文档库 最新最全的文档下载
当前位置:文档库 › 不等分微带功分器设计

不等分微带功分器设计

不等分微带功分器设计
不等分微带功分器设计

本科毕业设计

(2011届)

题目不等分微带功分器设计

学院电子信息学院

专业电子科学与技术

班级

学号

学生姓名

指导教师

完成日期2011年3月

诚信承诺

我谨在此承诺:本人所写的毕业论文《不等分微带功分器设计》均系本人独立完成,没有抄袭行为,凡涉及其他作者的观点和材料,均作了注释,若有不实,后果由本人承担。

承诺人(签名):

年月日

摘要

在无线通讯射频电路中经常会遇到要求射频功率不平衡分配的情况,因此不等分功分器在实际射频电路中有着重要的应用价值。微带线具有体积小、易加工、易集成等优点,而被广泛应用于射频微波集成电路中。因此本毕业设计主要是针对微带线型不等分功分器的研究而展开的。不等分微带功分器相对于等分微带功分器而言,设计难度要更为复杂一点,需要考虑的影响因素要更多一些。本次设计中,通过对Wilkinson微带功分器的研究,提出了不等分微带功分器的设计理论。在此理论基础上,利用Advance Design System射频微波电路仿真软件,设计了两款一分二不等分的微带型功率分配器(功分比例分别为1:2,3:4)。实验和仿真结果一致,并满足设计指标要求,从而论证了不等分微带型功率分配器设计理论的正确性。

关键词:不等分;微带;功分器;ADS软件;射频

ABSTRACT

RF circuits in wireless communications requirements often encountered in the power imbalance in the distribution of radio frequency, ranging from sub-splitters so the actual RF circuit has important application value.Microstrip line is small, easy processing, easy integration, etc., which are widely used in microwave integrated circuits in RF.Therefore, this graduation design mainly for microstrip line power splitter sub-ranging research undertaken. Ranging from sub-microstrip power divider relative to the attainment of microstrip power divider, the design is difficult to be more complex, factors to be considered to be more of them.The design, by microstrip Wilkinson power divider on the research,proposed ranging from sub-microstrip power splitter design theory. Based on this theory, the use of Advance Design System RF and microwave circuit simulation software, designed two points of a sub-second range Microstrip power splitter (power divider ratio was1:2,3:4).Experimental and simulation results are consistent and meet the design requirements, which demonstrates the range Microstrip power splitter sub-design theory is correct.

Key words: unequal; microstrip; power divider; advance design system software; RF

目录

1 引言-------------------------------------------------------------------------------------------1

2 概述--------------------------------------------------------------------------------4

2.1 不等分功分器中的微带线-------------------------------------------------------4

2.1.1 微带线的定义----------------------------------------------------------------------4

2.1.2 微带线的结构----------------------------------------------------------------------4

2.1.3微带线计算-------------------------------------------------------------------------5

2.1.5微带线常用材料-------------------------------------------------------------------6

2.2 功分器------------------------------------------------------------------7

2.2.1 功率分配器定义-------------------------------------------------------------------7

2.2.2 功率分配器的工作原理----------------------------------------------------------8

2.2.3 微带线功率分配器----------------------------------------------------------------9

3 总体设计---------------------------------------------------------------------------------12

4 软件设计--------------------------------------------------------------------------------13

4.1 ADS软件--------------------------------------------------------------------13

4.1.1 ADS软件介绍---------------------------------------------------------------------13

4.1.2 ADS仿真分析---------------------------------------------------------------------13

4.2 总体方案-----------------------------------------------------------------------------15

4.3 程序流程--------------------------------------------------------------------------16

5 制作与调试--------------------------------------------------------------------------------27

5.1 硬件电路--------------------------------------------------------------------------27

5.2 调试--------------------------------------------------------------------------------27结论----------------------------------------------------------------------------------------------31致谢----------------------------------------------------------------------------------------------32参考文献----------------------------------------------------------------------------------------33

1 引言

功分器是将输入信号功分器分成相等或者不相等的几路功率输出的一种多端口网络,广泛应用于雷达系统及天线的馈电系统中。不等分功分器按照其功率分配比有相应的设计公式可较为容易地实现[1]。

然而近几年来随着我国国民经济和科学技术的快速发展,我国的无线通信技术也得到了飞速的发展。虽然我国已经提出了具有自主知识产权的3G标准TD-SCDMA,移动运营商业正在快速的筹建TD-SCDMA网络,但是由于某些技术问题,致使我国在迈向真正的3G时代,要走的路还很长;在迈向我们的通信行业成为引领世界通信行业的巨头的时代,还会更长。通信行业是一个快速发展的行业,一个国家这个行业发展的好坏,就看这个国家拥有多少通信人才和人才的能力水平[2]。

于是人们认识到了,在移动通信或电视发射系统中,不等分功率分配器有着重要的应用价值。在许多场合,要求在水平面内的辐射场是非轴对称的。例如,对山区和海上方向的辐射场强较弱,而其他方向的辐射场强较强,这种情况,可以通过天线阵实现,也可以用功率分配器实现;然而利用同轴结构不等分功率分配器比天线阵列更能降低成本。

以往等分功率分配器均是在输人端作阻抗变换,难以实现一分四不等分功率分配器.本文采用通过阻抗变换先将输人端口的阻抗变换至所需值,然后在各个分支也进行阻抗变换的方法,实现了一分四不等分功率分配器,进而进行数值计算和电磁仿真[3]。

随着无线电通信技术的快速发展,各种通讯系统的载波频率不断提高,小型化低功耗的高频电子器件及电路设计使微带技术发挥了优势。在射频电路和测量系统中,如混频器、功率放大器电路中的功率分配与耦合元件的性能将影响整个系统的通讯质量[4]。

在现代微波通讯系统及测试仪器中,无源微波器件是十分重要的组成部分。无源微波器件可以分为功率匹配器件和频率匹配器件。功率匹配器件包括功分器,耦合器,衰减器等,这类器件工作在一定的频段上,将主信号通道上的微波传输功率分配到不同的支路上,或者把功率衰减到一定的范围。总而言之,是对功率起直接作用的无源器件。频率匹配器件如滤波器,双工器,合路器等都是将有用频段的信号,把从天线接收到的信号中选出来,在微波通讯系统中十分重要,常位于放大器的前端。我国民用的通讯频段主要集中在0.8GHz-2.5GHz。其中涵盖了:CDMA800MHz;GSM900MHz、1800MHZ;小灵通PHS1900MHZ;DCS 1700MHz;

3G192OMHZ、2110MHz;WLAN2400MHz。不同的电信运营商,虽获得的频段略有差异,但为了系统有较大的兼容性与扩展功能,越来越要求它们有更宽的工作频带、更小的相邻信道间的干扰等。就功率匹配器件这一块来说,希望它们的工作频带都为0.8GHz-2.5GHz;而且要求器件小型化,输入、输出端口低驻波,传输通道低插损,相邻信道高隔离等。在这种设计要求下,我们设计了微带二功分器,微带定向耦合器[5]。

在实际应用中,有时候需要将信号源的功率分别馈赠给若干个分支电路。例如将发射机的功率分别馈送给天线的很多个辐射单元,就是说,进行功率分配,这就要用到各种类型传输线的分支元件[6]。

一种新的微带功率分配器(PD)是提出了一个平行耦合线(PCL)对包括地面上的缺陷,它的两个输出是由一个电阻和一个电容相连。PD是一个0.9 GHz的开发和实验结果证明它具有低插入损耗,良好的阻抗匹配和隔离。此外,第三次谐波抑制这种局部放电优于35分贝和分频器总面积只有34%的常规情况[7]。

在微波电路中,功率分配器是最基本的的元件之一。通常情况下,我们采用微波等功率分配,如经典的Wilkinson结构,易实现,性能好。然而,在有些情况下需要两路功率不是等分而是要按照一定的比例分配。在功率分配比大于6时,可以直接选用定向耦合器作为功率分配元件。但是,在小于6时,由于耦合器间距要求过近,无法保证实现的精度,这就要求我们进行不等分功率分配器的设计。

以同等功率的分配器。这项建议并不需要额外的设计制造过程中的修改和补充的结构相比,其他典型的多枝波导。统一的输出功率的分布情况可以很容易地获得通过调整之间的内部和外部树枝分枝角度不引入多余的散射损耗.类似的设计程序时,也可用于其它电源工作波长分割比率或指定[8]。

自从20世纪40年代MIT辐射实验室发明和塑造了种类繁多的波导型功分器和耦合器后,在20世纪50年代中期和60年代又发明了多种采用带状线技术的耦合器。其分析设计方法到六十年代中期的微波网络模型,逐步从数学上来阐明其性质,单是由于没有微波网络的分析模型,设计人员一般采用繁琐的试凑法。可以想象,每一次的参数优化都需要在实验室由世纪的模型来完成,整个过程漫长复杂。20世纪70年代开始计算机的普及和仿真软件的出现,使得模型的设计可由专门的厂家来和设计公司完成。这样,在预估计电路性能方面,即使只是基本熟悉计算机使用的工厂技术人员也可以准确而迅速地获得微波电路的优化设计参数,这却是那些只熟悉电路理论而不懂得借助于计算机进行试验设计的人员办不到的[9]。

在微波设计软件中最为出名的就是ADS(Advanced Design System)——美国安捷伦公司所拥有的电子设计自动化软件;ADS功能十分强大,支持射频和系统设计工程师所开发的所有类型的RF设计,从简单到复杂,从离散的射频/微波模

块到用于通信和航天/国防的集成MMIC,几乎成为微波电路设计工作中必备的工具。现代社会对于不等分微带功分器的研究,越来越深入,通过对威尔金森功分器原理的不断研究,人们对功分器的研究也有了一定的突破,选择这个课题可以对此方面做一定的研究,有助于对其的了解,便于日后应用[10]。

2 概述

2.1 不等分功分器中的微带线

2.1.1 微带线的定义

微带线是式一种准TEM波传输线,结构简单,计算复杂,位于接地层上由电介质隔开的印制导线,它是一根带状导(信号线).与地平面之间用一种电介质隔离开。。印制导线的厚度、宽度、印制导线与地层的距离以及电介质的介电常数决定了微带线的特性阻抗。如果线的厚度、宽度以及与地平面之间的距离是可控制的,则它的特性阻抗也是可以控制的。单位长度微带线的传输延迟时间,仅仅取决于介电常数而与线的宽度或间隔无关[11]。

目前,微带传输线可分为两大类:一类是射频/微波型号传输累的电子产品,这一类产品与无线电的电磁波有关,它是以正弦波来传输信号的,如雷达、广播电视和通信;另一类是高速逻辑信号传输类的电子产品,这一类产品是以数字信号传输的,同样也与电磁波的方法传输有关,这一类产品开始主要应用在计算机等中,现在已迅速推广应用到家电和通信类电子产品上了[12]。

为了达到高速传送,对微波印制板基板材料在电气特性上有明确的要求。在提高高速传送方面,要实现传输信号的低损耗、低延迟,必须选用介电常数合适和介质损耗角正切小的基板材料进行严格的尺寸计算和加工。

2.1.2 微带线的结构

图2-1常规微带线截面图

如图2-1是微带线横截面的结构图,相关设计参数如下:

(1)基板参数:基板介电常数Εr、基板介质损耗角正切tanδ、基板高度H 和导线厚度t。导带和底板(接地板)金属通常为铜、金、银、锡或铝。

(2) 电特性参数:特性阻抗Z 0、工作频率f 0、工作波长λ0、波导波长λg 和电长度(角度)θ。

(3) 微带线参数:宽度W 、长度L 和单位长度衰减量A dB 。

构成微带的基板材料、微带线尺寸与微带线的电性能参数之间存在严格的对应关系。微带线的设计就是确定满足一定电性能参数的微带物理结构[13]。

2.1.3 微带线计算

已知传输线的电特性参数(Z 0、θ),求微带线的物理结构参数(W 、L 、A dB )。 解:

4h [1ln()]..........22h

[1ln()]..............2e e e e e w t w w t W t h w w t πππππ?++≤??=??++>??

窄带宽带 (2-1) 2g L θλπ

= (2-2) c d A αα=+ (2-3)

其中:

11()84120.517[[(1)ln(21)][ln(1)0.293]]H H e r r r e h e w h d d d εεεεππεε?--??=?-?---+-+-?? (2-4)

g λ= (2-5)

tan d αδ= (2-6)

c α= (2-7)

11114(ln ln )119.9212r r r H εεεπ-=+++ (2-8)

2d ε= (2-9) 已知微带线的物理结构参数(W 、L 、A dB ),求电特性参数(Z 0、θ)。 解:

02ln 11ln 4116[(ln ln(0.9))]2222221414[ln((ln ln )]2(1)2e W e W r r h h r r r h r W r r Z ππεεπππεεεπεπεε??-+-+++++=-?-++??

(2-10) 2p

g πθλ= (2-11)

0.5551111ln 42[1(ln )]22121110(1)22r r r r e r r e H h w ππεεεεεεε-+-?--+?+?=?+-?++??

(2-12) 2.1.4 微带线常用材料

构成微带线的材料就是金属和介质,对于金属的要求是导电性能,对于介质的要求是提供合适的介电常数,而不带来损耗。当然,这是理想情况下,对材料的要求还与制造成本和系统性能有关。

1)介质材料

高速传送信号的基板材料一般有陶瓷材料、玻纤布、聚四氟乙烯、其他热固性树脂等。表2-1给出了微波集成电路中常用介质材料的特性。就微带加工工艺而言,这些材料有两种实现方式:

(1)在基片上沉淀金属导带,这类材料主要是陶瓷类刚性材料。这种方法工艺复杂,加工周期长,性能指标好,在毫米波或要求高的场合使用。

(2)在现成介质覆铜板上光刻腐蚀成印制板电路,这类材料主要是复合介质类材料。这种方法加工方便,成本低,是目前使用最广泛的方法,又称为微波印制板电路。

在所有的树脂中,聚四氟乙烯的介电常数Εr 稳定,介质损耗角正切最小,而

且耐高低温性和耐老化性能好,最适合于作高频基板材料,是目前采用量最大的微波印制板制造基板材料。

2)铜箔种类及厚度选择

目前最常用的铜箔厚度有35μm 和18μm 两种。铜箔越薄,越易获得高的图形精密度,所以高精密度的微波图形应选用不大于18μm 的铜箔。如果选用35μm 的铜箔,则过高的图形精度使工艺性变差,不合格品率必然增加。研究表明,铜箔类型对图形精度亦有影响。目前的铜箔类型有压延铜箔和电解铜箔两类。压延铜箔较电解铜箔更适合于制造高精密图形,所以在材料订货时,可以考虑选择压延铜箔的基材板。

表2-1微波集成电路中常用介质材料的特性

3)环境适应性选择

现有的微波基材,对于标准要求的-55~+125℃环境温度范围都没有问题。但还应考虑两点,一是孔化与否对基材选择的影响,对于要求通孔金属化的微波板,基材z轴热膨胀系数越大,意味着在高低温冲击下,金属化孔断裂的可能性越大,因而在满足介电性能的前提下,应尽可能的选择z轴热膨胀系数小的基材;二是适度对基材板选择的影响,基材树脂本身吸水性很小,但加入增强材料后,其整体的吸水性增大,在高温环境下使用时会对介电性能产生影响,因而选材时应选择吸水性小的基材或采取结构工艺上的措施进行保护。

2.2 功分器

2.2.1 功率分配器定义

在射频/微波电路中,为了将功率按一定的比例分成两路或多路,需要使用功率分配器(简称功分器)。在近代射频/微波大功率固态发射源的功率放大器中广泛地使用着功率分配器。

功率分配器的技术指标包括频率范围、承受功率、主路到支路的分配损耗、输入输出间的插入损耗。支路端口间的隔离度、每个端口的电压驻波比等。

(1)频率范围。这是各种射频/微波电路的工作前提,功率分配器的设计结构与工作频率密切相关。必须首先明确分配器的工作频率,才能进行下面的设计。

(2)承受功率。在大功率分配器/合成器中,电路元件所能承受的最大功率

是核心指标,它决定了采用什么形式的传输线才能实现设计任务。一般地,传输线承受功率由小到大的次序是微带线、带状线、同轴线、空气带状线、空气同轴线,要根据设计任务来选择用何种传输线。

(3) 分配损耗。主路到支路的分配损耗实质上与功率分配器的功率分配比有关。如两等分功率分配器的分配损耗是3dB ,四等分功率分配器的分配损耗是6dB 。定义:

10lg

in d out P A P = (2-13)

式中 in out P kP = (2-14)

(4) 插入损耗。输入输出间的插入损耗是由于传输线(如微带线)的介质或导体不理想等因素,考虑输入端的驻波比所带来的损耗。定义

i d A A A =- (2-15)

其中,A 是实际测量值。在其他支路端口接入匹配负载,测量主路到某一支路间的传输损耗。可以想象,A 是理想值就是A d 。在功率分配器的实际工作中,几乎都是用A 作为研究对象。

(5) 隔离度。支路端口间的隔离度是功率分配器的另一个重要指标。如果从每个支路端口输入功率只能从主路端口输出,而不应该从其他支路输出,这就要求支路之间有足够的隔离度。在主路和其他支路都接匹配负载的情况下,i 口和j 口的隔离度定义为

10lg

in ij out P A P = (2-16)

隔离度的测量也可按照这个定义进行。 (6)驻波比。每个端口的电压驻波比越小越好。

2.2.2 功率分配器的工作原理

一分为二功率分配器是三端口网络结构,如图2-2所示。

图2-2 功率分配器示意图

信号输入端的功率为P 1,而其他两个输出端口的功率分别为P 2和P 3。由能量

守恒定律可知P 1= P 2+ P 3。

如果P 2(dBm )= P 3(dBm ),三端功率间的关系可写成

P 2(dBm )= P 3(dBm )

=P in (dBm )-3dB (2-17) 当然,P 2并不一定要等于P 3,只是相等的情况在实际电路中最常用。因此,功率分配器可分为等分型(P 2= P 3)和比例型(P 2= kP 3)两种类型。

2.2.3 微带线功率分配器

功率分配器/合成器有两路和多路或三路情况下。

(1) 两路功率分配器

如图2-3是两路微带线威尔金森功率分配器示意图。

图2-3 威尔金森功率分配器示意图

这是一个功率分配器,Z 0是特性阻抗,λg 是信号的波导波长,R 是隔离电阻。当信号从左端一号端口输入时,功率从二号端口和三号端口等功率输出。如果有必要,输出功率可按一定比例分配,并保持电压同相,电阻R 上无电流,不吸收功率。若二号端口或三号端口有失配,则反射功率通过分支叉口和电阻两路到达另一支路的电压等幅反相而抵消,在此点没有输出,从而可保证两输出端有良好的隔离。

考虑一般情况(比例分配输入功率)下,设三号端口P 3和二号端口P 2的输出功率比为k 2,即

232P k P (2-18)

由于一号端口到二号端口与一号端口到三号端口的线长度相等,故二号端口的电压U 2与三号端口的电压U 3相等,即U 2= U 3。二号端口与三号端口的输出功率与电压的关系为

22222332

U P Z U P Z ?=????=?? (2-19) 将上式代入(2-18),得

2223232

U U k Z Z = (2-20) 即

223Z k Z = (2-21)

式中,Z 2、Z 3为二号端口和三号端口的输入阻抗,若选

2003Z kZ Z Z k =???=??

(2-22) 则可以满足式(2-21)。为了保证一号端口匹配,应有 3

22200203

032200203

11Z Z Z Z Z k Z Z Z Z k Z =+=+ (2-23) 同时考虑到

222020323Z Z k Z Z = (2-24)

22302200303

1(1)(1)Z Z k k Z Z K --=+=+ (2-25)

所以

0302Z Z (2-26) 为了实现二号端口和三号端口的隔离,即二号端口或三号端口的反射波不会

进入三号端口或者二号端口,可选 2

0001Z k R kZ Z k k

+=+= (2-27) 在等功率分配的情况下,即在P 2=P 3,k=1,于是

功分器的设计原理

设计资料项目名称:微带功率分配器设计方法 拟制: 审核: 会签: 批准: 二00六年一月

微带功率分配器设计方法 1. 功率分配器论述: 1.1定义: 功率分配器是一种将一路输入信号能量分成两路或多路信号能量输出的器件,也可反过来将多路信号能量合成一路输出,此时也可称为合路器。 1.2分类: 1.2.1功率分配器按路数分为:2路、3路和4路及通过它们级联形成的多路功率分配器。 1.2.2功率分配器按结构分为:微带功率分配器及腔体功率分配器。 1.2.2根据能量的分配分为:等分功率分配器及不等分功率分配器。 1.2.3根据电路形式可分为:微带线、带状线、同轴腔功率分配器。 1.3概述: 常用的功率分配器都是等功率分配,从电路形式上来分,主要有微带线、带状线、同轴腔功率分配器,几者间的区别如下: (1)同轴腔功分器优点是承受功率大,插损小,缺点是输出端驻波比大,而且输出端口间无任何隔离。微带线、带状线功分器优点是价格便宜,输出端口间有很好的隔离,缺点是插损大,承受功率小。(2)微带线、带状线和同轴腔的实现形式也有所不同:同轴腔功分器是在要求设计的带宽下先对输入端进行匹配,到输出端进行分路;而微带功分器先进行分路,然后对输入端和输出端进行匹配。

下面对微带线、带状线功率分配器的原理及设计方法进行分析。 2.设计原理: 2.1分配原理: 微带线、带状线的功分器设计原理是相同的,只是带状线的采用的是对称性空气填充或介质板填充,而微带线的主要采用的是非对称性部分介质填充和部分空气填充。下面我们以一分二微带线功率分配的设计为例进行分析。传输线的结构如下图所示,它是通过阻抗变换来实现的功率的分配。 图1:一分二功分器示意图 在现有的通信系统中,终端负载均为50Ω,也就是说在分支处的阻抗并联后到阻抗结处应为50Ω。如上图匹配网络,从输入端口看Ω==500Z Z in ,而Ω==50//21in in in Z Z Z ,且是等分的,所以1in Z =2in Z ,①处1in Z 、②处2in Z 的输入阻抗应为100Ω,这样由①、②处到输出终端50Ω需要通过阻抗变换来实现匹配。 2.2阶梯阻抗变换: 在微波电路中,为了解决阻抗不同的元件、器件相互连接而又不使其各自的性能受到严重的影响,常用各种形式的阻抗变换器。其中最简单又最常用的四分之一波长传输线阶梯阻抗变换器(图2)。它

【原创】南京邮电大学 课程设计 Wilkinson(威尔金森)功分器的设计

南京邮电大学电子科学与工程学院电磁场与无线技术Wilkinson功分器 课题报告 课题名称 Wilkinson功分器 学院电子科学与工程学院 专业电磁场与无线技术 班级 组长 组员 开课时间 2012/2013学年第一学期

一、课题名称 Wilkinson(威尔金森)功分器的设计 二、课题任务 运用功分器设计原理,利用HFSS软件设计一个Wilkinson功分器,中心工作频率3.0GHz。 ?基本要求 实现一个单阶Wilkinson等功分设计,带内匹配≤-10dB,输出端口隔离≤-10dB,任选一种微波传输线结构实现。 ?进阶要求 多阶(N≥2),匹配良好(S11≤-15dB),不等分,带阻抗变换器(输出端口阻抗 不为50Ω),多种传输线实现。 三、实现方式 自选一种或者多种传输线实现,如微带线,同轴线,带状线等,要求输入输出端口阻抗为50Ω,要求有隔离电阻(通过添加额外的端口实现) 四、具体过程 1.计算基本参数 通过ADS Tool中的Linecalc这个软件来进行初步的计算。 在HFSS中选定版型为Rogers RT/duroid 5880 (tm),如具体参数下图

50Ω微带线计算 得到选取微带线宽度约为0.67mm。 70.7Ω微带线计算 得到选取微带线宽度约为0.34mm,由于微带线电长度与其宽度没有必然联系,所以两个分支微带线的长度根据具体情况进行更改。

2.绘制仿真模型 微带单阶功分器

◆微带参数:w50:阻抗为50Ω的微带线宽度;w2:两分支线宽度; l1,l2,l3,l4:各部分微带线长度; rad1,rad2:各部分分支线长度(即半环半径) ◆在本例中,需要调整的调整关键参数为w2,rad1,空气腔参数随关键参数相应调 整即可。 ◆根据计算,此处的吸收电阻值应该为100Ω,但是在实际情况中,选取97Ω。 微带多阶功分器

功分器的设计

功分器现在有如下几种系列[11]: 1、400MHz-500MHz 频率段二、三功分器,应用于常规无线电通讯、铁路通 信以及450MHz 无线本地环路系统。 2、800MHz-2500MHz 频率段二、三、四微带系列功分器,应用于GSM / CDMA/PHS/WLAN 室内覆盖工程。 3、800MHz-2500MHz 频率段二、三、四腔体系列功分器,应用于GSM / CDMA/PHS/WLAN 室内覆盖工程。 4、1700MHz-2500MHz 频率段二、三、四腔体系列功分器,应用于PHS/WLAN 室内覆盖工程。 5、800MHz-1200MHz/1600MHz-2000MHz 频率段小体积设备内使用的微带二、三功分器。 这里介绍几种常见的功分器: 一、威尔金森功分器 我们将两分支线长度由原来的4λ变为43λ,这样使分支线长度变长,但作用效果与4λ线相同。在两分支线之间留出电阻尺寸大小的缝隙,做成如图1-1所示结构。 图1-1 威尔金森功分器 二、变形威尔金森功分器 将威尔金森功分器进行变形,做成如图1-2所示结构。两圆弧长度由原来的4λ变为43λ,且将圆伸展开形成一个近似的半圆。每个支路通过2λ传输线与隔离电阻相连,这样做虽然会减小电路的工作带宽,但使输出耦合问题得到了解决,而且可以用于不对称,功分比高的电路,隔离电阻的放置更加容易,且两支路间的距离足够大,在输出口可直接接芯片。

图1-2 变形威尔金森功分器 三、混合环 混合环又称为环形桥路,它也可作为一种功率分配器使用。早期的混合环 是由矩形波导及其4个E-T 分支构成的,由于体积庞大已被微带或带状线环形桥路所取代。图1-3为制作在介质基片上的微带混合环的几何图形,环的平均周长为 23g λ,环上有四个输出端口,四个端口的中心间距均为4g λ。环路各段归一化特性导纳分别为a, b, c ,四个分支特性导纳均为0Y 。这种形式的 功率分配器具有较宽的带宽,低的驻波比和高的输出功率。理论上来说,它的带宽可以同威尔金森功分器相比。混合环功分器相对威尔金森功分器的优点在于,在实际应用中它在高频率上的性能更好一些。 图1-3 混合环 对比以上三种功分器,首先对比威尔金森功分器及变形威尔金森功分器, 变形威尔金森功分器性能与仿真结果相差较大,其原因可能有以下几点:加入两个21波长微带线,引入了T 型接头,使微带线产生不连续性;为了保证两21波长微带线之间的距离正好可以焊接电阻,两微带线均倾斜,使焊接电阻处微带不均匀,另外电阻焊接的非对称性影响了功分器输出两端的功分比[9]。 威尔金森功分器和混合环的插损性能较好,可以满足一般功率合成的要求。在隔离方面,威尔金森功分器隔离较好,混合环的隔离要稍差。 从上述三种功分器分析可以得出:要获得具有良好性能的微波毫米波功分 器,需保证一定的加工精度,对加隔离电阻的功分器,要特别注意选择尺寸较小的电阻,焊接时要求电阻两端对称,且从电阻反面焊接,也可以考虑使用薄膜电阻来实现。这三种功分器都可以串联用作多路功率分配/合成器。 1.3 本课题研究内容 4g λ4g λ4 g λ43g λ对称平面

(整理)微带功率分配器设计

微带功率分配器设计 1. 功率分配器论述: 1.1 定义: 功率分配器是一种将一路输入信号能量分成两路或多路信号能量输出的器件,也可反过来将多路信号能量合成一路输出,此时也可称为合路器。 1.2 分类: 1.2.1 功率分配器按路数分为:2 路、3 路和 4 路及通过它们级联形成的多路功率分配器。 1.2.2 功率分配器按结构分为:微带功率分配器及腔体功率分配器。 1.2.2 根据能量的分配分为:等分功率分配器及不等分功率分配器。 1.2.3 根据电路形式可分为:微带线、带状线、同轴腔功率分配器。 1.3 概述: 常用的功率分配器都是等功率分配,从电路形式上来分,主要有微带线、带状线、同轴腔功率分配器,几者间的区别如下: (1)同轴腔功分器优点是承受功率大,插损小,缺点是输出端驻波比大,而且输出端口间无任何隔离。微带线、带状线功分器优点是价格便宜,输出端口间有很好的隔离,缺点是插损大,承受功率小。 (2)微带线、带状线和同轴腔的实现形式也有所不同:同轴腔功分器是在要求设计的带宽下先对输入端进行匹配,到输出端进行分路;而微带功分器先进行分路,然后对输入端和输出端进行匹配。下面对微带线、带状线功率分配器的原理及设计方法进行分析。 2.相关技术指标: 2.1 概述: 功率分配器的技术指标包括频率范围、承受功率、主路到支路的分配损耗、输入输出间的插入损耗、支路端口间的隔离度、每个端口的电压驻波比等。 2.2 频率范围: 频率范围各种射频/微波电路的工作前提,功率分配器的设计结构与工

作频率密切相关。必须首先明确分配器的工作频率,才能进行下面的设计。 2.3 承受功率: 在大功率分配器/合成器中,电路元件所能承受的最大功率是核心指标,它决定了采用什么形式的传输线才能实现设计任务。一般地,传输线承受功率由小到大的次序是微带线、带状线、同轴线、空气带状线、空气同轴线,要根据设计任务来选择用何种线。 2.4 分配损耗: 主路到支路的分配损耗实质上与功率分配器的功率分配比有关。如理想的两等分功率分配器的分配损耗是3dB,四等分功率分配器的分配损耗6dB,常以S参数S21的dB值表示。 2.5插入损耗: 输入输出间的插入损耗是由于传输线(如微带线)的介质或导体不理想等因素,及端口不是理想匹配所造成的功率反射损耗,常以S参数S21的dB 值表示。 2.6 隔离度: 支路端口间的隔离度是功分器的另一个重要指标。如果从每个支路端口输入功率只能从主路端口输出,而不应该从其他支路输出,这就要求支路之间有足够的隔离度,如两支路端口2和3的隔离度用S23或S32的dB值表示。 2.7 驻波比: 在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波节。其它各点的振幅值则介于波腹与波节之间。这种合成波称为行驻波。驻波比是驻波波腹处的声压幅值Vmax与波节处的声压Vmin幅值之比。驻波比是表示两端口合理匹配的重要指标,因此每个端口的电压驻波比越小越好。 2.设计原理: 2.1 分配原理: 微带线、带状线的功分器设计原理是相同的,只是带状线的采用

功分器

前言 研究的背景与意义 人类进入二十世纪以来,随着现代电子和通信技术的飞速发展,信息交流越发频繁,各种各样的电子电汽设备已经大大影响到各个领域企业及家庭。无论哪个频段工作的电子设备,都需要各种功能的元器件,既有如电容、电感、电阻、功分器等无源器件,以实现信号匹配、分配、滤波等;又有有源器件共同作用。微波系统不例外地有各种无源、有源器件,它们的功能是对微波信号进行必要的处理或变换。现代无源器件中,微带功分器从质量及重量上都日显重要。功分器的产生与发展 在微波电路中,为了将功率按一定的比例分成两路或者多路,需要使用功率分配器。功率分配器反过来使用就是功率合成器,所以通常功率分配/合成器简称为功分器。在近代微波大功率固态发射源的功率放大器中广泛地使用着功率分配器,而且功率分配器常是成对的使用,先将功率分成若干份,然后分别放大,再合成输出。1960年,Ernest J. Wilkinson发表了名为An N-way Hybird Power Divede的论文中介绍了一种在所有端口均匹配、低损耗、高隔离度、同相的N端口功分器。以后的研究人员便称这种类型的功分器为威尔金森功分器。最初它的原始模型是同轴形式,此后在微带和带状线结构上得到了广泛地应用和发展,工程中大量使用的是微带线形式,大功率情况下也会用到空气带状线或空气同轴线形式。 和其他的微带电路元件一样,功率分配器也有一定的频率特性。当频带边缘频率之比f1/f2=1.44时,输入驻波比(VSWR)<1.22时,输入驻波比(VSWR)下降到1.42,两端口隔离度只有14.7dB。威尔金森功分器的狭窄带宽限制了其在宽带系统中的应用。为了进一步加宽工作带宽,可以用多节的宽频功率分配器,即增加λg/4线段和相应的隔离电阻R的数目。 目前常见的微波功分器是采用微带线或腔体波导等结构的分布参数功分器。腔体波导功分器插损小、平衡度好,但隔离度较差,制作工艺较复杂,微带功分器制作简单,但相对带宽较小。而且以上分布参数功分器仅限于微波波段的窄频带应用,在微波频段以下,小型化、宽带功分器的制作比较困难。 国内研究进展 我国对于微带功分器方面的技术研究报道还比较少,钟哲夫曾在空间合

微带功分器作业-1

功率分配器的设计与仿真 1.功率分配器定义 在微波电路中,为了将功率按一定的比例分成两路或者多路,需要使用功率分配器。功率分配器反过来使用就是功率合成器,所以通常功率分配/合成器简称为功分器。在近代微波大功率固态发射源的功率放大器中广泛地使用着功率分配器,而且功率分配器常是成对的使用,先将功率分成若干份,然后分别放大,再合成输出。1960年,Ernest J. Wilkinson发表了名为An N-way Hybird Power Divede的论文中介绍了一种在所有端口均匹配、低损耗、高隔离度、同相的N 端口功分器。以后的研究人员便称这种类型的功分器为威尔金森功分器。最初它的原始模型是同轴形式,此后在微带和带状线结构上得到了广泛地应用和发展,工程中大量使用的是微带线形式,大功率情况下也会用到空气带状线或空气同轴线形式。 和其他的微带电路元件一样,功率分配器也有一定的频率特性。当频带边缘频率之比f1/f2=1.44时,输入驻波比(VSWR)<1.22时,输入驻波比(VSWR)下降到1.42,两端口隔离度只有14.7dB。威尔金森功分器的狭窄带宽限制了其在宽带系统中的应用。为了进一步加宽工作带宽,可以用多节的宽频功率分配器,即增加λg/4线段和相应的隔离电阻R的数目。 目前常见的微波功分器是采用微带线或腔体波导等结构的分布参数功分器。腔体波导功分器插损小、平衡度好,但隔离度较差,制作工艺较复杂,微带功分器制作简单,但相对带宽较小。而且以上分布参数功分器仅限于微波波段的窄频带应用,在微波频段以下,小型化、宽带功分器的制作比较困难。 功率分配器的技术指标包括频率范围、承受功率、主路到支路的分配损耗、输入输出间的插入损耗。支路端口间的隔离度、每个端口的电压驻波比等。 (1)频率范围。这是各种射频/微波电路的工作前提,功率分配器的设计结构与工作频率密切相关。必须首先明确分配器的工作频率,才能进行下面的设计。 (2)承受功率。在大功率分配器/合成器中,电路元件所能承受的最大功率是核心指标,它决定了采用什么形式的传输线才能实现设计任务。一般地,传输线承受功率由小到大的次序是微带线、带状线、同轴线、空气带状线、空气同轴线,要根据设计任务来选择用何种传输线。 (3)分配损耗。主路到支路的分配损耗实质上与功率分配器的功率分配比

设计仿真微带功分器

实验 设计仿真微带功分器 一、 实验目的: 1. 掌握微带功分器的原理; 2. 掌握用VOLTAIRE 仿真、优化线性电路; 二、 实验原理: 功分器是一种功率分配元件,它是将输入功率分成相等或不相等的几路功率,当然也可以将几路功率合成,而成为功率合成元件。在电路中常用到微带功分器,其基本原理和设计公式如下: 页 1 图2.1 二路功分器的原理图 图2.1是二路功分器的原理图。图中输入线的特性组抗为0Z ,两路分支线的特性阻抗分别为Z 02和Z 03,线长为0e λ/4 , 0e λ/4为中心频率时的带内波长。图中2,3R R 为负载阻抗,R 为隔离阻抗。 对功分器的要求是:两输出口2和3的功率按一定比例分配,并且两口之间相互隔离,当两口接匹配负载时,1口无反射。下面根据上述要求,确定Z 02 、Z 03、R 2、R 3及R 的计算公式。 设2口、3口的输出功率分别为P2、P3 ,对应的电压为V2、V3 .根据对功分器的要求,则有: P 3=K 2P 2 |V 3|2/R 3=K 2|V 2|2/R 2 式中K 为比例系数。为了使在正常工作时,隔离电阻R 上不流过电流,则应 V 3=V 2 于是得 R 2=K 2R 3 若取 R 2=KZ 0 则 R 3=Z 0/K 因为分支线长为λe0/4,故在1口处的输入阻抗为: Z in2=Z 022/R 2 Z in3=Z 032/R 3 为使1口无反射,则两分支线在1处的总输入阻抗应等于引出线的0Z ,即 Y 0=1/Z 0=R 2/Z 022+R 3/Z 032 若电路无损耗,则

|V 1|2/Z in3=k 2|V 1|2/Z in2 式中V1为1口处的电压 所以 Z in =K 2Z 03 Z 02=Z 0[(1+K 2)/K 3]0.5 Z 03=Z 0[(1+K 2)K]0.5 下面确定隔离电阻R 的计算式。 跨接在端口2、3间的电阻R ,是为了得到2、3口之间互相隔离得作用。当信号1口输入,2、3口接负载电阻 时,2、3两口等电位,故电阻R 没有电流流过,相当于R 不起作用;而当2口或3口得外接负载不等于R2或R3时,负载有反射,这时为使2、3两端口彼此隔离,R 必有确定的值,经计算R=Z 0(1+K 2)/K 。图2.1中两路线带之间的距离不宜过大,一般取2~3倍带条宽度。这样可使跨接在两带线之间的寄生效应尽量减小。 三、 实验内容: 用VOLTERRA 设计仿真一个微带功分器,具体指标如下: 中心频率为:02f GHz =; 耦合度: 2k = 引出线: 050Z =Ω 介质基片: 2.55,1r h mm ε=- 四.设计过程 电路图: 局部放大

等分威尔金森功分器的设计

摘要 摘要 本文对一个等分威尔金森功分器进行了仿真,分析了功分器的基本原理,介绍了ADS软件基本使用方法,并选择了频率范围:0.9~1.1GHz,频带内输入端 口的回波损耗:C 11>20dB,频带内的插入损耗:C 21 <3.1dB,C 31 <3.1dB,两个输出端 口间的隔离度:C 23 >25dB为设计指标的等分威尔金森功分器。先进行威尔金森功分器原理图的设计,再用ADS软件进行原理图仿真,得出的结论采用理论计算的结果作为功分器参数时,功分器并没有达到所需设计的指标,所以要对功分器的各个参数进行优化。优化后所得到的最佳数据保存以后再进行功分器版图的仿真,各项指标基本达到设计所需的要求。 关键词:仿真,威尔金森功分器,ADS,优化

ABSTRACT ABSTRACT In this paper a power dividers quintiles Wilkinson is simulated, and analyzes the basic principle of power dividers, introduces the basic use ADS software method, and choose the frequency range: 0.9~GHz, frequency band 1.1 input ports C11 > 20dB return loss:, frequency band insertion loss: C21 < 3.1 dB, C31 < 3.1 dB, between the two output port C23 > 25dB isolation ratio: for the design index equal power dividers Wilkinson. First conducts the power dividers Wilkinson schematic design, reoccupy ADS software simulation principle diagram, the conclusion of the theoretical calculation result as parameters when power dividers power dividers did not reach the required design to index, so the power dividers various parameters were optimized. After optimization of the best data preserves received after power dividers again, and all the indexes of simulation territory to meet the design requirements of basic required. Key words:Simulation Wilkinson Power dividers ADS optimization

微带不等分功分器设计与仿真

微带不等分功分器设计与仿真 一、摘要 功分器全称功率分配器,英文名Power divider,是一种将一路输入信号能量分成两路或多路输出相等或不相等能量的器件,也可反过来将多路信号能量 合成一路输出,此时可也称为合路器。一个功分器的输出端口之间应保证一定 的隔离度。功分器的主要技术参数有功率损耗(包括插入损耗、分配损耗和反 射损耗)、各端口的电压驻波比,功率分配端口间的隔离度、功率容量和频带 宽度等。 二、设计目的和意义 三、设计原理 功分器全称功率分配器,是一种将一路输入信号能量分成两路或多路输出 相等或不相等能量的器件,也可反过来将多路信号能量合成一路输出,此时可 也称为合路器。一个功分器的输出端口之间应保证一定的隔离度。功分器的主 要技术参数有功率损耗(包括插入损耗、分配损耗和反射损耗)、各端口的电 压驻波比,功率分配端口间的隔离度、功率容量和频带宽度等。 功分器也叫过流分配器,分有源,无源两种,可平均分配一路信号变为几路输出, 一般每分一路都有几dB的衰减,信号频率不同,分配器不同衰减也不同,为了补 偿衰减,在其中加了放大器后做出了无源功分器。 功分器的功能是将一路输入的卫星中频信号均等的分成几路输出,通常有 二功分、四功分、六功分等等。功分器的工作频率是950MHz-2150MHz,卫视 烧友想必对功分器是再熟悉不过了。以上三个器件的用途和性能是完全不同的,但在日常使用中往往容易把名称混淆了,使得人们在使用中容易产生困惑.*接 收系统中的多台卫星接收机,共用一面天线,几面天线共用一台卫星接收机, 以及两台以上卫星接收机和两面以上天线共用,它们之间的连接除了依靠电缆 之外,主要是靠切换器的组合编程来实现的。 功分器是接多个卫星接收机用的.如果一套天线要接多个卫星接收机就要用

功分器基础知识及市场分析及应用

功分器/合路器基础知识 及泰格功分器产品的性能优势、市场推销分析 本文主要目的之一为针对市场人员的技术培训,有些定义为便于理解并不是很严谨,所有提及概念、计算方法等不能作为产品的通用和专用验收的依据。 本文主要目的另一目的是针对及泰格功分器产品的性能进行分析,指出其优势,并对其应用和市场加以分析,为市场人员的工作提供帮助。 本文中会主要描述以下产品的基本功能,作用和技术指标的定义等。 ● 功分器(功率分配器Power Divider, Power Splitter) ● ) ● 合路器(Combiner) 1. 功分器的原理及一些关键参数说明 功分器是将输入的信号的能量进行分路,并实现多路信号的隔离; 功分器的带宽可以很宽,比如1-12GHz,2-18GHz 等; 分路时可以是等分或不等分; 一般功分器都是等相位(0相位)输出,也就是说功分器的输出相位关系基本是相等的,要求不等输出相位的功分器的一般均只能实现10%左右的带宽。 图1 功分器示意图 理论上,功分器的分路路数可以是无穷多路,很多多路功分器均以2路分路为基础,所以一般为2/4/8/16等2n 分路技术上实现较容易,而3/6/7/9/10/11等技术上实现较难。 Input Output1 相位0o 。。。。。。 Output2 相位0o Output N 相位0o

功分器的国际通用符号 图2 功分器的国际通用符号 1端口输入端(公共端),2和3端口的分配端 本文为理解方便,采用了和实物一致端口画法。 图3 1分8的功分器的实际结构 (1分8功分器设计上是由7个 1分2功分器组成,这7个功分器分为3个层次) 功分器的技术指标 插入损耗(Insert Loss) 图4 功分器的插入损耗 ● 插入损耗为功分器在系统中的实际能量衰减; ● 功分器的插入损耗包含两个部分:功分器的分路损耗和功分器本身对能量的衰减 (损耗); Output Output

等分威尔金森功分器的设计

摘要 本文对一个等分威尔金森功分器进行了仿真,分析了功分器的基本原理,介绍了ADS软件基本使用方法,并选择了频率范围:0.9~1.1GHz,频带内输入端 口的回波损耗:C 11>20dB,频带内的插入损耗:C 21 <3.1dB,C 31 <3.1dB,两个输出端 口间的隔离度:C 23 >25dB为设计指标的等分威尔金森功分器。先进行威尔金森功分器原理图的设计,再用ADS软件进行原理图仿真,得出的结论采用理论计算的结果作为功分器参数时,功分器并没有达到所需设计的指标,所以要对功分器的各个参数进行优化。优化后所得到的最佳数据保存以后再进行功分器版图的仿真,各项指标基本达到设计所需的要求。 关键词:仿真,威尔金森功分器,ADS,优化

ABSTRACT In this paper a power dividers quintiles Wilkinson is simulated, and analyzes the basic principle of power dividers, introduces the basic use ADS software method, and choose the frequency range: 0.9~GHz, frequency band 1.1 input ports C11 > 20dB return loss:, frequency band insertion loss: C21 < 3.1 dB, C31 < 3.1 dB, between the two output port C23 > 25dB isolation ratio: for the design index equal power dividers Wilkinson. First conducts the power dividers Wilkinson schematic design, reoccupy ADS software simulation principle diagram, the conclusion of the theoretical calculation result as parameters when power dividers power dividers did not reach the required design to index, so the power dividers various parameters were optimized. After optimization of the best data preserves received after power dividers again, and all the indexes of simulation territory to meet the design requirements of basic required. Key words:Simulation Wilkinson Power dividers ADS optimization

微带功分器的仿真和优化

最优化大作业 ——微带功分器的仿真和优化 班级:B1103491 学号:1110349019 姓名:胡亮 日期:2011-11-16 前言:本文主要是基于微带结构的功分器用ADS仿真并用ADS软件进行优化与matlab优化进行了比较:

第一章 传输线理论 1.求解下图匹配路径的匹配电路参数。若将并容串线方案在介电常数为4.2介质材料厚度为1.586mm ,导体带厚度为0.035mm 微带基板上实现,求各段微带线的宽度及长度值。 解:用传输线实现Z L 至A 的移动,应该并联终端开路传输线,并联短路的也可以,但其电长度会大于0.25。用(如图1)所示电子SMITH 圆图,可知并联(终端开路)传输线长度为0.096g λ(这里的λg 不是仅指在波导中的波长,是指在所有传输线中传输的波长),串联传输线的长度为0.152g λ。 图(1) 上面得到的是传输线的电尺寸,包括特性阻抗(50欧)及电长度。还需要得到物理尺寸,包括宽度长度(注意不同传输线的物理尺寸不同)。在TXLINE 软件中选择微带传输线,把板材参数设置好。接下来由电参数特性阻抗及电长度求物理参数宽度及长度。 L Z A *S Z

先求并联微带线参数,把特性阻抗填入为50欧,频率为5GHz。并联线的电长度前面求得为0.096,其对应的角度为0.096X3600=34.560,将其填入。按此按钮即可得到微带线宽度为3.296mm,长度为3.1141mm。 同样可得串联微带线的宽度为3.296mm,长度为4.9307mm,如图(3)所示。 图(3) 注意:软件TXLINE 2001—Microstrip中的Electrical Length代表的就是lβ,即电长度乘以360,而不是乘以720。 2.用特性阻抗50Ω的传输线给天线馈电,其驻波比及驻波相位分别是 3.0及10cm,求此天线的输入阻抗。设计匹配电路使天线与传输线达到匹配,并估计

不等分微带功分器设计

本科毕业设计 (2011届) 题目不等分微带功分器设计 学院电子信息学院 专业电子科学与技术 班级 学号 学生姓名 指导教师 完成日期2011年3月

诚信承诺 我谨在此承诺:本人所写的毕业论文《不等分微带功分器设计》均系本人独立完成,没有抄袭行为,凡涉及其他作者的观点和材料,均作了注释,若有不实,后果由本人承担。 承诺人(签名): 年月日

摘要 在无线通讯射频电路中经常会遇到要求射频功率不平衡分配的情况,因此不等分功分器在实际射频电路中有着重要的应用价值。微带线具有体积小、易加工、易集成等优点,而被广泛应用于射频微波集成电路中。因此本毕业设计主要是针对微带线型不等分功分器的研究而展开的。不等分微带功分器相对于等分微带功分器而言,设计难度要更为复杂一点,需要考虑的影响因素要更多一些。本次设计中,通过对Wilkinson微带功分器的研究,提出了不等分微带功分器的设计理论。在此理论基础上,利用Advance Design System射频微波电路仿真软件,设计了两款一分二不等分的微带型功率分配器(功分比例分别为1:2,3:4)。实验和仿真结果一致,并满足设计指标要求,从而论证了不等分微带型功率分配器设计理论的正确性。 关键词:不等分;微带;功分器;ADS软件;射频

ABSTRACT RF circuits in wireless communications requirements often encountered in the power imbalance in the distribution of radio frequency, ranging from sub-splitters so the actual RF circuit has important application value.Microstrip line is small, easy processing, easy integration, etc., which are widely used in microwave integrated circuits in RF.Therefore, this graduation design mainly for microstrip line power splitter sub-ranging research undertaken. Ranging from sub-microstrip power divider relative to the attainment of microstrip power divider, the design is difficult to be more complex, factors to be considered to be more of them.The design, by microstrip Wilkinson power divider on the research,proposed ranging from sub-microstrip power splitter design theory. Based on this theory, the use of Advance Design System RF and microwave circuit simulation software, designed two points of a sub-second range Microstrip power splitter (power divider ratio was1:2,3:4).Experimental and simulation results are consistent and meet the design requirements, which demonstrates the range Microstrip power splitter sub-design theory is correct. Key words: unequal; microstrip; power divider; advance design system software; RF

用于无线局域网的二等分功分器设计方案

用于无线局域网的二等分功分器设计方案 功分器是无线通信系统中的一种非常重要的微波无源器件,在天线阵馈电 系统、功率放大器和无线局域网中都有着广泛的应用。 ?目前应用最多的微波功率分配器多为威尔金森(Wilkinson)形式的功分器,其 优点在于设计方法较简单、易于实现,输出端口可以实现较高隔离。近年来, 功分器的研究已经越来越成熟,也越来越深入在传统Wilkinson功分器的输出 端添加短路枝节的方法实现了宽带功分器;文芦状的多节阻抗变换器Wilkinson 功分器结构,显着展宽了功分器的工作带宽;一款平面结构的新型双频功分器; 直接多路输出Wilkinson 功分器的计算公式,进一步完善了该功分器的设计指导。然而,当工作频率升高以后,制作器件的实际尺寸将会缩小,由于隔离电 阻的存在,使得两个输出支路的电路布局存在限制,尤其在不等功率分配,两 个输出端口存在强烈互耦而恶化功分器的整体性能。设计了改良型的Wilkinson 功分器,该功分器工作在无线局域网S频段2.4~2.483 5 GHz频率范围内,从而增加了其实用价值。利用ADS 软件进行了仿真设计,并进行了实物加工和测试。 ?1 功分器设计 ?对于基本的Wilkinson功分器,其输入/输出端口特性阻抗为Z0,两段分支微 带线的电长度均为λg 4 .实现等功分3 dB设计的Wilkinson功分器,基本原理与设计公式在参考文献[7]中已经做了详细介绍,其电路结构示意图如图1所示。然而传统的Wilkinson功分器在工作于频率较高的情况下,电路尺寸将会缩小,电路布局受到限制,并且两输出端口互耦严重进而影响其性能。 ?为了解决这些问题,本文通过在隔离电阻两侧和两输出支路上引入电长度180°( λ 2)微带传输线,将图1所示的功分器结构改进为图2所示。

基于HFSS的不等功率分配器

不等功率分配器 一、功分器的设计及原理 1、功分器原理 功分器全称功率分配器,是一种将一路输入信号能量分成两路或多路输出相等或不相等能量的器件。在简单功分器中引入隔离电阻,变为有耗的三端口网络,有耗三端口网络可以做到做到完全匹配,且输出端口之间具有隔离。 它的主要技术指标包括频率范围、输入输出间的 插入损耗、支路端口间的隔离度、回波损耗等。 如右图示为功分器原理图,有耗三端口网络 可以做到完全匹配,且可以用微带线或带状线来 实现。 2、技术指标 频率范围:中心频率3.5GHz 主路端口的回波损耗小于-20dB 主路到支路的耦合度比为1:2 支路端口间的隔离度小于-20dB 3、 设计参数的确定 (图1) 如右图2所示,其中输入端口特性阻抗为0Z ,分成的两端微带线电长度为4/g λ,特性阻抗分别是02Z 和03Z ,终端分别接有 电阻32R R 和。 功率分配器的基本要求如下: ①端口“①”无反射。 ②端口“②、③”输出电压相等且同相。 ③端口“②、③”输出功率比值为任意指定值, 设为1/2(2=k )。 根据以上三条有: 32111Z Z Z in in =+ (图2) 2 1)21/()21(323222=R U R U 32U U = 由传输线理论有: 2 2022R Z Z in =

3 2033R Z Z in = 这样共有2R 、3R 、02Z 、03Z 四个参数而只有三个约束条件,故可任意指定其中的一个参数,设02kZ R =,2=k ,于是 )1(2002k k Z Z += 22003/)1(k k Z Z += k Z R 03= 实际的功率分配器终端负载往往是特性阻抗为0Z 的传输线,而不是纯电阻,此时可用4/g λ阻抗变换器将其变为所需电阻,另一方面2U 、3U 等幅同相,在“②、③”段跨接电阻j R ,既不影响功率分配器性能,又可增加隔离度。 k Z Z R Z 00204== k Z Z R Z 00305= = k k Z R j 2 01+= 取22=k 时,计算出: 71.702=R ,4.353=R ,10302=Z ,5.5103=Z ,1.106=R 5.5904=Z ,1.4205=Z ,7.850=λ,9.46=g λ 根据阻抗的大小可得到各段微带的宽度: 0Z 的宽度mm w 88.21=,02Z 的宽度mm w 6.02=,03Z 的宽度mm w 75.23=,04Z 的宽度mm w 13.24=,05Z 的宽度mm w 8.35=,每段微带线的长度都是4/g λ。 通过以上的分析,所需参数值已经确定,接下来就可以进行设计了。 二、功分器模型的设计 1,打开HFSS,新建工程,修改名称,将其保存。 2,打开设计界面,首先画一个BOX ,设置其厚度为1.5mm,w=20mm 。其参数如图3所示

微带功分器的设计

微带功分器的设计 时间:2015-08-16 来源:天线设计网作者:admin TAGS:威尔金森功率 分配器无源器件wilkinson 功率分配器是将输入信号功率分成相等或不相等的几路功率输出的一种多端口微波网络。功率分配器是无源微波器件,反过来就是功率合成器。功率分配器有多种形式,其中最常用的是g/4功率分配器,这种功率分配器称为威尔金森(wilkinson)功率分配器。威尔金森功率分配器由三端口网络构成。 在近代射频和微波电路中广泛地使用着功率分配器。瞬时测频接收机是一种简单而紧凑的接收机,能覆盖很宽的射频频带。实际的IFM接收机是由若干个简单的瞬时测频(IFM)接收机并行组成。这就需要使用一分八功分器进行4个通道的信号分配。一分八功分器可以由几个一分二的功分器级联而成。[天线设计网]这就对一分二功分器在体积、结构、稳定性以及输出端口之间的相位一致性提出了更高的要求。本文用多节阻抗变换器级联的方式来实现宽频带和低损耗,使用ADS软件设计并仿真工作频带在6~18GHZ的宽带微带线功分器。 功分器的设计指标 功分器的技术指标包括: (1)频率范围:6~18Ghz; (2)插入损耗:≤4dB; (3)驻波比:≤2; (4)隔离度:≥18dB; (5)相位一致性:≤5°。 功分器的设计 威尔金森功率分配器由三端口网络构成,由于单节λ/4阻抗变换器工作带宽为窄带,不能实现宽带功分器,因此需要采用多节阻抗变换器相级联的方式来展宽工作频带。本文设计的是一个工作频带在6~18GHz,功分比为1∶1的二路带状线型wilkinson功分器。带宽为3个倍频层,结合多节λ/4阻抗变换器[天线设计网]相级连的形式,阻抗变换器为3节。由于本功分器对结构尺寸和相位一致性要求较高,在此选用介电常数为2.2、层压板厚度为0.254mmRoger5880高频层压材料。结构上采用葫芦状的结构设计。根据各项指标(工作频段、输入输出端口的驻波、输出端口间的隔离度)要求,由宽带功分器设计理论确定功分器具体尺寸,计算出各段λ/4阻抗变换器的特性阻抗,如表1所示,并计算出隔离电阻的阻值如表2所示。

微带功率分配器--微带阻抗及隔离电阻值

设计资料 微带功率分配器设计方法 1. 功率分配器论述: 1.1定义: 功率分配器是一种将一路输入信号能量分成两路或多路信号能量输出的器件,也可反过来将多路信号能量合成一路输出,此时也可称为合路器。 1.2分类: 1.2.1功率分配器按路数分为:2路、3路和4路及通过它们级联形成的多路功率分配器。 1.2.2功率分配器按结构分为:微带功率分配器及腔体功率分配器。 1.2.2根据能量的分配分为:等分功率分配器及不等分功率分配器。 1.2.3根据电路形式可分为:微带线、带状线、同轴腔功率分配器。 1.3概述: 常用的功率分配器都是等功率分配,从电路形式上来分,主要有微带线、带状线、同轴腔功率分配器,几者间的区别如下: (1)同轴腔功分器优点是承受功率大,插损小,缺点是输出端驻波比大,而且输出端口间无任何隔离。微带线、带状线功分器优点是价格便宜,输出端口间有很好的隔离,缺点是插损大,承受功率小。(2)微带线、带状线和同轴腔的实现形式也有所不同:同轴腔功分器是在要求设计的带宽下先对输入端进行匹配,到输出端进行分路;而微带功分器先进行分路,然后对输入端和输出端进行匹配。

下面对微带线、带状线功率分配器的原理及设计方法进行分析。 2.设计原理: 2.1分配原理: 微带线、带状线的功分器设计原理是相同的,只是带状线的采用的是对称性空气填充或介质板填充,而微带线的主要采用的是非对称性部分介质填充和部分空气填充。下面我们以一分二微带线功率分配的设计为例进行分析。传输线的结构如下图所示,它是通过阻抗变换来实现的功率的分配。 图1:一分二功分器示意图 在现有的通信系统中,终端负载均为50Ω,也就是说在分支处的阻抗并联后到阻抗结处应为50Ω。如上图匹配网络,从输入端口看Ω==500Z Z in ,而Ω==50//21in in in Z Z Z ,且是等分的,所以1in Z =2in Z ,①处1in Z 、②处2in Z 的输入阻抗应为100Ω,这样由①、②处到输出终端50Ω需要通过阻抗变换来实现匹配。 2.2阶梯阻抗变换: 在微波电路中,为了解决阻抗不同的元件、器件相互连接而又不使其各自的性能受到严重的影响,常用各种形式的阻抗变换器。其中最简单又最常用的四分之一波长传输线阶梯阻抗变换器(图2)。它

相关文档