文档库 最新最全的文档下载
当前位置:文档库 › 专题:平面向量常见题型与解题指导讲解学习

专题:平面向量常见题型与解题指导讲解学习

专题:平面向量常见题型与解题指导讲解学习
专题:平面向量常见题型与解题指导讲解学习

平面向量常见题型与解题指导

一、考点回顾

1、本章框图

2、高考要求

1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。

2、掌握向量的加法和减法的运算法则及运算律。

3、掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件。

4、了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。

5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。

6、掌握线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式。

7、掌握正、余弦定理,并能初步运用它们解斜三角形。

8、通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力。

3、热点分析

对本章内容的考查主要分以下三类:

1.以选择、填空题型考查本章的基本概念和性质.此类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题.

2.以解答题考查圆锥曲线中的典型问题.此类题综合性比较强,难度大,以解析几何中的常规题为主.

3.向量在空间中的应用(在B类教材中).在空间坐标系下,通过向量的坐标的表示,运用计算的方法研究三维空间几何图形的性质.

在复习过程中,抓住源于课本,高于课本的指导方针.本章考题大多数是课本的变式题,即源于课本.因此,掌握双基、精通课本是本章关键.分析近几年来的高考试题,有关平面向量部分突出考查了向量的基本运算。对于和解析几何相关的线段的定比分点和平移等交叉内容,作为学习解析几何的基本工具,在相关内容中会进行考查。本章的另一部分是解斜三角形,它是考查的重点。总而言之,平面向量这一章的学习应立足基础,强化运算,重视应用。考查的重点是基础知识和基本技能。

4、复习建议

由于本章知识分向量与解斜三角形两部分,所以应用本章知识解决的问题也分为两类:一类是根据向量的概念、定理、法则、公式对向量进行运算,并能运用向量知识解决平面几何中的一些计算和证明问题;另一类是运用正、余弦定理正确地解斜三角形,并能应用解斜三角形知识解决测量不可到达的两点间的距离问题。

在解决关于向量问题时,一是要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,进一步加深对“向量”这一二维性的量的本质的认识,并体会用向量处理问题的优越性。二是向量的坐标运算体现了数与形互相转化和密切结合的思想,所以要通过向量法和坐标法的运用,进一步体会数形结合思想在解决数学问题上的作用。

在解决解斜三角形问题时,一方面要体会向量方法在解三角形方面的应用,另一方面要体会解斜三角形是

重要的测量手段,通过学习提高解决实际问题的能力。

二、常见题型分类

题型一:向量的有关概念与运算

此类题经常出现在选择题与填空题中,在复习中要充分理解平面向量的相关概念,熟练掌握向量的坐标运算、数量积运算,掌握两向量共线、垂直的充要条件.

例1:已知a 是以点A (3,-1)为起点,且与向量b = (-3,4)平行的单位向量,则向量a 的终点坐标是 . 思路分析:与a 平行的单位向量e =±||a 方法一:设向量a 的终点坐标是(x ,y ),则a =(x -3,y +1),则题意可知

???

????-==???????-==???=+=++-55185512101334229

y x 1y x 13)()(或 解得)+()-(y x y x ,故填 (512,-51)或(518,-59) 方法二 与向量b = (-3,4)平行的单位向量是±

51(-3,4),故可得a =±(-53,5

4),从而向量a 的终点坐标是(x ,y )= a -(3,-1),便可得结果. 点评:向量的概念较多,且容易混淆,在学习中要分清、理解各概念的实质,注意区分共线向量、平行向量、同向向量、反向向量、单位向量等概念.

例2:已知| a |=1,| b |=1,a 与b 的夹角为60°, x =2a -b ,y =3b -a ,则x 与y 的夹角的余弦是多少?

思路分析:要计算x 与y 的夹角θ,需求出|x |,|y |,x ·y 的值.计算时要注意计算的准确性.

解:由已知|a |=|b |=1,a 与b 的夹角α为60°,得a ·b =|a ||b |cosα=

21. 要计算x 与y 的夹角θ,需求出|x |,|y |,x ·y 的值.

∵|x |2=x 2=(2a -b )2=4a 2-4a ·b +b 2=4-4×

21+1=3, |y |2=y 2=(3b -a )2=9b 2-6b ·a +a 2=9-6×2

1+1=7. x ·y =(2a -b )·(3b -a )=6a ·b -2a 2-3b 2+a ·b

=7a ·b -2a 2-3b 2 =7×21-2-3=-2

3, 又∵x ·y =|x ||y |cosθ,即-2

3=3×7cosθ, ∴cosθ=-1421 点评:①本题利用模的性质|a |2=a 2,②在计算x ,y 的模时,还可以借助向量加法、减法的几何意义获得:如图所示,设AB =b , AC =a , AD =2a ,∠BAC =60°.由向量减法的几何意义,得BD =AD -AB =2a -b .由余弦定理易得|BD |=3,即|x |=3,同理可得|y |=7.

题型二:向量共线与垂直条件的考查

例1.平面直角坐标系中,O 为坐标原点,已知两点A(3, 1),B(-1, 3), 若点C 满足OC OA OB =α+βu u u r u u u r u u u r ,其

中α,β∈R 且α+β=1,求点C 的轨迹方程。.

解:(法一)设C (x ,y ),则OC =(x ,y ),由OC =(x ,y )= α(3,1)+ β(-1,3)=(3α-β, α+3β)

∴???+=-=β

αβα33y x , (可从中解出α、β)又∵α+β=1 消去α、β得x +2y -5=0

(法二) 利用向量的几何运算,考虑定比分点公式的向量形式,结合条件知:A ,B ,C 三点共线,故点C 的轨迹方程即为直线AB 的方程x +2y -5=0,

例2.已知平面向量a =(3,-1),b =(21, 2

3).(1) 若存在实数k 和t ,便得x =a +(t 2-3)b , y =-k a +t b ,

且x ⊥y ,试求函数的关系式k =f(t);(2) 根据(1)的结论,确定k =f(t)的单调区间.

思路分析:①欲求函数关系式k=f(t),只需找到k 与t 之间的等量关系,k 与t 之间的等量关系怎么得到?②求函数单调区间有哪些方法?(导数法、定义法)导数法是求单调区间的简捷有效的方法?

解:(1)法一:由题意知x =(23322--t ,2

23232--t ), y =(2

1t -3k ,23t +k),又x ⊥y 故x · y =23322--t ×(2

1t -3k )+223232--t ×(23t +k)=0. 整理得:t 3-3t -4k =0,即k =41t 3-4

3t. 法二:∵a =(3,-1),b =(21, 2

3), ∴. a =2,b =1且a ⊥b ∵x ⊥y ,∴x · y =0,即-k a 2+t(t 2-3)b 2=0,∴t 3-3t -4k =0,即k =

41t 3-43t (2) 由(1)知:k =f(t) =41t 3-43t ∴k ˊ=f ˊ(t) =43t 3-4

3, 令k ˊ<0得-1<t <1;令k ˊ>0得t <-1或t >1.

故k =f(t)的单调递减区间是(-1, 1 ),单调递增区间是(-∞,-1)和(1,+∞).

点评: 第(1)问中两种解法是解决向量垂直的两种常见的方法:一是先利用向量的坐标运算分别求得两个向量的坐标,再利用向量垂直的充要条件;二是直接利用向量垂直的充要条件,其过程要用到向量的数量积公式及求模公式,达到同样的求解目的(但运算过程大大简化,值得注意).第(2)问中求函数的极值运用的是求导的方法,这是新旧知识交汇点处的综合运用.

例3: 已知平面向量a ?=(3,-1),b ?=(21,2

3),若存在不为零的实数k 和角α,使向量c ?=a ?+(sin

α-3)b ?, d ?=-k a ?+(sin α)b ?,且c ?⊥d ?,试求实数k 的取值范围.

解:由条件可得:k =41( sin α-23)2-16

9,而-1≤sin α≤1, ∴当sin α=-1时,k 取最大值1; sin α=1时,k 取最小值-

21. 又∵k ≠0 ∴k 的取值范围为 1[,0)(0,1]2

-U . 点拨与提示:将例题中的t 略加改动,旧题新掘,出现了意想不到的效果,很好地考查了向量与三角函数、不等式综合运用能力.

例4:已知向量)1,2(),2,1(-==,若正数k 和t 使得向量

t

k t 1)1(2+-=++=与垂直,求k 的最小值. 解:0)1(])1([02=+-?++=??⊥t

k t 即 0)1(112222=?+-?+++-?t k t

t t k ∵)1,2(),2,1(-==b a ,∴|a |=3,|b |=3

?=-2+2 , 代入上式 -3k +32112≥+=+t

t t t 当且仅当t=t 1,即t=1时,取“=”号,即k 的最小值是2.

题型三:向量的坐标运算与三角函数的考查

向量与三角函数结合,题目新颖而又精巧,既符合在知识的“交汇处”构题,又加强了对双基的考查. 例7.设函数f (x )=a · b ,其中向量a =(2cos x , 1), b =(cos x ,3sin2x ), x ∈R.(1)若f(x )=1-3且x ∈[-3π,3π],求x ;(2)若函数y =2sin2x 的图象按向量c =(m , n) (m ﹤2

π)平移后得到函数y =f(x )的图象,求实数m 、n 的值.

思路分析:本题主要考查平面向量的概念和计算、平移公式以及三角函数的恒等变换等基本技能,

解: (1)依题设,f(x )=(2cos x ,1)·(cos x ,3sin2x )=2cos 2x +3sin2x =1+2sin(2x +6

π) 由1+2sin(2x +6π)=1-3,得sin(2x +6

π)=-23. ∵-3π≤x ≤3π , ∴-2π≤2x +6π≤65π, ∴2x +6π=-3π, 即x =-4

π. (2)函数y =2sin2x 的图象按向量c =(m , n )平移后得到函数y =2sin2(x -m)+n 的图象,即函数y =f(x )的图象.

由(1)得f (x )=1)12(2sin 2++

πx ∵m <2π, ∴m =-12π,n =1.

平面向量常见题型与解题方法归纳学生版

平面向量常见题型与解题方法归纳 (1) 常见题型分类 题型一:向量的有关概念与运算 例1:已知a是以点A(3,-1)为起点,且与向量b = (-3,4)平行的单位向量,则向量a的终点坐标是. 例2:已知| a |=1,| b |=1,a与b的夹角为60°, x =2a-b,y=3b-a,则x与y的夹角的余弦是多少 题型二:向量共线与垂直条件的考查 r r r r 例1(1),a b r r为非零向量。“a b⊥r r”是“函数()()() f x xa b xb a =+?-

为一次函数”的 A 充分而不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件 (2)已知O ,N ,P 在ABC ?所在平面内,且 ,0OA OB OC NA NB NC ==++=,且PA PB PB PC PC PA ?=?=?,则点O ,N ,P 依次是ABC ?的 A.重心 外心 垂心 B.重心 外心 内心 C.外心 重心 垂心 D.外心 重心 内心 例2.已知平面向量a =(3,-1),b =(21, 2 3).(1) 若存在实数k 和t ,便得x =a +(t 2-3)b , y =-k a +t b ,且x ⊥y ,试求函数的关系式k =f(t);(2) 根据(1)的结论,确定k =f(t)的单调区间. 例3: 已知平面向量a ?=(3,-1),b ?=(2 1,23),若存在不为零的实数k 和角α,使向量c ?=a ?+(sin α -3)b ?, d ?=-k a ?+(sin α)b ?,且c ?⊥d ?,试求实数k 的

取值范围. 例4:已知向量)1,2(),2,1(-==b a ,若正数k 和t 使得向量 b t a k y b t a x 1)1(2 +-=++=与垂直,求k 的最小值. 题型三:向量的坐标运算与三角函数的考查 向量与三角函数结合,题目新颖而又精巧,既符合在知识的“交汇处”构题,又加强了对双基的考查. 例7.设函数f (x )=a · b ,其中向量a =(2cos x , 1), b =(cos x ,3sin2x ), x ∈R.(1)若f(x )=1-3且x ∈[-

高中数学必修四平面向量知识归纳典型题型(经典)

一,向量重要结论 (1)、向量的数量积定义:||||cos a b a b θ?= 规定00a ?=, 22||a a a a ?== (2)、向量夹角公式:a 与b 的夹角为θ,则cos |||| a b a b θ?= (3)、向量共线的充要条件:b 与非零向量a 共线?存在惟一的R λ∈,使b a λ=。 (4)、两向量平行的充要条件:向量11(,)a x y =,22(,)b x y =平行?12210x y x y -= (5)、两向量垂直的充要条件:向量a b ⊥0a b ??=?12120x x y y += (6)、向量不等式:||||||a b a b +≥+,||||||a b a b ≥? (7)、向量的坐标运算:向量11(,)a x y =,22(,)b x y =,则a b ?=1212x x y y + (8)、向量的投影:︱b ︱cos θ=||a b a ?∈R ,称为向量b 在a 方向上的投影投影的绝对值称为射影 (9)、向量:既有大小又有方向的量。 向量不能比较大小,但向量的模可以比较大小。相等 向量:长度相等且方向相同的向量。 (10)、零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a = 0 ?|a |=0 由于0的方向是任意的, 且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) (11)、单位向量:模为1个单位长度的向量 向量0a 为单位向量?| 0a |=1 (12)、平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b (即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 注:解析几何与向量综合时可能出现的向量内容: (1) 给出直线的方向向量()k u ,1= 或()n m u ,= ,要会求出直线的斜率; (2)给出+与AB 相交,等于已知+过AB 的中点; (3)给出0 =+,等于已知P 是MN 的中点; (4)给出()+=+λ,等于已知Q P ,与AB 的中点三点共线; (5)给出以下情形之一:①AC AB //;②存在实数,AB AC λλ=使;③若存在实数,,1,O C O A O B αβαβαβ+==+且使,等于已知C B A ,,三点共线. (6) 给出λλ++=1OP ,等于已知P 是AB 的定比分点,λ为定比,即λ= (7) 给出0=?,等于已知MB MA ⊥,即AMB ∠是直角,给出0<=?m ,等于已知AMB ∠是钝角, 给出0>=?m ,等于已知 AMB ∠是锐角。 ( 8)给出=??λ,等于已知MP 是AMB ∠的平分线/ (9)在平行四边形ABCD 中,给出0)()(=-?+,等于已知ABCD 是菱形;

平面向量经典例题讲解

平面向量经典例题讲解 讲课时间:___________姓名:___________课时:___________讲课教师:___________ 一、选择题(题型注释) 1. 空间四边形OABC 中,OA a =u u u r r ,OB b =u u u r r , OC c =u u u r r ,点M 在OA 上,且MA OM 2=,N 为BC 的 中点,则MN u u u u r =( ) A C 【答案】B 【解析】 试 题 分 析 : 因 为 N 为 BC 的中点,则 , ,选 B 考点:向量加法、减法、数乘的几何意义; 2.已知平面向量a ,b 满足||1= a ,||2= b ,且()+⊥a b a ,则a 与b 的夹角是( ) (A (B (C (D 【答案】D 【解析】 试题分析:2()()00a b a a b a a a b +⊥∴+?=∴+?=r r r r r r r r r Q ,||1=a ,||2=b ,设夹角为θ,则 考点:本题考查向量数量积的运算 点评:两向量垂直的充要条件是点乘积得0,用向量运算得到cos θ的值,求出角 3.若OA u u r 、 OB u u u r 、OC uuu r 三个单位向量两两之间夹角为60u u r 【答案】D 【解析】 试题分析 :ΘOA u u r 、OB u u u r 、OC uuu r 三个单位向量两两之间夹角为 60° 6= r 考点:向量的数量积. 4.在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F , 若AC a =u u u r r ,BD b =u u u r r ,则AF =u u u r ( ) A.1142a b +r r B.1233a b +r r C.1124a b +r r D.2133 a b +r r 【答案】D 【解析】 试题分析:由题意可知,AEB ?与FED ?相似,且相似比为3:1,所以由向量加减法 的平行四边形法则可知,,AB AD a AD AB b +=-=u u u r u u u r r u u u r u u u r r ,解得,故D 正确。 考点:平面向量的加减法 5.在边长为1的等边ABC ?中,,D E 分别在边BC 与AC 上,且BD DC =u u u r u u u r ,2 AE EC =u u u r u u u r 则AD BE ?=u u u r u u u r ( ) A .【答案】A 【解析】 试题分析:由已知,D E 分别在边BC 与AC 上,且BD DC =u u u r u u u r , 2AE EC =u u u r u u u r 则D 是BC 的中轴点,E 为AC 的三等分点,以D 为坐标原点,DA 所在直线为y 轴,BC 边所在直线为x 轴,建立平面直角坐标系, ,设),(y x E ,由EC AE =2可得:

高中数学解题方法系列:平面向量最值问题的4种方法

高中数学解题方法系列:平面向量最值问题的4种方法 平面向量中的最值问题多以考查向量的基本概念、基本运算和性质为主,解决此类问题要注意正确运用相关知识,合理转化。 一、利用函数思想方法求解 例1、给定两个长度为1的平面向量和,它们的夹角为.如图所示,点C 在以 O 为圆心的圆弧上变动.若其中 ,则的最大值是________. 分析:寻求刻画C 点变化的变量,建立目标x y +与此变量的函数关系是解决最值问题的 常用途径。 解:设AOC θ∠=,以点O 为原点,OA 为x 轴建立直角坐标系,则(1,0)A ,13(,)2B -,(cos ,sin )C θθ。 Q 13(cos ,sin )(1,0)(,)2x y θθ∴=+-即 cos 23sin y x y θθ?-=????= cos 3sin 2sin()6x y πθθθ∴+=+=+2(0)3 πθ≤≤。 因此,当3 π θ=时,取最大值2。 例2、已知(1,7),(5,1),(2,1),OA OB OP ===u u u r u u u r u u u r 点Q 为射线OP 上的一个动点,当QA QB u u u r u u u r g 取最小值时,求.OQ u u u r 分析:因为点Q 在射线OP 上,向量OQ uuu r 与OP uuu r 同向,故可以得到关于OQ uuu r 坐标的一个 关系式,再根据QA QB u u u r u u u r g 取最小值求.OQ u u u r 解:设(2,),(0)OQ xOP x x x ==≥u u u r u u u r ,则(12,7),(52,1)QA x x QB x x =--=--u u u r u u u r OA u u u r OB uuu r 120o AB u u u v ,OC xOA yOB =+u u u r u u u r u u u r ,x y R ∈x y +,OC xOA yOB =+u u u r u u u r u u u r x y +图 1 1

平面向量部分常见的考试题型

平面向量部分常见的题型练习 类型(一):向量的夹角问题 1.平面向量, 4==且满足2.=,则与的夹角为 2.已知非零向量, (2-⊥=,则与的夹角为 类型(二):向量共线问题 1. 已知平面向量),(x 32=,平面向量),,(182--=b 若a ∥b ,则实数x 2. 设向量),(,(3212==若向量b a +λ与向量)74(--=,共线,则=λ 3.已知向量) ,(,(x 211==若24-+与平行,则实数x 的值是( ) A .-2 B .0 C .1 D .2 类型(三): 向量的垂直问题 1.已知向量b a b x a ⊥==且),()6,3(,1,则实数x 的值为 2 .已知向量=--==b b a n b n a 与),若,(),,(211 3.已知=(1,2),=(-3,2)若k +2与2-4垂直,求实数k 的值 4. 42==,且b a 与的夹角为 3 π ,若的值垂直,求与k b a k b a k 22-+。 类型(四)投影问题 1. ,45==,与的夹角3 2π θ=,则向量在向量上的投影为 2. 在Rt △ABC 中,===∠AC C .,4,2 则π 类型(四)求向量的模的问题 1. 已知零向量====b a a ,则),(2510.,12 2. 已知向量, ====221 3. 已知向量a )3,1(= ,=+-=)0,2( 4. 设向量, 1== 及34=- ,求3+的值 类型(五)平面向量基本定理的应用问题 1.若=(1,1),=(1,-1),=(-1,-2),则等于 ( ) (A) 2321+- (B)2321-- (C)b a 2123- (D)b a 2 123+-

平面向量典型例题67629

平面向量经典例题: 1. 已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,-2)共线,则实数λ等于( ) A .-2 B .-13 C .-1 D .-23 [答案] C [解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ),∵λa +b 与c 共线,∴-2(2+λ)-2λ=0,∴λ=-1. 2. (文)已知向量a =(3,1),b =(0,1),c =(k , 3),若a +2b 与c 垂直,则k =( ) A .-1 B .- 3 C .-3 D .1 [答案] C [解析] a +2b =( 3,1)+(0,2)=( 3,3), ∵a +2b 与c 垂直,∴(a +2b )·c = 3k +3 3=0,∴k =-3. (理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( ) A .- 611 B .-116 C.611 D.11 6 [答案] C [解析] a +b =(4,1),a -λb =(1-3λ,2+λ), ∵a +b 与a -λb 垂直, ∴(a +b )·(a -λb )=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=611 . 3. 设非零向量a 、b 、c 满足|a |=|b |=|c |,a +b =c ,则向量a 、b 间的夹角为( ) A .150° B .120° C .60° D .30° [答案] B [解析] 如图,在?ABCD 中, ∵|a |=|b |=|c |,c =a +b ,∴△ABD 为正三角形,∴∠BAD =60°,

高中数学经典解题技巧和方法:平面向量

高中数学经典解题技巧:平面向量【编者按】平面向量是高中数学考试的必考内容,而且是这几年考试解答题的必选,无论是期中、期末还是会考、高考,都是高中数学的必考内容之一。因此,马博士教育网数学频道编辑部特意针对这部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们,让同学们有更多、更好、更快的方法解决数学问题。好了,下面就请同学们跟我们一起来探讨下平面向量的经典解题技巧。 首先,解答平面向量这方面的问题时,先要搞清楚以下几个方面的基本概念性问题,同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题:1.平面向量的实际背景及基本概念 (1)了解向量的实际背景。 (2)理解平面向量的概念,理解两个向量相等的含义。 (3)理解向量的几何意义。 2.向量的线性运算 (1)掌握向量加法、减法的运算,并理解其几何意义。 (2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义。 (3)了解向量线性运算的性质及其几何意义。 3.平面向量的基本定理及坐标表示 (1)了解平面向量的基本定理及其意义。 (2)掌握平面向量的正交分解及其坐标表示。 (3)会用坐标表示平面向量的加法、减法与数乘运算。 (4)理解用坐标表示的平面向量共线的条件。 4.平面向量的数量积 (1)理解平面向量数量积的含义及其物理意义。 (2)了解平面向量的数量积与向量投影的关系。 (3)掌握数量积的坐标表达式,会进行平面向量数量积的运算。 (4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直 关系。 5. 向量的应用 (1)会用向量方法解决某些简单的平面几何问题。 (2)会用向量方法解决简单的力学问题与其他一些实际问题。

平面向量部分常见的考试题型总结

平面向量部分常见的题型练习 类型(一):向量的夹角问题 1?平面向量a,b,满足a =1,b =4且满足a.b = 2,则a与b的夹角为 _________ 2?已知非零向量a,b满足a = b,b丄(b—2a),则a与b的夹角为___________ 3?已知平面向量a,b满足(a -b).(2a - b) —4且*2,” 以且,则a与b的夹角为_________________ 4?设非零向量a、b、c满足| a |=| b |=| c |,a ■ b = c,则:::a, b = ____ 5?已知a =2」b| =3, a +b = J7,求a与b的夹角。 6?若非零向量a,b满足a = b ,(2a+b).b=0,则a与b的夹角为____________ 类型(二):向量共线问题 1. 已知平面向量a =(2,3x),平面向量b =( 一2,18),若a // b,则实数x ____________ 2. 设向量a = (2,1),b = (2,3)若向量,a - b与向量c = (- 4, - 7)共线,则,- 3?已知向量a (1,1),b (2, x)若a b与4b - 2a平行,则实数x的值是( ) A. -2 B. 0 C. 1 D. 2 4已知向量OA =(k,12),0B =(4,5),OC =(-k,10),且A, B, C三点共线, 则k = ___ 5. 已知A (1,3), B (—2,—3), C (x,7),设AB =a , BC = b 且a // b,则x 的值为() (A) 0 (B) 3 (C) 15 (D) 18 6. 已知a= (1, 2), b= (-3 —2)若k a+2b与2a-4b共线,求实数k的值; 7. 已知a —c是同一平面内的两个向量,其中 a = (1 —2)若|^ = 2. 5,且a // c,求c的坐标 —I- 8. n为何值时,向量a ( n ,1)与b = (4, n)共线且方向相同? 9. 已知a = 3,b = (1,2),且a // b,求a的坐标。 10. 已知向量a (2, -1),b ( -1, m),c =(-1,2),若(a b)// c,则m= ________________ 11. 已知a,b不共线,c =ka ? b,d =a -b,如果c // d,那么k= _________ ,c与d的方向关系

平面向量题型汇总

《平面向量》题型汇总 类型(一):向量的夹角问题 1.平面向量b a ,41==且满足 2.=b a ,则b a 与的夹角为 . 2.已知非零向量b a ,)(a b b 2-⊥=,则b a 与的夹角为 . 3.已知向量,满足 424)2.(==-=+-b a b a )(,则与的夹角为 . 4.设非零向量、、满足=+==|,|||||,则>=<, . 类型(二):向量共线问题 1.已知向量),(,(x 211==若24-+与平行,则实数x 的值是 . 2.已知),(),,(),,(73231x C B A --=,=且∥, 则x= . 3.已知a =(1,2),=(-3,2)若k +2与2-4共线,则k= . 4.已知,不共线,k -=+=,,如果∥,那么k= ,与的方向关系是 . 5. 已知向量且),(,(,221m -==a ∥b ,则=+b a 32 . 类型(三): 向量的垂直问题 1.已知向量=--==n n 与),若,(,(211 . 2.已知),1,1(),0,1(==b a 当λ= 时,与λ+垂直? 3.已知,24),(=与垂直的单位向量的坐标为 . 4. 已知向量的值为垂直,则实数与且向量),(λλb a b a b a 2)0,1(,23-+-=-= 5. =⊥-===k k 若(),(),2,()3,1(,13 . 6. ,若向量),(+-==)3,2(,21∥b ,___=+⊥(

类型(四)投影问题 1.已知,4,5==b a ,b a 与的夹角32πθ=,则向量b 在向量a 上的投影为 2.在Rt △ABC 中,===∠AC AB AC C .,4,2则π 3.关于c a b a ..=且0≠a ,下列几种说法正确的是 ① )(c b a -⊥; ② b ⊥c ; ③0).(=-c b a ④b 在a 方向上的投影等于c 在a 方向上的投影 ; ⑤a b λ=; ⑥c b = 类型(四)求向量的模的问题 1. 已知零向量==+==b b a b a a ,则),(25,10.,12 . 2. 已知向量b a ,满足=+=-==b a b a b a ,则2,2,1 . 3. 已知向量a )3,1(=,=+-=b a b ,则)0,2( . 4.已知向量b a b a -==则),cos ,1(),sin ,1(θθ的最大值为 . 5. 设向量a ,b 满足的值为则b a b a a b a +-⊥==2),2(,2,1 . 类型(五)平面向量基本定理的应用问题 1.若a =(1,1),b =(1,-1),c =(-1,-2),则c 等于 ( ) (A) b a 2321+- (B)b a 2 321-- (C)b a 2123- (D)b a 2 123+- 2.如图,已知O 为平行四边形ABCD 内一点,OA →=a ,OB →=b ,OC →=c ,则OD →= . 3.已知b a c c b a μλμλ+=-===的值,使和),求,(),,(),,(011101

(完整版)平面向量线性运算经典习题.doc

平面向量线性运算经典习题 1. uuuur uuur uuur uuur uuur 设点 M是线段 BC的中点 , 点 A 在直线 BC外 , BC2 =4,| AB AC| |AB AC |,则 | uuuur ) A.8 B.4C.2 D.1 AM |=( uuur uuur uuur uuur uuur 2. 已知△ABC中, 点 D在 BC边上, 且CD 2DB ,CD r AB sAC , 则r+s 的值是( ) A. 2 B. 4 C.-3 D.0 3 3 3.平面向量 a,b 共线的充要条件是 ( ) A.a,b 方向相同 B.a,b 两向量中至少有一个为0 C. 存在λ∈ R,使 b=λa D. 存在不全为零的实数λ 1,λ 2,使λ1a+λ 2b=0 4. 已知 O?A?B 是平面上的三个点 uuur uuur uuur , 直线 AB上有一点 C, 满足2 AC CB 0, 则OC 等于( ) uuur uuur uuur uuur A.2OA OB B. OA 2OB 2 uuur 1 uuur D. 1 uuur 2 uuur C. OA OB OA OB 3 3 3 3 uuur uuur uuur uuur uuur uuur 5. 设 D?E?F 分别是△ ABC 的三边 BC、CA、AB上的点 , DC 2BD , CE 2EA, AF 2FB, 则uuur uuur uuur uuur AD BE CF 与 BC() A. 反向平行 B. 同向平行 C. 不平行 D.无法判断 uuur uuur 6. 已知 a,b 是不共线的向量, AB=λa+b,AC =a+μb,( λ, μ∈ R), 那么A、B、C 三点共线的充要条件为 ( ) A. λ+μ=2 B. λ - μ=1 C.λμ=-1 D.λμ =1 uuur uuur uuur uuur a // b ;② 7.设( AB CD ) (BC DA ) a,而b是一非零向量,则下列各结论:① a b a ;③ a b b ;④ a b a b ,其中正确的是() A .①②B.③④C.②④ D .①③ 8.若a b c 化简3(a2b) 2(3b c) 2(a b)() A .a B.b C.c D.以上都不对 9.在△ ABC 中, D、 E、 F 分别 BC 、 CA 、 AB 的中点,点 M 是△ ABC 的重心,则 MA MB MC等于() A.O B.4MD C.4MF D.4ME

20高考数学平面向量的解题技巧

第二讲平面向量的解题技巧 【命题趋向】 由2007年高考题分析可知: 1.这部分内容高考中所占分数一般在10分左右. 2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】 “平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为: 1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式. 5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等. 6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题.【例题解析】 1. 向量的概念,向量的基本运算 (1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.

(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式. 例1(2007年北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0u u u r u u u r u u u r ,那么( ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r 命题意图:本题考查能够结合图形进行向量计算的能力. 解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0,u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 故选A . 例2.(2006年安徽卷)在ABCD Y 中,,,3AB a AD b AN NC ===u u u r r u u u r r u u u r u u u r ,M 为BC 的中点,则MN =u u u u r ______.(用a b r r 、表示) 命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+u u u r u u u r u u u r u u u r r r 由得,12 AM a b =+u u u u r r r , 所以,3111()()4 2 4 4 MN a b a b a b =+-+=-+u u u u r r r r r r r . 例3.(2006年广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量 =CD ( ) (A )BA BC 2 1+- (B ) BA BC 2 1-- (C ) BA BC 2 1- (D )BA BC 2 1+ 命题意图: 本题主要考查向量的加法和减法运算能力. 解:BA BC BD CB CD 2 1+-=+=,故选A. 例4. ( 2006年重庆卷)与向量a r =71,,22b ? ?= ???r ?? ? ??27,21的夹解相等,且模为1的向量是 ( ) (A) ?? ?- ??53,5 4 (B) ?? ?- ??53,5 4或?? ? ??-53,54 (C )?? ?- ??31,3 22 (D )?? ?- ??31,3 22或?? ? ? ?- 31,3 22 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题. 解:设所求平面向量为,c r 由433,,, 1. 555c c ???? =-= ? ?????r 4或-时5 另一方面,当222274134312525,,cos ,. 55271432255a c c a c a c ?? ?+?- ?????? =-=== ????????????+++- ? ? ? ?????????r r r r r r r 时

平面向量经典练习题(含答案)

高中平面向量经典练习题 【编著】黄勇权 一、填空题 1、向量a=(2,4),b=(-1,-3),则向量3a-2b的坐标是。 2、已知向量a与b的夹角为60°,a=(3,4),|b | =1,则|a+5b | = 。 3、已知点A(1,2),B(2,1),若→ AP=(3,4),则 → BP= 。 4、已知A(-1,2),B(1,3),C(2,0),D(x,1),若AB与CD共线,则|BD|的值等于________。 5、向量a、b满足|a|=1,|b|= 2 ,(a+b)⊥(2a-b),则向量a与b的夹角为________。 6、设向量a,b满足|a+b|= 10,|a-b|= 6 ,则a·b=。 7、已知a、b是非零向量且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是。 8、在△ABC中,D为AB边上一点,→ AD = 1 2 → DB, → CD = 2 3 → CA + m → CB,则 m= 。 9、已知非零向量a,b满足|b|=4|a|,a⊥(2a+b),则a与b的夹角是。 10、在三角形ABC中,已知A(-3,1),B(4,-2),点P(1,-1)在中线AD 上,且→ AP= 2 → PD,则点C的坐标是()。 二、选择题 1、设向量→ OA=(6,2),→ OB=(-2,4),向量→ OC垂直于向量→ OB,向量 → BC平行于 →OA,若→ OD + → OA= → OC,则 → OD坐标=()。 A、(11,6) B、(22,12) C、(28,14) D、(14,7) 2、把A(3,4)按向量a(1,-2)平移到A',则点A'的坐标() A、(4 , 2) B、(3,1) C、(2,1) D、(1,0) 3、已知向量a,b,若a为单位向量, 且 | a| = | 2b| ,则(2a+ b)⊥(a-2b),则向量a与b的夹角是()。 A、90° B、60° C、30° D、0° 4、已知向量ab的夹角60°,| a|= 2,b=(-1,0),则| 2a-3b|=()

高中数学经典解题技巧和方法平面向量

高中数学经典解题技巧:平面向量 一、向量的有关概念及运算 解题技巧:向量的有关概念及运算要注意以下几点: (1)正确理解相等向量、共线向量、相反向量、单位向量、零向量等基本概念,如有遗漏,则会出现错误。 (2)正确理解平面向量的运算律,一定要牢固掌握、理解深刻 (3)用已知向量表示另外一些向量,是用向量解题的基础,除了用向量的加减法、实数与向量乘积外,还要充分利用平面几何的一些定理,充分联系其他知识。 例1:(2010·山东高考理科·T12)定义平面向量之间的一种运算“⊙”如下,对任意的a=(m,n),b p,q)= (,令a ⊙b mq np =-,下面说法错误的是( ) A.若a 与b 共线,则a ⊙b 0= B. a ⊙b = b ⊙a C.对任意的R λ∈,有()a λ⊙b = (a λ⊙)b D. (a ⊙b )2222()a b a b +?= 【命题立意】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力. 【思路点拨】根据所给定义逐个验证. 【规范解答】选B ,若a 与b 共线,则有a ⊙b 0mq np =-=,故A 正确;因为b ⊙a pn qm =-,,而a ⊙b mq np =-,所以有a ⊙b ≠ b ⊙a ,故选项B 错误,故选B. 【方法技巧】自定义型信息题 1、基本特点:该类问题的特点是背景新颖,信息量大,是近几年高考的热点题型. 2、基本对策:解答这类问题时,要通过联想类比,仔细分析题目中所提供的命题,找出其中的相似性和一致性 二、与平面向量数量积有关的问题 解题技巧:与平面向量数量积有关的问题 1.解决垂直问题:121200,a b a b x x y y a b ⊥?=?+=其中、均为非零向量。这一条件不能忽视。 2.求长度问题:2||a a a =,特别地1122(,),(,),||(A x y B x y AB x =则 3.求夹角问题:求两非零向量夹角的依据 2 22 222cos(,).||||a b a b a b x x y ==++ 例2:1.(2010·湖南高考理科·T4)在Rt ABC ?中,C ∠=90°AC=4,则AB AC ?uu u r uuu r 等于( )

平面向量典型题型大全

平面向量 题型1.基本概念判断正误: 例2 (1)化简:①AB BC CD ++=u u u r u u u r u u u r ___;②AB AD DC --=u u u r u u u r u u u r ____;③()()AB CD AC BD ---=u u u r u u u r u u u r u u u r _____ (2)若正方形ABCD 的边长为1,,,AB a BC b AC c ===u u u r r u u u r r u u u r r ,则||a b c ++r r r =_____ (3)若O 是ABC V 所在平面内一点,且满足2OB OC OB OC OA -=+-u u u r u u u r u u u r u u u r u u u r ,则ABC V 的形状为_ 9.与向量a =(12,5)平行的单位向量为 ( ) A .125,1313??- ??? B .12 5,1313??-- ??? C .125125,,13131313????-- ? ?????或 D .125125,,13131313???? -- ? ????? 或 10.如图,D 、E 、F 分别是?ABC 边AB 、BC 、CA 上的 中点,则下列等式中成立的有_________: ①+-=u u u r u u u r u u u r FD DA AF 0 ②+-=u u u r u u u r u u u r FD DE EF 0 ③+-=u u u r u u u r u u u r DE DA BE 0 ④+-=u u u r u u u r u u u r AD BE AF 0 11.设P 是△ABC 所在平面内的一点,2BC BA BP +=u u u r u u u r u u u r ,则( ) A.0PA PB +=u u u r u u u r r B.0PC PA +=u u u r u u u r r C.0PB PC +=u u u r u u u r r D.0PA PB PC ++=u u u r u u u r u u u r r 12.已知点(3,1)A ,(0,0)B ,(3,0)C .设BAC ∠的平分线AE 与BC 相交于E ,那么有BC CE λ=u u u r u u u r ,其中λ等于 ( ) A.2 B. 1 2 C.-3 D.-13 13.设向量a=(1, -3),b=(-2,4),c =(-1,-2),若表示向量4a ,4b -2c ,2(a -c ),d 的有向线段首尾相接能构成四边形, 则向量d 为 ( ) A.(2,6) B.(-2,6) C.(2,-6) D.(-2,-6) 14.如图2,两块斜边长相等的直角三角板拼在一起,若AD xAB yAC =+u u u r u u u r u u u r ,则 x = ,y = . 图2 15、已知O 是ABC △所在平面内一点D 为BC 边中点且20OA OB OC ++=u u u r u u u r u u u r r 那么( ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r 题型3平面向量基本定理 F E C B A

平面向量典型题型大全#精选.

平面向量 题型1.基本概念判断正误: 例 2 (1)化简:①AB BC CD ++=___;②AB AD DC --=____;③ ()()AB CD AC BD ---=_____ (2)若正方形ABCD 的边长为1,,,AB a BC b AC c ===,则||a b c ++=_____ (3)若O 是ABC 所在平面内一点,且满足2OB OC OB OC OA -=+-,则ABC 的形状为_ 9.与向量a =(12,5)平行的单位向量为 ( ) A .125,1313??- ??? B .12 5,1313??-- ??? C .125125,,13131313????-- ? ?????或 D .125125,,13131313???? -- ? ????? 或 10.如图,D 、E 、F 分别是?ABC 边AB 、BC 、CA 上的 中点,则下列等式中成立的有_________: ①+-=FD DA AF 0 ②+-=FD DE EF 0 ③+-=DE DA BE 0 ④+-=AD BE AF 0 11.设P 是△ABC 所在平面内的一点,2BC BA BP +=,则( ) A.0PA PB += B.0PC PA += C.0PB PC += D.0PA PB PC ++= 12.已知点(3,1)A ,(0,0)B ,(3,0)C .设BAC ∠的平分线AE 与BC 相交于E ,那么有BC CE λ=,其中λ等于( ) A.2 B. 1 2 C.-3 D.-13 13.设向量a=(1, -3),b=(-2,4),c =(-1,-2),若表示向量4a ,4b -2c ,2(a -c ),d 的有向线段首尾相接能构成四边形, 则向量d 为 ( ) A.(2,6) B.(-2,6) C.(2,-6) D.(-2,-6) 14.如图2,两块斜边长相等的直角三角板拼在一起,若AD xAB yAC =+,则 x = ,y = . 图2 15、已知O 是ABC △所在平面内一点D 为BC 边中点且20OA OB OC ++=那么( ) A.AO OD = B.2AO OD = C.3AO OD = D.2AO OD = F E C B A

高中数学典型例题解析平面向量与空间向量

高中数学典型例题分析 第八章 平面向量与空间向量 §8.1平面向量及其运算 一、知识导学1.模(长度):向量的大小,记作||。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。记作-a 。 5.向量的加法:求两个向量和的运算。 已知a ,b 。在平面内任取一点,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和。 记作a +b 。 6. 向量的减法:求两个向量差的运算。 已知a ,b 。在平面内任取一点O ,作OA =a ,OB =b ,则向量BA 叫做a 与b 的差。 记作a -b 。 7.实数与向量的积: (1)定义: 实数λ与向量a 的积是一个向量,记作λa ,并规定: ①λa 的长度|λa |=|λ|·|a |; ②当λ>0时,λa 的方向与a 的方向相同; 当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,λa =0 (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa )=(λμ) a ②(λ+μ) a =λa +μa ③λ(a +)=λa +λ 8.向量共线的充分条件:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa 。 另外,设a =(x 1 ,y 1), b = (x 2,y 2),则a //b x 1y 2-x 2y 1=0 9.平面向量基本定理: 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ 2 使 a =λ11e +λ22e ,其中不共线向量1e 、2e 叫做表示这一

平面向量常用的方法技巧

备考方略 <3 平面向量常用的方法技文K灼 * > \i^i 北京市陈经纶中学周明芝 -- 特别提示:【解】对于①於+3 = 0 平面向量具有代數几何双重身份,从近几年对于②ASXS+S?5(XJ+ c5)a5a5o == 的高考试题看对向量的考查力度在逐年加大并且 对于③ 强调了向量的知识性与工具性,重点考查向量的四 对于④+(g 种运算 、 两个充要条件等核心知识,考查向量的几M =NP+前=〇 P 何形式与代教形式的相互转化技能有些问题的处理,综上知应填①②③④ 对变形技巧要求高,具有定的难度因此,要想在【小结】向量的加减法法则是解题的基础在运用时平面向量试题的求解中取得高分,必须在理解向量 要注意交换律和结合律的使用 熟练四种运算和两个充要条件应用的基础上 概念、 例2(2011湖南)在边长为1的正三角形ABC中 认 真梳理 常 用 的 方法 和技巧 逐 步提高解 题 能 力 设则X5? 【分析】 利用边长为1和正三角形内角度数 ? 并注意 4把和进行拆分 方法一、分解合成法 由题意沒rs技瓦&茂 【解】=j =分解是指把个向量拆成几个向量有利于处理向 量前面的系数合成是指利用向量加减运算多项合成c¥=yC^cS 项减少项数从而达到化简的目的在解题时要灵活运 用向量加法法则和首尾相连的向量和为零等技巧 例1化简下列各式①万2十否f+亡芳②疋§1=+= +節成③孩前+滅④胡+前威cJc% 2364 结果为零向量的序号是【小结】根据加、减法法则灵活地进行合理拆分是解[分析】 对于化简题,应灵活运用加法交换律,尽可题的关键 能使之变为首尾相连的向量然后再运用向量加法结合律 练习1在AABC中=cf=cf若点D满足 訪=2万P则力5=() 求和 2017 1 7cceev

平面向量经典习题-提高篇

平面向量: 1. 已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,-2)共 线,则实数λ等于( ) A .-2 B .-13 C .-1 D .-23 [答案] C [解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ), ∵λa +b 与c 共线, ∴-2(2+λ)-2λ=0,∴λ=-1. 2. (文)已知向量a =(3,1),b =(0,1),c =(k ,3),若a +2b 与c 垂直,则k =( ) A .-1 B .-3 C .-3 D .1 [答案] C [解析] a +2b =(3,1)+(0,2)=(3,3), ∵a +2b 与c 垂直,∴(a +2b )·c =3k +33=0, ∴k =-3. (理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( ) A .-611 B .-116

C.6 11 D. 11 6 [答案] C [解析] a+b=(4,1),a-λb=(1-3λ,2+λ),∵a+b与a-λb垂直, ∴(a+b)·(a-λb)=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=6 11 . 3.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则向量a、b 间的夹角为( ) A.150° B.120° C.60° D.30° [答案] B [解析] 如图,在?ABCD中, ∵|a|=|b|=|c|,c=a+b,∴△ABD为正三角形, ∴∠BAD=60°,∴〈a,b〉=120°,故选B. (理)向量a,b满足|a|=1,|a-b|= 3 2 ,a与b的夹角为60°,

相关文档
相关文档 最新文档