文档库 最新最全的文档下载
当前位置:文档库 › 2262芯片简介

2262芯片简介

2262芯片简介
2262芯片简介

PT2262/2272编解码集成电路介绍

编码解码芯片PT2262/PT2272芯片原理简介:

PT2262/2272是台湾普城公司生产的一种CMOS工艺制造的低功耗低价位通用编解码电路,PT2262/2272最多可有12位(A0-A11)三态地址端管脚(悬空,接高电平,接低电平),任意组合可提供531441地址

码,PT2262最多可有6位(D0-D5)数据端管脚,设定的地址码和数据码从17脚串行输出,可用于无线遥控发射电路。

编码芯片PT2262发出的编码信号由:地址码、数据码、同步码组成一个完整的码字,解码芯片PT2272接收到信号后,其地址码经过两次比较核对后,VT脚才输出高电平,与此同时相应的数据脚也输出高电平,如果发送端一直按住按键,编码芯片也会连续发射。当发射机没有按键按下时,PT2262不接通电源,其17脚为低电平,所以315MHz的高频发射电路不工作,当有按键按下时,PT2262得电工作,其第17脚输出经调制的串行数据信号,当17脚为高电平期间315MHz的高频发射电路起振并发射等幅高频信号,当17脚为低平期间315MHz的高频发射电路停止振荡,所以高频发射电路完全收控于PT2262的17脚输出的数字信号,从而对高频电路完成幅度键控(ASK调制)相当于调制度为100%的调幅。

PT2262/2272特点:CMOS工艺制造,低功耗,外部元器件少,RC 振荡电阻,工作电压范围宽:2.6~15v ,数据最多可达6位,地址码最多可达531441种。应用范围:车辆防盗系统、家庭防盗系统、遥控玩具、其他电器遥控。

在具体的应用中,外接振荡电阻可根据需要进行适当的调节,阻值越大振荡频率越慢,编码的宽度越大,发码一帧的时间越长。网站上大部分产品都是用2262/1.2M=2272/200K组合的,少量产品用2262/4.7M =2272/820K。

地址码和数据码都用宽度不同的脉冲来表示,两个窄脉冲表示“0”;两个宽脉冲表示“1”;一个窄脉冲和一个宽脉冲表示“F”也就是地址码的“悬空”。

上面是我们从超再生接收模块信号输出脚上截获的一段波形,可以明显看到,图上半部分是一组一组的字码,每组字码之间有同步码隔开,所以我们如果用单片机软件解码时,程序只要判断出同步码,然后对后面的字码进行脉冲宽度识别即可。图下部分是放大的一组字码:一个字码由12位AD码(地址码加数据码,比如8位地址码加4位数据码)组成,每个AD位用两个脉冲来代表:两个窄脉冲表示“0”;两个宽脉冲表示“1”;一个窄脉冲和一个宽脉冲表示“F”也就是地址码的“悬空”

2262每次发射时至少发射4组字码,2272只有在连续两次检测到相同的地址码加数据码才会把数据码中的“1”驱动相应的数据输出端

为高电平和驱动VT端同步为高电平。因为无线发射的特点,第一组字码非常容易受零电平干扰,往往会产生误码,所以程序可以丢弃处理。

PT2272解码芯片有不同的后缀,表示不同的功能,有L4/M4/L6/M6之分,其中L表示锁存输出,数据只要成功接收就能一直保持对应的电平状态,直到下次遥控数据发生变化时改变。M表示非锁存输出,数据脚输出的电平是瞬时的而且和发射端是否发射相对应,可以用于类似点动的控制。后缀的6和4表示有几路并行的控制通道,当采用4路并行

数据时(PT2272-M4),对应的地址编码应该是8位,如果采用6路的并行数据时(PT2272-M6),对应的地址编码应该是6位。

PT2262/2272芯片的地址编码设定和修改:

在通常使用中,我们一般采用8位地址码和4位数据码,这时编码电路PT2262和解码PT2272的第1~8脚为地址设定脚,有三种状态可供选择:悬空、接正电源、接地三种状态,3的8次方为6561,所以地址编码不重复度为6561组,只有发射端PT2262和接收端PT2272的地址编码完全相同,才能配对使用,遥控模块的生产厂家为了便于生产管理,出厂时遥控模块的PT2262和PT2272的八位地址编码端全部悬空,这样用户可以很方便选择各种编码状态,用户如果想改变地址编码,只要将PT2262和PT2272的1~8脚设置相同即可,例如将发射机的PT2262的第1脚接地第5脚接正电源,其它引脚悬空,那么接收机的PT2272只要也第1脚接地第5脚接正电源,其它引脚悬空就能实现配对接收。当两者地址编码完全一致时,接收机对应的D1~D4端输出约4V互锁高电平控制信号,同时VT端也输出解码有效高电平信号。用户可将这些信号加一级放大,便可驱动继电器、功率三极管等进行负载遥控开关操纵。

我们网站提供的遥控类产品上一般都预留地址编码区,采用焊锡搭焊的方式来选择:悬空、接正电源、接地三种状态,出厂是一般都悬空,便于客户自己修改地址码。这里我们以常用的超再生插针式接收板A-L4的跳线区为例:

网友可以看到,跳线区是由三排焊盘组成,中间的8个焊盘是

PT2272解码芯片的第1~8脚,最左边有1字样的是芯片的第一脚,最上面的一排焊盘上标有L字样,表示和电源地连同,如果用万用表测量会发现和PT2272的第9脚连同;最下面的一排焊盘上标有H字样,表示和正

电源连同,如果用万用表测量会发现和PT2272的第18脚连同.所谓的设置地址码就是用焊锡将上下相邻的焊盘用焊锡桥搭短路起来,例如将第一脚和上面的焊盘L用焊锡短路后就相当于将PT2272芯片的第一脚设

置为接地,同理将第一脚和下面的焊盘H用焊锡短路后就相当于将

PT2272芯片的第一脚设置为接正电源,如果什么都不接就是表示悬空。

设置地址码的原则是:同一个系统地址码必须一致;不同的系统可以依靠不同的地址码加以区分。至于设置什么样的地址码完全随客户喜欢。

PT2262和PT2272除地址编码必须完全一致外,振荡电阻还必须匹配,否则接收距离会变近甚至无法接收,随着技术的发展市场上出现一批兼容芯片,在实际使用中只要对振荡电阻稍做改动就能配套使用,根据我们网站的实际使用经验,下面的参数匹配效果较好:

2262 IR是2262系列用于红外遥控的专用芯片,可以按照下面的图纸进行接线,可以通过调整发射端Rosc电阻的大小使接收距离最远,发射端电阻的调整范围390~420K。

注意:批号为 703780 的 SC2262IR DIP18 的芯片振荡电阻请选用510K!

电子元件封装大全及封装常识

修改者:林子木 电子元件封装大全及封装常识 一、什么叫封装 封装,就是指把硅片上的电路管脚,用导线接引到外部接头处,以便与其它器件连 接.封装形式是指安装半导体集成电路芯片用的外壳。它不仅起着安装、固定、 密封、保护芯片及增强电热性能等方面的作用,而且还通过芯片上的接点用导线 连接到封装外壳的引脚上,这些引脚又通过印刷电路板上的导线与其他器件相连 接,从而实现内部芯片与外部电路的连接。因为芯片必须与外界隔离,以防止空 气中的杂质对芯片电路的腐蚀而造成电气性能下降。另一方面,封装后的芯片也 更便于安装和运输。由于封装技术的好坏还直接影响到芯片自身性能的发挥和与 之连接的PCB(印制电路板)的设计和制造,因此它是至关重要的。 衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比 值越接近1 越好。封装时主要考虑的因素: 1、芯片面积与封装面积之比为提高封装效率,尽量接近1:1; 2、引脚要尽量短以减少延迟,引脚间的距离尽量远,以保证互不干扰,提高性 能; 3、基于散热的要求,封装越薄越好。 封装主要分为DIP 双列直插和SMD 贴片封装两种。从结构方面,封装经历了最 早期的晶体管TO(如TO-89、TO92)封装发展到了双列直插封装,随后由PHILIP 公司开发出了SOP 小外型封装,以后逐渐派生出SOJ(J 型引脚小外形封装)、 TSOP(薄小外形封装)、VSOP(甚小外形封装)、SSOP(缩小型SOP)、 TSSOP(薄的缩小型SOP)及SOT(小外形晶体管)、SOIC(小外形集成电 路)等。从材料介质方面,包括金属、陶瓷、塑料、塑料,目前很多高强度工作 条件需求的电路如军工和宇航级别仍有大量的金属封装。 封装大致经过了如下发展进程: 结构方面:TO->DIP->PLCC->QFP->BGA ->CSP; 材料方面:金属、陶瓷->陶瓷、塑料->塑料; 引脚形状:长引线直插->短引线或无引线贴装->球状凸点; 装配方式:通孔插装->表面组装->直接安装 二、具体的封装形式 1、SOP/SOIC 封装 SOP 是英文Small Outline Package 的缩写,即小外形封装。SOP 封装技术由 1968~1969 年菲利浦公司开发成功,以后逐渐派生出SOJ(J 型引脚小外形封 装)、TSOP(薄小外形封装)、VSOP(甚小外形封装)、SSOP(缩小型SOP)、 TSSOP(薄的缩小型SOP)及SOT(小外形晶体管)、SOIC(小外形集成电 路)等。 SOP(Small Out-Line package) 也叫SOIC,小外形封装。表面贴装型封装之一, 引脚从封装两侧引出呈海鸥翼状(L 字形)。材料有塑料和陶瓷两种。SOP 除了用 于存储器LSI 外,也广泛用于规模不太大的ASSP 等电路。在输入输出端子不 超过10~40 的领域,SOP 是普及最广的表面贴装封装。引脚中心距 1.27mm,引脚数从8~44。另外,引脚中心距小于1.27mm 的SOP 也称为SSOP;装配 高度不到1.27mm 的SOP 也称为TSOP。还有一种带有散热片的SOP。

半导体封装制程简介

(Die Saw) 晶片切割之目的乃是要將前製程加工完成的晶圓上一顆顆之芯片(Die)切割分離。首先要在晶圓背面貼上蓝膜(blue tape)並置於鋼 製的圆环上,此一動作叫晶圓粘片(wafer mount),如圖一,而後再 送至晶片切割機上進行切割。切割完後,一顆顆之芯片井然有序的排 列在膠帶上,如圖二、三,同時由於框架之支撐可避免蓝膜皺摺而使 芯片互相碰撞,而圆环撐住膠帶以便於搬運。 圖一 圖二

(Die Bond) 粘晶(装片)的目的乃是將一顆顆分離的芯片放置在导线框架(lead frame)上並用銀浆(epoxy )粘着固定。引线框架是提供芯片一個粘着的位置+ (芯片座die pad),並預設有可延伸IC芯片電路的延伸腳(分為內 引腳及外引腳inner lead/outer lead)一個引线框架上依不同的設計可以有 數個芯片座,這數個芯片座通常排成一列,亦有成矩陣式的多列排法 。引线框架經傳輸至定位後,首先要在芯片座預定粘着芯片的位置上点

上銀浆(此一動作稱為点浆),然後移至下一位置將芯片置放其上。 而經過切割的晶圓上的芯片則由焊臂一顆一顆地置放在已点浆的晶 粒座上。装片完後的引线框架再由传输设备送至料盒(magazine) 。装片后的成品如圖所示。 引线框架装片成品 胶的烧结 烧结的目的是让芯片与引线框晶粒座很好的结合固定,胶可分为银浆(导电胶)和绝缘胶两种,根据不同芯片的性能要求使用不同的胶,通常导电胶在200度烤箱烘烤两小时;绝缘胶在150度烤箱烘烤两个半小时。 (Wire Bond) 焊线的目的是將芯片上的焊点以极细的金或铜线(18~50um)連接到引线框架上的內引腳,藉而將IC芯片的電路訊號傳輸到外界。當

2018年芯片行业深度分析报告

2018年芯片行业深度分析报告

核心观点 半导体景气度依旧高涨,芯片产业向大陆转移趋势不可阻挡 根据WSTS的数据,2017年全球半导体销售额同比增长21.6%,首次突破4000 亿美元,截至18年1月全球半导体销售额已连续18个月实现环比增长,景 气度依旧高涨。芯片从上世纪50年代发展至今,大致经历了三大发展阶段:在美国发明起源-在日本加速发展-在韩国台湾成熟分化。前两次半导体产业 转移原因分别是:日本在PC DRAM市场获得美国认可;韩国成为PC DRAM新 的主要生产者和台湾在晶圆代工、芯片封测领域成为代工龙头。如今中国已 成为全球半导体最大的市场,在强大的需求和有力的政策推动下,芯片行业 正迎来第三次产业转移,向大陆转移趋势不可阻挡。 制造、封测环节相对易突破,芯片国产替代需求强烈 集成电路产业链主要包括芯片的设计、制造、封装测试三大环节,除此之外还包括各个环节配套的设备制造、材料生产等相关产业。其中,设计环节由于投资大、风险高,主要被三星、高通、AMD等领先的科技巨头垄断。中游和下游的制造、封测领域相对来说属于劳动密集型,我国芯片行业更适合从这两个方向实现突破,目前已经涌现出像中芯国际、长电科技等优秀本土企业。但整体来看我国芯片行业仍处于发展初期,关键领域芯片自给率很低。近期中兴通讯被美国商务部制裁事件亦反映出我国在芯片领域的脆弱地位。推动集成电路发展已经上升至国家重中之重,芯片国产化率亟待提高。 政策与需求驱动产业崛起,国产芯片未来“芯芯”向荣 随着PC、手机产品销量的逐渐放缓,集成电路产业发展的下游推动力量已经开始向汽车电子、AI、物联网等新兴需求转变。此外中国将成为全球新建集成电路产业投资最大的地区,大陆晶圆厂建厂潮有望带动本土产业链实现跨越式发展。在政策方面,国家先后出台了《国家集成电路产业发展推进纲要》等鼓励文件,“大基金”二期也已经在紧锣密鼓的募集当中,预计筹资规模在1500-2000亿元,最终有望撬动上万亿资金。国内芯片行业将在资金、政策、人才和需求的全方位配合下,以燎原之势迅猛发展,发展前景“芯芯”向荣。 相关上市公司 建议关注具有核心竞争力和受益逻辑确定性较高的细分行业龙头,相关标的有:长电科技(封装领域全球第三)、兆易创新(NOR Flash+MCU+NAND三大芯片领域协同发展)、江丰电子(国内高纯靶材龙头)、晶盛机电(晶体生长设备领域全方位布局)、富瀚微(国内领先的视频监控芯片设计商)。 风险提示:半导体行业景气度不及预期;技术创新对传统产业格局的影响。

基因芯片技术基础知识(概念、制备、杂交、应用及发展方向)

生物科学正迅速地演变为一门信息科学。最明显的一个例子就是目前正在进行的HGP (human genome project),最终要搞清人类全部基因组的30亿左右碱基对的序列。除了人的遗传信息以外,还有其它生物尤其是模式生物(model organism)已经或正在被大规模测序,如大肠杆菌、啤酒酵母、秀丽隐杆线虫以及中国和日本科学家攻关的水稻基因组计划。但单纯知晓生物基因组序列一级结构还远远不够,还必须了解其中基因是怎样组织起来的,每个基因的功能是什么,又是怎样随发育调控和微环境因素的影响而在特定的时空域中展开其表达谱的,即我们正由结构基因组时代迈入功能基因组时代。随着这个功能基因组学问题的提出(后基因组时代,蛋白组学)[1],涌现出许多功能强大的研究方法和研究工具,最突出的就是细胞蛋白质二维凝胶电泳(2-D-gel)(及相应的质谱法测蛋白分子量)和生物芯片(Biochip)技术[2]。 一.什么是基因芯片 生物芯片,简单地说就是在一块指甲大小(1cm3)的有多聚赖氨酸包被的硅片上或其它固相支持物(如玻璃片、硅片、聚丙烯膜、硝酸纤维素膜、尼龙膜等,但需经特殊处理。作原位合成的支持物在聚合反应前要先使其表面衍生出羟基或氨基(视所要固定的分子为核酸或寡肽而定)并与保护基建立共价连接;作点样用的支持物为使其表面带上正电荷以吸附带负电荷的探针分子,通常需包被以氨基硅烷或多聚赖氨酸等)将生物分子探针(寡核苷酸片段或基因片段)以大规模阵列的形式排布,形成可与目的分子(如基因)相互作用,交行反应的固相表面,在激光的顺序激发下标记荧光根据实际反应情况分别呈现不同的荧光发射谱征,CCD相机或激光共聚焦显微镜根据其波长及波幅特征收集信号,作出比较和检测,从而迅速得出所要的信息。生物芯片包括基因芯片、蛋白质芯片、组织芯片。而基因芯片中,最成功的是DNA芯片,即将无数预先设计好的寡核苷酸或cDNA在芯片上做成点阵,与样品中同源核酸分子杂交[3]的芯片。 基因芯片的基本原理同芯片技术中杂交测序(sequencing by hybridization, SBH)。

芯片封装介绍

1、BGA(ball grid array) 球形触点陈列,表面贴装型封装之一。在印刷基板得背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板得正面装配LSI 芯片,然后用模压树脂或灌封方法进行密封。也称为凸点陈列载体(PAC)。引脚可超过200,就是多引脚LSI 用得一种封装。封装本体也可做得比QFP(四侧引脚扁平封装)小。例如,引脚中心距为1、5mm 得360 引脚BGA 仅为31mm 见方;而引脚中心距为0、5mm 得304 引脚QFP 为40mm 见方。而且BGA 不用担心QFP 那样得引脚变形问题。该封装就是美国Motorola 公司开发得,首先在便携式电话等设备中被采用,今后在美国有 可能在个人计算机中普及。最初,BGA 得引脚(凸点)中心距为1、5mm,引脚数为225。现在也有一些LSI 厂家正在开发500 引脚得BGA。BGA 得问题就是回流焊后得外观检查。现在尚不清楚就是否有效得外观检查方法。有得认为, 由于焊接得中心距较大,连接可以瞧作就是稳定得,只能通过功能检查来处理。美国Motorola 公司把用模压树脂密封得封装称为OMPAC,而把灌封方法密封得封装称为 GPAC(见OMPAC 与GPAC)。 2、BQFP(quad flat package with bumper) 带缓冲垫得四侧引脚扁平封装。QFP 封装之一,在封装本体得四个角设置突起(缓冲垫) 以防止在运送过程中引脚发生弯曲变形。美国半导体厂家主要在微处理器与ASIC 等电路中采用此封装。引脚中心距0、635mm,引脚数从84 到196 左右(见QFP)。 3、碰焊PGA(butt joint pin grid array) 表面贴装型PGA 得别称(见表面贴装型PGA)。 4、C-(ceramic) 表示陶瓷封装得记号。例如,CDIP 表示得就是陶瓷DIP。就是在实际中经常使用得记号。 5、Cerdip 用玻璃密封得陶瓷双列直插式封装,用于ECL RAM,DSP(数字信号处理器)等电路。带有玻璃窗口得Cerdip 用于紫外线擦除型EPROM 以及内部带有EPROM 得微机电路等。引脚中心距2、54mm,引脚数从8 到42。在日本,此封装表示为DIP-G(G 即玻璃密封得意思)。 6、Cerquad 表面贴装型封装之一,即用下密封得陶瓷QFP,用于封装DSP 等得逻辑LSI 电路。带有窗口得Cerquad 用于封装EPROM 电路。散热性比塑料QFP 好,在自然空冷条件下可容许1、5~2W 得功率。但封装成本比塑料QFP 高3~5 倍。引脚中心距有1、27mm、0、8mm、0、65mm、0、5mm、0、4mm 等多种规格。引脚数从32 到368。 7、CLCC(ceramic leaded chip carrier) 带引脚得陶瓷芯片载体,表面贴装型封装之一,引脚从封装得四个侧面引出,呈丁字形。带有窗口得用于封装紫外线擦除型EPROM 以及带有EPROM 得微机电路等。此封装也称为QFJ、QFJ-G(见QFJ)。 8、COB(chip on board) 板上芯片封装,就是裸芯片贴装技术之一,半导体芯片交接贴装在印刷线路板上,芯片与基板得电气连接用引线缝合方法实现,芯片与基板得电气连接用引线缝合方法实现,并用树脂覆盖以确保可靠性。虽然COB 就是最简单得裸芯片贴装技术,但它得封装密度远不如TAB 与倒片焊技术。 9、DFP(dual flat package) 双侧引脚扁平封装。就是SOP 得别称(见SOP)。以前曾有此称法,现在已基本上不用。10、DIC(dual in-line ceramic package)

(完整版)元器件封装大全

元器件封装大全 A. 名称Axial 描述轴状的封装 名称 AGP (Accelerate Graphical Port) 描述加速图形接口 名称 AMR (Audio/MODEM Riser) 描述声音/调制解调器插卡 B. 名称 BGA (Ball Grid Array) 描述 球形触点阵列,表面贴 装型封装之一。在印刷基板 的背面按阵列方式制作出 球形凸点用以代替引脚,在 印刷基板的正面装配LSI 芯片,然后用模压树脂或灌 封方法进行密封。也称为凸 点阵列载体(PAC) 名称 BQFP (quad flat package with bumper) 描述 带缓冲垫的四侧引脚扁 平封装。QFP封装之一,在 封装本体的四个角设置突 (缓冲垫)以防止在运送过 程中引脚发生弯曲变形。 C.陶瓷片式载体封装 名称 C- (ceramic) 描述 表示陶瓷封装的记号。 例如,CDIP 表示的是陶瓷 DIP。 名称C-BEND LEAD 描述名称CDFP 描述

名称Cerdip 描述 用玻璃密封的陶瓷双列直插式封装,用于ECL RAM,DSP(数字信号处理器)等电路。带有玻璃窗口的Cerdip 用于紫外线擦除型EPROM 以及内部带有EPROM 的微机电路等。 名称CERAMIC CASE 描述 名称 CERQUAD (Ceramic Quad Flat Pack) 描述 表面贴装型封装之一, 即用下密封的陶瓷QFP,用 于封装DSP 等的逻辑LSI 电路。带有窗口的Cerquad 用于封装EPROM 电路。散热 性比塑料QFP 好,在自然空 冷条件下可容许 1.5~2W 的功率 名称CFP127 描述 名称 CGA (Column Grid Array)描述 圆柱栅格阵列,又称柱栅阵列封装 名称 CCGA (Ceramic Column Grid Array) 描述陶瓷圆柱栅格阵列 名称CNR 描述CNR是继AMR之后作为INTEL的标准扩展接口 名称CLCC 描述 带引脚的陶瓷芯片载体,引脚从封装的四个侧面引出,呈丁字形。带有窗口的用于封装紫外线擦除型EPROM 以及带有EPROM 的微机电路等。此封装也称为QFJ、QFJ-G.

2020年芯片行业现状及前景分析

2020年芯片行业现状及 前景分析 2020年

目录 2020年芯片行业现状及前景分析 (1) 1.行业定义及分类分析 (4) 1.1芯片行业定义 (4) 1.2芯片行业分类 (4) 2.行业概况及现状 (6) 3.政策及环境 (7) 4.竞争分析 (9) 4.1 市场竞争朝中高端延伸 (9) 4.2 专用定制芯片 (11) 5.产业布局 (12) 5.1 中国芯片之现状实验室产物之殇 (13) 5.2 兆芯平台联想开天6100台式机 (14) 5.3 中国芯片之未来市场推动生态发展 (15) 6.行业技术特点分析 (16) 7.行业市场分析 (17) 7.1 中国芯片销售额占全球比重 (18) 7.2 周期性波动向上,市场规模超4000亿美元 (18) 7.3 供需变化涨价蔓延,创新应用驱动景气周期持续 (19) 8.行业发展趋势分析 (19) 9.行业资讯 (21) 9.1 存储芯片市场需求萎缩 (22)

9.2 产业更新换代速度加快 (23)

1.行业定义及分类分析 1.1芯片行业定义 芯片行业市场调查分析报告显示,芯片指内含集成电路的硅片,体积很小,常常是计算机或其他电子设备的一部分。 1.2芯片行业分类 芯片可以从不同的角度分类。低级的分类从材料开始,中级的分类从电路集成着手,中高级分类着眼芯片功能,最高的分类应该是芯片设计方式。从低到高,我尽量集中精力讲讲中高级以上的东西。 第一分类:半导体材料。

芯片的两大材料为Silicon 与Germanium。Si芯片最广泛,它具有很好的高温工作性能。Ge芯片在理想温度下具有更好的导电性。不过,技术方向却是把Si和Ge合成在一起组成SiGe芯片,两者的优点体现于单一芯片上。 第二分类:集成电路工作原理。 芯片上的集成电路可以是CMOS,或者是TTL。两者的差异在于工作原理。一般来说,CMOS耗电低,TTL速度快。 第三分类:芯片加工技术 进入了Sub-Micron "次微米"时代的半导体工业突飞猛进,越过了半微米,四分一微米,等等门槛,到达了"深次微米"的意境。然后,0.18微米芯片,0.13微米芯片,又迅速被抛到后面了。以0.13微米芯片为基础的电子产品甚至还没传到消费者手里,90纳米,或,0.09微米技术已经如火如荼了。最新一代的INTEL,XILINX,NATIONAL等公司的芯片就是建立在0.09微米技术上的,这边的新产品刚上生产线,那边的研究部门已经在作0.065微米了。 第四分类:工作方式 芯片的工作方式有两种:Analog 和Digital。处理声,光,无线信号等物理现象的是Analog 芯片。用半导体来控制

半导体封装简介(精)

半导体封装简介: 半导体生产流程由晶圆制造、晶圆测试、芯片封装和封装后测试组成。塑封之后,还要进行一系列操作,如后固化(Post Mold Cure)、切筋和成型(Trim&Form)、电镀(Plating)以及打印等工艺。典型的封装工艺流程为:划片装片键合塑封去飞边电镀打印切筋和成型外观检查成品测试包装出货。 各种半导体封装形式的特点和优点: 一、DIP双列直插式封装 DIP(DualIn-line Package)是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(IC)均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP 结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。 DIP封装具有以下特点: 1.适合在PCB(印刷电路板)上穿孔焊接,操作方便。 2.芯片面积与封装面积之间的比值较大,故体积也较大。 Intel系列CPU中8088就采用这种封装形式,缓存(Cache)和早期的内存芯片也是这种封装形式。 二、QFP塑料方型扁平式封装和PFP塑料扁平组件式封装 QFP封装 QFP(Plastic Quad Flat Package)封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数一般在100个以上。用这种形式封装的芯片必须采用SMD(表面安装设备技术)将芯片与主板焊接起来。采用SMD安装的芯片不必在主板上打孔,一般在主板表面上有设计好的相应管脚的焊点。将芯片各脚对准相应的焊点,即可实现与主板的焊接。用这种方法焊上去的芯片,如果不用专用工具是很难拆卸下来的。 PFP(Plastic Flat Package)方式封装的芯片与QFP方式基本相同。唯一的区别是QFP一般为正方形,而PFP既可以是正方形,也可以是长方形。

芯片封装大全(图文对照)

芯片封装方式大全 各种IC封装形式图片 BGA Ball Grid Array EBGA 680L LBGA 160L PBGA 217L Plastic Ball Grid Array SBGA 192L QFP Quad Flat Package TQFP 100L SBGA SC-70 5L SDIP SIP Single Inline Package

TSBGA 680L CLCC CNR Communicati on and Networking Riser Specification Revision CPGA Ceramic Pin Grid Array DIP Dual Inline Package SO Small Outline Package SOJ 32L SOJ SOP EIAJ TYPE II 14L SOT220 SSOP 16L

DIP-tab Dual Inline Package with Metal Heatsink FBGA FDIP FTO220 Flat Pack HSOP28SSOP TO18 TO220 TO247 TO264 TO3

ITO220 ITO3p JLCC LCC LDCC LGA LQFP PCDIP TO5 TO52 TO71 TO72 TO78 TO8 TO92

PGA Plastic Pin Grid Array PLCC 详细规格 PQFP PSDIP LQFP 100L 详细规格 METAL QUAD 100L 详细规格 PQFP 100L 详细规格 TO93 TO99 TSOP Thin Small Outline Package TSSOP or TSOP II Thin Shrink Outline Package uBGA Micro Ball Grid Array uBGA Micro Ball Grid Array

基因芯片技术的应用和发展趋势

基因芯片技术的应用和发展趋势 随着基因芯片技术的日渐成熟, 在功能基因组、疾病基因组、系统生物学等领域中得到了广泛的应用, 已经发表了上万篇研究论文, 每年发表的论文呈现增长的趋势. 芯片制备技术极大地推进了生物芯片的发展, 从实验室手工或机械点制芯片到工业化原位合成制备, 从几百个点的芯片到几百万点的高密度芯片, 生物芯片从一项科学成为一项技术, 被越来越多的研究者广泛运用. 各个实验室不断产生海量的杂交数据, 相同领域的研究者需要比较不同实验平台产生的数据, 作为基于分子杂交原理的高通量技术, 芯片实验的标准化、可信度、重现性和芯片结果是否能作为定量数据等问题成为所有的芯片使用者关心的课题. 迈阿密原则和微阵列质量控制系列研究回答了这两个问题. 迈阿密原则(Minimum Information About a Micro- array Experiment, MIAME, 微阵列实验最小信息量)提出了生物芯片标准化的概念, 该原则的制定使世界各地实验室的芯片实验数据可以为所有的研究者共享. 同 时, 美国国家生物信息学中心(NCBI)和位于英国的欧洲生物信息学研究所(EBI)也建立了GEO ( https://www.wendangku.net/doc/b18649511.html,/geo/)和ArryExpress (http:// ;https://www.wendangku.net/doc/b18649511.html,/arrayexpress/)公共数据库, 接受和储存全球研究者根据迈阿密原则提交的生物芯片数据, 对某项研究感兴趣的研究人员可以下载到相关课题的芯片原始数据进行分析. 2006年美国FDA联合多个独立实验室进行了MAQC系列实验(micro array quality control, MAQC), 旨在研究目前所使用的芯片平台的质量控制. 该研究的12篇系列文章发表在2006年9月份的Nature Biotechnology 上, 用严格的实验分析了目前主流芯片平台数据质量, 芯片数据和定量PCR结果之间的相关性, 芯片数据均一化方法, 不同芯片平台之间的可重现性. 证明了不同芯片平台产生的数据具有可比性和可重现性, 各种芯片平台之间的系统误差远远小于人为操作和生物学样品之间本身的差异, 肯定了芯片数据的可信性, 打消了以往对芯片数据的种种猜疑, 明确了基于杂交原理的芯片同样可以作为一种定量的手段. 推动了生物芯片技术在分子生物学领域更广泛的应用. 生物信息学和统计学是在处理基因芯片产生的海量数据中必不可少的工具. 随着芯片应用的推进, 芯片数据分析的新理论和新算法不断地被开发出来, 这些方法帮助生物学家从海量的数据里面快速筛选出差异表达的基因. 一次芯片实验获得的是成千上万个基因的表达信息, 任何一种单一的分析方法都很难将所有蕴含在数据中的生物学信息全部提取出来, 从近年来生物信息学研究的趋势来看, 目前研究的重点开始转向芯片数据储存、管理、共享和深度信息挖掘, 旨在从芯片数据中获得更多的生物学解释, 而不再停留在单纯的差异表达基因筛选上。 目前基因芯片的制备向两个主要方向发展. 第一, 高密度化, 具体表现为芯片密度的增加, 目前原位合成的芯片密度已经达到了每平方厘米上千万个探针. 一张芯片上足以分析一个物种的基因组信息. 第二, 微量化, 芯片检测样品的微量化, 目前芯片检测下限已经能达到纳克级总RNA水平, 这为干细胞研究中特别是IPS干细胞对单个细胞的表达谱研究提供了可能. 另一方面, 微量化也体现芯片矩阵面积的微量化, 即在同一个芯片载体上平行的进行多个矩阵的杂交, 大大减少系统和批次可能带来的差异, 同时削减实验费用. 微阵列技术改变了生物学研究的方法, 使得微量样品快速高通量的分析成为可能, 从单个基因的研究迅速扩展到全基因组的系统生物学研究. 微阵列技术帮助生物学研究进入后基因组时代, 研究成果层出不穷。 2001年国家人类基因组南方研究中心韩泽广博士研究小组利用cDNA芯片对肝癌和正常组织中的12393个基因和EST序列进行了表达谱筛查, 其中发现了2253个基因和EST在肝癌中发生了差异表达, 并对这些差异基因的信号通路进行了分析, 发现WNT信号通路在肝癌的发生中出现了表达异常. 2002年中国科学院神经科学研究所张旭博士研究组利用表达谱芯片对大鼠外周神经损伤模型背根神经节的基因表达进行了研

基因芯片技术的研究进展与前景

基因芯片技术的研究进展与前景 摘要 关键词基因芯片,遗传性疾病,基因组计划, 一、基因芯片技术的产生背景 基因芯片技术是伴随着人类基因组计划而出现的一项高新生物技术。2001年6月公布了人类基因组测序工作草图;2002年出发飙了较高精确度和经过详细注解的人类基因组研究结果;2004年10月发表了已填补基因组中许多Gap片段的更精确的人类全基因组序列,标志人类基因组计划的完成和新时代的开始。随着人类基因组计划的开展,也同时进行了模式生物基因组测序工作。动物、植物、细菌及病毒基因组等测序工作都已取得重大进展。 随着各种基因组计划的实施和完成(有的即将完成),一个庞大的基因数据库已经建成。怎样从海量的基因信息中发掘基因功能。如何研究成千上万基因在生命过程中所担负的角色;如何开发利用各种基因组的研究成果,将基因的序列与功能关联起来,认识基因在表达调控、机体分化等方面的生物学意义;解释人类遗传进化、生长发育、分化衰老等许多生命现象的奥秘;深入了解疾病的物质基础及发生、发展过程;开发基因诊断、治疗和基因工程药物并用来预防诊断和治疗人类几千种遗传性疾病……这些都将成为现代生物学面临的最大挑战。这样的背景促使人们研究和开发新的技术手段来解决后基因组时代面临的一系列关键问题。20世纪90年代初,为适应“后基因组时代”的到来,产生了一项新的技术,即以基因芯片为先导的生物芯片技术。 二、基因芯片的概念 基因芯片(又称DNA芯片、DNA微阵列)技术是基于核酸互补杂交原理研制的。该技术指将大量(通常每平方厘米点阵密度高于400 )探针分子固定于支持物上后与有荧光素等发光物质标记的样品DNA或RNA分子进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息,从而对基因表达的量及其特性进行分析。通俗地说,就是通过微加工技术,将数以万计、乃至百万计的特定序列的DNA片段(基因探针),有规律地排列固定于2cm2的硅片、玻片等支持物上,构成的一个二维DNA探针阵列,与计算机的电子芯片十分相似,只是在固相基质上古高度集成的不是半导体管,而是成千上万的网格状密集排列的基因探针,所以被称为基因芯片。 三、基因芯片技术的分类 1 根据功能分类:基因表达谱芯片和DNA测序芯片两类。基因表达图谱芯片可以将克隆的成千上万个基因特异的探针或其cDNA片段固定在一块DNA芯片上,对于来源不同的个体、组织、细胞周期、发育阶段、分化阶段、病变、刺激(包括不同诱导、不同治疗手段)下的细胞内mRNA或反转录后产生的cDNA进行检测,从而对这个基因表达的个体特异性、组织特异性、发育阶段特异性、分化阶段特异性、病变特异性、刺激特异性进行综合的分析和判断,迅速将某个或某几个基因与疾病联系起来,极大地加快这些基因功能的确定,同时可进一步研究基因与基因间相互作用的关系,DNA测序芯片则是基于杂交测序发展起来的。其原理是任何线状的单链DNA或RNA序列均可裂解成一系列碱基数固定、错落而重叠的寡核苷酸,如能把原序列所有这些错落重叠的寡核苷酸序列全部检测出来,就可据此重新组建出新序列。 2 根据基因芯片所用基因探针的类型不同,可分为cDNA微阵列和寡核苷酸微阵

基因芯片相关图像技术的简单介绍

本科课程论文 基因芯片相关图像技术的简单介绍 张大力 201330200125 指导教师邓继忠 学院名称生命科学学院专业名称14生物科学2班论文提交日期2017年6月9日

摘要 生物芯片是一种高效快速地生物学检测手段,以探针和底物的特异性结合为基本原理。其反应结果常常显示为荧光点阵列,往往具有信息量大,信息密度大的特点,人工难以识别和处理,因此多采用自动化手段进行处理,包括图像技术和计算机技术。本文简单介绍现有的几天芯片图像处理过程中所用到的图像技术。 关键词:图像技术、生物芯片、基因芯片。

1 生物芯片简介 生物芯片是20世纪90年代出现的一种将分子生物学/基因工程和芯片结合的一项技术,根据性能可分为功能芯片和信息芯片两大类。 功能芯片是指在芯片上集成一系列反应所需的试剂和条件,在一块芯片生完成固定的,程序化的,复杂的反应,从而大大减少检测人员的劳动强度,并使检测过程快速方便。 信息芯片又可以根据芯片探针和探测目标的不同分为基因芯片、蛋白芯片、细胞芯片、组织芯片等。[1]信息芯片是现在广泛使用的一类芯片,是在芯片基质材料上安装许多,基质可以是玻璃、金属、尼龙或者其他材料。基因芯片又是信息芯片中最常使用的。 生物芯片上探针可与样品液体中的目标的特异性结合,结合的产物可以经过处理,在激光的照射下发出特定波长的荧光,如果没有发生结合的探针或者目标不会发出荧光。 用特定的光照射反应后的芯片,使其上面发生特异性结合的部位发出荧光,再用技术手段取得此时芯片的图像。通过对芯片图像中荧光的位置,颜色、强弱进行分析可以推测基因芯片上探针发生反应的情况。进而得知样品中待测目标的情况,包括样品中某同可以和探针特异性结合的目标是否存在,含量、浓度是多少等,这些信息可以作为进一步判断的依据。 2 生物芯片图像信息的采集 反应后经光源照射发出荧光的芯片包含我们所需要的信息,所谓基因芯片的扫描就是指将含有大量的以微阵列方式排列的生物杂交反应样点的基因芯片以图像的方式读取出来,且在保证样点信息的能够准确描述前提下,扫描图像转变成可供计算机处理的数字图像[2]。基因芯片以外的生物芯片的与基因芯片类似。 常见的生物芯片扫描仪有两种分别是:CCD 系统扫描仪和激光共聚焦扫描仪,中CCD 扫描仪的应用较为广泛。[3]

常见的几种芯片封装介绍

常见的几种芯片封装介绍 一、DIP双列直插式封装 DIP(Dual In-line Package)是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(IC)均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。 DIP封装具有以下特点: (1)适合在PCB(印刷电路板)上穿孔焊接,操作方便。 (2)芯片面积与封装面积之间的比值较大,故体积也较大。 Intel系列CPU中8088就采用这种封装形式,缓存(Cache)和早期的内存芯片也是这种封装形式。 二、QFP塑料方型扁平式封装和PFP塑料扁平组件式封装 QFP(Plastic Quad Flat Package)封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数一般在100个以上。用这种形式封装的芯片必须采用SMD(表面安装设备技术)将芯片与主板焊接起来。采用SMD安装的芯片不必在主板上打孔,一般在主板表面上有设计好的相应管脚的焊点。将芯片各脚对准相应的焊点,即可实现与主板的焊接。用这种方法焊上去的芯片,如果不用专用工具是很难拆卸下来的。 PFP(Plastic Flat Package)方式封装的芯片与QFP方式基本相同。唯一的区别是QFP一般为正方形,而PFP既可以是正方形,也可以是长方形。 QFP/PFP封装具有以下特点: (1)适用于SMD表面安装技术在PCB电路板上安装布线。 (2)适合高频使用。 (3)操作方便,可靠性高。 (4)芯片面积与封装面积之间的比值较小。 Intel系列CPU中80286、80386和某些486主板采用这种封装形式。 三、PGA插针网格阵列封装 PGA(Pin Grid Array Package)芯片封装形式在芯片的内外有多个方阵形的插针,每个方阵形插针沿芯片的四周间隔一定距离排列。根据引脚数目的多少,可以围成2-5圈。安装时,将芯片插入专门的PGA插座。为使CPU能够更方便地安装和拆卸,从486芯片开始,出现一种名为ZIF的CPU插座,专门用来满足PGA封装的CPU在安装和拆卸上的要求。ZIF(Zero Insertion Force Socket)是指

2018年国产芯片行业分析报告

2018年国产芯片行业分析 报告

正文目录 一、半导体景气度依旧高涨,芯片产业向大陆转移趋势不可阻挡 (4) 1.1半导体景气度高涨,2018年有望延续 (4) 1.2大陆正扮演第三次集成电路产业转移承接者的角色 (5) 二.制造、封测环节相对易突破,芯片国产替代需求强烈 (9) 2.1芯片产业链中制造和封测环节是大陆的突破点 (9) 2.2国内芯片产业总体仍处于发展初期,芯片国产化率有待提高 (13) 三、政策与需求驱动产业崛起,国产芯片未来“芯芯”向荣 (17) 3.1汽车电子、AI、物联网等产业成为IC发展新驱动力 (17) 3.2晶圆厂建厂潮有望带动本土产业链实现跨越式发展 (26) 3.3国家政策全力配合,“大基金”二期蓄势待发 (27) 四、主要公司分析 (29) 4.1长电科技 (29) 4.2兆易创新 (30) 4.3江丰电子 (30) 4.4晶盛机电 (31) 4.5富瀚微 (31) 五、风险提示 (32) 图目录 图1:全球半导体销售额(亿美元) (4) 图2:全球半导体设备销售额与订单额对比(亿美元) (5) 图3:全球半导体产业三次变迁历程 (6) 图4:2011-2019年全球手机芯片销售额及预测(亿美元) (7) 图5:2017年全球半导体销售额地区占比(%) (8) 图6:2017年半导体销售额按区域增速(%) (8)

图7:2013-2016年中国集成电路市场规模(亿元) (9) 图8:集成电路产业链划分 (10) 图9:2016年中国集成电路市场结构 (14) 图10:2016年中国集成电路行业增速(%) (14) 图11:2009-2017年1-10月中国集成电路进口额 (15) 图12:我国集成电路自给率水平较低 (16) 图13:2016年中国集成电路行业增速(%) (17) 图14:2016-2021年各领域电子系统CAGR(%) (18) 图15:2017年全球电子系统市场总额预测 (18) 图16:2013-2020年中国汽车电子市场规模(亿元) (19) 图17:2013-2020年全球ADAS芯片市场规模(亿美元) (20) 图18:2015年我国汽车ADAS搭载率(%) (20) 图19:2035年的实际经济总增加值增速(%) (23) 图20:全球人工智能芯片市场规模(亿美元) (23) 图21:物联网相关技术 (24) 图22:中国物联网模组/芯片市场规模(亿元) (25) 图23:全球物联网市场规模(亿美元) (25) 表目录 表 1. 2017年全球前十大IC设计公司(单位:百万美元) (11) 表 2. 2017年全球前十大晶圆代工企业(单位:百万美元) (12) 表 3. 2017年全球前十大IC封测企业(单位:百万美元) (12) 表 4. 我国核心芯片占有率情况 (16) 表 5. 国内外参与AI芯片产业的科技公司及初创企业简介 (22) 表 6. 大陆地区晶圆生产线投资规划 (26) 表7. 近年来国家出台多项政策支持集成电路产业发展 (27) 表8. 地方集成电路产业投资基金情况 (28)

介绍各种芯片封装形式的特点和优点..

介绍各种芯片封装形式的特点和优点。常见的封装材料有:塑料、陶瓷、玻璃、金属等,现在基本采用塑料封装。按封装形式分:普通双列直插式,普通单列直插式,小型双列扁平,小型四列扁平,圆形金属,体积较大的厚膜电路等。 由于电视、音响、录像集成电路的用途、使用环境、生产历史等原因,使其不但在型号规格上繁杂,而且封装形式也多样。我们经常听说某某芯片采用什么什么的封装方式,比如,我们看见过的电板,存在着各种各样不同处理芯片,那么,它们又是是采用何种封装形式呢?并且这些封装形式又有什么样的技术特点以及优越性呢?那么就请看看下面的这篇文章,将为你介绍各种芯片封装形式的特点和优点。 1) 概述 常见的封装材料有:塑料、陶瓷、玻璃、金属等,现在基本采用塑料封装。 按封装形式分:普通双列直插式,普通单列直插式,小型双列扁平,小型四列扁平,圆形金属,体积较大的厚膜电路等。 按封装体积大小排列分:最大为厚膜电路,其次分别为双列直插式,单列直插式,金属封装、双列扁平、四列扁平为最小。 两引脚之间的间距分:普通标准型塑料封装,双列、单列直插式一般多为2.54±0.25 mm,其次有2mm(多见于单列直插式)、1.778±0.25mm(多见于缩型双列直插式)、1.5±0.25mm,或1.27±0.25mm(多见于单列附散热片或单列V 型)、1.27±0.25mm(多见于双列扁平封装)、1±0.15mm(多见于双列或四列扁平封装)、0.8±0.05~0.15mm(多见于四列扁平封装)、0.65±0.03mm(多见于四列扁平封装)。 双列直插式两列引脚之间的宽度分:一般有7.4~7.62mm、10.16mm、12.7mm、1 5.24mm等数种。 双列扁平封装两列之间的宽度分(包括引线长度:一般有6~6.5±mm、7.6mm、10.5~10.65mm等。 四列扁平封装40引脚以上的长×宽一般有:10×10mm(不计引线长度)、13.6×1 3.6±0.4mm(包括引线长度)、20.6×20.6±0.4mm(包括引线长度)、8.45×8.45±0.5mm(不计引线长度)、14×14±0.15mm(不计引线长度)等。 2)DIP双列直插式封装 DIP(DualIn-line Package)是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(IC)均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。 DIP封装具有以下特点: 1.适合在PCB(印刷电路板)上穿孔焊接,操作方便。 2.芯片面积与封装面积之间的比值较大,故体积也较大。 Intel系列CPU中8088就采用这种封装形式,缓存(Cache)和早期的内存芯片也是这种封装形式。 3)QFP塑料方型扁平式封装和PFP塑料扁平组件式封装 QFP(Plastic Quad Flat Package)封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数一般在

芯片常用封装及尺寸说明

A、常用芯片封装介绍 来源:互联网作者: 关键字:芯片封装 1、BGA 封装(ball grid array) 球形触点陈列,表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板的正面装配 LSI 芯片,然后用模压树脂或灌封方法进行密封。也称为凸点陈列载体(PAC)。引脚可超过200,是多引脚 LSI 用的一种封装。封装本体也可做得比 QFP(四侧引脚扁平封装)小。例如,引脚中心距为 1.5mm 的360 引脚 BGA 仅为31mm 见方;而引脚中心距为0.5mm 的304 引脚 QFP 为 40mm 见方。而且 BGA 不用担心 QFP 那样的引脚变形问题。该封装是美国 Motorola 公司开发的,首先在便携式电话等设备中被采用,今后在美国有可能在个人计算机中普及。最初,BGA 的引脚(凸点)中心距为 1.5mm,引脚数为225。现在也有一些 LSI 厂家正在开发500 引脚的 BGA。 BGA 的问题是回流焊后的外观检查。 现在尚不清楚是否有效的外观检查方法。有的认为,由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。美国 Motorola 公司把用模压树脂密封的封装称为 OMPAC,而把灌封方法密封的封装称为 GPAC(见 OMPAC 和 GPAC)。 2、BQFP 封装(quad flat package with bumper) 带缓冲垫的四侧引脚扁平封装。QFP 封装之一,在封装本体的四个角设置突起(缓冲垫) 以防止在运送过程中引脚发生弯曲变形。美国半导体厂家主要在微处理器和 ASIC 等电路中采用此封装。引脚中心距0.635mm,引脚数从84 到196 左右(见 QFP)。

2020年芯片封装大全(图文对照)

芯片封装大全(图文对照)

封装有两大类;一类是通孔插入式封装(through-holepackage);另—类为表面安装式封装(surfacemountedPackage)。每一类中又有多种形式。表l和表2是它们的图例,英文缩写、英文全称和中文译名。图6示出了封装技术在小尺寸和多引脚数这两个方向发展的情况。 DIP是20世纪70年代出现的封装形式。它能适应当时多数集成电路工作频率的要求,制造成本较低,较易实现封装自动化印测试自动化,因而在相当一段时间内在集成电路封装中占有主导地位。 但DIP的引脚节距较大(为2.54mm),并占用PCB板较多的空间,为此出现了SHDIP和SKDIP等改进形式,它们在减小引脚节 距和缩小体积方面作了不少改进,但DIP最大引脚数难以提高(最大引脚数为64条)且采用通孔插入方式,因而使它的应用受到 很大限制。 为突破引脚数的限制,20世纪80年代开发了PGA封装,虽然它的引脚节距仍维持在2.54mm或1.77mm,但由于采用底面引 出方式,因而引脚数可高达500条~600条。 随着表面安装技术(surfacemounted technology,SMT)的出现,DIP封装的数量逐渐下降,表面安装技术可节省空间,提高性能,且可放置在印刷电路板的上下两面上。SOP应运而生,它的引脚从两边引出,且为扁平封装,引脚可直接焊接在PCB板上,也不再需要插座。它的引脚节距也从DIP的2.54mm减小到1.77mm。后来有SSOP和TSOP改进型的出现,但引脚数仍受到限制。 QFP也是扁平封装,但它们的引脚是从四边引出,且为水平直线,其电感较小,可工作在较高频率。引脚节距进一步降低到1.00mm,以至0.65mm和0.5mm,引脚数可达500条,因而这种封装形式受到广泛欢迎。但在管脚数要求不高的情况下,SOP 以及它的变形SOJ(J型引脚)仍是优先选用的封装形式,也是目前生产最多的一种封装形式。 方形扁平封装-QFP(QuadFlatPackage) [特点]引脚间距较小及细,常用于大规模或超大规模集成电路封装。必须采用SMT(表面安装技术)进行焊接。操作方便,可靠性 高。芯片面积与封装面积的比值较大。 小型外框封装-SOP(SmallOutlinePackage) [特点]适用于SMT安装布线,寄生参数减小,高频应用,可靠性较高。引脚离芯片较远,成品率增加且成本较低。芯片面积与封装面积比值约为1:8 小尺寸J型引脚封装-SOJ(SmalOutlineJ-lead) 有引线芯片载体-LCC(LeadedChipCarrier) 据1998年统计,DIP在封装总量中所占份额为15%,SOP在封装总量中所占57%,QFP则占12%。预计今后DIP的份额会进一步下降,SOP也会有所下降,而QFP会维持原有份额,三者的总和仍占总封装量的80%。 以上三种封装形式又有塑料包封和陶瓷包封之分。塑料包封是在引线键合后用环氧树脂铸塑而成,环氧树脂的耐湿性好,成本也低,所以在上述封装中占有主导地位。陶瓷封装具有气密性高的特点,但成本较高,在对散热性能、电特性有较高要求时,或者用于国防军事需求时,常采用陶瓷包封。 PLCC是一种塑料有引脚(实际为J形引脚)的片式载体封装(也称四边扁平J形引脚封装QFJ(quadflatJ-leadpackage)),所以

相关文档