能够导电,从而使得STM只能直接观察导体和半导体的表面结构对于非导电的物质则要求样品覆盖一层导电薄膜,但导电薄膜的粒度和均匀性难以保证,且导电薄膜掩盖了物质表面的细节为了克服

扫描电子显微镜基本原理和应用

扫描电子显微镜的基本原理和结构 下图为扫描电子显微镜的原理结构示意图。由三极电子枪发出的电子束经栅极静电聚焦后成为直径为50mm的电光源。在2-30KV的加速电压下,经过2-3个电磁透镜所组成的电子光学系统,电子束会聚成孔径角较小,束斑为5-10m m的电子束,并在试样表面聚焦。末级透镜上边装有扫描线圈,在它的作用下,电子束在试样表面扫描。高能电子束与样品物质相互作用产生二次电子,背反射电子,X射线等信号。这些信号分别被不同的接收器接收,经放大后用来调制荧光屏的亮度。由于经过扫描线圈上的电流与显象管相应偏转线圈上的电流同步,因此,试样表面任意点发射的信号与显象管荧光屏上相应的亮点一一对应。也就是说,电子束打到试样上一点时,在荧光屏上就有一亮点与之对应,其亮度与激发后的电子能量成正比。换言之,扫描电镜是采用逐点成像的图像分解法进行的。光点成像的顺序是从左上方开始到右下方,直到最後一行右下方的像元扫描完毕就算完成一帧图像。这种扫描方式叫做光栅扫描。 扫描电镜由电子光学系统,信号收集及显示系统,真空系统及电源系统组成。 1 电子光学系统 电子光学系统由电子枪,电磁透镜,扫描线圈和样品室等部件组成。其作用是用来获得扫描电子束,作为产生物理信号的激发源。为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。 <1>电子枪: 其作用是利用阴极与阳极灯丝间的高压产生高能量的电子束。目前大多数扫描电镜采用热阴极电子枪。其优点是灯丝价格较便宜,对真空度要求不高,缺点是钨丝热电子发射效率低,发射源直径较大,即使经过二级或三级聚光镜,在样品表面上的电子束斑直径也在5-7nm,因此仪器分辨率受到限制。现在,高等级扫描电镜采用六硼化镧(LaB6)或场发射电子枪,使二次电子像的分辨率达到2nm。但这种电子枪要求很高的真空度。 扫描电子显微镜的原理和结构示意图

透射电子显微镜实验讲义

一、实验名称 透射电子显微镜用于无机纳米材料的检测。 二、实验目的 1.认知透射电子显微镜的基本原理,了解有关仪器的主要结构; 2.学习利用此项电子显微技术观察、分析物质结构的方法,主要包括:常规成 像、高分辨成像、电子衍射和能谱分析等; 3.重点帮助学生掌握纳米材料等的微观形貌和结构测试结果的判读,主要包括: 材料的尺寸、大小均匀性、分散性、几何形状,以及材料的晶体结构和生长取向等。 三、实验原理 透射电子显微技术自20世纪30年代诞生以来,经过数十年的发展,现已成为材料、化学化工、物理、生物等领域科学研究中物质微观结构观察、测试十分重要的手段,尤其是近20多年来,纳米材料研究的快速发展又赋予这一电子显微技术以极大的生命力,可以这样说,没有透射电子显微镜,就无法开展纳米材料的研究。 透射电子显微镜在成像原理上与光学显微镜是类似的,所不同的是光学显微镜以可见光做光源,而透射电子显微镜则以高速运动的电子束为“光源”。在光学显微镜中,将可见光聚焦成像的是玻璃透镜;在电子显微镜中,相应的电子聚焦功能是电磁透镜,它利用了带电粒子与磁场间的相互作用。 在真空系统中,由电子枪发射出的电子经加速后,通过磁透镜照射在样品上。透过样品的电子被电子透镜放大成像。成像原理是复杂的,可发生透射、散射、吸收、干涉和衍射等多种效应,使得在相平面形成衬度(即明暗对比),从而显示出透射、衍射、高分辨等图像。对于非晶样品而言,形成的是质厚忖度像,当入射电子透过此类样品时,成像效果与样品的厚度或密度有关,即电子碰到的原子数量越多,或样品的原子序数越大,均可使入射电子与原子核产生较强的排斥作用——电子散射,使面通过物镜光阑参与成像的电子强度降低,忖度像变淡。另外,对于晶体样品而言,由于入射电子波长极短,与物质作用满足布拉格

SEM(扫描电子显微镜)的原理

扫描电子显微镜(Scanning Electronic Microscopy, SEM) 扫描电镜(SEM)是介于透射电镜和光学显微镜之间的一种微观性貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。扫描电镜的优点是,①有较高的放大倍数,20-20万倍之间连续可调;②有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;③试样制备简单。目前的扫描电镜都配有X射线能谱仪装置,这样可以同时进行显微组织性貌的观察和微区成分分析,因此它是当今十分有用的科学研究仪器。 电子束与固体样品的相互作用 扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得对是试样表面性貌的观察。 具有高能量的入射电子束与固体样品的原子核及核外电子发生作用后,可产生多种物理信号如下图所示。 电子束和固体样品表面作用时的物理现象 一、背射电子 背射电子是指被固体样品原子反射回来的一部分入射电子,其中包括弹性背反射电子和非弹性背反射电子。 弹性背反射电子是指倍样品中原子和反弹回来的,散射角大于90度的那些入射电子,其能量基本上没有变化(能量为数千到数万电子伏)。非弹性背反射电子是入射电子和核外电子撞击后产生非弹性散射,不仅能量变化,而且方向也发生变化。非弹性背反射电子的能量范围很宽,从数十电子伏到数千电子伏。 从数量上看,弹性背反射电子远比非弹性背反射电子所占的份额多。背反射电子的产生范围在100nm-1mm深度,如下图所示。 电子束在试样中的散射示意图 背反射电子产额和二次电子产额与原子序束的关系背反射电子束成像分辨率一般为50-200nm (与电子束斑直径相当)。背反射电子的产额随原子序数的增加而增加(右图),所以,利用背反射电子作为成像信号不仅能分析新貌特征,也可以用来显示原子序数衬度,定性进行成分分析。 二、二次电子 二次电子是指背入射电子轰击出来的核外电子。由于原子核和外层价电子间的结合能很小,当原子的核外电子从入射电子获得了大于相应的结合能的能量后,可脱离原子成为自由电子。如果这种散射过程发生在比较接近样品表层处,那些能量大于材料逸出功的自由电子可从样品表面逸出,变成真空中的自由电子,即二次电子。

透射电子显微镜基本结构及功能

透射电子显微镜部分结构及功能 在光学显微镜下无法看清小于0.2µm的细微结构,这些结构称为亚显微结构(s ubmicroscopic structures)或超微结构(ultramicroscopic structures;ultrastructur es)。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。1 932年Ruska发明了以电子束为光源的透射电子显微镜(transmission electron mi croscope,TEM),电子束的波长要比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。目前TEM的分辨力可达0.2nm。 电子显微镜与光学显微镜的成像原理基本一样,所不同的是前者用电子束作光源,用电磁场作透镜。另外,由于电子束的穿透力很弱,因此用于电镜的标本须制成厚度约50nm左右的超薄切片。这种切片需要用超薄切片机(ultramicrotome)制作。电子显微镜的放大倍数最高可达近百万倍、由电子照明系统、电磁透镜成像系统、真空系统、记录系统、电源系统等5部分构成,如果细分的话:主体部分是电子透镜和显像记录系统,由置于真空中的电子枪、聚光镜、物样室、物镜、衍射镜、中间镜、投影镜、荧光屏和照相机。 电子显微镜是使用电子来展示物件的内部或表面的显微镜。高速的电子的波长比可见光的波长短(波粒二象性),而显微镜的分辨率受其使用的波长的限制,因此电子显微镜的分辨率(约0.1纳米)远高于光学显微镜的分辨率(约200纳米)。 透射式显微镜的结构与原理 透射式电子显微镜(TEM)与投射式光学显微镜的原理很相近,它们的光源、透镜虽不相同,但照放大和成像的方式却完全一致。 在实际情况下无论是光镜还是电镜,其内部结构都要比图示复杂得多,图中的聚光镜(condonser lens)、物镜(object lens)和投影镜(projection lens)为光路中的主要透镜,实际制作中它们往往各是一组(多块透镜构成),在设计电镜时为达到所需的放大率、减少畸变和降低像差,又常在投影镜之上增加一至两级中间镜(in temediate lens)。 透射式电子显微镜的总体结构包括镜体和辅助系统两大部分,镜体部分包含:①照明系统(电子枪G,聚光镜C1、C2),②成像系统(样品室,物镜O,中间镜I1、

2020年智慧树知道网课《生物电镜原理与技术》课后章节测试满分答案

第一章测试1 【单选题】(10分)人眼的平均分辨率为 A. 0.2μm B. 0.4mm C. 0.3mm D. 0.4μm E. 0.2mm 2 【单选题】(10分)电子枪产生的电子是 A. 弹性散射电子 B. 透射电子 C. 二次电子 D. 入射电子 E.

特征x射线 3 【单选题】(10分) 下面哪种电镜可以在观察结构的同时,对组织细胞内的元素成分进行分析 A. 扫描电镜 B. 扫描隧道显微镜 C. 透射电镜 D. 分析电镜 E. 冷冻电镜 4 【单选题】(10分) 世界上第一台电子显微镜是哪年出现的 A. 1924年 B. 1930年 C. 1935年

D. 1945年 E. 1932年 5 【单选题】(10分) 在样品的表面产生,产额与样品表面的凹凸程度有关的是 A. 入射电子 B. 特征x射线 C. 透射电子 D. 二次电子 E. 弹性散射电子 6 【单选题】(10分) 科学家们利用哪种电镜在金属镍表面上用35个惰性气体原子组成了IBM三个字母 A. 透射电镜 B.

扫描隧道显微镜 C. 分析电镜 D. 扫描电镜 E. 原子力显微镜 7 【单选题】(10分) 哪种电镜能够将活的生物分子进行冷冻,使分子机制可以图像化描述 A. 分析电镜 B. 透射电镜 C. 扫描电镜 D. 扫描隧道显微镜 E. 冷冻电镜 8 【多选题】(10分) 透射电镜可用于

A. 观察各种细胞器的超微结构 B. 用于观察细菌、病毒的超微结构 C. 观察组织细胞的超微结构病变 D. 用于核酸和蛋白质超微结构的研究 E. 观察组织细胞的正常超微结构 9 【判断题】(10分) 电磁透镜包括静电透镜和磁透镜 A. 对 B. 错 10 【判断题】(10分) 分辨率是指人眼或光学仪器观察和分辨物体最小细节的能力 A. 对 B.

电子显微镜下的人类细胞

据国外媒体报道,下面这十五张令人惊异的人体图片,都是用扫描电子显微镜(SEM)拍摄的,通过它们你可以更近地观察人体的内部情况。 下面将从头部开始,穿过胸腔,一直到达腹腔,经过这次自我发现之旅,让你切身体验到扫描电子显微镜的非凡影响力。在这个过程中,你将看到当细胞受到肿瘤侵扰时,会出现什么情况,以及卵子第一次与精子相遇时的情景。 1.红血球 红血球 从这张图片上看,它们很像肉桂色糖果,但事实上它们是人体里最普通的血细胞——红血球。这些中间向内部凹陷的细胞的主要任务,是将氧气输送到我们的整个身体。在女性体内,每立方毫米血液中大约有400万到500万个红血球,男性每立方毫米血液中有大约500万到600个红血球。居住在海拔较高的地区的人,体内的红血球数量更多,因为他们生活的环境氧气相对更少。 2.头发分叉

头发分叉 经常修剪和良好的护理,可避免像这张图片上出现发梢分叉的现象。 3. 普尔基涅神经元

普尔基涅神经元 在大脑里的1000亿个神经元中,普尔基涅神经元是体积最大的。这些细胞是小脑皮层里的运动协调大师。接触酒精、锂等有毒物质、患有自身免疫性疾病、存在孤独症和神经退行性疾病 (Neurodegenerative disease)等遗传变异,都会对人类的普尔基涅神经元造成消极影响。 4.耳毛细胞 耳毛细胞 这张图片看起来好像是在耳朵里面对耳毛细胞进行近距离观察时拍摄的。耳毛细胞的主要功能是发现对声震作出反应时产生的机械运动。 5.从视神经中伸出的血管

从视神经中伸出的血管 这张照片显示的是血管从黑色视盘中伸出。视盘是个盲点,因为视网膜的这个区域没有光感细胞,视神经和视网膜血管从眼睛后面的这个部位伸出去。 6.舌头上的味蕾

扫描电镜工作原理

扫描电镜工作原理 一、电子束与样品的相互作用 扫描电镜是对样品表面形态进行测试的一种大型仪器。电子枪发射的电子束在扫描电镜镜筒中,通过电磁透镜聚焦和电场加速,入射到样品中,束电子与样品原子核或核外电子发生多种相互作用,而被散射,引起束电子的运动方向或能量(或两者同时)发生变化,从而产生各种反映样品特征的信号。这些信号包括二次电子、背散射电子、吸收电子、透射电子、俄歇电子、电子电动势、阴极荧光、X射线等,这些信号能够表征固体表面或内部的某些物理或化学性质。它们是各类电子束显微分析的物理基础(图1)。 电子与样品的相互作用过程可分成弹性散射和非弹性散射过程两类。弹性散射与非弹性散射过程是同时发生的,前者使束电子偏离原来运动方向,并使电子在样品内部罗三,后者使电子能量逐渐减少直至被样品全部吸收,因此限制了电子束的扩散范围,电子束的能量完全沉积在扩散区内,同时产生大量可检测的二次辐射,这个区域称为相互作用区。 图 1 电子束轰击固体发生的各种信号及深度 相互作用区可以通过实验直接观察或由Monte Calro计算法得到。通常,电子束能量越强,电子入射深度越深,相互作用区越大(图2)。样品的原子序数越大,束电子在每走过单位距离所经受的弹性散射事件越多,其平均散射角度大,在样品中的穿透深度越浅(图3)。

图2. 不同加速电压下,蒙德卡罗(Monte Carlo)电子轨迹模拟图 图3. 同样加速电压下,不用材料,蒙德卡罗(Monte Carlo)电子轨迹模拟图 二、扫描电镜工作原理 由图4可以看出,从电子枪阴极发出的直径20-30nm的电子束,受到阴阳极之间的加速电压的作用,射向镜筒。经过聚光镜和物镜聚焦后,形成一个具有一定能量、强度和斑点直径的入射电子束。在物镜上部扫描线圈产生的磁场作用下,入射电子束按一定时间、空间顺序作光栅式扫描。由于入射电子与样品之间的相互作用,从样品中激发出的信号被不同的检测器收集,并成像。 本台扫描电镜配备有检测二次电子的SE2和Inlens检测器,形成样品形貌像;检测背散射电子的ASB检测器,形成样品成分衬度像;检测特征X射线能量的X射线能谱仪,用于元素定性、定量分析。详细介绍见:各种检测器成像效果;X射线能谱仪工作原理及谱图解析

扫描电镜原理、方法及操作

一、分析测试步骤 开机 1、接通循环水(流速~2.0L/min ) 2、打开主电源开关。 3、在主机上插入钥匙,旋至“Start ”位置。 松手后钥匙自动回到“on ”的位置,真空系统开始工作。 4、等待10秒钟,打开计算机运行。 5、点击桌面的开始程序。 6、点击[JEOL ·SEM ]及[JSM-5000主菜单]。 7、约20分钟仪器自动抽高真空,真空度达到后,电子枪自动加高压,进入工作状态。 8、通过计算机可以进行样品台的移动,改变放大倍数、聚焦、象散的调整, 直到获得满意的图像 9、对于满意的图像可以进行拍照、存盘和打印。 10、若需进行能谱分析,要提前1小时加入液氮,并使探测器进入工作状态。 11、打开能谱部分的计算机进行谱收集和相应的分析。 12、需观察背散射电子像时,工作距离调整为15mm ,然后插入背散射电子探测器,用完后 随时拔出。 更换样品 1、点击“HT on ”,出现“HT Ready ”。 2、点击“Sample ”,再点击“Vent ”。 3、50秒后拉出样品台,从样品台架上取出样品台. 4、更换样品后,关上样品室门,再点击“EVAC ”,真空系统开始工作,重复开机10.1.8、。 关机 1、点击[EXIT ],再点击[OK ],扫描电镜窗口关闭,回到视窗桌面上. 2、电击桌面上的[Start ]。

3、退出视窗,关闭计算机. 4、关闭控制面板上的电源开关. 5、等待15分钟后关掉循环水. 6、关掉总电源. 二. 方法原理 1、扫描电镜近况及其进展 扫描电子显微镜的设计思想和工作原理,早在1935年已经被提出来了,直到1956年才开始生产商品扫描电镜。商品扫描电镜的分辨率从第一台的25nm提高到现在的,已经接近于透射电镜的分辨率,现在大多数扫描电镜都能同X 射线波谱仪、X 射线能谱仪和自动图像分析仪等组合,使得它是一种对表面微观世界能够进行全面分析的多功能的电子光学仪器。数十年来,扫描电镜已广泛地应用在材料学、冶金学、地矿学、生物学、医学以及地质勘探,机械制造、生产工艺控制、产品质量控制等学科和领域中,促进了各有关学科的发展。随着纳米材料的出现,原有的钨灯丝扫描电镜由于分辨率低,不能满足纳米材料分析检测的要求,之后,电镜生产厂家推出了场发射扫描电子显微镜,使扫描电镜的分辨率提高到了。场发射扫描电子显微镜又分为冷场场发射扫描电子显微镜和热场场发射扫描电子显微镜,它们的共性是分辨率高。热场发射扫描电镜的束流大且稳定,适合进行能谱分析,但维护成本和要求高;冷场发射扫描电镜的束流小且不稳定,适合于做表面形貌观察,不适合能谱分析,相对而言维护成本和要求要低一些。环境扫描电镜的特点是对于生物样品、含水样品、含油样品,既不需要脱水,也不必进行导电处理,可在自然的状态下直接观察二次电子图像并分析元素成分。 2、扫描电镜的特点 能够直接观察样品表面的微观结构,样品制备过程简单,对样品的形状没有任何限制,粗糙表面也可以直接观察; 样品在样品室中可动的自由度非常大,可以作三度空间的平移和旋转,这对观察不规则形状样品的各个区域细节带来了方便; 图象富有立体感。扫描电镜的景深是光学显微镜的数百倍,是透射电镜的数十倍,故所得到的图象立体感比较强; 放大倍数范围大,从几倍到几十万倍连续可调。分辨率也比较高,介于光学显微镜和

自制扫描式电子显微镜

自制扫描式电子显微镜 HSTM(Home-brewed Scanning Tunneling Microscope) 科教所博士班学生颜弘志 摘要: 近年来随着纳米科技的迅速发展,电子显微镜的需求日益增加,但实验室与工业使用的电子显微镜动輒数十万元,实在让一般学生望之却步,在教授的带领下,这个研究企图在最少的材料花费下,配合电脑软体成像的技术,自制电子显微镜,以作为未来学生自制廉价电子显微镜的参考。 研究动机: 在教授的指导下,我们搜寻国内外自制电子显微镜的网站,意外发现一个网站Simple STM Project (https://www.wendangku.net/doc/ba1624883.html,/spm_stm/),内容详细介绍自制电子显微镜的过程,好奇心的驱使使我们决定要尝试看看,可否在有限资源下完成一台学生用的STM。 研究目的: 这个研究的目的除了要验证自制电子显微镜的可行性外,还要评估与改良自制电子显微镜的效能。 研究设备与材料: 设备:一般电子学实验室设备、车床、数位类比转换器、电脑、实物摄影机 材料:电子电路材料、压电材料、自动铅笔笔头、铝板、螺丝、银胶、9伏特电池两个、铜丝 仪器制造过程方法: 一、机械部分 自制STM侧面构造简图【图一】,首先依据设计图切割铝板,○代表贯穿螺丝孔,●代表螺丝凹槽,为避免电子显微镜调节时不必要震动,凹槽务必研磨圆滑。 依图二,上层铝板的大圆孔为压电片摆放位置,大圆孔左右各有一个圆孔是固定压电片螺丝所使用,螺丝圆孔大小直径约2mm,A、B两线相距1mm,A、C两线相距10CM,应用杠杆原理透过以A线作为支点,细调节轮可以可以产生比粗调节轮约百分之一调节能力。

S-3000N扫描式电子显微镜使用手册

電子槍 接物孔徑SE偵測器 S-3000N外觀圖

目 錄 Ⅰ、操作面板功能介紹 (2) Ⅱ、操作視窗介紹 (3) Ⅲ、開關機程序 (6) (A)開機程序 (6) (B)關機程序 (7) Ⅳ、樣品的置換 (8) (A)放置樣品於樣品座上 (8) (B)樣品的置入 (8) (C)高真空模式設定 (10) (D)低真空模式設定 (11) Ⅴ、影像的觀察 (12) (A)加速電壓的設定 (12) (B)影像亮度、對比調整 (13) (C)焦距調整 (13) (D)觀察區域的選擇 (14) (E)像差的調整 (14) (F)拍照攝影 (15) Ⅵ、決定影像品質的因素 (16) (A)高真空模式下 (16) (B)低真空模式下 (17) Ⅶ、準位(Alignment)調整 (18) Ⅷ、燈絲電流調整設定與電子槍的軸調整 (19)

Ⅰ、操作面板功能介紹 號碼轉鈕功能 (1)X IMAGE SHIFT/ K1 MULTI-FUNCTIONS (X影像移動/K1多功能鈕) X方向影像移動K1多功能影像調整 (2)Y IMAGE SHIFT/ K2 MULTI-FUNCTIONS (Y影像移動/K2多功能鈕) Y方向影像移動K2多功能影像調整 (3)X STIGMATOR/ALIGNMENT (X像差調整鈕/軸調整)X方向影像像差調整電子束軸調整 (4)Y STIGMATOR/ALIGNMENT (Y像差調整鈕/軸調整)Y方向影像像差調整電子束軸調整 (5)MAGNIFICATION(倍率鈕)影像縮小放大(6)CONTRAST(對比鈕)影像對比度調整(7)BRIGHTNESS(明暗度鈕)影像明暗度調整(8)FOCUS(聚焦鈕)影像焦距調整

相关文档
相关文档 最新文档