文档库 最新最全的文档下载
当前位置:文档库 › 振动测试技术

振动测试技术

振动测试技术
振动测试技术

拱桥振动测试

姓名:刘沛

学号:0214185

班级:研14-1班

课程:振动测试技术

年月:2015年7月18日

目录

一振动测试概述 (1)

1 振动分类及描述 (1)

2 振动基本参量表示方法 (1)

3 振动测试仪器分类及配套使用 (3)

4 窗函数的分类及用途 (4)

5 信号采集及分析过程中出现的问题,怎样解决? (7)

二、惯性式速度型与加速度型传感器 (8)

1 惯性式速度传感器的分类 (8)

2 压电式加速度传感器 (9)

三振动特性参数的常用量测方法 (12)

1 振动基本参数的量测 (12)

2 简谐振动频率的量测 (12)

3 机械系统固有频率的测量 (12)

4 简谐振动幅值的测量: (12)

5衰减系数的测量: (13)

6结构动力特性参数量测 (13)

7 稳态正弦激振及测试 (13)

8 瞬态激振及测试 (14)

9 随机激振及测试 (15)

四题目(结构设计) (16)

1 结构设计资料及试验要求 (16)

2.试验目的 (18)

3.试验方法 (18)

4 结果分析 (20)

五概念 (22)

1 功率谱 (22)

2 自相关函数 (22)

3 互相关函数 (23)

4 相干函数 (23)

5 传递函数 (24)

六模态分析 (26)

1 概念 (26)

2 方法分类及理解 (26)

一振动测试概述

1 振动分类及描述

按照运动的表现形式,振动可以分为确定性和非确定性振动(即随机振动)。确定性振动又分为周期性和非周期性振动。周期性振动分为简谐振动和复杂周期振动。非周期运动又分为准周期和瞬态振动。非确定性振动分为平稳随机和非平稳随机,平稳随机又分为各态历经和非各态历经。按振动激励类型分类,振动可分为随机自由振动和随机强迫振动。按振动位移的特征分类,振动可分为:横向振动(振动体上的质点在垂直于轴线的方向产生位移的振动)、纵向振动(振动体的质点沿轴线方向产生位移的振动)和扭转振动(振动体上的质点沿轴线方向产生位移的振动)。周期运动的最简单形式是简谐振动。这种振动的表示方法及特点是描述其他振动形式的基础。一般的周期运动可以借助傅里叶级数表示成一系列简谐振动的叠加,该过程称为谐波分析。非周期运动则需要通过傅里叶积分作谐波分析。

2 振动基本参量表示方法

工程振动测试的主要参数有位移、速度、加速度、激振力、振幅、振动频率、阻尼比及结构的振动模态等。其中前五个参数属于时域测试参数。

下面分别来说明振动基本参量的表示方法及其含义:

(1)振幅(A):振幅就是振动过程中振动物体离开平衡位置的最大距离。振动的幅度有三种表示法,即峰值、平均值和有效值。

(2)周期(T):从振动波形来看,连续两次波峰或者波谷之间耗费的时间就是一个振动周期,也就是完成一次振动所需的时间。

(3)频率(f):单位时间内振动循环的次数f,单位是赫兹(Hz)。频率是振动特性的标志,是分析振动原因的重要依据。周期T是物体完成一个振动

过程所需要的时间,单位是秒(s )。频率与周期互为倒数,1f T

=。 (4)相位():振动物体在任一时刻t 的运动状态(指位置和速度)都由()t ω?+决定,()t ω?+是决定简谐振动运动状态的物理量,称为振动的相位。表示0t =时的相位,叫做初相位或初相。物体的振动在一个周期内所经历的运动状态没有一个相同的,这相当于相位从0到2π的变化;而位移和速度都相同的运动状态,它们所对应的相位差是2π或2π的整数倍。因此,相位是反映简谐运动周期性特点,并用以描述运动状态的重要物理量。

(5)临界阻尼(cr c )可定义为:体系自由振动反应中不出现往复振动所需的最小阻尼值,即 2cr n c m km ω==

(6)结构的阻尼系数(c ):是结构在每一振动循环中消耗能量大小的度量。结构的阻尼比是结构的重要动力特性参数,利用结构自由振动试验可以获得结构的阻尼比。

(7)对数衰减率(δ):定义为 i 2i+1ln

1u u δζ==-, i i+1

u u 为相邻振动峰值比。

简谐振动中的测试参数: 位移,速度,加速度为时间调和函数的振动称为简谐振动,这是一种最简单最基本的振动。其函数表达式为:

位移: ()sin()sin(2)x t A t A ft ωπ==

速度: ()cos()sin(2)2

v t A t A ft πωωωπ==+

加速度: 22()sin()sin(2)a t A t A ft ωωωππ=-=+

式中: A ——位移幅值(cm 或mm );

ω——振动圆频率(1s );

f ——振动频率(Hz )。

()()()x t v t a t 、、三者之间的相位依次相差为2π。若令:速度幅值V A ω=,加速度幅值20a A ω=,则有220(2)a V A f A ωωπ===。

由此可见,位移幅值A 和频率ω(或f ),是两个十分重要的特征量,速度和加速度的幅值V 和0a 可以直接由位移幅值A 和频率f 。导出。在测量中,振动测试参数的太小常用峰值、绝对平均值和有效值来表示。所谓峰值是指振动量在给定区间内的最大值,均值是振动量在一个周期内的平均值,有效值即均方根值,它们从不同的角度反映了振动信号的强度和能量。

3 振动测试仪器分类及配套使用

一、分类

(1)机械式的测量仪器。将工程振动的参量转换成机械信号,再经机械系统放大后,进行测量、记录。此法常用的仪器有杠杆式测振仪和盖格尔测振仪,能测量的频率较低,精度也较差。但在现场测试时较为简单方便。

(2)光学式的测量仪器。将工程振动的参量转换为光学信号,经光学系统放大后显示和记录。常用的仪器有读数显微镜和激光测振仪等。目前光学测量方法主要是在实验室内用于振动仪器系统的标定及校准。

(3)电测仪器。将工程振动的参量转换成电信号,经电子线路放大后显示和记录。这是目前应用得最广泛的测量方法。

图1.1 电测法基本测量系统示意图

二、配套使用情况

目前,整个动态测试仪器系统通常有以下三种测振仪配套方式,见图2。

图1.2 动态测试系统三种配套仪器系统

4 窗函数的分类及用途

一、分类

1. 矩形窗(Rectangular 窗)矩形窗属于时间变量的零次幂窗,函数形式为: 磁电式拾振器 U

电压放大器 U

动态数据采集仪

压电式加速度q 电荷放大器 U 应变式传感器 R 动态电阻应变仪

U

A/D 显示终端 计算机主机 打印机

1,0,()0t T T

w t t ?≤≤?=??≥?

, T 。 相应的谱窗为:

()2sin t

W t ωωω= 2. 三角窗(Bartlett 或Fejer 窗)三角窗是幂窗的一次方形式,其定义为: ()1(1);0t t w t t T T T T ?-?=≤≤??≥?0

谱窗为: sin 2()2T W T ωωω?? ?= ? ???

3. 汉宁窗(Hanning 窗)又称升余弦窗,其时间函数 为:

()111(cos ),t 22

0t t T T T w t T π?+≤?=??≥?

其谱窗为:sin 1sin()sin()()2T T T W T T T ωωπωπωωωπωπ+-??=

++??+-??

4. 海明窗(Hamming 窗)海明窗也是余弦窗的一种,又称改进的升余弦窗,其时间函数为:

()1(0.540.46cos ),t 0t t T T

T w t T π?+≤?=??≥?

其谱窗为:sin sin()sin()() 1.08

0.46T T T W T T T ωωπωπωωωπωπ+-??=++??+-??

5. 高斯窗 高斯窗是一种指数窗,其时域函数为:

()1t 0t T T

w t T ?≤?=??≥?2

-at e ,

式中:a 为常数,决定了函数曲线衰减的快慢。高斯窗谱的主瓣较宽,故而频率分辨力低,高斯窗函数常被用来截断一些非周期信号,如指数衰减信号等。

6. 参数可调整窗 利用变换窗的参数得到不同的性能,如上述余弦族窗中的系数,指数窗中的a ,以及Gauss 窗、Dolph —chebyshev

窗、Kalser-Bessel 窗等也都是参数可调窗。可以组构成一些窗函数系列、如P200、P300系列窗。

二 用途

在数字信号频率分析中,要求对不同类型的时间信号选用不同的窗函数,对随机信号的处理,通常选用汉宁窗,因为它可以在不太加宽主瓣的情况下较大的压低旁瓣的高度从而有效的减少了功率的泄露。对本来就有很好的离散谱信号,例如周期信号或准周期信号,分析时最好用旁瓣较低的Kalser-Bessel 窗。冲击过程和瞬态过程的测量,一般用矩形窗而不选用汉宁窗或Kalser-Bessel 窗,因为这些窗对起始端很小的加权会使瞬态信号失去其基本特性。

5 信号采集及分析过程中出现的问题,怎样解决?

1 信号采集和分析过程中出现的问题

信号分析和采集过程中会出现信号频率混叠、连续信号的截断和抽样所引起的泄露、时域到频域转化、处理不好引起的误差和错误、信号中的信噪比等等问题。

2解决方法

对于信号频率混叠需要进行对输入信号的抗混滤波,波样采集和模数转换。对于连续信号的截断和抽样所引起的泄露需要进行加窗处理,通常所用的窗有矩形窗,汉宁窗,三角窗和海明窗等等。再通过FFT变换,进行时域到频域的变换和数据计算。信息论指出:对常用频宽为F的限时、白色高斯噪声信道,信道容量。当容量不变时,增大带宽可降低信噪比,提高信噪比必须压缩带宽。因此,抗干扰为主要矛盾时,可扩展频带换取低信噪比下接收,调频与扩频均基于这一原理。频带为主要矛盾时,则可用信噪比换取频带,多进制、多电平传输均基于这一原理。

二、惯性式速度型与加速度型传感器

1 惯性式速度传感器的分类

惯性式测振传感器是利用弹簧质量系统的强迫振动特性来进行振动测量的。这种传感器可以直接固定在被测物体上,它不需要相对参考系固定传感器。是一种绝对式测振传感器。分为磁电式拾振器和压电式加速度传感器。

一.磁电式拾振器

(1)力学模型图示:

图2.1 磁电式拾振器

1—弹簧;2—质量块;3—线圈;4—磁钢;5—仪器外壳(2)力学原理

惯性式速度传感器的换能原理是以导线在磁场中运动切割磁力线产生电动势为基础的。由永磁铁和导磁体组成磁路系统,在磁钢间隙中放一工作线圈,当线圈在磁场中运动时,由于线切割磁力线,根据电磁感应定律在线圈中就有感应电动势产生,其大小正比于切割磁力线的线圈匝数和通过此线圈中的磁通量的变化率。当仪器结构定型后,感应电动势和线圈对磁钢相对运动的线速度成正比。

电磁拾振器又称为速度计。

线圈中感应电动势大小为: E nBLv

式中n—线圈的匝数;

B—磁钢与线圈间的磁场强度;

L—每匝线圈的平均长度;

V—线圈的运行速度。

2 压电式加速度传感器

(1)力学模型示意图:

下图中:

1—仪器外壳;2—硬弹簧;3—质量块;4—压电晶体;5—输出线

图2.2 压电式加速度传感器结构原理

(2)工作原理

压电式加速度传感器一般有三类,即中心压缩式、剪切式和三角剪切式。压电晶体加速计是利用压电晶体材料具有的压电效应制成的。压电晶体在三轴方向上的性能不同,x轴为电轴线,y轴为机械轴线,z轴为光轴线。若垂直于x轴切取晶片且在电轴线方向施加外力F,当晶体受到外力而产生压缩或拉伸变形时,内部会出现极化现象,同时在其相应的两个表面上出现异号电荷,形成电场。当外力去掉后,又重新回到不带电的状态。由压电晶体加速计可知,将质量块3放在两块圆形压电晶片4上,质量块由一硬弹簧2预先压紧,整个组件装在具有厚基座的金属壳体内,压片晶体片和惯性质量块在一起构成振动系统。当被测振动体的频率远低于振动系统的固有频率时,惯性质量块相对于基座的振幅近似与被测振动体的加速度峰值成正比。设q为释放的电荷,F为作用力,A为电极化面面积,则有:

q x F d t

A = 或 x q d F =

三振动特性参数的常用量测方法

1 振动基本参数的量测

振动基本参数: 振幅、周期、频率、相位、阻尼比、动力放大系数等描述振动所必须的量统称为振动基本参数。

2 简谐振动频率的量测

①李萨如图形比较法:运动方向相互垂直的两个简谐振动的合成运动轨迹称为李萨如图形。利用示波器、信号发生器以及常用的振动信号测试设备所组成的测试系统,来量测简谐振动的振动频率,称之为李萨如图形比较法。

②录波比较法:这种方法是将被测振动信号和时标信号(一般为等距离的时间脉冲信号)一起送入光线示波器中并同时记录在记录纸上,然后根据记录纸上的振动波形和时标信号两者之间的周期比测定被测振动波形的频率。

③直接测频法:这种方法是使用频率计数器直接测定简谐波形电压信号的频率和周期。频率计数器有指针式和数字式两种。

3 机械系统固有频率的测量

分为测量机械系统固有频率的自由振动法和测量机械系统固有频率的强迫振动法。

4 简谐振动幅值的测量:

①指针式电压表直读法:指针式电压表是振动测量中最常用的显示仪表,用以测量振动位移、速度和加速度的数值(峰值、有效值或平均绝对值)。

②数字式电压表直读法:直流数字电压表由模拟/数字转换器及电子计数显示器两大部分组成。

③光学法:包括用读数显微镜观察和楔形观察法。

?同频简谐振动相位差的测量

主要有示波器测量法和相位计直接测量法两种。

5衰减系数的测量:

①振动波形法

②共振频率法

③共振曲线法

6结构动力特性参数量测

结构动力特性参数包括结构动力特性参数通常指结构的固有频率、振型、阻尼比、衰减系数等参数。其测量方法有:

a. 固有频率的量测方法:自由振动法和强迫振动法。

b. 衰减系数的量测方法:振动波形法、共振频率法和共振曲线法。

c.阻尼比的测量方法:对数衰减率法和半带宽法。

d. 振型与发生振动的初始条件无关,而仅与体系本身的刚度、质量分布有关,根据刚度和质量和圆频率就可以算出振型。

7 稳态正弦激振及测试

稳态正弦激振又称简谐激振,它是借助激振器对被测对象施加一个频率和幅值均可控制的正弦激振力。在结构动态特性测试中,首先要激励试件,使其按测试的要求作振动。稳态正弦激振是对试件输入一个幅值稳定、单一频率的正弦信号,让试件作稳态强迫震动后再作测量。若要获得试件在某段频率范围的信息,必须在该频率范围内,以不同频率作多次激振和多次测量,即频率扫描,因此,稳态正弦激振试验周期长。但因其信噪比高,测试精度高,可靠性也较高,测试设备和仪器较简单,故目前仍较多使用它。用微机控制作自动频率扫描,记录,分析处理,可大大缩短试验周期。

图3.1 稳态正弦激振法

8 瞬态激振及测试

瞬态激振是自由振动法中常用的一种激振手段。如采用不同的方法给被测结构施加一个冲击力,迫使结构的速度突然发生变化而产生自由衰减振动,此时记录下激振力及结构上某些测点的响应,则可通过响应曲线或传递函数获得结构的动力特性参数。瞬态激振是一种宽带激振方法。目前主要有脉冲激振、阶跃激振、快速正弦扫描激振三种方法。

①脉冲激振:脉冲激振是给试件施加一脉冲力,试件在脉冲力作用下将产生一自由振动。通常使用脉冲锤锤击试件,此时将产生近似半正弦波的脉冲力。使用不同的锤头垫材料可以得到不同宽频的脉冲。用不同质量配重的锤头和敲击速度,可获得不同大小的脉冲力。脉冲激振简便高效,但对激励点、拾振点的选取,锤击方向和轻重均有较高要求,脉冲力是一种随机输入,需多次锤击并对测试结果平均以减少随机误差。

②阶跃激振:对试件施加一静力,使它产生弹性变形,然后突然取消该力。这相当于对试件施加了一个负的阶跃激振力。

③快速正弦扫描激振:对在某一频带范围内工作的试件,理想激振力的频谱应是一矩形,谱幅值在上下限频率内相等,在上、下限频率范围外为零。这一要求,等幅线性频率扫描的正弦力函数可基本满足。这种快速激振法可有较大的激振能量,测试精度也较高。

9 随机激振及测试

随机激振法目前常用的有三种:纯随机激振法、伪随机激振法和周期随机激振法。

○1纯随机激振法。在整个时间历程里所有激振信号都是随机的,如白噪声,其特点是功率谱是平直谱,没有周期性。通常是将白噪声发生的信号记录在磁带上,通过功率放大器输出给激振器进行激振。

○2伪随机激振法。在一个周期内激振信号是随机的,但各个周期的激振信号是一样的。

○3周期随机激振法。它主要由变化的伪随机激振信号组成,当激振进行到某几个周期后,又出现一个新的伪随机激振信号,它综合了纯随机信号和伪随机信号的优点,做到既是周期信号,统计特性有是随时间变化的。

随机振动试验按实际环境要求有以下几种类型:

○1宽带随机振动试验,这是应用最广的随机振动试验。

○2窄带随机振动试验,这种随机振动有一中心频率,有一定带宽,但带宽内PSD值是不变的。

○3宽带随机加上一个或数个正弦信号。

④宽带随机加上一个或数个窄带随机。

四题目(结构设计)

每人选一种斜拉桥或者拱桥(可从网上搜一种),布置相应的测振传感器测点位置(画出测点布置图),写出选用的传感器、放大器设备。

要求写出测出内容:振幅、加速度、动应变、动位移、索力、还须测出动力放大系数。

结果分析:频率、阻尼比、振型的分析方法。

1 结构设计资料及试验要求

本设计所选结构是跨径50m,吊杆间距5m,矢高10m的空间拱桥。主梁为箱型截面,B 2100×600×10/10,主梁恒载集度为96.2 kN/m (包括二期恒载和人行道荷载),只作用于主梁上。主梁Midas以及拱桥立面、平面布置图分别如图4.2、4.3、4.4所示。实验要求针对此结构布置相应的测振传感器、放大器及相应的记录设备,对桥梁结构进行动载试验。

图4.1 拱桥结构测试系统

图4.2 拱桥模型

图4.3 拱桥立面图(单位:m)

图4.4 1/2拱构造和1/2桥面系平面图(单位:m)

振动测试理论和方法综述

振动测试理论和方法综述 摘要:振动是工程技术和日常生活中常见的物理现象。在长期的科学研究和工程实践中,已逐步形成了一门较完整的振动工程学科,可供进行理论计算和分析。随着现代工业和现代科学技术的发展,对各种仪器设备提出了低振级和低噪声的要求,以及对主要生产过程或重要设备进行监测、诊断,对工作环境进行控制等等。这些都离不开振动的测量。振动测试技术在工业生产中起着十分重要的作用,为此设计和制造高效的振动测试系统便成为测试技术的重要内容。本文概述了振动测试的发展历程,总结和分析了振动测试系统的基本组成和应用理论,列举了几种机械振动测试系统的类型。最后分析了振动测试系统的几个发展趋势。 关键词:振动测试;振动测试系统;测试技术;激振测试系统 1.引言 振动问题广泛存在于生活和生产当中。建筑物、机器等在内界或者外界的激励下就会产生振动。而机械振动常常会破坏机械的正常工作,甚至会降低机械的使用寿命并对机器造成不可逆的损坏。多数的机械振动是有害的。因而对振动的研究不仅有利于改善人们的生活环境和生活水平,也有助于提高机械设备的使用寿命,提高人们的生产效率。正因如此振动测试在生产和科研等多方面都有着十分重要的地位[1]。为了控制振动,将振动给人们带来的危害降至最低,就需要我们了解振动的特性和规律,对振动进行测试和研究。振动测试应运而生。 振动测试有着较为长久的发展历史,是与人类社会的发展有着紧密的联系。随着计算机技术和相关高科技技术的问世和发展,振动测试系统也有了飞跃性的发展。振动测试系统从最早的简单机械设备的应用到如今的先进的计算机技术和设备的应用。从刚开始的检测人员的耳朵来进行测量、判断和计算出大概的故障点的原始方法到现在的计算机控制、存储、处理数据的处理[2],无不体现出振动测试系统的长足发展和飞跃式的进步。与此同时,振动测试在理论方面也有了长足的发展,1656 年惠更斯首次提出物理摆的理论并且创造出了单摆机械钟到现今的自动控制原理和计算机的日趋完善,人们对机械振动分析的研究已日趋成熟。而伴随着振动测试系统的进步和日臻成熟,其在国民的日常生活和生产中所扮演的角色也愈发的重要。 2.振动测试与分析系统(TDM)的发展

振动测试和分析技术综述分析解析

振动测试和分析技术综述 黄盼 (西华大学,成都四川 610039) 摘要:振动测试和分析对结构和系统动态特性分析及其故障诊断是一种有效的手段。综述了当前振动测试和分析技术,包括振动测试与信号分析的国内外发展概况、振动信号数据采集技术、振动测试技术、以及振动测试与信号分析的工程应用,最后对振动测试与分析技术的未来发展方向进行了展望。 关键词:振动测试; 信号分析; 动态特性; 综述 Summary of Vibration Testing and Analysis HuangPan ( Xihua University,Chengdu 610039,China) Abstract: Vibration testing and analysis is an effective tool in analyzing structure and system dynamic characteristic and detecting the failures of structures,systems and facilities. The present paper reviews the current vibration testing and analysis techniques,including the development of vibration measurement and analysis of domestic and foreign,vibration signal data acquisition,vibration testing technology ,vibration measurement and analysis in engineering application. Finally,the future development in the field of vibration testing and analysis is predicted. Key words: vibration testing; signal analysis; dynamic characteristic;overview

机械振动的测量方法

振动的测量方法 摘要 本文主要介绍了振动的测量方法与分类,并简要说明了各测量方法的原理及优缺点,以及在测量过程中所使用的传感器。并且详细的介绍了加速度传感器与磁电式速度传感器的工作原理。简要介绍了振动量测量系统的原理框图 关键词:加速度传感器、振动、磁电式速度传感器

1引言 机械振动是自然界、工程技术和日常生活中普遍存在的物理现象。各种机器、仪器和设备在其运行时,由于诸如回转件的不平衡、负载的不均匀、结构刚度的各向异性、润滑状况的不良及间隙等原因而引起力的变化、各部件之间的碰撞和冲击,以及由于使用、运输和外界环境条件下能量的传递、存储和释放等都会诱发或激励机械振动。 2振动概述 2.1振动测量方法分类 振动测量方法按振动信号转换的方式可分为电测法、机械法和光学法。各测量方法的原理及优缺点见表1. 表1振动测量方法分类 2.2振动测试的内容: 1. 振动基本参数的测量。 测量振动物体上某点的位移、速度、加速度、频率和相位。其目的是了解被测对象的振动状态、评定振动量级和寻找振源,以及进行监测、诊断和评估。 2. 结构或部件的动态特性测量。 以某种激振力作用在被测件上,对其受迫振动进行测试,以便求得被测对象

的振动力学参量或动态性能,如固有频率、阻尼、阻抗、响应和模态等。这类测试又可分为振动环境模拟试验、机械阻抗试验和频率响应试验等。 2.3振动测量的基本原理与方法 振动检测按测量原理可分为相对式与绝对式(惯性式)两类。振动检测按测量方法可分为接触式与非接触式两类。 2.3.1相对式振动测量 相对式振动测量是将振动变换器安装在被测振动体之外的基础上,它的测头与被测振动体采用接触或非接触的测量。所以它测出的是被测振体相对于参考点的振动量 图1 相对式测振仪的原理 1测量针与笔 2 被测物体 3 走动纸 2.3.2绝对式振动测量 采用弹簧—质量系统的惯性型传感器(或拾振器),把它固定在振动体上进行测量,所以测出的是被测振动体相对于大地或惯性空间的绝对运动。 图2 绝对式测振仪原理 1质量块 2 弹簧 3 阻尼器 4 壳体机座 5 振动体

模态分析与振动测试技术

模态分析与振动测试技术 固体力学 S0902015 李鹏飞

模态分析与振动测试技术 模态分析的理论基础是在机械阻抗与导纳的概念上发展起来的。近二十多年来,模态分析理论吸取了振动理论、信号分析、数据处理数理统计以及自动控制理论中的有关“营养”,结合自身内容的发展,形成了一套独特的理论,为模态分析及参数识别技术的发展奠定了理论基础。 一、单自由度模态分析 单自由度系统是最基本的振动系统。虽然实际结构均为多自由度系统,但单自由度系统的分析能揭示振动系统很多基本的特性。由于他简单,因此常常作为振动分析的基础。从单自由度系统的分析出发分析系统的频响函数,将使我们便于分析和深刻理解他的基本特性。对于线性的多自由度系统常常可以看成为许多单自由度系统特性的线性叠加。 二、多自由度系统模态分析 对于多自由度系统频响函数数学表达式有很多种,一般可以根据一个实际系统来讨论,给出一种形式;也可根据问题的要求来讨论,给出其他不同的形式。为了课程的紧凑,直接联系本课程的模态分析问题,我们就直接讨论多自由度系统通过频响函数表达形式的模态参数和模态分析。即多自由度系统模态参数与模态分析。 多自由度系统模态分析将主要用矩阵分析方法来进行。 我们以N个自由度的比例阻尼系统作为讨论的对象。然后将所分析的结果推广到其他阻尼形式的系统。 设所研究的系统为N个自由度的定常系统。其运动微分方程为: (2—1) ++= M X CX KX F ?)阶式中M,C,K分别为系统的质量、阻尼及刚度矩阵。均为(N N 矩阵。并且M及K矩阵为实系数对称矩阵,而其中质量矩阵M是正定矩阵,刚度矩阵K对于无刚体运动的约束系统是正定的;对于有刚体运动的自由系统则是半正定的。当阻尼为比例阻尼时,阻尼矩阵C为对称矩阵(上述是解耦条件)。 N?阶矩阵。即 X及F分别为系统的位移响应向量及激励力向量,均为1

结构动力特性测试方法及原理

结构动力特性的测试方法及应用(讲稿) 一. 概述 每个结构都有自己的动力特性,惯称自振特性。了解结构的动力特性就是进行结构抗震设 计与结构损伤检测的重要步骤。目前,在结构地震反应分析中,广泛采用振型叠加原理的反应谱分析方法,但需要以确定结构的动力特性为前提。n 个自由度的结构体系的振动方程如下: [][][]{}{})()()()(...t p t y K t y C t y M =+??????+?????? 式中[]M 、[]C 、[]K 分别为结构的总体质量矩阵、阻尼矩阵、刚度矩阵,均为n 维矩阵;{} )(t p 为外部作用力的n 维随机过程列阵;{})(t y 为位移响应的n 维随机过程列阵;{})(t y &为速度响应的n 维随机过程列阵;{})(t y && 为加速度响应的n 维随机过程列阵。 表征结构动力特性的主要参数就是结构的自振频率f (其倒数即自振周期T )、振型Y(i)与阻尼比ξ,这些数值在结构动力计算中经常用到。 任何结构都可瞧作就是由刚度、质量、阻尼矩阵(统称结构参数)构成的动力学系统,结构一旦出现破损,结构参数也随之变化,从而导致系统频响函数与模态参数的改变,这种改变可视为结构破损发生的标志。这样,可利用结构破损前后的测试动态数据来诊断结构的破损,进而提出修复方案,现代发展起来的“结构破损诊断”技术就就是这样一种方法。其最大优点就是将导致结构振动的外界因素作为激励源,诊断过程不影响结构的正常使用,能方便地完成结构破损的在线监测与诊断。从传感器测试设备到相应的信号处理软件,振动模态测量方法已有几十年发展历史,积累了丰富的经验,振动模态测量在桥梁损伤检测领域的发展也很快。随着动态测试、信号处理、计算机辅助试验技术的提高,结构的振动信息可以在桥梁运营过程中利用环境激振来监测,并可得到比较精确的结构动态特性(如频响函数、模态参数等)。目前,许多国家在一些已建与在建桥梁上进行该方面有益的尝试。 测量结构物自振特性的方法很多,目前主要有稳态正弦激振法、传递函数法、脉动测试法与自由振动法。稳态正弦激振法就是给结构以一定的稳态正弦激励力,通过频率扫描的办法确定各共振频率下结构的振型与对应的阻尼比。 传递函数法就是用各种不同的方法对结构进行激励(如正弦激励、脉冲激励或随机激励等),测出激励力与各点的响应,利用专用的分析设备求出各响应点与激励点之间的传递函数,进而可以得出结构的各阶模态参数(包括振型、频率、阻尼比)。脉动测试法就是利用结构物(尤其就是高柔性结构)在自然环境振源(如风、行车、水流、地脉动等)的影响下,所产生的随机振动,通过传感器记录、经谱分析,求得结构物的动力特性参数。自由振动法就是:通过外力使被测结构沿某个主轴方向产生一定的初位移后突然释放,使之产生一个初速度,以激发起被测结构的自由振动。 以上几种方法各有其优点与局限性。利用共振法可以获得结构比较精确的自振频率与阻尼比,但其缺点就是,采用单点激振时只能求得低阶振型时的自振特性,而采用多点激振需较多的设备与较高的试验技术;传递函数法应用于模型试验,常常可以得到满意的结果,但对于尺度很大的实际结构要用较大的激励力才能使结构振动起来,从而获得比较满意的传递函数,这在实际测试工作中往往有一定的困难。 利用环境随机振动作为结构物激振的振源,来测定并分析结构物固有特性的方法,就是近年来随着计算机技术及FFT 理论的普及而发展起来的,现已被广泛应用于建筑物的动力分析研究中,对于斜拉桥及悬索桥等大型柔性结构的动力分析也得到了广泛的运用。斜拉桥或悬索桥的环境随机振源来自两方面:一方面指从基础部分传到结构的地面振动及由于大气变化而影响到上部结构的振动(根据动力量测结果,可发现其频谱就是相当丰富的,具有不同的脉动卓越周期,反应了不同地区地质土壤的动力特性);另一方面主要来自过桥车辆的随机振动。

振动测试技术资料

拱桥振动测试 姓名:刘沛 学号:0214185 班级:研14-1班 课程:振动测试技术 年月:2015年7月18日

目录 一振动测试概述 (1) 1 振动分类及描述 (1) 2 振动基本参量表示方法 (1) 3 振动测试仪器分类及配套使用 (3) 4 窗函数的分类及用途 (4) 5 信号采集及分析过程中出现的问题,怎样解决? (7) 二、惯性式速度型与加速度型传感器 (8) 1 惯性式速度传感器的分类 (8) 2 压电式加速度传感器 (9) 三振动特性参数的常用量测方法 (12) 1 振动基本参数的量测 (12) 2 简谐振动频率的量测 (12) 3 机械系统固有频率的测量 (12) 4 简谐振动幅值的测量: (12) 5衰减系数的测量: (13) 6结构动力特性参数量测 (13) 7 稳态正弦激振及测试 (13)

8 瞬态激振及测试 (14) 9 随机激振及测试 (15) 四题目(结构设计) (16) 1 结构设计资料及试验要求 (16) 2.试验目的 (18) 3.试验方法 (18) 4 结果分析 (20) 五概念 (22) 1 功率谱 (22) 2 自相关函数 (22) 3 互相关函数 (23) 4 相干函数 (23) 5 传递函数 (24) 六模态分析 (26) 1 概念 (26) 2 方法分类及理解 (26)

一振动测试概述 1 振动分类及描述 按照运动的表现形式,振动可以分为确定性和非确定性振动(即随机振动)。确定性振动又分为周期性和非周期性振动。周期性振动分为简谐振动和复杂周期振动。非周期运动又分为准周期和瞬态振动。非确定性振动分为平稳随机和非平稳随机,平稳随机又分为各态历经和非各态历经。按振动激励类型分类,振动可分为随机自由振动和随机强迫振动。按振动位移的特征分类,振动可分为:横向振动(振动体上的质点在垂直于轴线的方向产生位移的振动)、纵向振动(振动体的质点沿轴线方向产生位移的振动)和扭转振动(振动体上的质点沿轴线方向产生位移的振动)。周期运动的最简单形式是简谐振动。这种振动的表示方法及特点是描述其他振动形式的基础。一般的周期运动可以借助傅里叶级数表示成一系列简谐振动的叠加,该过程称为谐波分析。非周期运动则需要通过傅里叶积分作谐波分析。 2 振动基本参量表示方法 工程振动测试的主要参数有位移、速度、加速度、激振力、振幅、振动频率、阻尼比及结构的振动模态等。其中前五个参数属于时域测试参数。 下面分别来说明振动基本参量的表示方法及其含义: (1)振幅(A):振幅就是振动过程中振动物体离开平衡位置的最大距离。振动的幅度有三种表示法,即峰值、平均值和有效值。 (2)周期(T):从振动波形来看,连续两次波峰或者波谷之间耗费的时间就是一个振动周期,也就是完成一次振动所需的时间。 (3)频率(f):单位时间内振动循环的次数f,单位是赫兹(Hz)。频率是振动特性的标志,是分析振动原因的重要依据。周期T是物体完成一个振动

振动测试技术模态实验报告

研究生课程论文(2016-2017学年第二学期) 振动测试技术 研究生:

模态试验大作业 0 模态试验概述 模态试验(modal test)又称试验模态分析。为确定线性振动系统的模态参数所进行的振动试验。模态参数是在频率域中对振动系统固有特性的一种描述,一般指的是系统的固有频率、阻尼比、振型和模态质量等。 模态试验中通过对给定激励的系统进行测量,得到响应信号,再应用模态参数辨识方法得到系统的模态参数。由于振动在机械中的应用非常普遍。振动信号中包含着机械及结构的内在特性和运行状况的信息。振动的性质体现着机械运行的品质,如车辆、航空航天设备等运载工具的安全性与舒适性;也反映出诸如桥梁、水坝以及其它大型结构的承载情况、寿命等。同时,振动信号的发生和提取也相对容易因此,振动测试与分析已成为最常用、最基本的试验手段之一。 模态分析及参数识别是研究复杂机械和工程结构振动的重要方法,通常需要通过模态实验获得结构的模态参数即固有频率、阻尼比和振型。模态实验的方法可以分为两大类:一类是经典的纯模态实验方法,该方法是通过多个激振器对结构进行激励,当激振频率等于结构的某阶固有频率,激振力抵消机构内部阻尼力时,结构处于共振状态,这是一种物理分离模态的方法。这种技术要求配备复杂昂贵的仪器设备,测试周期也比较长;另一类是数学上分离模态的方法,最常见的方法是对结构施加激励,测量系统频率响应函数矩阵,然后再进行模态参数的识别。 为获得系统动态特性,常需要测量系统频响函数。目前频响函数测试技术可以分为单点激励单点测量( SISO)、单点激励多点测量( SIMO) 、多点激励多点测量( MIMO)等。单点激励一般适用于较小结构的频响函数测量,多点激励适用于大型复杂机构,如机体、船体或大型车辆机构等。按激励力性质的不同,频响函数测试分为稳态正弦激励、随机激励及瞬态激励三类,其中随机激励又有纯随机、伪随机、周期随机之分。瞬态激励则有快速正弦扫描激励、脉冲激励和阶跃激励等几种方式。按激励力性质的不同,频响函数测试分为稳态正弦激励、随机激励及瞬态激励三类,其中随机激励又有纯随机、伪随机、周期随机之分,瞬态激励则有快速正弦扫描激励、脉冲激励和阶跃激励等几种方式。 振动信号的分析和处理技术一般可分为时域分析、频域分析、时频域分析和时间序列建模分析等。这些分析处理技术从不同的角度对信号进行观察和分析,为提取与设备运行状态有关的特征信息提供了不同的手段。信号的时域分析包括时域统计分析、时域波形分析和时域相关分析。对评价设备运行状态和

机械振动测试题及答案

第一章检测题) 命题人:张雨萌检测人:刘军录 一、命题意图说明:这套试题本着“重视基础,考查能力,体现导向,注重发展”的命题原则,并结合教学实际和学生实际,立足基础,难易适中,做到思想性、科学性、技术性的统一,体现了先进的教学理念,注重基础知识的巩固,从现有能力水平和学生发展潜力角度,全面关注学生的学习。体现课程标准的理念,检测学科核心知识与能力,对学科教学有较好的引导作用,体现了评价功能,贴近学生的生活,充分考虑学生的认知水平,具有鲜明的时代感。本套试题覆盖选修3-4 第一章的所有内容。 二、试卷结构特点: 1.试卷结构(时间60 分钟,全卷共100 分) 2.试卷的基本技术指标 (1)题型及比例 基础知识性试题在试卷总分值中约占60%,中等难度试题在试卷总分值中约占30%,开放性试题的比例约为试卷总分值的10%。 (2)试题的难度简单题占60%,中等题占30%,难题占10%。 (3)试题的数量 第一卷共10道题,第二卷共7 道题,全卷共三道大题,17道小题。 三、试题简说:在本套试卷中,按照选择题和非选择题分类,由易而难,紧扣教材,灵活多样,充分体现了新课程理念,这种考查方式有利于调动学生的学习兴趣,培养和提高参与物理活动的能力。例如第5 小题,考查简谐运动的特点,就是针对机械振动部分的教学内容,让学生学有所获,注重积累,与课本知识联系紧密。第17 小题,考查简谐运动在力学问题上的应用,与必修一、二所学知识相联系,注重探究过程,体现了新课程的教学理念。第一课件网第一课件网 .选择题(共10个小题,每题4 分,共40分。在下列各题中,有的小题只有一个选项正确,有的小题有多个选项正确。全部选对的得4 分,漏选的得2 分,错选、不选的得0 分) 1.关于简谐振动的加速度,下列说法正确的是( ) A.大小与位移成正比,方向一周期变化一次 B.大小不变,方向始终指向平衡位置 C.大小与位移成正比,方向始终指向平衡位置

微振动的高精度测量原理

微振动的测量原理及其应用 吴志超(机械与电子工程学院电子信息工程)指导教师:许海峰 摘要:振动是指描述系统状态的参量(如位移、电压)在其基准值上下交替变化的过程。狭义的指机械振动,即力学系统中的振动。电磁振动习惯上称为振荡。力学系统能维持振动,必须具有弹性和惯性。由于弹性,系统偏离其平衡位置时,会产生回复力,促使系统返回原来位置;由于惯性,系统在返回平衡位置的过程中积累了动能,从而使系统越过平衡位置向另一侧运动。正是由于弹性和惯性的相互影响,才造成系统的振动。 对振动的研究意义非常重大。通过掌握振动的基本理论和分析方法,用以确定和限制振动时,工程结构和机械产品的性能、寿命及安全的有害影响;本文介绍了接触式和非接触式两种微振动的测量原理,可以运用振动理论去创造和设计新型振动设备、仪表及自动化装置。主题词:微振动;测量原理;应用 Abstract:Vibration refers to describe the system state parameters (such as displacement, voltage) in its benchmark fluctuation variations of process. In its narrow sense means mechanical vibration, namely the mechanical system of vibration. Electromagnetic vibration habit is called on oscillation. Mechanical system can maintain vibration, must have the flexibility and inertia. Due to its equilibrium elasticity, system deviation position, can produce reply force, prompting system; return to its original position Because of inertia, system in return balance position process accumulated the kinetic energy, so that the system across to the other side movement balance position. Because of elasticity and inertia mutual influence, just cause system vibration. The vibration research significance of very significant. Through mastery of vibration of basic theory and analysis method to determine and restrictions vibrating engineering structural and mechanical product performance, the life and the safety of harmful influence; This paper introduces the contact and contact-less two micro vibration measuring principle of vibration theory, and can be used to create and design a new vibration equipment,

振动测试技术方案设计

振动测试技术案 采用加速度计作为振动传感器,在各种工况下,对被测系统多个测点的加速度信号进行测量,通过FFT频谱分析,得到结构的固有频率,描述系统的振动特性。 却迪哎怯嗟惟悟号追辿蟹數赛紫蚩胖讣竿机 图1振动测试硬件流程图 、传感器指标分析 最常用的振动测量传感器按各自的工作原理可分为压电式、压阻式、电容式、电感式以及光电式。压电式加速度传感器因为具有测量频率围宽、量程大、体积小、重量轻、对被测件的影响小以及安装使用便,所以成为最常用的振动测量传感器。在一般通用振动测量时,用户主要关心的是加速度计传感器的技术指标,包括灵敏度、带宽、量程、分辨率、输出电气特性等。 (1)灵敏度 传感器的灵敏度是传感器的最基本指标之一,灵敏度的大小直接影响到传感器对振动信号的测量。不难理解,传感器的灵敏度应根据被测振动量(加速度值)大小而定,但由于加速度传感器是测量振动的加速度值,而在相同的位移幅值条件下加速度值与信号的频率平成正比,所以不同频段的加速度信号大小相差甚大。选择加速度传感器灵敏度时应对信号有充分的估计,最常用的振动测量压电式加速度计

灵敏度,电压输出型(IEPE型)为50?100 mV/g,电荷输出型为 1 ?50 PC/g。 (2)带宽 传感器的带宽是指传感器在规定的频率响应幅值误差( 士5%, 士10%, 士3dB)传感器所能测量的频率围。频率围的高,低限分别称为高、低频截止频率。截止频率与误差直接相关,所允的误差围大则其频率围也就宽。作为一般原则,传感器的高频响应取决于传感器的机械特性,而低频响应则由传感器和后继电路的综合电气参数所决定。高频截止频率高的传感器必然是体积小,重量轻,反之用于低频测量的高灵敏度传感器相对来说则一定体积大和重量重。 (3)量程 加速度传感器的测量量程是指传感器在一定的非线性误差围所能测量的最大测量值。通用型压电加速度传感器的非线性误差大多为1%。作为一般原则,灵敏度越高其测量围越小,反之灵敏度越小则测量围越大。IEPE(电压)输出型压电加速度传感器的测量围是由在线性误差围所允的最大输出信号电压所决定,最大输出电压量值一般 都为士5V。通过换算就可得到传感器的最大量程,即等于最大输出电压与灵敏度的比值。需要指出的是IEPE压电传感器的量程除受非线性误差大小影响外,还受到供电电压和传感器偏置电压的制约。当 供电电压与偏置电压的差值小于传感器技术指标给出的量程电压时,传感器的最大输出信号就会发生畸变。因此IEPE型加速度传感器的偏置电压稳定与否不仅影响到低频测量也可能会使信号失真,这种现 象在高低温测量时需要特别注意,当传感器的置电路在非室温条件下不稳定时,传感器的偏置电压很可能不断缓慢地漂移而造成测量信号忽大忽小。 (4)分辨率 即能测量到的最小加速度变化量。加速度传感器的分辨率受其噪声的限制,输出噪声的大小随频带宽度而变化。 (5)输出电气特性

汽车的振动测试技术

汽车的振动测试技术-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

汽车的振动测试技术 汽车供应商们采用先进的振动测试技术来保证汽车在行驶中的安静和平稳。汽车上的零件和组装件必须经受振动可控测试技术的检验。 汽车内部从仪表板到桌椅,从安全气囊传感器到引擎注油泵,诸多零部件都要经过精确振动模式和幅度的测试。 在有些情况下,要用振动测试法验证汽车的各种装置在一般路面条件下不会损坏。在另一些情况下,通过振动测试来识别机械发出的烦人的噪声。 在振动控制的工业中,开发成功的数字信号处理技术有可能在实验室和生产线上制造成更加贴近真实的振动环境。今天,振动测试除了使用随机波、正弦波和冲击波的传统方法,又增加了更加复杂的方法,比如随机波上加正弦波和波形复制。 正如名称所示,随机正弦波是把随机振动与正弦波结合起来形成复杂的振动形式;波形复制振动模仿出真实的汽车振动环境。随机正弦波振动把多个正弦波与具有宽频带的噪声结合在一起。正弦波振动可以是固定的或者是扫描式的谐波或非谐波振动,而且在整个频带内的振动幅度是可变的。就模仿在路面变化行驶中的随机振动的汽车来说,其引擎转速增加或减少时,随机正弦波振动是很好的测试方法。 实际应用 采用随机正弦波振动和波形复制方法对汽车进行测试,可真实地再现汽车行驶中的实际环境,用作设计验证和质量控制。 ?仪表板 许多汽车制造厂对仪表板组件进行振动测试以检查其发出的咯吱声和卡嗒声。这一项是新车购买者可能最不满意的地方,在保证金中占很大份额。 为了测试建造了专用振动台,它不使用风扇,为的是造成清静的环境来验证振动中的仪表板是否有咯吱声和卡嗒声。因为没有通风散热,只能在温升超过工作温度时做短时间的振动测试,然后测试要暂停一会儿让设备冷却下来。 除振动台外,所有能发出噪声的仪器设备,包括振动台的控制器都应放在测试室的列边。遥控面板和显示器要悬挂在测试装置的上面,便于工作人员能听见噪声并控制测试过程。 用于检验咯吱声和卡嗒声的振动模式,由随机波、扫描正弦波和代表负荷的多段波形所构成。其振动幅度要控制在汽车正常行驶中的额定实验值内。为了避免振动过于猛烈。要维修部件并做好紧固工作。 在振动测试中,操作人员起着关键性的作用,例如施加扫描式正弦波来重复加速引擎的振动模式,此时可能要加上几次扫频来发现异常的噪声。由于咯吱声和卡嗒声难于发现起因,操作者必须停止对仪表板做下一步的操作,并且用于动方式来控制振动频率和振幅,检查产生噪音的真正原因。这样才能找到产生噪声的机理,许多设备生产厂也采用这种方法作为质量控制的手段。

《机械振动》测试题(含答案)

《机械振动》测试题(含答案) 一、机械振动选择题 1.如图所示,PQ为—竖直弹簧振子振动路径上的两点,振子经过P点时的加速度大小为6m/s2,方向指向Q点;当振子经过Q点时,加速度的大小为8m/s2,方向指向P点,若PQ之间的距离为14cm,已知振子的质量为lkg,则以下说法正确的是() A.振子经过P点时所受的合力比经过Q点时所受的合力大 B.该弹簧振子的平衡位置在P点正下方7cm处 C.振子经过P点时的速度比经过Q点时的速度大 D.该弹簧振子的振幅一定为8cm 2.某同学用单摆测当地的重力加速度.他测出了摆线长度L和摆动周期T,如图(a)所示.通过改变悬线长度L,测出对应的摆动周期T,获得多组T与L,再以T2为纵轴、L为横轴画出函数关系图像如图(b)所示.由此种方法得到的重力加速度值与测实际摆长得到的重力加速度值相比会() A.偏大B.偏小C.一样D.都有可能 3.下列说法中不正确的是( ) A.将单摆从地球赤道移到南(北)极,振动频率将变大 B.将单摆从地面移至距地面高度为地球半径的高度时,则其振动周期将变到原来的2倍C.将单摆移至绕地球运转的人造卫星中,其振动频率将不变 D.在摆角很小的情况下,将单摆的振幅增大或减小,单摆的振动周期保持不变 4.如图所示,一端固定于天花板上的一轻弹簧,下端悬挂了质量均为m的A、B两物体,平衡后剪断A、B间细线,此后A将做简谐运动。已知弹簧的劲度系数为k,则下列说法中正确的是()

A .细线剪断瞬间A 的加速度为0 B .A 运动到最高点时弹簧弹力为mg C .A 运动到最高点时,A 的加速度为g D .A 振动的振幅为 2mg k 5.如图所示,质量为m 的物块放置在质量为M 的木板上,木板与弹簧相连,它们一起在光滑水平面上做简谐振动,周期为T ,振动过程中m 、M 之间无相对运动,设弹簧的劲度系数为k 、物块和木板之间滑动摩擦因数为μ, A .若t 时刻和()t t +?时刻物块受到的摩擦力大小相等,方向相反,则t ?一定等于2 T 的整数倍 B .若2 T t ?= ,则在t 时刻和()t t +?时刻弹簧的长度一定相同 C .研究木板的运动,弹簧弹力充当了木板做简谐运动的回复力 D .当整体离开平衡位置的位移为x 时,物块与木板间的摩擦力大小等于 m kx m M + 6.如图所示,弹簧的一端固定,另一端与质量为2m 的物体B 相连,质量为1m 的物体A 放在B 上,212m m =.A 、B 两物体一起在光滑水平面上的N 、N '之间做简谐运动,运动过程中A 、B 之间无相对运动,O 是平衡位置.已知当两物体运动到N '时,弹簧的弹性势能为p E ,则它们由N '运动到O 的过程中,摩擦力对A 所做的功等于( ) A .p E B . 12 p E C .13 p E D . 14 p E 7.如图所示,将小球甲、乙、丙(都可视为质点)分别从A 、B 、C 三点由静止同时释放,最后都到达竖直面内圆弧的最低点D ,其中甲是从圆心A 出发做自由落体运动,乙沿弦轨道从一端B 到达最低点D ,丙沿圆弧轨道从C 点运动到D ,且C 点很靠近D 点,如果忽略一切摩擦阻力,那么下列判断正确的是( ) A .丙球最先到达D 点,乙球最后到达D 点

土木工程结构振动控制技术及其应用研究.

万方数据

万方数据 万方数据 《6? 善s. 曼s. 蓑s. 辎4. 图6模拟结构阻尼比随TLMD频率比变化曲线 模拟结构阻尼比达到极值。频率比在0.96~0.98区间,即频率比在最优值附近改变±1%时,模拟结构阻尼比变化较为平缓且均在6%以上。

实桥通常采用多重TLMD(MTLMD进行减振,为此在室内进行了MTLMD减振性能试验。分别将1~4台频率和阻尼均调为优化值的减振器固定到上述模拟结构上进行试验,得到模拟结构阻尼比随TLMD总质量比变化的曲线如图7所示,按TMD 理论计算的相应曲线亦绘于图7。从图7可知,模拟结构的阻尼比随TLMD总质量比增加而增大,4台TLMD(质量比1.91%时,模拟结构阻尼比达到7.13%,抑振效果非常好。1~4台TLMD 的试验值与同质量比下的TMD理论计算值比较,模拟结构阻尼比分别提高27%、23%、35%和46%,说明新型TLMD双调谐减振器由于同时具有TLD 和TMD的抑振效能,抑振性能在TMD基础上有大幅提升。 图7MTLMD抑振性能的试验值与TMD理论僵对比3.1.3实桥试验 选取九江长江大桥三大拱中2根典型吊杆(C32A32和C10A10,对该新型减振器进行了减振性能实桥试验。在每根吊杆上安装4台活动质量均为10kg的减振器,如图8所示。首先撤下吊杆原有TMD减振器,分别进行激振并得到吊杆自身的自振特性;然后安装试验用新型减振器TLMD对吊杆激振,进行新型TLMD减振性能试验;最后对撤下的既有TMD减振器进行检修,使之恢复最佳状态,重新安装到吊杆上进行综合减振性能试验。试验结果如图9所示。 由图9可知,吊杆C32A32和C10A10在TLMD质量比分别为1.57%与1.56%的情形下, 图8新型TLMD实桥安装 图9实桥试验结果 目标振型阻尼比达到了5.09%和3.58%,阻尼分别提高了50.9倍和35.8倍。对非目标振型,结构阻尼比也有所提高。对比原TMD在质量比为1.9%时,目标振型阻尼比为3%左右,TLMD具有更好的减振效果。TLMD与TMD减振器共同工作时,目标振型的结构阻尼比进一步增加到5.47%和4.98%,非目标振型的结构阻尼比有更明显的提高。

机械振动测试

机械振动测试 一、单选题(共 10 小题) 1、做简谐运动的物体,振动周期为2s,运动经过平衡位置时开始计时,那么当t=1.2s时,物体: () A.正在做加速运动,加速度的值正在增大 B.正在做减速运动,加速度的值正在减小 C.正在做减速运动,加速度的值正在增大 D.正在做加速运动,加速度的值正在减小 2、使物体产生振动的必要条件: () A.物体所受到的各个力的合力必须指向平衡位置; B.物体受到的阻力等于零; C.物体离开平衡位置后受到回复力的作用,物体所受的阻力足够小; D.物体离开平衡位置后受到回复力f的作用,且f=-kx(x为对平衡位置的位移). 3、如图是演示简谐运动图像的装置,当沙漏斗下面的薄木板N被匀速地拉出时,振动着的漏斗中漏出的沙在板上形成的曲线显示出摆的位移随时间变化的关系.板上的直线OO1代表时间轴,右图中是两个摆中的沙在各自板上形成的曲线,若板N1和板N2拉动的速度v1和v2的关系为v2=2v1,则板N1、N2上曲线所代表的周期T1和T2的关系为: A.T2=T1. B.T2=2T1. C.T2=4T1.() 4、两个弹簧振子,甲的固有频率为2f,乙的固有频率为3f,当它们均在频率为4f的策动力作用下做受迫振动,则: () A.甲的振幅较大,振动频率为2f B.乙的振幅较大,振动频率为3f C.甲的振幅较大,振动频率为4f D.乙的振幅较大,振动频率为4f 5、做简谐运动的物体每次通过同一位置时,可能不相同的物理量有 : ()

A.速度 B.加速度 C.回复力 D.动能. 6、把调准的摆钟由北京移到赤道,这钟: () A.变慢了,要使它变准应该增加摆长 B.变慢了,要使它变准应该减短摆长 C.变快了,要使它变准应该增加摆长 D.变快了,要使它变准应该减短摆长 7、作受迫振动的物体到达稳定状态时: () A.一定作简谐运动 B.一定做阻尼振动C.一定按驱动力的频率振动 D.一定发生共振 8、用长为l的细线把一个小球悬挂在倾角为θ的光滑斜面上,然后将小球偏离自然悬挂的位置拉到A点,偏角α≤5°,如图所示.当小球从A点无初速释放后,小球在斜面上往返振动的周期为: () 9、一个单摆做简谐运动,周期为T,在下列情况中,会使振动周期增大的是: ()A.重力加速度减小 B.摆长减小 C.摆球的质量增大 D.振幅减小 10、关于简谐运动,下列说法中错误的是: ()A.回复力的方向总是与位移方向相反 B.加速度的方向总是与位移方向相反 C.速度方向有时与位移方向相同,有时与位移方向相反 D.简谐运动属于匀变速直线运动 二、多选题(共 6 小题) 11、弹簧振子做简谐运动时,各次经过同 一位置,一定相等的物理量是 : () A.速度 B.加速度 C.动能 D.弹性势能 12、(如图),则下列说法中正确的是: () A.t1和t2时刻质点速度相同; B.从t1到t2的这段时间内质点速度方向和加速度方向相同; C.从t2到t3的这段时间内速度变大,而加速度变小; D.t1和t3时刻质点的加速度相同. 13、作简谐振动的物体向平衡位置运动时,速度越来越大的原因是: () A.回复力对物体做正功,使其动能增加; B.物体惯性的作用; C.物体的加速度在增加; D.物体的势能在转化为动能. 14、图所示为质点的振动图像,下列判断中正确的是: A.质点振动周期是8s;

总复习(振动测试与分析)

“振动测试与分析”主要内容 概述 振动信号的分类 振动测试及其主要任务 振动系统的力学模型及参数 振动系统的动力学模型 振动系统的主要参数 结构振动系统三元素(件) 单自由度无阻尼自由振动特性 有阻尼系统的自由振动特性 周期振动的峰值、有效值和平均值及其相互关系周期振动的频谱表示法 振动基本参量(动态特性)的常用测试方法简谐振动幅值的测量 简谐振动频率的测量 衰减系数及相对阻尼系数的测量 同频简谐振动相位差的测量 质量或刚度的测量 振动测量系统及其主要特性 振动测试系统组成 振动测试系统的主要特性参数 振动信号传感器 测振传感器 测振传感器分类 惯性式传感器力学原理

位移计型惯性式拾振器的构成特点 加速度计的构成特点 动圈型磁电式速度拾振器 压电式加速度计及其应用问题 电涡流传感器 振动信号处理和分析(基本理论) 数字信号分析 数据处理的基本知识 傅氏级数及其复数表达法 傅氏积分变换,傅氏变换的主要性质 典型函数的傅氏变换 FT、FFT、选带傅氏分析(ZOOM-FFT) LT&ZT 混淆与采样 泄漏与窗函数 随机振动统计特性 数字特征 概率分布函数 概率密度函数 高斯分布和瑞利分布 二元随机变量的概率分布 相关分析(自相关函数,互相关函数) 实验模态分析 多自由度系统实验模态分析(频域方法,时域方法)多自由系统响应的模态迭加法 振动系统物理模型和模态模型间的转换

频响函数与模态参数的关系 频响函数的留数表示法 模态试验设计(试件支承状态,测点及测量方法,试验频段的选择,激振器的支承) 模态试验常用激励方法(步进式正弦激励法,自动正弦慢扫描激励,快速扫描正弦激励,冲击激励,纯随机激励,伪随机激励,周期随机激励,瞬态随机激励) 结构系统频响函数的估计(H1、H2估计,模态振型标准化)

机械振动测试系统综述

机械振动测试系统综述 翟 慧 强 张 金 萍 于 玲 王 丹 (沈阳化工大学 机械工程学院,辽宁 沈阳 110142) 摘 要:机械振动测试技术在工业生产中起着十分重要的作用,为此设计和制造高效的机械振动测试系统便成为测试技术的重要内容。本文首先概述了机械振动测试系统的发展历程。总结和分析了发展机械振动 测试系统的基本组成和应用理论。根据不同原理列举了几种机械振动测试系统的类型并对不同的机械振动 测试系统进行分析,探讨了他们的优点和不足。最后在此基础上分析了机械振动测试系统的几个发展趋势和 系统建设中仍然要注意的抗干扰问题和故障诊断问题。 关键词:机械振动测试系统;测试技术;抗干扰;故障诊断 1 引言 振动问题广泛存在于热门的生活和生产当中。建筑物、机器等在内界或者外界的激励下就会产生振动。而机械振动常常会破坏机械的正常工作,甚至会降低机械的使用寿命并对机器造成不可逆的损坏多数的机械振动是有害的。因而对振动的研究不仅有利于改善人们的生活环境和生活水平,也有助于提高机械设备的使用寿命,提高人们的生产效率。正因如此振动测试在生产和科研等多方面都有着十分重要的地位[1]。为了控制振动,将振动给人们带来的危害降至最低,就需要我们了解振动的特性和规律,对振动进行测试和研究。振动测试系统应运而生。 振动测试系统有着较为长久的发展历史,是与人类社会的发展有着紧密的联系。随着计算机技术和相关高科技技术的问世和发展,振动测试系统也有了飞跃性的发展。振动测试系统从最早的简单机械设备的应用到如今的先进的计算机技术和设备的应用。从刚开始的检测人员的耳朵来进行测量、判断和计算出大概的故障点的原始方法到现在的计算机控制、存储、处理数据的处理[2]。无不体现出振动测试系统的长足发展和飞跃式的进步。与此同时,机械振动测试在理论方面也有了长足的发展,1656年惠更斯首次提出物理摆的理论并且创造出了单摆机械钟到现今的自动控制原理和计算机的日趋完善,人们对机械振动分析的研究已日趋成熟。而伴随着振动测试系统的进步和日臻成熟,其在国民的日常生活和生产中所扮演的角色也愈发的重要。 2机械振动测试系统的基本理论与组成 机械振动测试就是利用现代一些测试手段,对所研究物体的机械振动进行测量,并对测得的信号进行更细致的分析,以期获得在各种工作状态下物体的机械振动特性,从而判断物体的机械振动特性是否符合要求。 振动测试系统主要由传感器、信号调节部分、数模转换器、信号处理部分和数据记录部分、反馈部分等组成。传感器是将被测量转换成某种电信号的部件。是整个测试系统最重要的组成部分。信号调节部分是把传感器的输出信号转换成适合于进一步传输和处理的形式。经过加工处理使得原始信号更加便于分析和处理。这种信号的转换多数是电信号直接的转换。信号处理部分是对来自信号调节环节的信号进行各种运算和分析。这也是测试的核心意义所在,包括对时域和频域的分析,已得到各种参数。数模转换器是采用计算机等进行测试、控制系统时进行模拟信号与数字信号的相互转换的环节。测试系统的主要作用是更加便捷易懂的将初试信号转换成某种信号进行提取分析。因此最重要的是信号不能失真,不出现扰动。这就对测试系统提出了较为严格的要求[3]。 3.振动测试系统的分类 近几年来,振动测试理论与方法都有了很大的发展。目前振动测试方法按其原理不同可以分为四类。直观类、光学类、机械类和电测类。直观法操作简便,不受各种器材的限制。

相关文档
相关文档 最新文档