文档库 最新最全的文档下载
当前位置:文档库 › 半导体制造技术概述

半导体制造技术概述

半导体制造技术概述
半导体制造技术概述

1.分别简述RVD 和GILD 的原理,它们的优缺点及应用方向。

(1)RVD(快速气相掺杂)

原理:利用快速热处理过程(RTP)将处在掺杂剂气氛中的硅片快速均匀地加热至所需要的温度,同时掺杂剂发生反应产生杂质原子,杂质原子直接从气态转变为被硅表面吸附的固态,然后进行固相扩散,完成掺杂目的。

优缺点:不受注入所带来的一些效应的影响,如:沟道效应、晶格损伤或使硅片带电等。然而,需要在较高的温度下完成。杂质分布是非理想的指数形式,类似固态扩散,其峰值处于表面处。

应用方向:DRAM中电容的掺杂,深沟侧墙的掺杂,以及CMOS浅源漏结的制造等。

(2)GILD (气体浸没激光掺杂)

原理:用准分子激光器照射使硅表面变为液体层,同时气态掺杂源由于热解或光解作用产生杂质原子通过液相扩散进入该液体层,快速并均匀扩散至整个融化层中,激光照射停止后,液体层结晶,杂质进入激活的晶格位置,形成均匀掺杂的表面薄层。

优缺点:只有表面受到照射且时间很短,表面杂质分布均匀陡峭,硅体内杂质处于低温,杂质分布不受影响,缺点是效率太低。

应用方向:突变型分布及超浅结的掺杂。

2.集成电路制造中有哪几种常见的扩散工艺?各有什么优缺点?

按照原始杂质源在室温下的相态,可分为固态源、液态源和气态源扩散。

固态源扩散典型的有开管扩散,箱法扩散和涂源法扩散。其中开管扩散具有良好的重复性和稳定性;箱法扩散具有良好的均匀性;涂源法扩散工艺简单,但表面浓度难以控制,只适用于杂质浓度控制要求不高的器件制造。液态源扩散相对固态源来说,系统简单,操作方便,成本低,效率高,重复性和均匀性都很好,但对源瓶的密封性有较高的要求。气态源扩散系统则更为简洁,但其气态杂质源多为氢化物或卤化物,毒性很大,易燃易爆,具有一定的危险性。

3. 杂质原子的扩散方式有哪几种?它们各自发生的条件是什么?从原子扩散的角度举例说明氧化增强扩散和氧化阻滞扩散的机理。

杂质原子的扩散方式主要有替位式扩散和填隙式扩散两大类。

其中替位式扩散分为交换式和空位式。交换式是由于两相邻原子由于有足够高的能量,互相交换位置。空位式是由于有晶格空位,相邻原子能移动过来。间隙式分为挤出机制和Frank-Tumbull机制,挤出机制中,杂质原子踢出或挤出晶格位置上的硅原子,进入晶格位置,Frank-Tumbull机制中,杂质原子以间隙的方式进行扩散运动,遇到空位可被俘获,称为替位杂质。

氧化增强扩散机理:(小原子,可以在间隙中移动)硅氧化时,在Si-SiO2界面附近产生了大量的填隙Si原子,这些过剩的填隙Si原子在向硅内扩散的同时,不断与空位复合,使这些过剩的填隙Si原子的浓度随深度而降低。在表面附近,过剩的填隙Si原子可以和替位B相互作用,从而使原来处于替位的B变为填隙B。当填隙B的近邻晶格没有空位时,填隙B就以填隙方式运动;如果填隙B的近邻晶格出现空位时,填隙B又可以进入空位变为替位B。这样,杂质B就以替位-填隙交替的方式运动,其扩散速度比单纯的替位式扩散要快。

氧化阻滞扩散机理:用锑代替硼的扩散实验表明,氧化区正下方锑的扩散结深小于氮化硅保护区下方的扩散结深,说明在氧化过程中锑的扩散被阻滞。这是因为控制锑扩散的主要机制是空位。在氧化过程中,所产生的过剩间隙硅原子在向硅内扩散的同时,不断地与空位复合,使空位浓度减小,从而降低了锑的扩散速度。

4. 写出菲克第一定律和第二定律的表达式,并解释其含义。 菲克第一定律:x t x C D

J ??-=),(

其中:C 为杂质浓度;D 为扩散系数(单位为cm2/s);

J 为材料净流量(单位时间内流过单位面积的原子个数)

如果在一个有限的基体中杂质浓度C(x, t)存在梯度分布,则杂质将 会产生扩散运动,杂质的扩散流密度 J 正比于杂质浓度梯度

x C ??/,比例系数D 定义为杂质在基体中的扩散系数。

菲克第二定律: t t x C ??),(??? ??????=x t x C D x ),(

菲克第二定律是在第一定律的基础上推导出来的。菲克第二定律指出,在非稳态扩散过程中,在距离x 处,浓度随时间的变化率等于该处的扩散通量随距离变化率的负值。

5. 以 P2O5为例,多晶硅中杂质扩散的方式及分布情况。

多晶硅中杂质主要有三种扩散模式:

①晶粒尺寸较小或晶粒内的扩散较快,以至从两边晶粒间界向晶粒内的扩散相互重叠,形成如图A 类分布。

②晶粒较大或晶粒内的扩散较慢,所以离晶粒间界较远处杂质原子很少,形成如图B 类分布。

③与晶粒间界扩散相比,晶粒内的扩散可以忽略不计,因此形成如图C 类分布。

6. 分别写出恒定表面源扩散和有限表面源扩散的边界条件、初始条件、扩散杂质的分布函数,简述这两种扩散的特点。

恒定表面源扩散:

边界条件:

,0

)0,

(>

=x

x

C扩散开始时的初始条件Cs

t

C=

),0(表面浓度恒定

),

(=

∞t

C无穷远处浓度为零

初始条件:

分布函数:

?

?

?

?

?

=

?

?

?

?

?

-

=

Dt

x

Cserfc

Dt

x

erf

Cs

t

x

C

2

2

1

),

(

erfc为余误差函数,Dt为特征扩散长度

特点:①在表面浓度Cs一定的情况下,扩散时间越长,杂质扩散的就越深,扩到硅内的杂质数量也就越多。

②结的位置xj与扩散系数D和扩散时间t的平方根成正比。D与温度T

是指数关系,所以在扩散过程中,温度对扩散深度和杂质分布的影响

较大。

③在Cs和CB一定的情况下,pn结越深,在结处的杂质浓度梯度就越小。有限表面源扩散:

边界条件:

,0

)0,

(≠

=x

x

C扩散长度远大于杂质初始分布宽度0

),0(

=

dx

t

dC

杂质总量为QT

),

(=

∞t

C无穷远处杂质为0

常数

=

=

?∞T Q

dx

t

x

C

),

(

表面处杂质浓度梯度为0

初始条件:

分布函数:

),

4

exp(

),

(

2

>

-

=t

Dt

x

Dt

Q

t

x

C T

π

特点:①有限表面源扩散的表面浓度Cs随时间而降低;扩散温度相同时,扩

散时间越长,杂质扩散的越深,表面浓度越低。扩散时间相同时,扩

散温度越高,杂质扩散的越深,表面浓度下降越多。

②对于有限源扩散来说,扩散时间较短时,结深xj将随(Dt)1/2的增加

而增加。在杂质分布形式相同的情况下,CB越大,结深越浅。

③杂质浓度梯度将随扩散结深的增加而减小。

7.什么是两步扩散工艺,其两步扩散的目的分别是什么?

两步扩散是采用两种扩散结合的方式。第一步称为预扩散或者预淀积:在较低温度下,

采用恒定表面源扩散方式。在硅片表面扩散一层数量一定,按余误差函数形式分布的杂质。由于温度较低,且时间较短,杂质扩散的很浅,可认为杂质是均匀分布在一薄层内。第二步称为主扩散或者再分布:将由预扩散引入的杂质作为扩散源,在较高温度下进行扩散。

第一步的目的是为了控制扩散杂质的数量。 第二步的目的是为了控制表面浓度和扩散深度。

8. 假设进行一次受固溶度限制的预淀积扩散,从掺杂玻璃源引入的杂质总剂量为 Q cm-2。

(1)如果这次预淀积进行了总共 t 分钟,若预淀积温度不变,引入 3Q cm-2的杂质需要多长

时间?

(2)预淀积后再进行推进扩散,要求推进的杂质足够深,使得最后表面杂质浓度等于其固 溶度 Cs 的 1%。若已知预淀积过程中的(Dt)predop ,推导出推进扩散过程中(Dt)drive-in 的表达式。

(1)两步扩散工艺:

t Q Dt Cs

Q ∞?=π2 预淀积,恒定表面源扩散

t Q 93?∴

(2)Cs Dt

Q t C in drive 01.0),0(==-π 推进扩散,有限表面源扩散 p r e d e p Dt Cs

Q )(2π

= 预淀积,恒定表面源扩散 01.0)()(2=∴-in drive predep

Dt Dt π

p r e d e p in drive Dt Dt )(200)(2??

? ??=∴-π 9. 简述几种常用的氧化方法及其特点。

(1)干氧氧化:结构致密、干燥、均匀性和重复性好,掩蔽能力强,与光刻胶黏附好;但是干氧氧化法的生长速率慢。

(2)水汽氧化:水比氧气有更高的扩散系数和大得多的溶解度,所以水汽氧化的生长速率一般比较高。

(3)湿氧氧化:其生长速率介于干氧和水汽氧化之间,与氧气流量、水汽的含量有着密切关系。如果水汽含量很少,其生长速率和质量就越接近于干氧氧化的情况,反之,就越接近水汽氧化情况

10. 说明 SiO 2的结构和性质,并简述结晶型 SiO 2和无定形 SiO 2的区别。

结构及性质:中心是Si 原子,四个顶点上是O 原子,顶角上的4个O 原子正好与Si 原子的4个价电子形成共价键。相邻的Si-O 四面体是靠Si-O-Si 键桥连接。其密度一般为

2.20g/cm3,熔点1700℃左右,折射率为波长的函数,密度和折射率较大,化学性质十分稳定,室温下只与氢氟酸发生反应。

结晶型SiO2:由Si-O 四面体在空间规则排列构成,每个顶角的O 原子与两个相邻四面

体中心的Si原子形成共价键。Si-O-Si键桥的角度为144o;无定型SiO2:Si-O四面体的空间排列没有规律,Si-O-Si键桥的角度不固定,在110-180o之间,峰值144o。相比之下,无定型SiO2网络疏松,不均匀,有孔洞。

11.以P2O5为例说明SiO2的掩蔽过程。

当P2O5与SiO2接触时,SiO2就转变为含磷的玻璃体(PSG),其变化过程如图所示;

(a) 扩散刚开始,只有靠近表面的SiO2转变为含磷的玻璃体。

(b) 大部分SiO2层已转变为含磷的玻璃体。

(c) 整个SiO2层都转变为含磷的玻璃体。

(d) 在SiO2层完全转变为玻璃体后,又经过一定时间,SiO2层保护的硅中磷已经扩进一定深度。

12.简述杂质在SiO2的存在形式及如何调节SiO2的物理性质。

一些杂质会被有意掺入热淀积SiO2中,用来改善它的物理性质和电学特性,例如硼、磷,称为网络构成者,它们可以调节有氧桥和无氧桥的比例,使得SiO2的强度上升或者下降。

存在于SiO2网络间隙的杂质为网络改变者。一般以离子形式存在,离子半径较大,替代硅的可能性很小。例如Na、K、Pb、Ba等都是网络改变者。网络改变者往往以氧化物形式进入SiO2中。进入网络之后便离化,并把氧离子交给SiO2网络。网络中氧的增加,使非桥键氧的浓度增大,SiO2网络的强度减弱。

13.简述常规热氧化办法制备SiO2介质薄膜的动力学过程,并说明在什么情况下氧化过程由反应控制或扩散控制。

常规热氧化制备SiO2介质薄膜的动力学过程分为三个阶段:

(1)氧化剂从气体内部以扩散形式穿过滞留层运动到气体SiO2界面;

(2)氧化剂也扩散方式穿过SiO2层,到达SiO2-Si界面,表面SiO2层上吸附氧起氧源作用,SiO2-Si界面起氧漏作用,建立起驱动扩散所需的浓度梯度;

(3)氧化剂在Si表面与Si反应生成SiO2,反应速率和氧浓度成正比。

如果扩散系数DSiO2很大,Ci=C0 =HPg/(1+ks/h)。此时,进入SiO2中的氧化剂快速扩散到SiO2-Si界面处,在界面处氧化剂与Si反应生成SiO2的速率很慢,造成氧化剂在界面处堆积,趋向于SiO2表面处的浓度。此时,SiO2生长速率由Si表面的化学反应速率控制,称为反应控制。

当氧化剂在SiO2中的扩散系数DSiO2很小时(D<

以扩散方式通过SiO2层运动到SiO2-Si 界面处的数量极少,与Si 立即发生反应生成SiO2 ,在界面处没有氧化剂的堆积,浓度趋于零。因扩散速度太慢,而大量氧化剂堆积在SiO2的表面处,浓度趋向于同气相平衡时的浓度C 。此时,SiO2的生长速率主要由氧化剂在SiO2中的扩散速度决定,称为扩散控制。

14. 说明影响氧化速率的因素。

(1)氧化剂分压

因为平衡情况下,SiO2中氧化剂的浓度C0=HP g ,而抛物型速率常数B=2D SiO2C 0/N 1,所以气体中的氧化剂分压P g 是通过氧化剂的浓度对速率常数B 产生影响,B 与P g 成正比关系。A 与氧化剂分压无关。因为B 、B/A 均与P g 成正比,那么在一定氧化条件下,通过改变氧化剂分压可达到改变二氧化硅生长速率的目的。

(2)氧化温度

温度对抛物型速率常数B 的影响是通过氧化剂在SiO2中扩散系数D SiO2产生的。由B =2D SiO2C 0/N 1可知,B 与温度之间也是指数关系。

(3)晶向

抛物型氧化速率常数B ,与硅衬底晶向无关,这是因为在氧化剂压力一定的条件下,B 的大小只与氧化剂在SiO2中的扩散能力有关。线性氧化速率常数B/A 则强烈地依赖于晶面的取向,因为线性氧化速率常数由表面化学反应速率决定,表面化学反应速率是与硅表面的原子密度,也就是与表面的价键密度有关。(111)面上的硅原子密度比(100)面上大。

(4)杂质影响

在氧化层中掺杂入P 、B 提供了更多的空位,加快了氧化速率;掺杂卤素,例如 Cl ,催化反应的同时还能与大多数重金属原子反应生成挥发性的金属氯化物,起到清洁作用。

15. 简述在热氧化过程中杂质再分布的四种可能情况。

掺有杂质的硅在热氧化过程中,在Si-SiO 2界面上的平衡杂质浓度之比定义为分凝系数。

衡浓度

杂质在二氧化硅中的平杂质在硅中的平衡浓度 m 热氧化过程中杂质再分布有以下四种可能情况:

(1)m <l ,且在SiO 2中是慢扩散的杂质,也就是说在分凝过程中杂质通过SiO 2表面损失的很少,硼就是属于这类。再分布之后靠近界面处的SiO 2中的杂质浓度比硅中高,硅表面附近的浓度下降。

(2)m <1,且在SiO 2中是快扩散的杂质。因为大量的杂质通过SiO 2表面跑到气体中去,杂质损失非常厉害,使SiO 2中的杂质浓度比较低,但又要保证界面两边的杂质浓度比小于1,使硅表面的杂质浓度几乎降到零,在H 2气氛中的硼就属于这种情况。

(3)m >1,且在SiO 2中慢扩散的杂质。再分布之后硅表面附近的杂质浓度升高,磷就属于这种杂质。

(4)m >l ,且在SiO 2中快扩散的杂质。在这种情况下,虽然分凝系数大于1,但因大量杂质通过SiO 2表面进入气体中而损失,硅中杂质只能不断地进入SiO 2中,才能保持界面两边杂质浓度比等于分凝系数,最终使硅表面附近的杂质浓度比体内还要低,镓就是属于这种类型的杂质。

对于m =1,而且也没有杂质从SiO2表面逸散的情况,热氧化过程也同样使硅表面杂质浓度降低。这是因为一个体积的硅经过热氧化之后转变为两个多体积的SiO2,由此,要使界面两边具有相等的杂质浓度(m =1),那么杂质必定要从高浓度硅中向低浓度SiO2中扩散,即硅中要消耗一定数量的杂质,以补偿增加的SiO2体积所需要的杂质。

16. 一片硅片由 0.3um 厚的 SiO 2薄膜覆盖。

(1)在 1200℃下,采用 H2O 氧化,使厚度增加 0.5um 需要多少时间?。

(2)在 1200℃下,采用干氧氧化,增加同样的厚度需要多少时间?

所需数据见下表,玻尔兹曼常数 k=1.38×10-23。

(1)在 1200℃下,采用 H2O 氧化,有

829.078.0exp 1086.32=??

? ??-?=kT B hr m /2μ 86.1505.2exp 1063.18=??

? ??-?=kT A B hr m /2μ m A μ052.0=

初始氧化需要时间为

hr B Ax x j

i 127.0829

.0)3.0)(052.0()3.0(22=+=+=τ 增长到0.8m μ需要

hr B Ax x j

i 822.0829

.0)8.0)(052.0()8.0(22=+=+=τ 因此,对一个0.3m μ的薄膜使厚度增加0.5m μ需要hr 695.0127.0822.0=-或者47.1minutes 。

(2)在 1200℃下,干氧条件下

hr m k B /048.0)2731200(23.1exp 1072.722μ=???

? ??+-?= hr m kT A B /899.00.2exp 1023.66μ=??

? ??-?= m A μ053.0=

需要14.217hr,因此增长同样的厚度需要初始氧化需要时间为2.206hr,增长到0.8m

12hr。

17.Si-SiO2界面电荷有哪几种?简述其来源及处理办法。

(1)可动离子电荷Qm,主要来源于碱性金属离子,例如K+,Na+等网络改变者。为了降低Na+的玷污,可以在工艺过程中采取预防措施包括:

①使用含氯的氧化工艺;

②用氯周期性地清洗管道、炉管和相关的容器;

③使用超纯净的化学物质;

④保证气体及气体传输过程的清洁。另外保证栅材料不受玷污也是很重要的。

(2)氧化层陷阱电荷Q ot,在氧化层中有些缺陷能产生陷阱,这些缺陷有:①悬挂键;②界面陷阱;⑤硅-硅键的伸展;④断键的氧原子(氧的悬挂键);⑤弱的硅-硅键(它们很容易破裂,面表现电学特性)。⑥扭曲的硅-氧键;⑦Si-H和Si-OH键。产生陷阱电荷的方式主要有电离辐射和热电子注入等。减少电离辐射陷阱电荷的主要方法有三种:

①选择适当的氧化工艺条件以改善SiO2结构。为抗辐照,氧化最佳工艺条件,常用1000℃干氧氧化。

②在惰性气体中进行低温退火(150-400℃)可以减少电离辐射陷阱。

③采用对辐照不灵敏的钝化层,例如A12O3,Si3N4等。

(3)氧化层固定电荷Q f,主要由Si-SiO2之间过渡区的结构改变引起的。该区中存在有过剩的硅离子,在氧化过程中与晶格脱开但还未完全与氧反应。快速退火能有效地减小氧化

层固定电荷密度。

(4)界面陷阱电荷Q it,主要由于界面处存在的不完整化合价及不饱和键,使得电子和空穴可以很容易地被俘获。界面态密度与衬底晶向、氧化层生长条件和退火条件密切有关。在相同的工艺条件下、(111)晶向的硅衬底产生的界面态密度最高,(100)晶向的最低。通过采用特殊的退火工艺可以有效减少界面态密度。

18.下图为一个典型的离子注入系统。

(1)给出1~6 数字标识部分的名称,简述其作用。

(2)阐述部件2 的工作原理。

(1)1:离子源,用于产生诸如用的离子

2:分析磁块,用于分选所需荷质比的离子

3:加速器,使离子获得所需能量

4:中性束闸与中性束阱,使中性原子束因直线前进不能达到靶室

5:扫描板,使离子在X和Y方向可移动,实现整个靶片的均匀注入

6:法拉第杯,收集束流测量注入剂量。

(2)由离子源引出的离子流含有各种成分,其中大多数是电离的,离子束进入一个低压腔体内,该腔体内的磁场方向垂直于离子束的速度方向,利用磁场对荷质比不同的离子产生的偏转作用大小不同,偏转半径由公式ext V q

M B qB Mv r 21== 得出 最后在特定半径位置采用一个狭缝,可以将所需的离子分离出来。

19.离子在靶内运动时,损失能量可分核阻滞和电子阻滞,解释什么是核阻滞、电子阻滞? 两种阻滞本领与注入离子能量具有何关系?

核阻滞即核碰撞,是注入离子与靶内原子核之间的相互碰撞。因两者质量是一个数量级,一次碰撞可以损失较多能量,且可能发生大角度散射,使靶原子核离开原来的晶格位置,留下空位,形成缺陷。

电子阻滞即电子碰撞,是注入离子与靶内自由电子以及束缚电子之间的碰撞,这种碰撞能瞬时地形成电子-空穴对。因离子质量比电子大很多,每次碰撞离子能量损失很少,且都是小角度散射,且方向随机,故经多次散射,离子运动方向基本不变。

在低能区:核阻滞本领占主要地位,电子阻滞可以忽略不计;

在中能区:和阻滞本领和电子阻滞本领同等重要,必须同时考虑;

在高能区:电子阻滞本领占主导地位,核阻滞本领可以忽略;

核阻滞本领随注入离子能量的增加先增强后减弱;电子阻滞本领与注入离子能量的平方根成正比,E k S e e =。

20.采用无定形掩膜的情况下进行注入,若掩蔽膜/衬底界面的杂质浓度减少至峰值浓度的 1/10000,掩蔽膜的厚度应为多少?用注入杂质分布的射程和标准偏差写出表达式。

???

??????--=2*2***2)(exp )(p p p R R d N d N 4**10)(-=p

N d N 因此,*

*3.4p p R R d ?+=

21.As 注入到轻掺杂的 P 型 Si 衬底内,能量 75eV ,剂量为 1×1014cm-2。硅片相对于离子束做 7°倾斜,使其貌似非晶。假设对注入区进行快速退火,结果得到了完全的电激活,其峰值电子浓度为多少?所需参数可参考下图。

由图可得, m R p μ05.0= m R p μ02.0=?

因此, 319414102)1002.0(21012--?=??=?=cm R Q C p p ππ

22.什么是离子注入的横向效应?同等能量注入时,As 和 B 哪种横向效应更大?为什么? 离子注入的横向效应是指,注入过程中,除了垂直方向外,离子还向掩膜的横向方向移动,导致实际注入区域大于掩膜窗口的效应。B 的横向效应更大,因为在能量一定的情况下,轻离子比重离子的射程要深并且标准偏差要大。

23.什么是离子分布的偏斜度和峭度,和标准高斯分布有什么区别?

表征高斯分布是对称的离子分布。离子分布的非对称性常用偏斜度γ表示,有3

3p

R m ?=γ γ为负值表明杂质分布在表面一侧的浓度增加,即p R x <区域浓度增加,杂质分布曲线相对于标准高斯分布会向一边(左边)倾斜。

畸变用陡峭β,有44p

R m ?=

β,峭度越大,高斯曲线的顶部越平,标准高斯曲线的峭度为3.

24.热退火用于消除离子注入造成的损伤,温度要低于杂质热扩散的温度,然而,杂质纵向 分布仍会出现高斯展宽与拖尾现象,解释其原因。

离子注入后会对晶格造成简单晶格损伤和非晶层形成;损伤晶体空位密度大于非损伤晶体,且存在大量间隙原子和其他缺陷,使扩散系数增大,扩散效应增强;故虽然退火温度低于热扩散温度,但杂质的扩散也是非常明显的,出现高斯展宽与拖尾现象。

25.什么是离子注入中常发生的沟道效应(Channeling )和临界角?怎样避免沟道效应?

沟道效应:当离子速度方向平行于主晶轴时,将很少受到核碰撞,离子将沿沟道运动,注入深度很深。由于沟道效应,使注入离子浓度的分布产生很长的拖尾,对于轻原子注入到重原子靶时,拖尾效应尤其明显。 临界角:Ed

Z Z t i o 73.9=ψ,其中,E 为入射能量,单位为keV ,d 为沿离子运动方向

上的原子间距,单位为?。如果离子的速度矢量与主要晶轴方向的夹角Ψ要大得多,则很少发生沟道效应。靶内某次的散射结果可能会使入射离子转向某一晶轴方向,但是由于这种事件发生的概率较小,因此对注入离子峰附近的分布并不会产生实质性的影响。

具体解决办法有以下几种:

(1)偏离轴注入,采用7°的倾斜角,但并不能完全消除沟道效应。

(2)注入前破坏晶格结构,使用Si、F或Ar离子注入完成硅的预非晶化。

(3)使用薄的屏蔽氧化层,使离子进入晶体前的速度方向无序化,但会将部分氧注入晶体。

26.什么是固相外延(SPE)及固相外延中存在的问题?

固相外延:是指半导体单晶上的非晶层在低于该材料的熔点或共晶点温度下外延再结晶的过程。热退火的过程就是一个固相外延的过程。没有外延的再结晶过程不属于固相外延。

高剂量注入促使硅非晶化,而稳定的位错环是高剂量注入的一个突出特点,非晶区以固相外延方式生长后,位错环的最大浓度在非晶和晶体硅的界面。这些位于最初的非晶/单晶(a/c)界面的缺陷称为射程末端(EOR,End-of-Range)缺陷。若位错环位于PN结耗尽区附近,会产生大的漏电流。位错环与金属杂质结合时更严重。选择的退火过程应当能够产生足够的杂质扩散,使位错环处于高掺杂区,同时又被阻挡在器件工作时的耗尽区之外。

27.简述硼和磷的退火特性。

对于高剂量情况,可以把退火温度分为三个区域:

在区域I中,随退火温度上升,点缺陷的移动能力增强,因此间隙硼和硅原子与空位的复合几率增加,使点缺陷消失,替位硼的浓度上升,电激活比例增加,自由载流子浓度增大。

当退火温度在500-600℃的范围内,点缺陷通过重新组合或结团,降低其能量。因为硼原子非常小,和缺陷团有很强的作用,很容易迁移或被结合到缺陷团中,处于非激活位置,因而出现随温度的升高而替位硼的浓度下降的现象,也就是自由载流子浓度随温度上升而下降的现象(逆退火特性)。

在区域Ⅲ中,硼的替位浓度以接近于5eV的激活能随温度上升而增加,这个激活能与升温时Si自身空位的产生和移动的能量一致。产生的空位向间隙硼处运动,因而间隙硼就可以进入空位而处于替位位置,硼的电激活比例也随温度上升而增加

硼退火特性:电激活比例:自由载流子数p和注入剂量Ns的比对于低剂量的情况,随退火温度上升,电激活比例增大。

磷退火特性:图中虚线所表示的是损伤区还没有变为非晶层时的退火性质,实线则表示

非晶层的退火性质。对于1?1015/cm2和5?1015/cm2时所形成的非晶层,退火温度在600℃左右,低于剂量为1014左右没有形成非晶层时的退火温度,这是因为两种情况的退火机理不同。非晶层的退火效应是与固相外延再生长过程相联系的,在再生长过程中,V族原子实际上与硅原子是难以区分,被注入的V族原子P在再结晶过程中与硅原子一样,同时被结合到晶格位置上。(第二章第四页)

28.简述RTP 设备的工作原理,相对于传统高温炉管它有什么优势?

RTP工作原理:早期RTP设备一般采用改变反射腔形状或灯泡间距的方法;现在RTP设备设计采用分区加热概念实现:把灯泡分成多个可独立控制的加热区,可提供多种不同的功率分布。

优势:1、升降温速度快:RTP设备的升、降温速度为10-200 ℃/秒,而传统炉管的升、降温速度为5-50 ℃/分钟。2、传统炉管是热壁工艺,容易淀积杂质;RTP 设备则是冷壁工艺,减少了硅片沾污。3、传统炉管的致命缺点是热预算大,无法适应深亚微米工艺的需要;而RTP设备能大幅降低热预算。

29.简述RTP 在集成电路制造中的常见应用。

RTP工艺的应用范围已扩展到氧化、化学气相淀积和外延生长等领域。(1)杂质的快速热激活(2)介质的快速热加工(3)硅化物和接触的形成。

30.对RTP 来说,很难在高温下处理大直径晶圆片而不在晶圆片边缘造成热塑应力引起的滑移。分析滑移产生的原因。如果温度上升速度加快后,滑移现象变得更为严重,这说明晶圆片表面上的辐射分布是怎样的?

因为边缘效应造成的温度梯度(硅片边缘温度比中心低几十甚至上百度)导致滑移甚至硅片的翘曲,主要有以下三种原因:圆片边缘接收的热辐射比圆片中心少;圆片边缘的热损失比圆片中心大;气流对圆片边缘的冷却效果比圆片中心好。

辐射分布为中心多,边缘少。

31.物理气相淀积最基本的两种方法是什么?简述这两种方法制备薄膜的过程。

蒸发和溅射。

热蒸发法:在真空条件下,加热蒸发源,使原子或分子从蒸发源表面逸出,形成蒸气流并入射到衬底表面,凝结形成固态薄膜。

溅射法:离子束溅射为例,它由离子源、离子引出极和沉积室3大部分组成,在高真空或超高真空中溅射镀膜法。利用直流或高频电场使惰性气体(通常为氩)发生电离,产生辉光放电等离子体,电离产生的正离子和电子高速轰击靶材,使靶材上的原子或分子溅射出来,然后沉积到基板上形成薄膜。

32.热蒸发法淀积薄膜的淀积速率与哪些因素有关?淀积速率的测量采用什么办法?简述其 工作原理。

根据淀积速率公式 2242r

A T P k M R n d πρπ= 可知淀积速率与蒸发材料、温度、腔体形状有关。

淀积速率通常用石英晶体速率指示仪测量,所用器件是一个谐振器板,它可以在谐振频率下振荡,工作时测量器振荡频率。因为晶体顶部有材料蒸发积淀,所外加的质量将使得频率偏移,由测得得频率移动可得出淀积速率。

33.什么是溅射产额,其影响因素有哪些?简述这些因素对溅射产额产生的影响。

溅射产额定义为平均射出原子数(靶材原子)与入射离子束(一般为Ar 离子)的比值, 表示正离子轰击作为阴极材料的靶材时,平均每个正离子能从靶材上打出的原子数目。

(1)与入射离子能量的关系

入射离子能量超过溅射阈值,发生溅射;入射离子能量增加,溅射率增加; 入射离子能量继续增加,溅射率下降,发生离子注入现象。

(2)与入射离子种类的关系

原子量越大,溅射率越高;电子壳层填满的元素作为入射离子,则溅射率最大。故惰性气体的溅射率可取到极大 值。

(3)与被溅射物质种类的关系

一般规律:随靶元素原子序数增加而增大。

(4)与离子入射角的关系

入射角:离子入射方向与被溅射靶材料表面法线之间的夹角。 S 随入射角的增加,以正切规律增加;当入射角接近80o 时,溅射率迅速下降。

34.当靶不断远离硅片时,用溅射淀积填充窄沟槽的底部的能力是如何改变的?忽略任何气 相碰撞的影响。

靶材越远,到达角越小,相当于淀积目标面积越小,因此填充窄沟槽底部的效果越好。但是这样做的后果是溅射淀积的效率降低了。

35.常用溅射技术有哪几种,简述它们的工作原理和特点。

(1)直流溅射:惰性气体,如氩,送入低压下的溅射腔体,电压加在电极上产生等离子体。加负直流电压的的是顶电极为需要淀积的源材料,例如铝或铝压板,作为靶材。硅片放置于底电极上,高能离子撞击靶材,溅射出靶原子,这些原子以蒸汽形式自由走过等离子体撞击到硅片表面, 凝聚并形成薄膜。特点:在较低的气压条件下,溅射率较低;随着气体压力的升高,电子的平均自由程减少,原子的电离几率增加,溅射电流增加,溅射速率提高;但当气体压力过高时,溅射出来的靶材原子在飞向衬底的过程中将会受到过多的散射,因而其淀积到衬底上的速率反而下降;因此随着气压的变化,溅射淀积的速率会出现一个极值; 此外,淀积速率与溅射功率(或溅射电流的平方)成正比、与靶材和衬底之间的间距成反比。

(2)射频溅射:是一种能适用于各种金属和非金属材料的一种溅射淀积方法。

积室,不必要求电极一定是导电体。射频方法可以在靶材上产生自偏压效应。即在射频电场起作用的同时,靶材会自动地处于一个负电位,这将导致气体离子对其产生自发的轰击和溅射。在实际应用中,射频溅射的交流辉光放电是在l3.56MHz 下进行的。

(3)反应溅射:采用以纯金属作为溅射靶材,但在工作气体中通入适量的活性气体,使其在溅射淀积的同时生成特定的化合物,这种在淀积的同时形成化合物的溅射技术。缺点:随着活性气体压力和溅射功率的增加,靶材表面也可能形成一层化合物,这可能会降低材料的

溅射和淀积速率。

(4)偏压溅射:偏压溅射是在一般溅射装置的基础上,将衬底的电位与接触阳极(即真空室)的电位分开设置,在衬底与等离子体之间有目的地施加一定大小的偏置电压,吸引一部分离子流向衬底,用改变入射到衬底表面的带电粒子的数量和能量的手段,达到改善薄膜微观组织与性能的目的的方法。

36.下图是硅烷反应淀积多晶硅的过程,写出发生反应的方程式,并简述其中1~5 各步的含义。

反应式为:

(1)反应物扩散到晶圆片表面;

(2)反应物表面吸附;

(3)化学反应释放出硅;

(4)气体副产物解吸附离开晶圆片表面;

(5)气体副产物离开气体滞留层并被排除反应器。

37.对于某种薄膜的CVD 过程,淀积温度为900℃,质量传输系数hG=10cm s-1,表面反应速率系数ks=1×107exp(-1.9eV/kT)cm s-1。现有以下两种淀积系统可供选择

(1)冷壁,石墨支座型;

(2)热壁,堆放硅片型。应该选用哪种类型的淀积系统并简述理由。

比h G(10.0)要小得多。因此ks<

38.CVD 淀积过程中两个主要的限制步骤是什么?它们分别在什么情况下会支配整个淀积速率?

两个主要限制步骤为:反应剂在边界层中的输运(质量输运)和反应剂在衬底表面的化学反应(化学反应)。

根据淀积速率的表达式

①hg﹥﹥ks,Cs趋于Cg,淀积速率受表面化学反应速率控制。反应剂数量:主气流输运到硅片表面的﹥表面化学反应所需要的。

②hg﹤﹤ks,Cs趋于0,淀积速率受质量输运速率控制。反应剂数量:表面化学反应所需要的﹥主气流输运到硅片表面的。

39.简述APCVD、LPCVD、PECVD 的特点。

APCVD为常压化学气相沉积,由于反应速率快,CVD系统简单,适于较厚的介质沉积,然而台阶覆盖性差;膜厚均匀性差;容易发生异质淀积形成颗粒;效率低,一般是由质量输

运控制淀积速率(h g<

在LPCVD系统中,因为低压使得扩散率增加,因此hg变大使得hg>>ks,生长速率受表面化学反应控制,与气流的均匀性无关,硅片可以竖直紧密排列,容量大。但淀积速率慢,生长温度高,并且存在气缺现象。用稀释气体的情况下,通过降低压强就可以降低气相成核。等离子体增强化学气相淀积(PECVD)是目前最主要的化学气相淀积系统。

APCVD和LPCVD都是利用热能来激活和维持化学反应,而PECVD是通过射频等离子体来激活和维持化学反应,受激发的分子可以在低温下发生化学反应,所以淀积温度比APCVDLPCVD 低(200-350℃),淀积速率也更高,淀积的薄膜具有良好的附着性、低针孔密度、良好的阶梯覆盖及电学特性。由于PECVD与非等离子体CVD相比,淀积过程有更多的非平衡特点,故也可以更容易地改变薄膜性质(组成、密度、应力等),并且对于特定的应用可修正这些性能。然而,这也会使薄膜产生不希望有的组分或者性质,如副产品或气体分子结合进薄膜。

40.简述外延薄膜的生长过程,其最显著的特征是什么?

生长过程:

①传输:反应物从气相经边界层转移到Si表面;

②吸附:反应物吸附在Si表面;

③化学反应:在Si表面进行化学反应,得到Si及副产物;

④脱吸:副产物脱离吸附;

⑤逸出:脱吸的副产物从表面转移到气相,逸出反应室;

⑥加接:生成的Si原子加接到晶格点阵上,延续衬底晶向

生长特征:横向二维的层层生长

41.影响外延薄膜的生长速度的因素有哪些?

(1)温度

温度较低时,生长速率对温度的变化非常敏感,生长速率完全由表面化学反应控制。温度较高时,生长速率对温度的变化不敏感,生长速率由气相质量输运控制,并且对反应室的几何形状和气流有很大的依赖性。因此,外延温度应当选在高温区,使得生长速率处于质量输运控制范围,温度的微小波动不会影响生长速率显著变化。

(2)反应剂浓度

外延生长速率由以下两因素较慢的一个决定:还原反应析出硅原子的速率;被释放出来的鬼原子再衬底上生成单晶层的速率。

(3)气流速率

气体速度越大,边界层越薄,相同时间内转移到单位衬底表面上的反应剂数量越多,外延层生长速率也越快;当气流大道一定程度时,外延层的生长速率基本不随气体流量增大而加快。因为此时边界层厚度很薄,输运到衬底表面的反应剂数量可能超过外延温度下的化学表面反应需要的数量,此时生长速率由化学反应速率决定。

(4)衬底晶向

不同晶面的键密度不同,键合能力存在差别,会对生长速率产生一定影响。共价键密度小,键合能力差,生长速率慢,例如(1 1 1)晶面;共价键密度大,键合能力强,生长速率快,例如(1 1 0)晶面。

42.下图为硅外延生长速度对H2中SiCl4摩尔分量的函数曲线,试分析曲线走势,并给出其变化的原因。

半导体工艺及芯片制造技术问题答案(全)

常用术语翻译 active region 有源区 2.active ponent有源器件 3.Anneal退火 4.atmospheric pressure CVD (APCVD) 常压化学气相淀积 5.BEOL(生产线)后端工序 6.BiCMOS双极CMOS 7.bonding wire 焊线,引线 8.BPSG 硼磷硅玻璃 9.channel length沟道长度 10.chemical vapor deposition (CVD) 化学气相淀积 11.chemical mechanical planarization (CMP)化学机械平坦化 12.damascene 大马士革工艺 13.deposition淀积 14.diffusion 扩散 15.dopant concentration掺杂浓度 16.dry oxidation 干法氧化 17.epitaxial layer 外延层 18.etch rate 刻蚀速率 19.fabrication制造 20.gate oxide 栅氧化硅 21.IC reliability 集成电路可靠性 22.interlayer dielectric 层间介质(ILD) 23.ion implanter 离子注入机 24.magnetron sputtering 磁控溅射 25.metalorganic CVD(MOCVD)金属有机化学气相淀积 26.pc board 印刷电路板 27.plasma enhanced CVD(PECVD) 等离子体增强CVD 28.polish 抛光 29.RF sputtering 射频溅射 30.silicon on insulator绝缘体上硅(SOI)

半导体复习总结

半导体复习总结 必背公式 第二章 热平衡时的能带和载流子浓度 1、有效质量 n m p E 22 = 1 22d d -???? ??=p E m n 1 22d d -??? ? ??=p E m n 2、 费米分布函数 ()?? ? ??-+= kT E E E f F exp 11 本征半导体电子浓度: ??? ??--=kT E E N n F c c exp 本征半导体空穴浓度: ?? ? ??-- =kT E E N p V F V exp 质量作用定理: 2i n np = 3、 ???? ??=-D C F C N N kT E E ln ??? ? ??=-A V V F N N kT E E ln 非简并半导体 电子浓度: ??? ??-=kT E E n n F i i exp 空穴浓度: ?? ? ??-=kT E E n p i i F exp

第三章 载流子现象输运 1 、 电子迁移率: E v n n μ-= n c n m q τμ= s V cm ?/2 空穴迁移率: E v p p μ= p c p m q τμ= 2、 总电导率: () p n p n q μμσ+= 总电阻率: σ ρ1 = n 型半导体电阻率:n qn μρ1 = cm ?Ω p 型半导体电阻率:p qp μρ1 = 3、 扩散系数: l v D th n = 电子扩散电流: x n qD J n n d d = 爱因斯坦关系式: n n q kT D μ= 第四章 pn 结 1、热平衡pn 结内建电势: ???? ??=-=2ln i D A p n bi n N N q kT V ψψ 2、突变结内建电势: W E V m bi 21 = 总耗尽区宽度: bi D A D A s V N N N N q W ???? ? ?+= ε2 若D A N N >> D bi s n qN V x W ε2= =

半导体工艺流程

1清洗 集成电路芯片生产的清洗包括硅片的清洗和工器具的清洗。由 于半导体生产污染要求非常严格,清洗工艺需要消耗大量的高纯水; 且为进行特殊过滤和纯化广泛使用化学试剂和有机溶剂。 在硅片的加工工艺中,硅片先按各自的要求放入各种药液槽进行表面化学处理,再送入清洗槽,将其表面粘附的药液清洗干净后进入下一道工序。常用的清洗方式是将硅片沉浸在液体槽内或使用液体喷雾清洗,同时为有更好的清洗效果,通常使用超声波激励和擦片措施,一般在有机溶剂清洗后立即米用无机酸将其氧化去除,最后用超纯水进行清洗,如图1-6所示。 图1-6硅片清洗工艺示意图 工具的清洗基本米用硅片清洗同样的方法。 2、热氧化 热氧化是在800~1250C高温的氧气氛围和惰性携带气体(N2)下使硅片表面的硅氧化生成二氧化硅膜的过程,产生的二氧化硅用以作为扩散、离子注入的阻挡层,或介质隔离层。典型的热氧化化学反应为: Si + O2 T SiO2

3、扩散 扩散是在硅表面掺入纯杂质原子的过程。通常是使用乙硼烷(B2H6)作为N —源和磷烷(PH3)作为P+源。工艺生产过程中通常 分为沉积源和驱赶两步,典型的化学反应为: 2PH3 —2P+3H2 4、离子注入 离子注入也是一种给硅片掺杂的过程。它的基本原理是把掺杂物质(原子)离子化后,在数千到数百万伏特电压的电场下得到加速,以较高的能量注入到硅片表面或其它薄膜中。经高温退火后,注入离子活化,起施主或受主的作用。 5、光刻 光刻包括涂胶、曝光、显影等过程。涂胶是通过硅片高速旋转在硅片表面均匀涂上光刻胶的过程;曝光是使用光刻机,并透过光掩膜版对涂胶的硅片进行光照,使部分光刻胶得到光照,另外,部分光刻胶得不到光照,从而改变光刻胶性质;显影是对曝光后的光刻胶进行去除,由于光照后的光刻胶 和未被光照的光刻胶将分别溶于显影液和不溶于显影液,这样就使光刻胶上 形成了沟槽。 6、湿法腐蚀和等离子刻蚀 通过光刻显影后,光刻胶下面的材料要被选择性地去除,使用的方法就

半导体工艺与制造技术习题答案(第四章 离子注入)

第四章 离子注入与快速热处理 1.下图为一个典型的离子注入系统。 (1)给出1-6数字标识部分的名称,简述其作用。 (2)阐述部件2的工作原理。 答:(1)1:离子源,用于产生注入用的离子; 2:分析磁块,用于将分选所需的离子; 3:加速器,使离子获得所需能量; 4:中性束闸与中性束阱,使中性原子束因直线前进不能达到靶室; 5:X & Y 扫描板,使离子在整个靶片上均匀注入; 6:法拉第杯,收集束流测量注入剂量。 (2)由离子源引出的离子流含有各种成分,其中大多数是电离的,离子束进入一个低压腔体内,该腔体内的磁场方向垂直于离子束的速度方向,利用磁场对荷质比不同的离子产生的偏转作用大小不同,偏转半径由公式: 决定。最后在特定半径位置采用一个狭缝,可以将所需的离子分离出来。 2.离子在靶内运动时,损失能量可分为核阻滞和电子阻滞,解释什么是核阻滞、电子阻滞?两种阻滞本领与注入离子能量具体有何关系? 答:核阻滞即核碰撞,是注入离子与靶原子核之间的相互碰撞。因两者质量是同一数量级,一次碰撞可以损失很多能量,且可能发生大角度散射,使靶原子核离开原来的晶格位置,留下空位,形成缺陷。 电子阻滞即电子碰撞,是注入离子与靶内自由电子以及束缚电子之间的相互碰撞。因离子质量比电子质量大很多,每次碰撞损失的能量很少,且都是小角度散射,且方向随机,故经多次散射,离子运动方向基本不变。 在一级近似下,核阻滞本领与能量无关;电子阻滞本领与能量的平方根成正比。 1 2 3 4 5 6

3.什么是离子注入横向效应?同等能量注入时,As和B哪种横向效应更大?为什么? 答:离子注入的横向效应是指,注入过程中,除了垂直方向外,离子还向横向掩膜下部分进行移动,导致实际注入区域大于掩膜窗口的效应。 B的横向效应更大,因为在能量一定的情况下,轻离子比重离子的射程要深且标准差更大。 4.热退火用于消除离子注入造成的损伤,温度要低于杂质热扩散的温度,然而,杂质纵向分布仍会出现高斯展宽与拖尾现象,解释其原因。 答:离子注入后会对晶格造成简单晶格损伤和非晶层形成;损伤晶体空位密度要大于非损伤晶体,且存在大量间隙原子核其他缺陷,使扩散系数增大,扩散效应增强;故虽然热退火温度低于热扩散温度,但杂质的扩散也是非常明显的,出现高斯展宽与拖尾现象。 5.什么是离子注入中常发生的沟道效应(Channeling)和临界角?怎样避免沟道效应? 答:沟道效应,即当离子入射方向平行于主晶轴时,将很少受到核碰撞,离子将沿沟道运动,注入深度很深。由于沟道效应,使注入离子浓度的分布产生很长的拖尾;对于轻原子注入到重原子靶内是,拖尾效应尤其明显。 临界角是用来衡量注入是否会发生沟道效应的一个阈值量,当离子的速度矢量与主要晶轴方向的夹角比临界角大得多的时候,则很少发生沟道效应。临界角可用下式表示: 6.什么是固相外延(SPE)及固相外延中存在的问题? 答:固相外延是指半导体单晶上的非晶层在低于该材料的熔点或共晶点温度下外延再结晶的过程。热退火的过程就是一个固相外延的过程。 高剂量注入会导致稳定的位错环,非晶区在经过热退火固相外延后,位错环的最大浓度会位于非晶和晶体硅的界面处,这样的界面缺陷称为射程末端缺陷。若位错环位于PN结耗尽区附近,会产生大的漏电流,位错环与金属杂质结合时更严重。因此,选择的退火过程应当能够产生足够的杂质扩散,使位错环处于高掺杂区,同时又被阻挡在器件工作时的耗尽区之外。 7.离子注入在半导体工艺中有哪些常见应用? 答:阱注入、VT调整注入,轻掺杂漏极(LDD),源漏离子注入,形成SOI结构。 8.简述RTP设备的工作原理,相对于传统高温炉管它有什么优势? 答:RTP设备是利用加热灯管通过热辐射的方式选择性加热硅片,使得硅片在极短的时间内达到目标温度并稳定维持一段时间。相对于传统高温炉管,RTP设备热处理时间短,热预算小,冷壁工艺减少硅片污染。 9.简述RTP在集成电路制造中的常见应用。 答:RTP常用于退火后损失修复、杂质的快速热激活、介质的快速热加工、硅化物和接触的形成等。 10.采用无定形掩膜的情况下进行注入,若掩膜/衬底界面的杂质浓度减少至峰值

半导体公司实习报告共6篇

精选范文:半导体公司实习报告(共6 篇)为期第三个月的实习结束了,我在这三个月 的实习中学到了很多在课堂上根本就学不到的知识,受益非浅。现在我就对这个月的实习做一个工作小结。实习是每一个大学毕业生必须拥有的一段经历,他使我们在实践中了解社会,让我们学到了很多在课堂上根本就学不到的知识,也打开了视野,长了见识,为我们以后进一步走向社会打下坚实的基础。实习使我开拓了视野,实习是我们把学到的理论知识应用在实践中的一次尝试。实习时把自己所学的理论知识用于实践,让理论知识更好的与实践相结合,在这结合的时候就是我们学以致用的时候,并且是我们扩展自己充实自己的时候。实习期间,我利用此次难得的机会,努力工作,严格要求自己,遇到不懂的问题就虚心地向师傅们请教,搞清原理,找到方法,然后再总结经验,让自己能很快融入到工作中去,更好更快的完成任务。同时我也利用其他时间参考一些书籍、搜索一些材料来完善自己对策划管理工作的认识,这也让我收获颇多,让我在应对工作方面更加得心应手。格公司是在1997 年经历千辛万苦独立出来自主经营的公司,已经有十三多年的发展历史,成为集研制、生产、销售、技术培训于一体,拥有高精度电脑控制机械加工中心等全套加工设备的大型专业包装设备制造厂。目前主要生产驱动类集成ic 与光电鼠标等,产品包括:动和半自动轮转循环,机械有d/b 与w/b ,这些机械都是日本、美国高科技的技术。具有高精度、高效率、先进的自动模切机、dbing 机、wbing 机等。该半导体厂的组织机构设置很简练。主要是总经理副总经理主管管理各个部门。由于矽格公司的设备很先进,在生产线上不会像往常的工厂那样满布工人,主要是某三五个人负责工作流程。这对我了解该工厂的生产流程提供了方便。该厂生产的ic 依据季节可以算得上的需求稳定,是属于定单供货型的生产。由于产品的质量要求和技术含量要求都很高,因此,生产周期也比较长,单次产品需求的数量也不大。同时,每台产品的价格非常昂贵,在万元以上。生产部门主要包括,采购,技术,生产,供应。我被安排在技术生产部工作。但其工作并不是坐在办公室悠闲地搞技术,而是跟住生产随时跑,没得座,出现问题就及时解决。实习期间,刚好该厂正是定单最鼎盛时候,也就是历年来定单最多的一年,生产进行得如火如荼。我在跟随生产部门工作的时候,方才发现,生产这部门,在企业中极其重要。它是一个公司的根源,其他的管理基层都是辅助生产高效率生产。质量是企业的第一信誉,是产品的形象。公司严把质量关,这就掌握了企业的未来。该公司正是怀着这种信念,检验程序相当严格,不合格的产品严格反工甚至对员工、调试工、组长进行罚款等处分。通过这次实习,我学会了不少东西。实践出真知啊。 [半导体公司实习报告(共6篇)]篇一:半导体公司实习报告 半导体公司实习报告 为期 [半导体公司实习报告(共6 篇)]单次产品需求的数量也不大。同时,每台产品的价格非常昂贵,在万元以上。生产部门主要包括,采购,技术,生产,供应。我被安排在技术生 产部工作。但其工作并不是坐在办公室悠闲地搞技术,而是跟住生产随时跑,没得座,出现问题就及时解 决。 实习期间,刚好该厂 正是定单最鼎盛时候,也就是历年来定单最多的一年,生产进行得如火如荼。我在跟随生产部门工作的时 候,方才发现,生产这部门,在企业中极其重要。它是一个公司的根源,其他的管理基层都是辅助生产高效 率生产。 质量是企业的篇二: 半导体公司实习报告 实习时间: 2015.03.06~ 今

半导体制造工艺流程

半导体制造工艺流程 N型硅:掺入V族元素--磷P、砷As、锑Sb P型硅:掺入III族元素—镓Ga、硼B PN结: 半导体元件制造过程可分为 前段(FrontEnd)制程 晶圆处理制程(WaferFabrication;简称WaferFab)、 晶圆针测制程(WaferProbe); 後段(BackEnd) 构装(Packaging)、 测试制程(InitialTestandFinalTest) 一、晶圆处理制程 晶圆处理制程之主要工作为在矽晶圆上制作电路与电子元件(如电晶体、电容体、逻辑闸等),为上述各制程中所需技术最复杂且资金投入最多的过程,以微处理器(Microprocessor)为例,其所需处理步骤可达数百道,而其所需加工机台先进且昂贵,动辄数千万一台,其所需制造环境为为一温度、湿度与含尘(Particle)均需控制的无尘室(Clean-Room),虽然详细的处理程序是随著产品种类与所使用的技术有关;不过其基本处理步骤通常是晶圆先经过适当的清洗(Cleaning)之後,接著进行氧化(Oxidation)及沈积,最後进行微影、蚀刻及离子植入等反覆步骤,以完成晶圆上电路的加工与制作。 二、晶圆针测制程 经过WaferFab之制程後,晶圆上即形成一格格的小格,我们称之为晶方或是晶粒(Die),在一般情形下,同一片晶圆上皆制作相同的晶片,但是也有可能在同一片晶圆上制作不同规格的产品;这些晶圆必须通过晶片允收测试,晶粒将会一一经过针测(Probe)仪器以测试其电气特性,而不合格的的晶粒将会被标上记号(InkDot),此程序即称之为晶圆针测制程(WaferProbe)。然後晶圆将依晶粒为单位分割成一粒粒独立的晶粒 三、IC构装制程 IC構裝製程(Packaging):利用塑膠或陶瓷包裝晶粒與配線以成積體電路目的:是為了製造出所生產的電路的保護層,避免電路受到機械性刮傷或是高溫破壞。 半导体制造工艺分类 半导体制造工艺分类 一双极型IC的基本制造工艺: A在元器件间要做电隔离区(PN结隔离、全介质隔离及PN结介质混合隔离)ECL(不掺金)(非饱和型)、TTL/DTL(饱和型)、STTL(饱和型)B在元器件间自然隔离 I2L(饱和型) 半导体制造工艺分类 二MOSIC的基本制造工艺: 根据栅工艺分类 A铝栅工艺 B硅栅工艺

半导体的生产工艺流程

半导体的生产工艺流程 微机电制作技术,尤其是最大宗以硅半导体为基础的微细加工技术 (silicon-basedmicromachining),原本就肇源于半导体组件的制程技术,所以必须先介绍清楚这类制程,以免沦于夏虫语冰的窘态。 一、洁净室 一般的机械加工是不需要洁净室(cleanroom)的,因为加工分辨率在数十微米以上,远比日常环境的微尘颗粒为大。但进入半导体组件或微细加工的世界,空间单位都是以微米计算,因此微尘颗粒沾附在制作半导体组件的晶圆上,便有可能影响到其上精密导线布局的样式,造成电性短路或断路的严重后果。为此,所有半导体制程设备,都必须安置在隔绝粉尘进入的密闭空间中,这就是洁净室的来由。洁净室的洁净等级,有一公认的标准,以class10为例,意谓在单位立方英呎的洁净室空间内,平均只有粒径0.5微米以上的粉尘10粒。所以class后头数字越小,洁净度越佳,当然其造价也越昂贵。为营造洁净室的环境,有专业的建造厂家,及其相关的技术与使用管理办法如下: 1、内部要保持大于一大气压的环境,以确保粉尘只出不进。所以需要大型 鼓风机,将经滤网的空气源源不绝地打入洁净室中。 2、为保持温度与湿度的恒定,大型空调设备须搭配于前述之鼓风加压系统 中。换言之,鼓风机加压多久,冷气空调也开多久。 3、所有气流方向均由上往下为主,尽量减少突兀之室内空间设计或机台摆 放调配,使粉尘在洁净室内回旋停滞的机会与时间减至最低程度。 4、所有建材均以不易产生静电吸附的材质为主。 5、所有人事物进出,都必须经过空气吹浴(airshower)的程序,将表面粉尘 先行去除。 6、人体及衣物的毛屑是一项主要粉尘来源,为此务必严格要求进出使用人 员穿戴无尘衣,除了眼睛部位外,均需与外界隔绝接触(在次微米制程技术的工厂内,工作人员几乎穿戴得像航天员一样。)当然,化妆是在禁绝之内,铅笔等也禁止使用。 7、除了空气外,水的使用也只能限用去离子水(DIwater,de-ionizedwater)。 一则防止水中粉粒污染晶圆,二则防止水中重金属离子,如钾、钠离子污染金氧半(MOS)晶体管结构之带电载子信道(carrierchannel),影响半导体组件的工作特性。去离子水以电阻率(resistivity)来定义好坏,一般要求至 17.5MΩ-cm以上才算合格;为此需动用多重离子交换树脂、RO逆渗透、与 UV紫外线杀菌等重重关卡,才能放行使用。由于去离子水是最佳的溶剂与清洁剂,其在半导体工业之使用量极为惊人! 8、洁净室所有用得到的气源,包括吹干晶圆及机台空压所需要的,都得使 用氮气(98%),吹干晶圆的氮气甚至要求99.8%以上的高纯氮!以上八点说明是最基本的要求,另还有污水处理、废气排放的环保问题,再再需要大笔

电子工艺及设课程总结

北华航天工业学院 课程总结 姓名:梅卫 班级:12211 学号:20123021101 科目:电子产品工艺及设备

课程总结 1.《电子产品工艺及设备》课程简介 《电子产品工艺及设备》的出现及发展 电子技术发展迅速,电子工业生产中的新技术、新工艺不断涌现,促进了电子信息陈烨的大力发展。各类电子器件和生产技术自检相互渗透,生产日趋规模化,自动化;集成电路的发展,器件、电路和系统之间的密切结合,电子产品制造业与信息产业界限日益模糊;电子技术与计算机应用日益紧密结合,电子工业已从单一的制造业过渡到电子信息产业。现代电子产品工艺正式随着电子工业发展应运而生的,随着电子技术、信息技术与计算机应用技术的发展而发展。 学习《电子产品工艺及设备》的重要性 随着世界电子信息产业的快速发展,作为电子信息产业基础的电子元器件产业发展也异常迅速。从日常生活到现代精密航空航天工业到处都可以看到有关电子的产品或身影。从中我们可以感受到电子以及电子行业是如何改变和丰富我们生活的,有电子才有电子行业,电子行业的高速发展,离不开的是电子基础技术的支持。所以学习《电子产品工艺及设备》对于电子的快速发展起着重要的影响,也显得十分重要。电子行业将来一定会向更精密,更高效,更优越方向发展。当然这离不开电子基础产业的发展,只有当电子基数产业真正发展起来以后电子行业才能更上一个台阶。 《电子产品工艺及设备》主要内容 电子产品工艺及设备讲述了许多关于电子基础方面的内容,其主要内容包括:常用电子元器件、电路图的识读与常用工艺文件、印制电路板、常用装配工具与准备工艺、常用设备、焊接技术、常用电子测量仪器及电子产品的总装与检验,电子产品质量管理等。 2.《电子产品工艺及设备》的课程总结 本学期给我们开这门课程,非常有必要,让我们对电子产品的工艺及设备的认识又更上一个台阶,同时也了解它的重要性。在与老师的相处中非常融洽,通过本次课的学习,收获颇多,不仅是知识,更多的是对于这门课本身的认识,以及对整个电子行业的认识。也认识到本门课的重要性,故把本课程的学习课程总结如下: 绪论总结:工艺的发源与现代制造工艺:对于工业企业及其所制造的产品来说,工艺工作的出发点是为了提高劳动生产率,生产优质产品以及增加生产利润。它建立在对于时间、速度、能源、方法、程序、生产手段、工作环境、组织机构、劳动管理、质量控制等诸多因素的科学研究之上。工艺学的理论及应用,指导企业从原材料采购开始,覆盖加工、制造、检验等每一个环节,直到成品包装、入库、运输和销售(包括销售活动中的技术服务及用户信息反馈),为企业组织有节奏的均衡生产提供科学的依据。可以说,工艺是企业科学生产的法律和法规,工艺学是一门综合性的科学。 电子元器件总结:通常,对电子元器件的主要要求是:可靠性高、精确度高、体积微小、性能稳定、符合使用环境条件等。电子元器件总的发展趋向是:集成化、微型化、提高性能、改进结构。常用元器件简介:电子整机是由一系列电子元器件所组成。掌握常用元器件的正

集成电路制造技术-原理与技术试题库

填空题(30分=1分*30)(只是答案) 半导体级硅 、 GSG 、 电子级硅 。CZ 法 、 区熔法、 硅锭 、wafer 、硅 、锗、单晶生长、整型、切片、磨片倒角、刻蚀、(抛光)、清洗、检查和包装。 100 、110 和111 。融化了的半导体级硅液体、有正确晶向的、被掺杂成p 型或n 型、 实现均匀掺杂的同时并且复制仔晶的结构,得到合适的硅锭直径并且限制杂质引入到硅中 、拉伸速率 、晶体旋转速率 。 去掉两端、径向研磨、硅片定位边和定位槽。 制备工业硅、生长硅单晶、 提纯) 。卧式炉 、立式炉 、快速热处理炉 。干氧氧化、湿氧氧化、水汽氧化。工艺腔、硅片传输系统、气体分配系统、尾气系统、温控系统。 局部氧化LOCOS 、浅槽隔离STI 。 掺杂阻挡、表面钝化、场氧化层和金属层间介质。热生长 、淀积 、薄膜 。石英工艺腔、加热器、石英舟。 APCVD 常压化学气相淀积、LPCVD 低压化学气相淀积、PECVD 等离子体增强化学气相淀积。晶核形成、聚焦成束 、汇聚成膜。同质外延、异质外延。膜应力、电短路、诱生电荷。导电率、高黏附性、淀积 、平坦化、可靠性、抗腐蚀性、应力等。CMP 设备 、电机电流终点检测、光学终点检测。平滑、部分平坦化、局部平坦化、全局平坦化。 磨料、压力。使硅片表面和石英掩膜版对准并聚焦,包括图形);(通过对光刻胶曝光,把高分辨率的投影掩膜版上图形复制到硅片上);(在单位时间内生产出足够多的符合产品质量规格的硅片)。化学作用、物理作用、化学作用与物理作用混合。介质、金属 。在涂胶的硅片上正确地复制 掩膜图形。 被刻蚀图形的侧壁形状、各向同性、各向异性。气相、液相、 固相扩散。间隙式扩散机制、替代式扩散机制、激活杂质后。一种物质在另一种物质中的运动、一种材料的浓度必须高于另一种材料的浓度 )和( 系统内必须有足够的能量使高浓度的材料进入或通过另一种材料。 热扩散 、离子注入。预淀积 、推进、激活。时间、温度 。扩散区、光刻区 、刻蚀区、注入区、薄膜区、抛光区。硅片制造备 )、( 硅片制造 )、硅片测试和拣选、( 装配和封装 、终测。 微芯片。第一层层间介质氧化物淀积、氧化物磨抛、第十层掩模、第一层层间介质刻蚀。 钛淀积阻挡层、氮化钛淀积、钨淀积 、磨抛钨。 1. 常用的半导体材料为何选择硅?(6分) (1)硅的丰裕度。硅是地球上第二丰富的元素,占地壳成分的25%;经合理加工,硅能够提纯到半导体制造所需的足够高的纯度而消耗更低的成本; (2)更高的熔化温度允许更宽的工艺容限。硅1412℃>锗937℃ (3)更宽的工作温度。用硅制造的半导体件可以用于比锗更宽的温度范围,增加了半导体的应用范围和可靠性; (4)氧化硅的自然生成。氧化硅是一种高质量、稳定的电绝缘材料,而且能充当优质的化学阻挡层以保护硅不受外部沾污;氧化硅具有与硅类似的机械特性,允许高温工艺而不会产生过度的硅片翘曲; 2. 晶圆的英文是什么?简述晶圆制备的九个工艺步骤。(6分) Wafer 。 (1) 单晶硅生长: 晶体生长是把半导体级硅的多晶硅块转换成一块大的单晶硅。生长后的单晶硅被称为硅锭。可用CZ 法或区熔法。 (2) 整型。去掉两端,径向研磨,硅片定位边或定位槽。 (3) 切片。对200mm 及以上硅片而言,一般使用内圆切割 机;对300mm 硅片来讲都使用线锯。 (4) 磨片和倒角。切片完成后,传统上要进行双面的机械磨片以去除切片时留下的损伤,达到硅片两面高度的平行及平坦。硅片边缘抛光修整,又叫倒角,可使硅片边缘获得平滑的半径周线。 (5) 刻蚀。在刻蚀工艺中,通常要腐蚀掉硅片表面约20微米的硅以保证所有的损伤都被去掉。 (6) 抛光。也叫化学机械平坦化(CMP ),它的目标是高平整度的光滑表面。抛光分为单面抛光和双面抛光。 (7) 清洗。半导体硅片必须被清洗使得在发给芯片制造厂之前达到超净的洁净状态。 (8) 硅片评估。 (9) 包装。 3. 硅锭直径从20世纪50年代初期的不到25mm 增加到现在的300mm 甚至更大,其原因是什么?(6分) (1) 更大直径硅片有更大的表面积做芯片,能够减少硅片的浪费。 (2) 每个硅片上有更多的芯片,每块芯片的加工和处理时间减少,导致设备生产效率变高。 (3) 在硅片边缘的芯片减少了,转化为更高的生产成品率。 (4) 在同一工艺过程中有更多芯片,所以在一块芯片一块芯片的处理过程中,设备的重复利用率提高了。 氧化 4.立式炉出现的主要原因,其主要控制系统分为哪五个部分?(6分) (1) 立式炉更易于自动化、可改善操作者的安全以及减少颗粒污染。与卧式炉相比可更好地控制温度和均匀性。 (2) 工艺腔,硅片传输系统,气体分配系统,尾气系统,温控系统。 5.试写出光刻工艺的基本步骤。(6分) (1)气相成底膜;(2)旋转涂胶;(3)软烘 ;(4)对准和曝光;( 5)曝光后烘焙(PEB); (6) 显影; (7)坚膜烘焙; (8)显影检查。 4. 已知曝光的波长 为365nm ,光学系统的数值孔径NA 为0.60,则该光学系统的焦深DOF 为多少?(6分) 5. 简述扩散工艺的概念。(6分) 扩散是物质的一个基本属性,描述了一种物质在另一种物质中运动的情况。扩散的发生需要两个必要的条件:(1)一种材料的浓度必须高于另一种材料的浓度;(2)系统内必须有足够的能量使高浓度的材料进入或通过另一种材料。 气相扩散:空气清新剂喷雾罐 液相扩散:一滴墨水滴入一杯清水 固相扩散:晶圆暴露接触一定浓度的杂质原子(半导体掺杂工艺的一种) 6. 名词解释:离子注入。(6分) 离子注入是一种向硅衬底中引入可控制数量的杂质,以改变其电学性能的方法。它是一个物理过程,即不发生化学反应。离子注入在现代硅片制造过程中有广泛应用,其中最主要的用途是掺杂半导体材料。 四、综合题:(30分=15分*2,20题)2题/章 1. 对下图所示的工艺进行描述,并写出工艺的主要步骤。(15分) 描述:图示工艺:选择性氧化的浅槽隔离(STI )技术。(用于亚0.25微米工艺) STI 技术中的主要绝缘材料是淀积氧化物。选择性氧化利用掩膜来完成,通常是氮化硅,只要氮化硅膜足够厚,覆盖了氮化硅的硅表面就不会氧化。掩膜经过淀积、图形化、刻蚀后形成槽。 在掩膜图形曝露的区域,热氧化150~200埃厚的氧化物后,才能进行沟槽填充。这种热生长的氧化物使硅表面钝化,并且可以使浅槽填充的淀积氧化物和硅相互隔离,它还能作为有效的阻挡层,避免器件中的侧墙漏电流产生。 步骤:1氮化硅淀积 2氮化硅掩蔽与刻蚀 3侧墙氧化与沟槽填充 4氧化硅的平坦化(CMP) 5氮化硅去除。 浅槽隔离(STI)的剖面 2. 识别下图所示工艺,写出每个步骤名称并进行描述,对其特有现象进行描述。(15分) 答:一 )此为选择性氧化的局部氧化LOCOS (0.25微米以 上的工艺 ) 二 )步骤名称及描述: 1 氮化硅淀积。 2 氮化硅掩蔽与刻蚀 3 硅的局部氧化 LOCOS 场氧化层的剖面 4 氮化硅去除 用淀积氮化物膜作为氧化阻挡层,因为淀积在硅上的氮化物 不能被氧化,所以刻蚀后的区域可用来选择性氧化生长。热 氧化后,氮化物和任何掩膜下的氧化物都将被除去,露出赤 裸的硅表面,为形成器件作准备。 三)特有现象描述:当氧扩散穿越已生长的氧化物时,它是 在各个方向上扩散的(各向同性)。 一些氧原子纵向扩散进入硅,另一些氧原子横向扩散。这意 味着在氮化物掩膜下有着轻微的侧面氧化生长。由于氧化层 比消耗的硅更厚,所以在氮化物掩膜下的氧化生长将抬高氮 化物的边缘,我们称为“鸟嘴效应” 金属化 3. 按照下图,解释化学机械平坦化工艺。(15分) CMP 是一种表面全局平坦化的技术,它通过硅片和一个抛光 头之间的相对运动来平坦化硅片表面,在硅片和抛光头之间 有磨料,并同时施加压力。CMP 设备——抛光机 光刻 4. 识别下图所示工艺,写出每个步骤名称并进行描述。 (15分) 答:1 气相成底膜:清洗、脱水,脱水烘焙后立即用HMDS 进行成膜处理,起到粘附促进剂的作用。 2 采用旋转涂胶的方法涂上液相光刻胶材料。 3 软烘:其目的是除去光刻胶中的溶剂。 4 对准和曝光:掩模板与涂了胶的硅片上的正确位置对准。然后将掩模板和硅片曝光。 5 曝光后烘焙:深紫外(DUV )光刻胶在100-110℃的热板上进行曝光后烘焙。 6 显影:是在硅片表面光刻胶中产生图形的关键步骤。 7 坚模烘焙:要求会发掉存留的光刻胶溶剂,提高光刻胶对硅片表面的粘附性。 8 显影后检查:目的是找出光刻胶有质量问题的硅片,描述光刻胶工艺性能以满足规范要求。 刻蚀 5. 等离子体干法刻蚀系统的主要部件有哪性?试举出三种主要类型,并对圆筒式等离子体刻蚀机作出介绍。(15分) 答:一个等离子体干法刻蚀系统的基本部件包括:(1)发生刻蚀反应的反应腔;(2)产生等离子体的射频电源;(3)气体流量控制系统;(4)去除刻蚀生成物和气体的真空系统。 圆桶式反应器是圆柱形的,在0.1~1托压力下具有几乎完全相同的化学各向同性刻蚀。硅片垂直、小间距地装在一个石英舟上。射频功率加在圆柱两边的电极上。通常有一个打孔的金属圆柱形刻蚀隧道,它把等离子体限制在刻蚀隧道和腔壁之间的外部区域。硅片与电场平行放置使物理刻蚀最小。等离子体中的刻蚀基扩散到刻蚀隧道内,而等离子体中的带能离子和电子没有进入这一区域。 这种刻蚀是具有各向同性和高选择比的纯化学过程。因为在硅片表面没有物理的轰击,因而它具有最小的等离子体诱导损伤。圆桶式等离子体反应器主要用于硅片表面的去胶。氧是去胶的主要刻蚀机。 离子注入 6. 对下图中的设备进行介绍,并对其所属的工艺进行描述。(15分) 离子注入工艺在离子注入机内进行,它是半导体工艺中最复杂的设备之一。离子注入机包含离子源部分,它能从原材料中产生带正电荷的杂质离子。离子被吸出,然后用质量分析仪将它们分开以形成需要掺杂离子的束流。束流中的离子数量与希望引入硅片的杂质浓度有关。离子束在电场中加速,获得很高的速度(107cm/s 数量级),使离子有足够的动能注入到硅片的晶格结构中。束流扫描整个硅片,使硅片表面均匀掺杂。注入之后的退火过程将激活晶格结构中的杂质离子。所有注入工艺都是在高真空下进行的。 离子注入设备包含以下5 个部分: (1)离子源;(2)引出电极(吸极)和离子分析器;(3)加速管;(4)扫描系统;(5)工艺室 离子注入是一种向硅衬底中引入可控制数量的杂质,以改变其电学性能的方法。它是一个物理过程,即不发生化学反应。离子注入在现代硅片制造过程中有广泛应用,其中最主要的用途是掺杂半导体材料。每一次掺杂对杂质的浓度和深度都有特定的要求。离子注入能够重复控制杂质的浓度和深度,因而在几乎所有应用中都优于扩散。它已经成为满足亚0.25μm 特征尺寸和大直径硅片制作要求的标准工艺。热扩散的5个问题对先进的电路生成的限制:(1)横向扩散(2)超浅结(3)粗劣的掺杂控制(4)表面污染的阻碍(5)错位的产生。 亚0.25μm 工艺的注入过程有两个主要目标: (1)向硅片中引入均匀、可控制数量的特定杂质。 (2)把杂质放置在希望的深度。 7.离子注入工艺的主要优缺点。(15分) 答:优点:(1)精确控制杂质含量。 (2)很好的杂质均匀性。(扫描方法) (3)对杂质穿透深度有很好的控制。(控制能量) (4)产生单一离子束。(质量分离技术) (5)低温工艺。(中等温度小于125℃,允许使用不同的光刻掩膜,包括光刻胶) (6)注入的离子能穿过薄膜。 (7)无固溶度极限。 缺点:(1)高能杂质离子轰击硅原子将对晶体结构产生损伤。当高能离子进入晶体并与衬底原子碰撞时,能量发生转移,一些晶格上的硅原子被取代,这个反应被称为辐射损伤。大多数甚至所有的的晶体损伤都能用高温退火进行修复。 (2)注入设备的复杂性。然而这一缺点被离子注入机对剂 量和深度的控制能力及整体工艺的灵活性弥补 7. 依照下图,对硅片制造厂的六个分区分别做一个简 短的描述,要求写出分区的主要功能、主要设备以及显著特 点。(15分) (1) (1)扩散区。扩散区一般认为是进行高温工艺及薄膜淀积的 区域。 主要设备:高温扩散炉:1200℃,能完成氧化、扩散、淀积、 退火以及合金等多种工艺流程。湿法清洗设备 。 (2) (2)光刻。把临时电路结构复制到以后要进行刻蚀和离子注 入的硅片上。 主要设备:涂胶/显影设备,步进光刻机。 (3) (3)刻蚀。用化学或物理方法有选择地从硅片表面去除不需 要材料,在硅片上没有光刻胶保护的地方留下永久的图形。 主要设备:等离子体刻蚀机,等离子去胶机,湿法清洗设备 。 (4)离子注入。主要功能是掺杂。 主要设备:离子注入机、等离子去胶机、湿法清洗设备 。

半导体制造技术总结

第一章 2、列出20世纪上半叶对半导体产业发展做出贡献的4种不同产业。P2 答:真空管电子学、无线电通信、机械制表机及固体物理. 3、什么时间、什么地点、由谁发明了固体晶体管?P3 答:1947年12月16日在贝尔电话实验室由威廉·肖克利、约翰·巴丁和沃尔特·布拉顿发明了固体晶体管. 5、列出5个集成时代,指出每个时代的时间段,并给出每个时代每个芯片上的元件数.P4 6、什么是硅片?什么是衬底?什么是芯片? 答:芯片也称为管芯(单数和复数芯片或集成电路),硅圆片通常被称为衬底 8、列出集成电路制造的5个重要步骤,简要描述每个步骤.P4 10、列出提高微芯片制造技术相关的三个重要趋势,简要描述每个趋势.P8 11、什么是芯片的关键尺寸?这种尺寸为何重要?P9 13、什么是摩尔定律?它预测了什么?这个定律正确吗?P10 14、自1947年以来靠什么因素使芯片价格降低?给出这种变化的两个原因. 16、描述硅片技师和设备技师的职责。P16 第三章 11.解释pn结反偏时发生的情况。P45 答:导致通过二极管的电流很小,甚至没有电流. 12.解释pn结正偏时发生的情况.P45 答:将一正偏施加于pn结,电路中n区电子从偏压电源负极被排斥。多余的电子从负极注入到充满空穴的p区,使n区中留下电子的空穴。同时,p区的空穴从偏压电源正极被排斥。由偏压电源正极提供的空穴中和由偏压电源负极提供的电子。空穴和电子在结区复合以及克服势垒电压大大的减小了阻止电流的行为。只要偏压对二极管能维持一个固定的空穴和电子注入,电流就将持续的通过电路. 13.双极晶体管有多少个电极、结和类型?电极的名称分别是什么?类型名称分别是什么?P46 答:有三电极和两个pn结、两种类型。电极名称:发射极、基极、集电极.类型名称:pnp、npn. 16.BJT是什么类型的放大器器件?它是怎么根据能量要求影响它的应用的?P47 答:驱动电流的电流放大器件.发射极和集电极都是n型的重掺杂,比如砷或磷。基极是p型杂质硼的轻掺杂。基极载流子减少,基极吸引的电流将明显地比集电极吸引的电流小。这种差别说明了晶体管从输入到输出电流的增益。晶体管能线性地将小的输入信号放大几百倍来驱动输出器件。 18.双极技术有什么显著特征?双极技术的最大缺陷是什么?P48 答:高速、耐久性、功率控制能力。缺陷:功耗高。 19。场效应晶体管(FET)有什么优点?P49 答:利于提高集成度和节省电能。 22.FET的最大优势是什么?P49 答:低电压和低功耗。 25.FET的两种基本类型是什么?他们之间的主要区别是什么?P50 答:结型(JFET)和金属-氧化物型(MOSFET)半导体。区别是:MOSFET作为场效应晶体管输入端的栅极由一层薄介质与晶体管的其他两极绝缘.JFET的栅极实际上同晶体管其他电极形成物理的pn结。 26.MOSFET有哪两种类型?它们怎么区分?P50 答:nMOS(n沟道)和pMOS(p沟道)。每种类型可由各自器件的多数载流子来区分。 第四章 1。列举得到半导体级硅的三个步骤.半导体级硅有多纯?P64 4.描述非晶材料。为什么这种硅不能用于硅片?P65 9.为什么要用单晶进行硅片制造?P67 14。什么是CZ单晶生长法?P68 22。为什么要用区熔法生长硅晶体?P71 23。描述区熔法。P71 25.给出更大直径硅片的三大好处。P72 26。什么是晶体缺陷?P73 37.在直径为200mm及以上硅片中切片是怎么进行的?P77 41。为什么要对硅片表面进行化学机械平坦化?P78 43。列举硅片的7种质量要求。P79 第五章 1.什么是物质的四种形态?试分别描述之。P87 6.描述三种温标,哪一种是科学工作中最常用的温标?P 89 8。给出真空的定义。什么是最常用的真空单位,它是怎么定义的?P91 9.给出冷凝和蒸发的定义。吸收和吸附之间有什么不同?P91-92 11.给出升华和凝华的定义。P92 13.什么是表面张力?P93 14。给出材料的热膨胀系数P94。 20。什么是酸?列出在硅片厂中常用的三种酸。P9521.什么是碱?列出在硅片厂中常用的三种碱。P96 23.什么是溶剂?列出在硅片厂中常用的三种溶剂。P97 24。描述在硅片厂中使用的去离子水的概念.P97 31.什么是处理特殊气体所面临的最大挑战?P99 38.描述三种特殊气体并分别举例。P101

半导体工艺半导体制造工艺试题库1 答案

一、填空题(每空1分,计31分) 1、工艺上用于四氯化硅的提纯方法有 吸附法 和 精馏法 。 2、在晶片表面图形形成过程中,一般通过腐蚀的方法将抗蚀膜图形转移到晶片上,腐蚀的方法有 湿法腐蚀 和 干法腐蚀 。 3、直拉法制备单晶硅的过程是:清洁处理——装炉——加热融化——拉晶,其中拉晶是最主要的工序,拉晶包括 下种 、 缩颈 、放肩、 等径生长 和收尾拉光等过程。 3、抛光是晶片表面主要的精细加工过程,抛光的主要方式有 化学抛光 、 机械抛光 和 化学机械抛光 。 4、掺杂技术包括有 热扩散 、 离子注入 、合金和中子嬗变等多种方法。 5、晶片中的锂、钠、钾等碱金属杂质,通常以 间隙式 (空位式或间隙式)扩散方式在晶片内部扩散,并且这类杂质通常称为 快扩散 (快扩散或慢扩散)杂质。 6、在有限表面源扩散中,其扩散后的杂质浓度分布函数符合 高斯分布函数 ; 而在恒定表面源扩散中,其扩散后的杂质浓度分布函数符合 余误差分布函数 。 7、在离子注入法的掺杂过程中,注入离子在非晶靶中的浓度分布函数满足对称的高斯分布,其浓度最大位于 R P 处。 8、在离子注入后,通常采用退火措施,可以消除由注入所产生的晶格损伤,常用的退火方式有 电子束退火 、 离子束退火 、 激光退火 。 9、根据分凝现象,若K 0>1,则分凝后杂质集中在 尾部 (头部或尾部);若K 0<1,则杂质分凝后集中在 头部 (同上)。 10、把硅片置于氯化氢和氧气的混合气体中进行的氧化,称为 掺氯氧化 。 11、在二氧化硅的热氧化方法中,氧化速度最快的是 干氧氧化 方法。 12、氢氧合成氧化设备中,两个重要的保险装置是 氢气流量保险装置 和 温度保险装置 。 13、工艺中常用的测量二氧化硅厚度的方法有 比色法 和 椭圆偏振光法 。 14、固态源硼扩散中常用的硼源是 氮化硼 ,常用的液态磷源是 三氯氧磷 。 15、箱法扩散在工艺中重要用来进行TTL 电路 隐埋层 的锑扩散。 二、选择题(每题2分,单项多项均有,计12分) 1、 在SiO 2网络中,如果掺入了磷元素,能使网络结构变得更( A ) (A )疏松 (B )紧密 (C )视磷元素剂量而言 2、 在微电子加工环境中,进入洁净区的工作人员必须注意以下事项(A 、B 、C 、D ) (A ) 进入洁净区要先穿戴好专用净化工作服、鞋、帽。 (B ) 进入洁净区前先在风淋室风淋30秒,然后才能进入。 (C ) 每周洗工作服,洗澡、理发、剪指甲,不用化妆品。 (D ) 与工作无关的纸张、书报等杂物不得带入。 3、离子注入设备的组成部分有(A 、B 、C 、D ) (A )离子源 (B )质量分析器 (C )扫描器 (D )电子蔟射器 4、CVD 淀积法的特点有(A 、C 、D ) (A )淀积温度比较低 (B )吸附不会影响淀积速度 (C )淀积材料可以直接淀积在单晶基片上 (D )样品本身不参与化学反应 5、 工艺中消除沟道效应的措施有(A 、B 、C 、D ) (A )增大注入剂量 (B )增大注入速度 (C )增加靶温 (D )通过淀积膜注入 6、液态源硼扩散所选用的硼源有(A 、B 、C ) (A )硼酸三甲脂 (B )硼酸三丙脂 (C )三溴化硼 (D )三氯氧磷 三、判断(每题1分,计10分) 1、Ⅰ号液是碱性过氧化氢清洗液。 ( R ) 2、筛选器是用来去除杂质离子的设备。 ( R ) 3、石墨基座的清洁处理,首先用王水煮沸,再用去离子水冲洗。 ( R ) 4、注入窗口中淀积的二氧化硅薄层是起退沟道的作用。 ( R ) 5、以一般能量注入的重离子,在进入靶片中,以电子阻挡为主。 ( F ) 6、硅烷热分解法淀积中,一旦源变成黄色就不能使用。 ( R ) 7、在二氧化硅氧化膜中,可动钠离子含量要求越高越好。 ( F ) 8、二氧化硅中的宏观缺陷是指用肉眼可以直接观察到的缺陷。 ( R ) 9、氮化硼(BN )是常用的固态硼杂质扩散源。 ( R ) 10、用四探针法可以测试扩散后的结深。 ( R ) 四、名词解释(每题5分,计20分) 1、杂质分凝 答:杂质在晶体中有一定分布,在固态中和液态中的分布又不一样,在晶体提纯时,利用杂质在晶体固态和液态的分布不一样,进行提纯,将杂质集中在晶体的头部或尾部,达到提纯的 装 订 班级 姓名 学号 成绩 - 学年第 学期 半导 第 学期 半导体制造工艺 半 导体制造工艺

硅工艺-《集成电路制造技术》课程-试题

晶圆制备 1.用来做芯片的高纯硅被称为(半导体级硅),英文简称(GSG ),有时也被称为(电子级硅)。 2.单晶硅生长常用(CZ法)和(区熔法)两种生长方式,生长后的单晶硅被称为(硅锭)。 3.晶圆的英文是(wafer ),其常用的材料是(硅)和(锗)。 4.晶圆制备的九个工艺步骤分别是整型、定向、标识。 5.从半导体制造来讲,晶圆中用的最广的晶体平面的密勒符号是(100 )、(110 )和(111)。 6.CZ直拉法生长单晶硅是把(融化了的半导体级硅液体)变为(有确定晶向的)并且(被掺杂成p型或n型)的固体硅锭。 7.CZ直拉法的目的是(实现均匀掺杂的同时,并且复制仔晶的结构,得到合适的硅锭直径)。影响CZ直拉法的两个主要参数是(拉伸速率)和(晶体旋转速率)。 8.晶圆制备中的整型处理包括(去掉两端)、(径向研磨)和(硅片定位边和定位槽)。 9.制备半导体级硅的过程:1(制备工业硅);2(生长硅单晶);3(提纯)。 10.晶片需要经过切片、磨片、抛光后,得到所需晶圆。 氧化 10.二氧化硅按结构可分为()和()或()。 11.热氧化工艺的基本设备有三种:(卧式炉)、(立式炉)和(快速热处理炉)。 12.根据氧化剂的不同,热氧化可分为(干氧氧化)、(湿氧氧化)和(水汽氧化)。 13.用于热氧化工艺的立式炉的主要控制系统分为五部分:(工艺腔)、(硅片传输系统)、气体分配系统、尾气系统和(温控系统)。 14.选择性氧化常见的有(局部氧化)和(浅槽隔离),其英语缩略语分别为LOCOS和(STI )。 15.列出热氧化物在硅片制造的4种用途:(掺杂阻挡)、(表面钝化)、场氧化层和(金属层间介质)。 16.可在高温设备中进行的五种工艺分别是(氧化)、(扩散)、(蒸发)、退火和合金。 17.硅片上的氧化物主要通过(热生长)和(淀积)的方法产生,由于硅片表面非常平整,使得产生的氧化物主要为层状结构,所以又称为(薄膜)。 18.卧式炉的工艺腔或炉管是对硅片加热的场所,它由平卧的(石英工艺腔)、(加热器)和(石英舟)组成。淀积 19.目前常用的CVD系统有:(APCVD )、(LPCVD )和(PECVD )。 20.淀积膜的过程有三个不同的阶段。第一步是(晶核形成),第二步是(聚焦成束),第三步是(汇聚成膜)。21.缩略语PECVD、LPCVD、HDPCVD和APCVD的中文名称分别是(等离子体增强化学气相淀积)、(低压化学气相淀积)、高密度等离子体化学气相淀积、和(常压化学气相淀积)。 22.在外延工艺中,如果膜和衬底材料(相同),例如硅衬底上长硅膜,这样的膜生长称为(同质外延);反之,膜和衬底材料不一致的情况,例如硅衬底上长氧化铝,则称为(异质外延)。 23.化学气相淀积是通过()的化学反应在硅片表面淀积一层()的工艺。硅片表面及其邻近的区域被()来向反应系统提供附加的能量。 金属化 24.金属按其在集成电路工艺中所起的作用,可划分为三大类:()、()和()。 25.气体直流辉光放电分为四个区,分别是:无光放电区、汤生放电区、辉光放电区和电弧放电区。其中辉光放电区包括前期辉光放电区、()和(),则溅射区域选择在()。 26.集成电路工艺中利用溅射现象主要用来(),还可以用来()。 27.对芯片互连的金属和金属合金来说,它所必备一些要求是:(导电率)、高黏附性、(淀积)、(平坦化)、可靠性、抗腐蚀性、应力等。 28.在半导体制造业中,最早的互连金属是(铝),在硅片制造业中最普通的互连金属是(铜),。 29.写出三种半导体制造业的金属和合金(Al )、(Cu )和(铝铜合金)。 30.阻挡层金属是一类具有(高熔点)的难熔金属,金属铝和铜的阻挡层金属分别是(W )和(W )。 31.被用于传统和双大马士革金属化的不同金属淀积系统是:()、()、()和铜电镀。 32.溅射主要是一个()过程,而非化学过程。在溅射过程中,()撞击具有高纯度的靶材料固体平板,按物理过程撞击出原子。这些被撞击出的原子穿过(),最后淀积在硅片上。 平坦化 33.缩略语PSG、BPSG的中文名称分别是()、()。 34.列举硅片制造中用到CMP的几个例子:()、LI氧化硅抛光、()、()、钨塞抛光和双大马士革铜抛光。 35.终点检测是指(CMP设备)的一种检测到平坦化工艺把材料磨到一个正确厚度的能力。两种最常用的原位终点检测技术是(电机电流终点检测)和(光学终点检测)。 36.硅片平坦化的四种类型分别是(平滑)、部分平坦化、(局部平坦化)和(全局平坦化)。 37.传统的平坦化技术有()、()和()。

相关文档