文档库 最新最全的文档下载
当前位置:文档库 › 山东大学数学学院2109年泛函分析期末试题

山东大学数学学院2109年泛函分析期末试题

山东大学数学学院2109年泛函分析期末试题

16级泛函分析

出题人:张晓燕编辑:胡不归

一、 1.叙述开映射定理和闭图像定理,并证明闭图像定理.

2.M是Banach空间X中的有界闭凸集,A:M→M满足对任意x,y∈M,

||Ax?Ay|| ||x?y||

求证:对任意ε>0,存在xε∈M,使得

||Axε?xε|| ε

3.叙述自然嵌入的定义,并证明自然嵌入映射是范数的.

二、 1.叙述Riesz引理,并利用它证明:若赋范线性空间E中任意有界集都是列紧集,则E是有限维的.

2.求(R n,||·||)的共轭空间,其中||x||=max

1 i n |ξi|,x=(ξi)n

i=1

.

3.叙述Hilbert空间中的Riesz表示定理,并用它证明:f是Hilbert空间H的子空间H0上的有界线性泛

函,则f在H上存在唯一的保范延拓.

三、 1.T是Banach空间X上的幂等算子,即T∈B(X),且T2=T.求证:σ(T)={0,1}.

2.X,Y是赋范线性空间,若X={0},B(X,Y)是Banach空间,则Y是Banach空间.

3.X,Y是赋范线性空间,A:X→Y是全连续线性算子.求证:A将X中的弱收敛序列映为Y中收敛列.

山东大学数学分析

2005年试题 一、1.求极限1222lim n n a a na n →∞ ++L ,其中lim .n n a a →∞= 2.求极限21lim (1).x x x e x -→+∞+ 3.证明区间(0,1)和(0,)+∞具有相同的基数(势)。 4.计算积分:21,D dxdy y x +??其中D 是由0,1,x y y x ===所围成的区域。 5.计算:2222,:21C ydx xdy I C x y x y -+=+=+?方向为逆时针。 6.设0,0,a b >>证明:11()().1b b a a b b ++≥+ 二、设()f x 为[,]a b 上的有界可测函数且 2[,]()0,a b f x dx =?证明: ()f x 在 [,]a b 上几乎处处为零。 三、设()f x 在(0,)+∞内连续且有界,试讨论()f x 在(0,)+∞内的一致连续性。 四、 设222220(,)0,0 x y f x y x y +>=+=?,讨论(,)f x y 在原点的连续性,偏导数存在性及可微性。 五、设()f x 在(,)a b 内二次可微,求证: 2 ()(,),..()2()()().24a b b a a b s t f b f f a f ξξ+-''?∈-+= 六、()f x 在R 上二次可导,,()0,x f x ''?∈>R 又00,()0,lim ()0,lim ()0.x x x f x f x f x αβ→-∞→+∞''?∈<=<=>R 证明:()f x 在R 上恰有两个零点。 七、设()f x 和()g x 在[,]a b 内可积,证明:对[,]a b 的任意分割

数学分析期末考试题

数学分析期末考试题 一、单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内,每小题2分, 共20分) 1、 函数)(x f 在[a,b ]上可积的必要条件是( ) A 连续 B 有界 C 无间断点 D 有原函数 2、函数)(x f 是奇函数,且在[-a,a ]上可积,则( ) A ?? =-a a a dx x f dx x f 0 )(2)( B 0)(=?-a a dx x f C ?? -=-a a a dx x f dx x f 0 )(2)( D )(2)(a f dx x f a a =?- 3、 下列广义积分中,收敛的积分是( ) A ? 1 1dx x B ? ∞ +1 1dx x C ? +∞ sin xdx D ?-1 131dx x 4、级数 ∑∞ =1 n n a 收敛是 ∑∞ =1 n n a 部分和有界且0lim =∞ →n n a 的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 5、下列说法正确的是( ) A ∑∞ =1n n a 和 ∑∞ =1 n n b 收敛, ∑∞ =1 n n n b a 也收敛 B ∑∞ =1 n n a 和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 C ∑∞ =1n n a 收敛和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 D ∑∞=1 n n a 收敛和∑∞ =1 n n b 发散, ∑∞ =1 n n n b a 发散 6、 )(1 x a n n ∑∞ =在[a ,b ]收敛于a (x ),且a n (x )可导,则( ) A )()('1'x a x a n n =∑∞ = B a (x )可导 C ?∑? =∞ =b a n b a n dx x a dx x a )()(1 D ∑∞ =1 )(n n x a 一致收敛,则a (x )必连续 7、下列命题正确的是( )

山东大学837化工原理考研真题及笔记详解

山东大学837化工原理考研真题及笔记详解 2021年山东大学《837化工原理》考研全套 目录 ?山东大学《837化工原理》历年考研真题汇编 ?全国名校化工原理考研真题汇编(含部分答案) 说明:本部分收录了本科目近年考研真题,方便了解出题风格、难度及命题点。此外提供了相关院校考研真题,以供参考。 2.教材教辅 ?陈敏恒《化工原理》(第4版)笔记和课后习题(含考研真题)详解?[预售]陈敏恒《化工原理》(第4版)(上册)配套题库【考研真题精选+章节题库】 ?[预售]陈敏恒《化工原理》(第4版)(下册)配套题库【考研真题精选+章节题库】 ?夏清《化工原理》(第2版)(上册)配套题库【名校考研真题+课后习题+章节题库+模拟试题】

?夏清《化工原理》(第2版)(下册)配套题库【名校考研真题+课后习题+章节题库+模拟试题】 说明:以上为本科目参考教材配套的辅导资料。 ? 试看部分内容 名校考研真题 绪论 本章不是考试重点,暂未编选名校考研真题,若有将及时更新。 第1章流体流动 一、填空题 1.某液体在内径为的水平管路中作稳定层流流动其平均流速为u,当它以相同的体积流量通过等长的内径为()的管子时,则其流速为原来的倍,压降是原来的倍。[四川大学2008研] 【答案】4 16查看答案 【解析】由流量可得,流速,因此有:,即流速为原来的4倍。 根据哈根-泊肃叶(Hagen-Poiseuille)公式(为压强降),则有:

因此,压降是原来的16倍。 2.一转子流量计,当通过水流量为1m3/h时,测得该流量计进、出间压强降为20Pa;当流量增加到1.5m3/h时,相应的压强降为。[四川大学2008研]【答案】20Pa查看答案 【解析】易知,当转子材料及大小一定时,、及为常数,待测流体密度可视为常数,可见为恒定值,与流量大小无关。 3.油品在φ的管内流动,在管截面上的速度分布可以表示为 ,式中y为截面上任一点至管内壁的径向距离(m),u为该点上的流速(m/s);油的粘度为。则管中心的流速为 m/s,管半径中点处的流速为 m/s,管壁处的剪应力为。[清华大学2001研]【答案】0.4968 0.3942 1查看答案 【解析】管内径。 在管中心处,则流速为。 在管半径中心处,则流速为。 由题意可知,则管壁处剪切力为: 4.某转子流量计,其转子材料为不锈钢,当测量密度为的空气的流量时,最大流量为。现用来测量密度为氨气的流量时,其最大流量为。[清华大学2000研]

数学分析1-期末考试试卷(A卷)

数学分析1 期末考试试卷(A 卷) 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。 (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。

(C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+=在3 π =x 处取得极值,则( )。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 30x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

数学系一年级《数学分析》期末考试题

(一)数学系一年级《数学分析》期末考试题 学号 姓名 一、(满分10分,每小题2分)单项选择题: 1、{n a }、{n b }和{n c }是三个数列,且存在N,? n>N 时有≤n a ≤n b n c ,则( ) A {n a }和{n b }都收敛时,{n c }收敛; B. {n a }和{n b }都发散时,{n c }发散; C {n a }和{n b }都有界时,{n c }有界; D. {n b }有界时,{n a }和{n c }都有界; 2、=)(x f ??? ? ???>+=<,0 ,2.( ,0 ,0, ,sin x x k x k x x kx 为常数) 函数 )(x f 在 点00=x 必 ( ) A.左连续; B. 右连续 C. 连续 D. 不连续 3、' 'f (0x )在点00=x 必 ( ) A. x x f x x f x ?-?+→?) ()(lim 02020 ; B. ' 000)()(lim ???? ???-?+→?x x f x x f x ; C. ' 000)()(lim ??? ? ???-?+→?x x f x x f x ; D. x x f x x f x ?-?+→?) ()(lim 0'0'0 ; 4、设函数)(x f 在闭区间[b a ,]上连续,在开区间(b a ,)内可微,但≠)(a f )(b f 。则( ) A. ∈?ξ(b a ,),使0)(' =ξf ; B. ∈?ξ(b a ,),使0)(' ≠ξf ; C. ∈?x (b a ,),使0)('≠x f ; D.当)(b f >)(a f 时,对∈?x (b a ,),有)(' x f >0 ; 5、设在区间Ⅰ上有?+=c x F dx x f )()(, ?+=c x G dx x g )()(。则在Ⅰ上有( ) A. ?=)()()()(x G x F dx x g x f ; B. c x G x F dx x g x f +=?)()()()( ;

最新山东大学2000-数学分析

山东大学2000-2007 数学分析

2000年试题 一、 填空。 1. 22 2 333 12(1)lim[]?n n n n n →∞-+++= 2.10 (1) lim ?x x e x x →-+= 3.设3cos ,2sin (02),x t y t t π==<<则22?d y dx = 4.21 2 1 [ln(1)] ? 1x x x dx x -++=+? 5.设r =则 2216 []?x y r dxdy +≤=?? 6.设Γ表示椭圆22 149x y +=正向,则()()?x y dx x y dy Γ-++=? 7.级数1 3(2)(1)n n n n x n ∞ =+-+∑的收敛范围为? 8.设()(1)ln(1),f x x x =++则()(0)?n f = 二、 1.设()f x 在[,]a b 上可积,令()(),x a F x f t dt =?证明:()F x 在[,]a b 上连续。 2.求2 0cos(2)(x e x dx αα∞ -?为实数)。 3.试求级数21n n n x ∞ =∑的和函数。 三、任选两题。 1.设()f x 在[,]a b 上连续且()0,f x >证明:21 ()().() b b a a f x dx dx b a f x ≥-??

2.求20cos sin n x nxdx π ?(1n ≥为正整数) 3.设(),()f x g x 在[0,)+∞上可微且满足 lim (1)lim ()(0),(2)lim ()().x x f x A A g x g x x →∞ →∞ =<<+∞≠ →∞ 求证:存在数列{}(,)n n c c n →+∞→∞使得()()()().n n n n f c g c g c f c ''<- 2001年试题 一、1.220 cos 21 lim ?sin x x x x →-=+ 2.2! lim ?n n n n n →∞= 3.设ln(),u x xy =则22?u x ?=? 4 0?x π =?. 5.交换积分顺序2 1 20(,)?x x dx f x y dy -=?? 6.(3,4) (0,1)?xdx ydy -+=? 7.1(1)n n n n x ∞ =+∑的和函数为? 8.设()arctan ,f x x =则(21)(0)?n f += 二、 1.叙述函数()f x 在[,]a b 上一致连续和不一致连续的εδ-型语言。 2.计算定积分2 .x e dx +∞ -? 3.叙述并证明连续函数的中间值定理。 三、本题任选两题。

山东大学 高等数学 【三套试题汇总】

一 求下列极限 1 1 lim sin n n n →∞ 1sin ≤n Θ 01lim =∞→n n ∴ 0sin 1lim =∞→n n n 2 求 lim x x x → Θ1lim 0 -=- →x x x 1lim 0 =+ →x x x ∴0 lim x x x →不存在 3 求 1 lim x x e → Θ ,lim 10 +∞=+→x x e 0lim 10 =-→x x e ∴10 lim x x e →不存在 0sin 4 lim sin 5x x x x x →++ 原式=1 5sin 1sin 1lim 0=+ + →x x x x x 一 求下列极限 1 1 lim cos n n n →∞ Θ ,1cos ≤n 01lim =∞→n n ∴ 0cos 1lim =∞→n n n 2 求2 2lim 2x x x →-- Θ ,122 lim 22lim 22-=--=--++→→x x x x x x 122lim 2=--- →x x x ∴2 2lim 2x x x →--不存在 3 求10 lim 2 x x → Θ ,2 2lim 1lim 10 0+∞==+→+→x x x x 02 2lim 1 lim 10 0==-→-→x x x x ∴ 10 lim 2 x x →不存在 02sin 4 lim 3sin x x x x x →++求 原式=43sin 3 1sin 21lim 0=++→x x x x x 一 求下列极限 1 1 lim n tgn n →∞ 不存在 2 求lim x a x a x a →-- Θ ,1lim lim =--=--+ + →→a x a x a x a x a x a x ,1lim lim -=--=----→→a x x a a x a x a x a x ∴lim x a x a x a →--不存在 3 求120lim x x e → Θ ,lim 210 +∞=+→x x e 0lim 21 0=- →x x e ∴ 120 lim x x e →不存在

数学分析 期末考试试卷

中央财经大学2014—2015学年 数学分析期末模拟考试试卷(A 卷) 姓名: 学号: 学院专业: 联系方式: 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。

(A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+ =在3 π =x 处取得极值,则( ) 。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 3 x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

山东大学2000-2007数学分析

2000年试题 一、 填空。 1. 22 2 333 12(1)lim[]?n n n n n →∞-+++= 2.10 (1) lim ?x x e x x →-+= 3.设3cos ,2sin (02),x t y t t π==<<则22?d y dx = 4.21 2 1 [ln(1)] ?1x x x dx x -++=+? 5.设r =则 2216 []?x y r dxdy +≤=?? 6.设Γ表示椭圆22 149 x y +=正向,则()()?x y dx x y dy Γ-++=? 7.级数1 3(2)(1)n n n n x n ∞ =+-+∑的收敛范围为? 8.设()(1)ln(1),f x x x =++则()(0)?n f = 二、 1.设()f x 在[,]a b 上可积,令()(),x a F x f t dt =?证明:()F x 在[,]a b 上连续。 2.求2 0cos(2)(x e x dx αα∞ -?为实数)。 3.试求级数21n n n x ∞ =∑的和函数。 三、任选两题。 1.设()f x 在[,]a b 上连续且()0,f x >证明:21 ()().() b b a a f x dx dx b a f x ≥-??

2.求20cos sin n x nxdx π ?(1n ≥为正整数) 3. 设 (),() f x g x 在 [0,) +∞上可微且满足 lim (1)lim ()(0),(2)lim ()().x x f x A A g x g x x →∞ →∞ =<<+∞≠ →∞ 求证:存在数列{}(,n n c c n →+∞→∞使得()()()().n n n n f c g c g c f c ''<- 2001年试题 一、1.220 cos 21 lim ?sin x x x x →-=+ 2.2! lim ?n n n n n →∞= 3.设ln(),u x xy =则22?u x ?=? 4 0?x π =?. 5.交换积分顺序2 1 20(,)?x x dx f x y dy -=?? 6.(3,4) (0,1)?xdx ydy -+=? 7.1(1)n n n n x ∞ =+∑的和函数为? 8.设()arctan ,f x x =则(21)(0)?n f += 二、 1.叙述函数()f x 在[,]a b 上一致连续和不一致连续的εδ-型语言。 2.计算定积分2 0.x e dx +∞ -? 3.叙述并证明连续函数的中间值定理。 三、本题任选两题。 1.设(,)f x y 处处具有连续的一阶偏导数且(1,0)(1,0).f f =-试证在单位

上海财经大学 数学分析 测试题 (大一)

《数学分析》考试题 一、(满分10分,每小题2分)单项选择题: 1、{n a }、{n b }和{n c }是三个数列,且存在N,? n>N 时有≤n a ≤n b n c , ( ) A. {n a }和{n b }都收敛时,{n c }收敛; B. {n a }和{n b }都发散时,{n c }发散; C. {n a }和{n b }都有界时,{n c }有界; D. {n b }有界时,{n a }和{n c }都有界; 2、=)(x f ??? ????>+=<,0 ,2.( ,0 ,0, ,sin x x k x k x x kx 为常数) 函数 )(x f 在 点00=x 必 ( ) A.左连续; B. 右连续 C. 连续 D. 不连续 3、''f (0x )在点00=x 必 ( ) A. x x f x x f x ?-?+→?)()(lim 02020 ; B. ' 000)()(lim ??? ? ???-?+→?x x f x x f x ; C. '000)()(lim ???? ???-?+→?x x f x x f x ; D. x x f x x f x ?-?+→?)()(lim 0'0'0 ; 4、设函数)(x f 在闭区间[b a ,]上连续,在开区间(b a ,)内可微,但≠)(a f )(b f 。则 ( ) A. ∈?ξ(b a ,),使0)('=ξf ; B. ∈?ξ(b a ,),使0)('≠ξf ; C. ∈?x (b a ,),使0)('≠x f ; D.当)(b f >)(a f 时,对∈?x (b a ,),有)('x f >0 ; 5、设在区间Ⅰ上有?+=c x F dx x f )()(, ?+=c x G dx x g )()(。则在Ⅰ上有 ( ) A. ?=)()()()(x G x F dx x g x f ; B. c x G x F dx x g x f +=?)()()()( ; C. ?+=+c x G x F dx x F x g dx x G x f )()()]()()()([ ;

山东大学

山东大学-- 019 数学学院2011年硕士研究生招生目录

一、学术型学位 1.复试方式 全部初试上线考生均可参加复试,其形式为笔试和面试相结合,复试成绩实行百分制。复试成绩=(复试笔试成绩+复试面试成绩)×95%+外语听力成绩。 硕士拟录取成绩=初试成绩÷5×50%+复试成绩×50% 2.复试笔试科目: 基础数学:常微分方程、复变函数、实变函数(各约占1/3); 计算数学:数值逼近、数值方法、微分方程数值解(各约占1/3); 概率论与数理统计:概率论、数理统计(各约占1/2); 应用数学:计算方法、线性规划、数学模型(各约占1/3); 运筹学与控制论: 运筹学方向:概率论与数理统计、线性规划、整数线性规划(各约占1/3); 控制论方向:概率论与数理统计、线性系统(各约占1/2); 信息安全:概率论与数理统计、数论与代数结构、应用密码学(各约占1/3); 金融学、金融数学与金融工程:概率论、数理统计(各约占1/2); 系统理论:概率论与数理统计、线性规划、整数线性规划(各约占1/3)。 3.复试面试内容: 基础数学:英语、数学分析、线性代数、常微分方程、复变函数、实变函数; 计算数学:英语、数学分析、线性代数、微分方程数值解、数值逼近、数值代数、算法

语言; 概率论与数理统计:英语、数学分析、线性代数、概率论、数理统计、实变函数; 应用数学:英语、数学分析、线性代数、常微分方程、线性规划、数学模型、计算方法; 运筹学与控制论:英语、数学分析、线性代数、常微分方程、线性规划、整数线性规划、概率论与数理统计;或英语、数学分析、线性代数、常微分方程、自动控制原理、线性系统理论、概率论与数理统计; 信息安全:英语、数学分析、线性代数、概率论、数论与代数结构、计算机网络安全、应用密码学; 金融数学与金融工程:英语、数学分析、线性代数、概率论、数理统计、实变函数; 系统理论:英语、数学分析、线性代数、概率论、线性规划。 4.复试笔试科目参考书目: 基础数学:《复变函数》(第四版),余家荣著,高等教育出版社2007年版;《复变函数论》(第三版),钟玉泉编著,高等教育出版社2004年版;《实变函数与泛函分析》(第二版),郭大钧、黄春朝、梁方豪编著,山东大学出版社2005年版;《常微分方程教程》(第二版),丁同仁、李承治编著,高等教育出版社2004年版。 计算数学:《数值逼近》,孙淑英、张圣丽等编著,山东大学出版社;《数值线性代数》,徐树方著,北京大学出版社2006年版;《偏微分方程数值解法》,李荣华等编著,吉林大学,高等教育出版社2005年版;也可参考其他同类教材。 概率论与数理统计:《概率论基础》(第二版),复旦大学李贤平编,高等教育出版社2008年第十四次印刷;《数理统计》(一),复旦大学编,高等教育出版社1979年版;《概率论与数理统计》,刘建亚、吴臻编,高等教育出版社2004年版;《数理统计》,胡发胜、宿洁编,山东大学出版社2004年版。 应用数学:《数学模型》(第三版),姜启源编著,高等教育出版社2003年版;《计算方法引论》(第三版),徐萃薇、孙绳武编著,高等教育出版社2007年版;《运筹学》(第三版)(线性规划部分),刁在筠等编著,高等教育出版社2007年版。 运筹学与控制论:《概率论基础》(第二版),复旦大学李贤平编,高等教育出版社2008年第十四次印刷;《概率论与数理统计》(第二版),茆诗松、周纪芗编著,中国统计出版社2000年版;《运筹学》(第三版),刁在筠等编著,高等教育出版社2007年版;《自动控制原理》(第三版),高国桑、余文等著,华南理工大学出版社2009年版;《线性系统理论》,程兆林、马树萍编著,科学出版社2006年版;《数字信号处理——理论、算法与实现》(第二版),胡广书编著,清华大学出版社2003年版; 信息安全:英语、数学分析、线性代数、概率论同其它专业。《数论与代数结构》,王小云编,讲义;《密码学导引》,冯登国、裴定一编,科学出版社1999年版;《网络安全》,胡道元、闵京华著,清华大学出版社2004年版。 金融数学与金融工程:《概率论与数理统计》,刘建亚、吴臻编,高等教育出版社2004年版;《数理统计》,胡发胜、宿洁编,山东大学出版社2004年版;《概率论基础》(第一、二分册)(第二版),复旦大学李贤平编,高等教育出版社2008年第十四次印刷;《数理统计》,复旦大学编,高等教育出版社1979年版。 系统理论:《概率论》,华东师范大学出版社。 5.加试科目参考书目: 复变函数:《复变函数论》(第三版),钟玉泉编,高等教育出版社2004年版;《复变函数论》,张培璇编,山东大学出版社1993年版;《复变函数》(第四版),余家荣,高等教育出版社2007年版。 实变函数:《实变函数与泛函分析》(第二版),郭大钧、黄春朝、梁方豪编著,山东大

(汇总)数学分析3试卷及答案.doc

数学分析(3)期末试卷 2005年1月13日 班级_______ 学号_________ 姓名__________ 考试注意事项: 1.考试时间:120分钟。 2.试卷含三大题,共100分。 3.试卷空白页为草稿纸,请勿撕下!散卷作废! 4.遵守考试纪律。

一、填空题(每空3分,共24分) 1、 设z x u y tan =,则全微分=u d __________________________。 2、 设32z xy u =,其中),(y x f z =是由xyz z y x 3333=++所确定的隐函数,则 =x u _________________________。 3、 椭球面14222=-+z y x 在点)1,1,2(M 处的法线方程是__________________。 4、 设,d ),()(sin 2y y x f x F x x ? =),(y x f 有连续偏导数,则=')(x F __________________。 5、 设L 是从点(0,0)到点(1,1)的直线段,则第一型曲线积分?=L s x yd _____________。 6、 在xy 面上,若圆{} 12 2≤+=y x y x D |),(的密度函数为1),(=y x ρ,则该圆关 于原点的转动惯量的二重积分表达式为_______________,其值为_____________。 7、 设S 是球面1222=++z y x 的外侧,则第二型曲面积分=??dxdy z S 2 _______。 二、计算题(每题8分,共56分) 1、 讨论y x y x y x f 1 sin 1sin )(),(-=在原点的累次极限、重极限及在R 2上的连续性。

第四章 非线性规划 山大刁在筠 运筹学讲义教学内容

第四章 非线性规划 教学重点:凸规划及其性质,无约束最优化问题的最优性条件及最速下降法,约束最优化问题的最优性条件及简约梯度法。 教学难点:约束最优化问题的最优性条件。 教学课时:24学时 主要教学环节的组织:在详细讲解各种算法的基础上,结合例题,给学生以具体的认识,再通过大量习题加以巩固,也可以应用软件包解决一些问题。 第一节 基本概念 教学重点:非线性规划问题的引入,非线性方法概述。 教学难点:无。 教学课时:2学时 主要教学环节的组织:通过具体问题引入非线性规划模型,在具体讲述非线性规划方法的求解难题。 1、非线性规划问题举例 例1 曲线最优拟合问题 已知某物体的温度? 与时间t 之间有如下形式的经验函数关系: 3 12c t c c t e φ=++ (*) 其中1c ,2c ,3c 是待定参数。现通过测试获得n 组?与t 之间的实验数据),(i i t ?, i=1,2,…,n 。试确定参数1c ,2c ,3c ,使理论曲线(*)尽可能地与n 个测试点 ),(i i t ?拟合。 ∑=++-n 1i 221)]([ min 3i t c i i e t c c ?

例 2 构件容积问题 通过分析我们可以得到如下的规划模型: ??? ????≥≥=++++=0 ,0 2 ..)3/1( max 212 121222211221x x S x x x x a x x t s x x a V ππππ 基本概念 设n T n R x x x ∈=),...,(1,R R q j x h p i x g x f n j i α:,...,1),(;,...,1),();(==, 如下的数学模型称为数学规划(Mathematical Programming, MP): ?? ? ??===≤q j x h p i x g t s x f j i ,...,1,0)( ,...,1,0)( ..) ( min 约束集或可行域 X x ∈? MP 的可行解或可行点 MP 中目标函数和约束函数中至少有一个不是x 的线性函数,称(MP)为非线性规划 令 T p x g x g x g ))(),...,(()(1= T p x h x h x h ))(),...,(()(1=, 其中,q n p n R R h R R g αα:,:,那么(MP )可简记为 ?? ? ??≤≤ 0)( 0 ..)( min x h g(x)t s x f 或者 )(min x f X x ∈ 当p=0,q=0时,称为无约束非线性规划或者无约束最优化问题。 否则,称为约束非线性规划或者约束最优化问题。 定义4.1.1 对于非线性规划(MP ),若X x ∈*,并且有 X ),()(*∈?≤x x f x f 设计一个右图所示的由圆锥和圆柱面 围成的构件,要求构件的表面积为S , 圆锥部分的高h 和圆柱部分的高x 2之 比为a 。确定构件尺寸,使其容积最 大。

数学分析试题及答案

(二十一)数学分析期终考试题 一 叙述题:(每小题5分,共15分) 1 开集和闭集 2 函数项级数的逐项求导定理 3 Riemann 可积的充分必要条件 二 计算题:(每小题7分,共35分) 1、 ? -9 1 31dx x x 2、求)0()(2 2 2 b a b b y x ≤<=-+绕x 轴旋转而成的几何体的体积 3、求幂级数 n n n x n ∑∞ =+1 2)11(的收敛半径和收敛域 4、1 1lim 2 2220 0-+++→→y x y x y x 5、2 2 ),,(yz xy x z y x f ++=,l 为从点P 0(2,-1,2)到点(-1,1,2)的方向, 求f l (P 0) 三 讨论与验证题:(每小题10分,共30分) 1、已知?? ???==≠+++=0 ,0001sin )(),(222 2 2 2y x y x y x y x y x f ,验证函数的偏导数在原点不连续, 但它在该点可微 2、讨论级数∑∞ =-+1 2211 ln n n n 的敛散性。 3、讨论函数项级数]1,1[)1( 1 1 -∈+-∑∞ =+x n x n x n n n 的一致收敛性。 四 证明题:(每小题10分,共20分) 1 若 ? +∞ a dx x f )(收敛,且f (x )在[a ,+∞)上一致连续函数,则有0)(lim =+∞ →x f x 2 设二元函数),(y x f 在开集2R D ? 内对于变量x 是连续的,对于变量y 满足Lipschitz 条件: ''''''),(),(y y L y x f y x f -≤-其中L D y x y x ,),(),,('''∈为常数证明),(y x f 在D 内连续。 参考答案 一、1、若集合S 中的每个点都是它的内点,则称集合S 为开集;若集合S 中包含了它的所有的聚点,则称集合S 为闭集。

山大数学分析试题

山大数学分析试题

2000年试题 一、 填空。 1. 222 333 12(1)lim[]?n n n n n →∞-+++=L 2.10 (1) lim ?x x e x x →-+= 3.设3cos ,2sin (02),x t y t t π==<<则22?d y dx = 4.21 2 1 [ln(1)] ?1x x x dx x -++=+? 5.设22,r x y =+则 2216 []?x y r dxdy +≤=?? 6.设Γ表示椭圆22 149x y +=正向,则()()?x y dx x y dy Γ-++=?? 7.级数1 3(2)(1)n n n n x n ∞ =+-+∑的收敛范围为? 8.设()(1)ln(1),f x x x =++则()(0)?n f = 二、 1.设()f x 在[,]a b 上可积,令()(),x a F x f t dt =?证明:()F x 在[,]a b 上连续。 2.求2 0cos(2)(x e x dx αα∞ -?为实数)。 3.试求级数21n n n x ∞ =∑的和函数。 三、任选两题。 1.设()f x 在[,]a b 上连续且()0,f x >证明:21 ()().() b b a a f x dx dx b a f x ≥-??

2.求20cos sin n x nxdx π ?(1n ≥为正整数) 3. 设 (),() f x g x 在 [0,) +∞上可微且满足 lim (1)lim ()(0),(2)lim ()().x x f x A A g x g x x →∞ →∞ =<<+∞≠ →∞ 求证:存在数列{}(,)n n c c n →+∞→∞使得()()()().n n n n f c g c g c f c ''<- 2001年试题 一、1.220 cos 21 lim ?sin x x x x →-=+ 2.2! lim ?n n n n n →∞= 3.设ln(),u x xy =则22?u x ?=? 401cos 2?x xdx π -=?. 5.交换积分顺序2 1 20(,)?x x dx f x y dy -=?? 6.(3,4) (0,1)?xdx ydy -+=? 7.1(1)n n n n x ∞ =+∑的和函数为? 8.设()arctan ,f x x =则(21)(0)?n f += 二、 1.叙述函数()f x 在[,]a b 上一致连续和不一致连续的εδ-型语言。 2.计算定积分2 .x e dx +∞ -? 3.叙述并证明连续函数的中间值定理。 三、本题任选两题。 1.设(,)f x y 处处具有连续的一阶偏导数且(1,0)(1,0).f f =-试证在单位

数学分析期末考试题

数学分析期末考试题 一、叙述题:(每小题5分,共10分) 1、 叙述反常积分 a dx x f b a ,)(? 为奇点收敛的cauchy 收敛原理 2、 二元函数),(y x f 在区域D 上的一致连续 二、计算题:(每小题8分,共40分) 1、)21 2111( lim n n n n +++++∞ →Λ 2、求摆线]2,0[)cos 1() sin (π∈? ??-=-=t t a y t t a x 与x 轴围成的面积 3、求?∞+∞-++dx x x cpv 211) ( 4、求幂级数∑∞ =-12 )1(n n n x 的收敛半径和收敛域 5、),(y x xy f u =, 求y x u ???2 三、讨论与验证题:(每小题10分,共30分) 1、y x y x y x f +-=2 ),(,求),(lim lim ),,(lim lim 0000y x f y x f x y y x →→→→;),(lim )0,0(),(y x f y x →是否存在?为 什么? 2、讨论反常积分 ? ∞ +0 arctan dx x x p 的敛散性。 3、讨论∑∞ =-+1 33))1(2(n n n n n 的敛散性。 四、证明题:(每小题10分,共20分) 1、 设f (x )在[a ,b ]连续,0)(≥x f 但不恒为0,证明0)(>? b a dx x f 2、 设函数u 和v 可微,证明grad (uv )=ugradv +vgradu

参考答案 一、1、,0.0>?>?δε使得δδδ<<?>?δε使得 D x x x x ∈<-?2,121,δ,成立ε<-)()(21x f x f 二、1、由于 x +11 在[0,1]可积,由定积分的定义知(2分) )21 2111( lim n n n n +++++∞ →Λ=2ln 11)11211111( 1lim 10=+=+++++?∞→dx x n n n n n n Λ(6分) 2、 、所求的面积为:220 23)cos 1(a dx x a ππ =-? (8分) 3、 解:π=++=++??-+∞→∞ +∞-A A A dx x x dx x x cpv 2 211lim 11) ( (3分) 4、解:11 lim 2=∞ →n n x ,r=1(4分) 由于x =0,x =2时,级数均收敛,所以收敛域为[0,2](4分) 5、解: y u ??=221y x f x f -(3分)3 22112212y x f xy f y f f y x u -++=???(5分) 三、1、解、 0lim lim lim ,1lim lim lim 2 02000200==+-==+-→→→→→→y y y x y x x x y x y x y x y x y x (5分)由于沿kx y =趋于(0,0)极限为k +11 所以重极限不存在(5分) 2、解:???∞+∞++=1100arctan arctan arctan dx x x dx x x dx x x p p p (2分),对?10arctan dx x x p ,由于 )0(1arctan 1+→→-x x x x p p 故p <2时?10arctan dx x x p 收敛(4分);?∞+1arctan dx x x p ,由于)(2arctan +∞→→x x x x p p π (4分)故p >1?∞+1arctan dx x x p 收敛,综上所述1

(最新整理)年山东大学数学分析考研试题

(完整)2009年山东大学数学分析考研试题 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2009年山东大学数学分析考研试题)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2009年山东大学数学分析考研试题的全部内容。

2009年山东大学数学分析考研真题 1.设函数)(x f ) ()(bx a bx a --+=??其中)(x ?在a x =的某个小邻域内有定义且可导,求)0('f 2.设π<<++cos 2sin cos 2sin 3.设0,0>>y x ,求)4(),(2 y x y x y x f --=的极值 4.设)cos 1()1arctan()(200x x dt t du x f u x -+= ??,求0lim (x)x f → 5.计算 C xdy ydx -?,其中C 为椭圆22(x 2y)(3x 2y)1+++=,方向为逆时针方向。 6.计算(x y)dxdy x(y z)dydz S -+-??, 其中S 为柱面221x y +=及平面0,3z z ==所围成的区域Ω的整个边界曲面外侧。 7. 设(x)f =(x)f 在[0,)+∞上是否一致连续,并证明。 8.计算积分{}2min ,2D I x y dxdy =??,其中D=}{(x,y)|0x 4,0y 3≤≤≤≤ 9.计算积分20(y)sin 2x I e xydx +∞ -=? 10.设2 222222,0(x,y)00xy x y f x y x y ?+≠?=+??+≠? 当,当,讨论(1)(x,y)f 的连续性;(2),x y f f 的存在性及连续性;(3)(x,y)f 的可微性。 11. 设010,1,2,....n x x n +=== 判断级数0n ∞= 12.设(x)f 在(,)-∞+∞又连续的一阶导数,证明: 1)若' ||lim (x)0,x f α→+∞ =>则方程(x)0f =在(,)-∞+∞至少有一个实根; 2)若'||lim (x)0,x f →+∞=则方程'(x)0f =在(,)-∞+∞至少有一个实根。

相关文档
相关文档 最新文档