文档库 最新最全的文档下载
当前位置:文档库 › 汽车动力电池热管理系统分析与设计

汽车动力电池热管理系统分析与设计

汽车动力电池热管理系统分析与设计
汽车动力电池热管理系统分析与设计

汽车动力电池热管理系统分析与设计

【关键词】动力电池;动力电池热管理;冷却系统;加热系统;保温系统

0 引言

动力电池热管理(battery thermal management system, btms)是汽车动力电池系统的重要组成部分,它不仅对电池性能、寿命、安全等有重要影响,而且它是电动汽车整车热管理的重要组成部分,与整车热管理有着密不可分的关系。随着电动汽车市场推广程度的逐渐深入,对电池系统热管理的要求也越来越高。目前已有不少学者对动力电池热管理系统进行研究。电池生热理论是电池热管理首先需要解决的问题,这个领域研究较早。有关研究系统分析了电池散热能力的影响因素[1]。有研究提出了btms的设计方法,并详细论述了各种散热系统,包括空冷系统、液冷系统、相变冷却、热管冷却和复合冷却等[2]。但是,该研究仅仅讨论了各种冷却系统,并没有全面分析与探讨完善的热管理系统。同样地,有些研究把问题焦点集中在电池散热上,包括散热结构设计、仿真分析等等[3-4],很少有研究从总体上较全面的讨论动力电池热管理系统设计。鉴于此,本论文对动力电池热管理进行系统分析,并对总体设计做一论述。

1 动力电池热管理系统结构与功能的分析

从宏观上讲,动力电池热管理是对电池系统内部热环境进行控制、调节和利用。其目的是为了使动力电池工作在一个最佳的热环

特斯拉电动汽车动力电池管理系统解析(苍松书屋)

特斯拉电动汽车动力电池管理系统解析 1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster 的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统 (Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。

动力电池管理系统硬件设计电路图

动力电池管理系统硬件设计电路图 电动汽车是指全部或部分由电机驱动的汽车。目前主要有纯电动汽车、混合电动车和燃料电池汽车3种类型。电动汽车目前常用的动力来自于铅酸电池、锂电池、镍氢电池等。 锂电池具有高电池单体电压、高比能量和高能量密度,是当前比能量最高的电池。但正是因为锂电池的能量密度比较高,当发生误用或滥用时,将会引起安全事故。而电池管理系统能够解决这一问题。当电池处在充电过压或者是放电欠压的情况下,管理系统能够自动切断充放电回路,其电量均衡的功能能够保证单节电池的压差维持在一个很小的范围内。此外,还具有过温、过流、剩余电量估测等功能。本文所设计的就是一种基于单片机的电池管理系统。 1电池管理系统硬件构成 针对系统的硬件电路,可分为MCU模块、检测模块、均衡模块。 1.1MCU模块 MCU是系统控制的核心。本文采用的MCU是M68HC08系列的GZ16型号的单片机。该系列所有的MCU均采用增强型M68HC08中央处理器(CP08)。该单片机具有以下特性: (1)8MHz内部总线频率;(2)16KB的内置FLASH存储器;(3)2个16位定时器接口模块;(4)支持1MHz~8MHz晶振的时钟发生器;(5)增强型串行通信接口(ESCI)模块。 1.2检测模块 检测模块中将对电压检测、电流检测和温度检测模块分别进行介绍。 1.2.1电压检测模块 本系统中,单片机将对电池组的整体电压和单节电压进行检测。对于电池组整体电压的检测有2种方法:(1)采用专用的电压检测模块,如霍尔电压传感器;(2)采用精密电阻构建电阻分压电路。采用专用的电压检测模块成本较高,而且还需要特定的电源,过程比较复杂。所以采用分压的电路进行检测。10串锰酸锂电池组电压变化的范围是28V~42V。采用3.9M?赘和300k?赘的电阻进行分压,采集出来的电压信号的变化范围是2V~3V,所对应的AD 转换结果为409和*。 对于单体电池的检测,主要采用飞电容技术。飞电容技术的原理图如图1所示[2],为电池组后4节的保护电路图,通过四通道的开关阵列可以将后4节电池的任意1节电池的电压采集到单片机中,单片机输出驱动信号,控制MOS管的导通和关断,从而对电池组的充电放电起到保护作用。

新能源汽车动力电池及其管理系统试卷A

新能源汽车动力电池及其管理系统试卷A 汽运19-301(26人) 一、【单选题】(每题2分共20分) 【单选题】 1、可逆电池的定义是:外接电源电压(A)电池装置电动势。(2分) A.大于 B.等于 C.小于 D.不一定 【单选题】 2、以下电池中不作为电动汽车动力电池的是(D)。(2分) A.铅酸电池 B.锂离子电池 C.镍氢电池 D.锌银电池 【单选题】 3、关于蓄电池的检测,下列说法正确的是(D)。(2分) A.外观检查时,只检查蓄电池接线柱、电缆和托架固定架是否有腐蚀即可。 B.外观检查时,只检查蓄电池周围无漏液,壳体和桩柱无破损裂纹即可。 C.用万用表检测蓄电池电压,只要在12.6V以上就一定可以用。 D.万用表检测的蓄电池端电压,只能作为检测的参考因素。 【单选题】 4、(B)电池性能比较高,可以快速充电、高功率放电、能量密度高,且循环寿命长,但高温下安全性能差。(2分) A.镍氢电池 B.锂离子电池 C.铅酸电池 D.锌银电池 【单选题】 5、动力电池包衰减诊断故障代码在下列(B)情况下可能出现。(2分) A.电池组已经退化到需要进行更换 B.电池组已经退化到只有原电池容量的20%左右 C.车辆的动力电池包电压为0伏 D.这些诊断故障代码是根据汽车的行驶里程设定的 【单选题】 6、动力电池的能量储存与输出都需要模块来进行管理,即动力电池能量管理模块,也称为动力电池管理系统,或动力电池能量管理系统,简称(C) 。(2分) A.BBC B.ABS C.BMS D.EPS 【单选题】 7、集中式动力电池管理系统的特征是(D)。(2分) A.电池管理系统与电池包分开 B.电池信息采集器与电池管理控制器分开 C.电池信息采集器与电池模组分开 D.信息采集器和管理器集合在一起

国内外汽车动力电池管理系统(BMS)发展概况

引言 电池的性能和使用寿命直接决定了电动汽车的性能和成本,因此,如何提高电池的性能和寿命得到了各方面的重视。电动汽车上使用的动力电池是由多个电池单体通过串并联方式组成电池组,电池单体都紧密地布置在一起,在进行充放电时,各个电池单体所产生的热量互相影响,如果散热不均匀,将造成电池组局部温度快速上升,使电池的一致性恶化,使用寿命大大缩短,严重时会造成某些电池单体热失控,产生比较严重的事故。当动力电池处于低温环境中,电池的充放电性能会大大降低,导致电池无常工作。为了使动力电池组保持在合理的温度围工作,电池组必须拥有科学和高效的热管理系统。目前,国外的许多研究人员对电池组的热管理系统做了大量的研究,进行了一些新的探索,以期提高热管理系统的控制效果,从而提高电动汽车电池组的性能和使用寿命。 国外汽车动力电池管理系统(BMS)发展概况 目前,影响电动汽车推广应用的主要因素包括动力电池的安全性和使用成本问题,延长电池的使用寿命是降低使用成本的有效途径之一为确保电池性能良好,延长电池使用寿命,必须对电池进行合理有效的管理和控制,为此,国外均投入大量的人力物力开展广泛深入的研究。 日本青森工业研究中心从1997年开始至今,持续进行(BMS)实际应用的研究,丰田、本田以及通用汽车公司等都把BMS纳入技术开发的重点;美国Villanova大学和USNanocorp公司已经合作多年对各种类型的电池SOC进行基于模糊逻辑的预测;国Ajou大学和先进工程研究院开发的BMS系统的组成结构及其相互逻辑关系。该系统在上述结构中进行功能扩展,即增设热管理系统、安全装置、充电系统以及与PC机的通信联系。另外还增加与电动机控制器的通信联系,实现能量制动反馈和最大功率控制。 我国在十二五期间设立电动汽车重大专门研究项目,经过几年的发展之后,在BMS方面取得很大的突破,与国外水平也较为接近。在国家863计划2005年第一批立项研究课题中,就分别有理工大学承担的EQ7200HEV混合动力轿车用镍氢

发动机管理系统

发动机管理系统 Company Name 公司名 排名 研发中心 工厂 Bosch 博世 1 苏州 联合电子(上海、西安和无锡)、无锡博世威孚(柴油) Delphi 德尔福 2 上海 北京德尔福发动机、北京德尔福万源 Continental 大陆汽车 3 上海 原SiemensVDO 的芜湖、长春工厂;原Freescale 的天津工厂Magnetti Marelli 马瑞利 4 芜湖工厂、上海工厂 Visteon 伟世通 5 上海 重庆工厂 Hitachi 日立 6 Denso 电装 7 仅供Toyota Valeo 法雷奥 8 Eontronic 意昂神州 美国 北京总部、上海分部 TroiTec 锐意泰克 Vagon 华夏龙晖 阳光泰克 Woodward 伍得沃德 成都汪氏威特电喷 成都易控高科 中联汽车电子 无锡油泵油嘴研究所 美国MotoTron 公司是Woodward 公司的子公司,主要从事发动机电控 系统的开发与生产。该公司针对汽油发动机设计了一套完整的控制策略 快速开发平台,此平台从设计开发到生产贯穿一体,可有效地缩短开发 时间,加速产品化进程,降低开发费用。 美国精确技术公司(Accurate Technologies Inc)是车载嵌入式电控系统 ECU 开发、标定与测试工具技术的知名提供商。该公司的ECU 标定系统 (VISION)功能强大,好学易用,而且和Matlab/Simulink 开发平台无缝连接, 多年来被福特(Ford)汽车公司、德尔福公司(Delphi)、沃尔沃卡车公司等指 定为标准匹配标定系统。该公司的No-Hooks 软件是ECU 控制策略快速开 发领域的重大突破。用户只用标定文件(*.a2l 与*.hex 文件),而不需要控制 策略源代码即可对控制逻辑进行修改。修改过的代码自动灌装进原来的 ECU 内进行测试运行。该技术已在美国、欧洲与日本得到了广泛的应用。 美国RMS(Rinehart Motion System)是一家专门从事功率驱动产品与方案 的公司。该公司提供或定制5-500KW 级应用于混动或纯电动控制系统、能 源贮藏系统和大功率设备的电机驱动器、静变流器、DC/DC, DC/AC, AC/DC 等产品。现有客户主要为军工、汽车或跑车、农业机械、工业控制 等行业的世界知名制造公司或主机厂。RMS 与意昂科技将为国内客户提供 产品技术、项目咨询、定制开发等服务。 美国Drivven, Inc, 公司自2003年起提供汽车控制和数据采集解决方案, 已经成为发动机和车辆电子系统开发新标准的领导者之一。基于FPGA 汽

电动汽车动力电池及管理系统试卷A

广东文理职业学院刘鹏2018-2019学年度第一学期 期末考试试题(A卷) (考试时间: 90 分钟) 考试科目动力电池及管理适用班级:新能源汽车一班 一、单项选择题(每小题2分,共计30分) (题目正文:宋体,五号,行距20磅) 1. 燃料电池采用的燃料是()。 A.汽油; B.柴油; C.乙醇; D.氢气 2.燃料电池汽车的效率能达到以上()。 A.30%; B.40%; C.50%; D. 60% 3.在最适合汽车使用的燃料电池()。 A.质子交换膜燃料电池; B.磷酸燃料电池; C.熔融碳酸盐燃料电池对; D.固态氧化物燃料电池。 4.世界上第一家实现商品化销售的燃料电池汽车生产厂家是()。 A.丰田; B.通用; C.奔驰; D.本田。 5.蓄电池组中,标称电压为12V的单体电池端电压压差应小于()mV。 A.100; B.120; C.150; D.200 6.在25°C下,蓄电池组由32节单体蓄电池组成(单体标称电压为12V),则其浮充电电压应约为() A. 384V; B. 432V; C. 450V; D. 472V 7.在蓄电池管理系统中,由()把整流电压变成交流电压。 A.整流器; B.逆变器; C.充电器 8.在蓄电池管理系统中,,由()把直流电压变成交流电压。 A.整流器; B.逆变器; C.充电器; D.交流调压器 9. 15.2020年中国电池制造的能量密度要达到()。 A. 300wh/kg;A. 400wh/kg;A. 500wh/kg 10.用电流表测量电流,应将电流表和被测电流的电路或负载()。 A.串联; B.并联; C.怎么连接都可以。 11.用电压表测量电压,应将电压表和被测电压的电路或负载()。 A.串联; B.并联; C.怎么连接都可以。 12.万用表使用完毕后,应将选择开关放在()。 A.电阻档; B.交流电压最高档; C.直流电流档。 13.三相桥式整流电路,在交流电的一个周期内,每个整流元件的导通角为()。 A. 180度; B. 120度; C. 60度 14.单相整流电路中,二极承受的反向电压的最大值出现在二极管()。 A.截止时; B.由截止转导通时; C.导通时; D.由导通转截止时 15.燃料电池汽车的效率能达到以上()。 A. 30%; B. 40%; C. 50%; D. 60%。 系 别 : 专 业 班 别 : 姓 名 : 学 号 : … … … … … … ○ … … … 密 … … … ○ … … … … 封 … … ○ … … … … 线 … … ○ … … … … … … ○ … …

动力电池热管理系统性能试验方法

动力电池热管理系统性能试验方法 1 范围 本标准规定了动力电池热管理系统性能的试验方法。 本标准适用于乘用车用动力电池热管理系统,商用车用动力电池热管理系统可以参考。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2900.41-2008 电工术语原电池和蓄电池 GB/T 19596-2017 电动汽车术语(ISO 8713:2002,NEQ) GB/T 31467.2电动汽车用锂离子动力蓄电池包和系统第2部分:高能量应用测试规程QC/T 468-2010 汽车散热器 GB/T 18386-2017 电动汽车能量消耗率和续驶里程试验方法 GB 18352.6-2016 轻型汽车污染物排放限制及测量方法(中国第六阶段) 3 术语和定义 GB/T 2900.41-2008、GB/T 19596-2017中界定的以及下列术语和定义适用于本文件。 3.1 动力电池热管理系统 battery thermal management system 综合运用各种技术手段,具备动力电池冷却、加热、保温和均温等功能,保证动力电池在不同环境下正常工作的系统。同时,该系统可以在动力电池发生热失控时提供报警信号,具备安全防护功能。通常,动力电池热管理系统包括主动式热管理系统和被动式热管理系统两种。 3.2 被动式热管理系统 passive thermal management systems 基于热传导、热辐射、热对流等热量传输原理,只依靠冷却或加热流体因为温度因素缓慢流动自然完成热量输入输出交换的热管理系统。该类系统通常适用于单体产热量小于 5W的电池。 3.3 主动式热管理系统 active thermal management systems 基于热传导、热辐射、热对流等热量传输原理,使用耗能部件消耗能量完成热量输入输出交换的系统。主动式热管理系统包括主动空气冷却加热系统和主动液体冷却加热系统两种,根据需要采用流体串行流动和并行流动两种方式实现热交换。 3.4 主动式空气冷却加热系统 Active Air Cooling and Heating Systems 又称风冷系统,利用空气作为热量交换载体控制分配动力电池系统内部温度的系统。该系统通常使用风扇和管道完成空气在电池系统内的流动,分为直接接触式和间接接触式两种。空气可以从电池系统外部进入并排出电池系统外,也可以在电池系统内部循环实现电池冷却或加热功能;若空气仅在电池内部循环,则电池系统内部通常需要有空气冷却装置(通常为空调蒸发器)、空气加热装置和空气循环风扇。该类系统通常适用于单体产热量

汽车发动机管理系统检修

第8 次课模块一发动机管理系统的检修 项目1.8 发动机管理系统的仪器诊断? 目的要求掌握使用故障检测仪对发动机管理系统进行检测与诊断。 ? 教学重点使用故障检测仪对发动机管理系统进行检测与诊断。 ? 学习难点 使用故障检测仪对发动机管理系统进行检测与诊断。 ? 教具及工具 桑塔纳轿车 2辆,各种传感器若干,通用工具 2 套,万用表 2 块,汽车诊断仪 2 台。 ? 教学内容及时间安排( 180分钟) 1. 问题的引入约 10 分钟 2.汽车电控系统诊断方法约 40 分钟 3.使用 1552 对上海大众桑塔纳 2000 型轿车进行检测与诊断 约 130 分钟

教学内容组织与过程设计备注

课程引入(约10分钟) 汽车电控系统诊断方法(约40分钟) 一、汽车故障诊断新技术 2.3.1案例法 传统的故障诊断中大部分是(,基于规则推理)、(,模式推理)的专家系统技术的研究。由于这些传统的专家系统是基于模型化驱动的(基于模型的诊断方法使用诊断对象的结构、行为和功能模型等深知识进行诊断推理),在模型的构建、信息的获取、信息的处理方面存在严重不足,有一些难以克服的缺点,如系统领域知识的规则提取困难;规则库、模式库的创建和管理复杂艰巨;推理过程中规则与模式难以准确选取等。 整个汽车故障诊断系统主要由知识库、故障案例库、征兆数据库和推理系统构成。其中主要部分的内容和功能描述如下: a)知识库。问题求解的知识、经验的集合,主要由专家提供,包括

汽车故障的分类信息及不同种类故障需要的各种关键特征属性及其权值,并以此构建故障案例库和征兆数据库。 b)故障案例库。由用户根据汽车故障日志和维修日志等历史数据填写的关于汽车故障的各种信息 ,是存储案例和产生新案例的仓库,为新问题的解决提供参考依据。 c)征兆数据库。汽车发生故障时经过数据采集的故障征兆数据 信息 ,是指故障发生的潜在特征 ,即故障发生时汽车运行状态发生的变 化,通常是故障发生时以汽车运行状态参数表示的特征属性。 d)推理系统。整个系统的核心,由案例检索、匹配,案例调整、 学习组成。它决定了诊断效率的高低以及对知识处理的高低 ,实现从已 有的案例集中找到与当前故障问题最为相似的案例 ,并提供相应的解决 方案(即故障维修方案)。同时不断获取新知识和改进旧知识 , 生成 新的维修方案 ,并按一定的存储策略添加到案例库中。这样 ,通过不断 地学习新案例和修改案例库中的旧案例 ,使案例库得到扩充和完善。 2.3.2 故障树分析法 故障树分析法—()是一种将系统故障形成原因按树枝状逐级细化的图形演绎方法,是 60 年代发展起来的用于大系统可靠性、安全性分析和风险评价的一种方法。它通过对可能造成系统故障的各种因素(包括硬件、软件、环境、人为因素等)进行分析,画出逻辑框图(即故障树),再对系统中发生的故障事件,作由总体至部分按树枝状逐级细化的分析,并对系统在方案与初步设计阶段进行可靠性、安全性分析,常用于系统的故障分析、预测和诊断,找出系统的薄弱环节,以便在设计、制造和使用中采取相应的改进措施。 基于故障树的诊断 ,采用面向对象的基于故障树的框架和广义规则的混合知识表示 ,把整个故障树当作一个对象 ,把故障树上所有子、父结点间形成的广义规则封装在一个独立的框架内 ,如某故障树上有结点异常 ,则启动与该故障树对应的框架 ,诊断时只把该框架内的广义规则调入内存 ,提高了诊断速度 .此外 ,该方法还可诊断多故障,因为在推理过程中采用反向遍历搜索 ,可找出所有故障及可能故障的部件 .对可能故障的部件 ,按照其与顶事件形成的通路的权值的大小进行排序 ,权值最大的元素其优先级最高 ,有利于诊断信息不足条件下的对故障源的最优搜索 ,为故障预测和快速维修指明方向 . 2.3.3 专家系统 专家系统是一种基于特定领域内大量知识与经验的智能程序系统,应用人工智能技术模拟人类专家求解问题的思维过程解决领域内的各种问题,是人工智能的一个重要分支。

电池热管理系统

电池热管理 电池热管理概述 电池热管理系统 (Battery Thermal Management System, BTMS)是电池管理系统(Battery Management System, BMS)的主要功能(电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等)之一,通过导热介质、测控单元以及温控设备构成闭环调节系统,使动力电池工作在合适的温度范围之内,以维持其最佳的使用状态,用以保证电池系统的性能和寿命。 电池热管理重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。 1)电池能量与功率性能:温度较低时,电池的可用容量将迅速发生衰减,在过低温度 下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部短路。 2)电池的安全性:生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部 过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件。 3)电池使用寿命:电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起 电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命。 电池热管理系统是应对电池的热相关问题,主要功能包括: 1)散热:在电池温度较高时进行有效散热,防止产生热失控事故; 2)预热:在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性 能和安全性;

3)温度均衡:减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电 池过快衰减,以提高电池组整体寿命。 电池热管理方案 电池热管理方案主要分为风冷与液冷两大类,主要侧重于防止电池过热方面: 1.风冷 该技术利用自然风或风机,在电池包一端加装散热风扇,另一端留出通风孔,使空气在电芯的缝隙间加速流动,带走电芯工作时产生的高热量。风冷方案设计主要考虑电池系统结构的设计,风道,风扇的位置及功率的选择,风扇的控制策略等。风冷是以低温空气为介质,利用热的对流,降低电池温度的一种散热方式,分为自然冷却和强制冷却(利用风机等)。 整车中的电池风冷流道

动力电池能量管理系统

动力电池能量管理系统 检测时间:2016-05-23 09:39:53 摘要 近年来,由于日益严重的环境污染问题和日益增长的石油和能源消耗,新能源汽车的发展,越来越多的政府和世界主要汽车制造商的关注。三个电动汽车的发展。 本文介绍了电动汽车电池管理系统的主要功能和开发国内外介绍问题的根源,介绍了铅酸蓄电池工作原理和关键的操作特性,描述铅酸电池剩余量预测几个模型的设计和项目的特点,基于大量的电池充电和放电的实验数据,提出了这种设计方法来估计剩下的电池供电。 上述功能需求,设计提出使用主芯片单片机,分散的集合和集中控制的解决方案结合硬件、单片机的选择,电池参数收集,平衡和保护电路、功率转换电路和外部通信和其他主要模块硬件设计详细描述和基于C51单片机凯尔软件开发和设计环境软件解决方案设计的电池管理系统3主要流程:充电、放电和静态软件设计。最后,整个硬件和软件系统充电和放电的疲劳试验通过收集大量的实验数据,验证了硬件和软件设计的可行性和稳定性 关键词电动汽车; 电池管理系统;电池SOC估算;单片机;充电均衡控制

ABSTRACT In recent years, due to the increasingly serious problem of environmental pollution and the increasing consumption of oil and energy, new energy vehicles

Development, more and more governments and the world's major carmakers attention. Develop three electric vehicles The key technology is the motor drive system consists of three parts, the vehicle control system and power management systems, steam current Automotive battery life is short-range, low battery life, high maintenance costs and popular, therefore, Power management technology for energy management and vehicle power battery protection control is becoming increasingly important. This article describes the electric vehicle battery management system The main function of the system and the development of domestic and foreign presentation Root of the problem, and introduces the principle of lead-acid batteries and key operating characteristics described Lead-acid battery remaining amount prediction model design and features of several projects, based on a lot of battery Charging and discharging of the experimental data, this design method is proposed to estimate the remaining battery power. The above functional requirements, the design proposed to use the main chip microcontroller, decentralized collection And centralized control solutions combine hardware, MCU selection,

特斯拉电动汽车动力电池管理系统解析

特斯拉电动汽车动力电池管理系统 解析 1.Tesla目前推出了两款电动汽车,Roadster 和Model S,目前我收集到的 Roadster的资料较多,因此本回答重点分析的是 Roadster的电池管理系统。 2.电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。 BMS勺主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管

理系统(Battery Thermal Man ageme nt System, BTMS). 1.热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子

电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0° C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30° C之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池

《汽车发动机管理系统》A卷

2019—2020学年 第二学期期末考试试题 《发动机管理系统故障诊断与维修》试卷 A 卷 一、填空题(共10题,每空1分,共20分) 1、汽车故障按丧失工作能力程度进行分类,要分为___________ 和____________。 2、汽车故障的变化规律可分为3个阶段,早期故障期、_________________ 和___________。 3、凸轮轴位置传感器可分为____________、 ____________和光电式三种类型。 4.无分电器点火线圈与一般点火线圈不同,其___________ 与___________没有连接,为互感作用。 5、汽车每行驶___________公里或1至2年,应更换___________滤清器。 6、电控燃油喷射系统按进气量的计算方式不同可分为___________和________型两种。 7、排气再循环控制系统的作用是 。 8、电控燃油喷射系统由 、 、 三个子系统组成。 9、电控燃油喷射系统的类型按喷射时序分类可分为_________________ 、______________ 和______________________三种。 10、电控共轨喷射系统中有一条公共油管,用___________向共轨中泵油,用电磁阀进行压力调节并由压力传感器反馈控制。 二、选择题(共10题,每题2分,共20分) 1、下列哪项不是电控发动机的优点( )。 A 、良好的起动性能 B 、加速性能好 C 、功率大 D 、减速减油或断油 2、火花塞属于点火系统当中的( )。 A 、执行器 B 、传感器 C 、既是执行器又是传感器 D 、控制开关 3、以下哪项是汽车起动困难的机械方面的原因( )。 A 、气缸压缩压力不足 B 、高压火不足 C 、个别重要传感器有故障 D 、起动机故障 4、当汽车处于早期故障期也就是汽车的磨合期时,此时的汽车诊断一般是( )。 A 、总成损坏 B 、材料老化 C 、机械磨损 D 、电子元件损坏 5、标准OBD —II 诊断插座上有( )个插孔。 A 、16 B 、14 C 、12 D 、15 6、气缸内最高压缩压力点的出现在上止点后( )曲轴转角内为最佳。 A 、20°~25° B 、30°~35° C 、10°~15° D 、15°~25° 7 、影响初级线圈通过电流的时间长短的主要因素有( )。 A 、发动机转速和温度 B 、发动机转速和蓄电池电压 C 、发动机转速和负荷 D 、发动机转速和温度 8.电子控制柴油机系统在加注燃油时不小心误加汽油,会造成( )损坏。 A 、喷油器 B 、高压泵 C 、低压泵 D 、燃油泵 9.发动机不能起动,无着车迹象时,应首先进行( )。 A 、检查喷油器及电路 B 、检查高压火花 C 、解码仪读取故障码 D 、传感器 10.锥体形涡流发生器存在于以下( )空气流量传感器中。 A 、叶片式 B 、卡门旋涡式 C 、热线式 D 、热膜式 三、判断题(正确的在括号内画√,错的画×每题2分,共20分) 1.( )能较方便排除的故障,或不影响行驶的故障称为一般故障。 2.( )混合气的分配均匀性好是电控发动机的优点之一。

德尔福小发动机管理系统

德尔福小发动机管理系统 服务手册 版本1.0

前言 关于德尔福公司 德尔福简介 德尔福是全球领先的移动电子和交通系统供应商,包括 动力总成系统、安全系统、转向系统、热系统以及控制 和防盗系统,电气/电子结构和车载娱乐技术。德尔福技 术不仅能满足和超越汽车行业的严格标准,也应用在计 算技术、通讯技术、消费附件、能源以及医药领域。 德尔福总部设在美国密西根州的特洛伊,全球雇员大约 146,600人,在34个国家拥有150个全资的加工制造中 心,2008年销售收入为181亿美元。 以上信息截止到2008年12月31日。 本手册仅作为主机厂车辆服务手册的支持材料。关于车辆服务的相关问题,包括发动机管理系统相关问题,服务人员应该联系主机厂的服务部门。

目录1.电喷系统介绍 1.1.什么是EMS? 1.2.电喷系统的典型零部件 1.3.电喷系统和化油器对比 1.4.电喷系统零部件的连接 2.电喷系统零部件介绍 2.1.发动机控制器 (MT05) 2.1.1.零部件列表 2.1.2.工作原理概述 2.1. 3.外观 2.1.4.外型尺寸 2.1.5.标签及标识 2.1.6.控制器接口针脚定义 2.1.7.使用注意事项 2.1.8.安装要求 2.1.9.供电要求 2.1.10.温度要求 2.1.11.保养和维修 2.2.发动机控制器(MC21) 2.2.1.零部件列表 2.2.2.工作原理概述 2.2. 3.外观 2.2.4.标签及标识 2.2.5.控制器接口针脚定义 2.2.6.使用注意事项 2.2.7.安装要求 2.2.8.供电要求 2.2.9.温度要求 2.2.10.保养和维修 2.3.Multec 3和Multec 3.5喷油器 2.3.1.零部件列表 2.3.2.工作原理概述 2.3.3.外观 2.3.4.密封圈 2.3.5.密封圈的更换 2.3.6.推荐润滑剂 2.3.7.过电压 2.3.8.温度要求 2.3.9.燃油污染物 2.3.10.线束布置 2.3.11.使用注意事项 2.3.12.安装要求 2.3.13.更换方法 2.3.14.可替换性 2.3.15.喷油器堵塞 2.3.16.清洁方法 2.4.节气门体总成(带步进电机)

动力蓄电池及管理系统

第二章 02 动力蓄电池及管理系统

一、动力电池主要性能指标 1.电压 (1)端电压。 (2)标称电压。 (3)开路电压。 (4)工作电压。 (5)充电终止电压。 (6)放电终止电压。

一、动力电池主要性能指标 2.容量 (1)额定容量。 (2)n小时率容量。 (3)理论容量。 (4)实际容量。 (5)荷电状态。 3.内阻 电池的内阻是指电流流过电池内部时所受到的阻力,一般是蓄电池中电解质、正负极群、隔板等电阻的总和。电池内阻越大,电池自身消耗掉的能量越多,电池的使用效率越低。

一、动力电池主要性能指标 4.能量 (1)总能量。 (2)理论能量。 (3)实际能量。 (4)比能量。 (5)能量密度。 (6)充电能量。 5.功率 (1)比功率 (2)功率密度

一、动力电池主要性能指标 6.输出效率 (1)容量效率。 (2)能量效率。 7.自放电率 自放电率是指电池在存放期间容量的下降率,即电池无负荷时自身放电使容量损失的速度,它表示蓄电池搁置后容量变化的特性。 8.放电倍率 电池放电电流的大小常用“放电倍率”表示,即电池的放电倍率用放电时间表示或者说以一定的放电电流放完额定容量所需的小时数来表示,由此可见,放电时间越短,即放电倍率越高,则放电电流越大。

9.使用寿命 一、动力电池主要性能指标 电池类型质量能量密度 (W·h/kg)质量功率密度 (W/kg) 能量效率 (%) 循环寿命 (次) 铅酸电池35~50150~40080500~1000镍镉电池30~50100~150751000~2000镍氢电池60~80200~400701000~1500锂离子电池100~200200~350>901500~3000

电动汽车整车电池热管理研究

电动汽车整车电池热管理研究 发表时间:2018-11-17T18:52:14.633Z 来源:《建筑模拟》2018年第24期作者:汪勇[导读] 笔者先分析电动汽车整车电池热管理的意义,再进一步提出电动汽车整车电池热管理的措施。汪勇 身份证号码:3408811992****0113 安徽江淮汽车集团股份有限公司安徽合肥 230000摘要:笔者先分析电动汽车整车电池热管理的意义,再进一步提出电动汽车整车电池热管理的措施。关键词:电动汽车;整车电池;热管理前言: 确保电池组工作在安全区间内,提供车辆控制所需的必需信息,发生意外的情况的时候要及时响应处理,并按照环境温度、电池状态和车辆需求等决定电池的充放电功率等这就是电池管理系统的主要任务。监测电池参数、估计电池状态、在线故障诊断、充电控制、自动均衡、热管理等。是BMS的主要功能。 1 电动汽车整车电池热管理的意义整个电动汽车的使用性能和寿命和安全性等内容直接受到电动汽车的电池热管理问题的影响,因此需要我们着重注意,在电动汽车中,蓄电池往往是重要的动力供应部分,所以如何提高电动汽车整车的性能以及安全性需要从蓄电池入手,蓄电池的温度特性关系着整个电动车的耐久性和使用寿命,常见的锂电池具有多方面的优点,比如循环寿命较长、允许工作温度范围较大、比能大、自放电率低等。所以目前的电动汽车常选用锂电池作为动力电源,在锂离子电池的热管理工作中需要根据锂离子的具体发热方式进行管理,通过对电池包结构的设计来进行热管理的方式和策略的设定,从而实现整个电池组中单体电池之间的串联和合理温度的保障,整个电池组中任何一个电池出现问题都会造成电池组整体的性能下降,所以要分别注重,例如在相同充电的条件下,不同的温差将会出现不同的电池组荷电状态,而电池热管理正是针对电池的热相关问题来进行的技术内容,通过热管理的方式来保障电池的正常动力供应,通常的热管理系统主要是在电池温度较低的情况下做好预热情况,保障低温充电、放电的高效和安全,其次是电池长时间工作之后温度升高,热管理进行有效的散热,避免因为温度过高造成的事故,另外在电池组之间的温度上也要进行均衡,避免产生过大的温度差异,造成局部过热,影响电池组的寿命和安全[1]。 2 电动汽车整车电池热管理的措施 2.1 以锂电池为例现阶段,锂电池是电动汽车运用的电源供应主要方式,所以以锂电池为例,在电动汽车的整车电池管理工作中,锂电池的电池温度对于整个车辆的使用和功率性能有直接的影响,所以需要进行热管理的控制,当温度较低时将造成电池容量的迅速衰减,在电动汽车的运行中不能提供足够的能源,例如在0度以下电池的可用容量大大减少,温度过低的情况还有可能出现瞬间的电压过充问题,出现电池内部锂的析出,有可能引起短路的问题,另外,在锂电池的热相关问题上,电池安全性的问题也与电池热问题相关,在生产和制造的过程中不当操作容易造成电池的局部过热,出现放热反应,严重的甚至造成爆炸、起火等严重事故,出现人员的安全隐患。除了以上问题,在锂电池的存放和工作过程中的环境温度也将影响到电池的寿命,通常而言,在电池的存放和工作过程中最佳温度为 10-30度之间,温度的过高或过低都会造成电池的寿命和安全问题,电力的需求使得动力电池的大型化成为一种趋势,这就更容易造成内部温度的不均匀和局部温度过高的现象,造成电池寿命的问题,电池加速衰减,从而影响到电动汽车的使用,在具体的运行过程中,动力系统必须要及时降低锂离子电池的问题,保障电池的安全性和足够的动力[2]。 2.2 空气强制对流在电池的热管理工作中,散热是一个重要的内容,空气的强制对流是散热的重要方式,将空气作为主要的传热介质,通过空气在模块的穿过来消散热量,从而达到散热的目的,但是空气本身的冷却效果是很小的,这就需要强制的空气冷却方式,运动产生的流动空气带走电池的热量,从而尽可能的降低电池温度,在强制对流的实现中,需要注意的是电池间的散热槽、距离等方面的设计工作,只有做好了科学的散热面积以及电池封装工作才能有效的进行散热工作,通常常见的电池组采用串联和并联式的通道,在仿真结果下对电池的散热性进行研究可以得出热辐射在整个散热过程中占有非常大的比例,所以强化传热是降低温度的有效措施,通过风冷的方式能够有效的进行电池的散热工作,并且结构简单,成本较低,但是同时冷却和加热的速度较慢[3]。 2.3 液体冷却通常在普通的要求下采用空气的流通方式就可以满足基本的散热要求,但是在较复杂的工况和要求下空气对流的方式就不能满足热管理的要求,所以在这种情况下我们通常采用液体冷却的方式,通过液体的方式进行电池组的热交换,常见的采用模块间布置管线或者模块布置夹套的方式,通过液体的沉浸来进行热交换,常见的传热介质包括油、制冷剂、水、乙二醇等,由于液体的导电问题,所以必须采取有效的绝缘措施,避免出现短路的现象,造成严重事故。传热介质的传热速率主要是根据液体的热导率、流动速率、密度、粘度等确定,在相同的流速和条件下,液体的传热速度大大高于空气的传热速度,这是由于液体本身的特点高于空气的导热率,液冷的方式能够热传递效率高、速度快,但是同时也有重量较大、部件较为复杂、保养过程复杂等缺点。通过试验结果可以证明液体的热传递效果大大高于空气介质的传热效果,但是同时系统较为复杂,并联型的混合动力车中只采用空气的冷却方式即可保证散热要求,纯电动汽车由于要求较高则需要液体冷却的方式,通过流道设计的研究可以得出并联流道整体温度要低于串联流道,在具体的设计和应用角度来看,串联流道结构更适用于产品的使用,综合而言整体散热较好,随着电池模块容量的增大,恶劣环境下运行对电池性能的要求越来越苛刻,高效的电池热管理系统极其重要[4]。结语 在电动汽车管理中,要重视整车电池的热管理,在设计不一样的汽车时,要根据不一样的汽车特点选择合适的热管理方式,从而确保电池的动力供应与热管理效果,使电动汽车的寿命与运行质量能得到保证。参考文献:

动力电池管理系统(BMS)的核心技术【深度解析】

动力电池管理系统(BMS)的核心技术 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 什么是BMS的核心技术? BMS系统通常包括检测模块与运算控制模块。 检测是指测量电芯的电压、电流和温度以及电池组的电压,然后将这些信号传给运算模块进行处理发出指令。所以运算控制模块是BMS的大脑。控制模块一般包括硬件、基础软件、运行时环境(RTE)和应用软件。其中最核心的部分——应用软件。对于用Simulink 开发的环境的一般分为两部分:电池状态的估算算法和故障诊断以及保护。

状态估算包括SOC(State Of Charge)、SOP(State Of Power)、SOH(Stateof Health)以及均衡和热管理。 电池状态估算通常是估算SOC、SOP和SOH。SOC (荷电状态)简单的说就是电池还剩下多少电;SOC 是BMS中最重要的参数,因为其他一切都是以SOC为基础的,所以它的精度和鲁棒性(也叫纠错能力)极其重要。如果没有精确的SOC,加再多的保护功能也无法使BMS正常工作,因为电池会经常处于被保护状态,更无法延长电池的寿命。此外,SOC的估算精度也是十分重要的。精度越高,对于相同容量的电池,可以有更高的续航里程。所以,高精度的SOC估算可以有效地降低所需要的电池成本。比如克莱斯勒的菲亚特500e BEV,可以一直放电SOC=5%。成为当时续航里程最长的电动车。下图是一个算法鲁棒性的例子。电池是磷酸铁锂电池。它的SOCvs OCV曲线在SOC从70%到95%区间大约只变化2-3mV。而电压传感器的测量误差就有3-4mV。在这种情况下,我们有意让初始SOC有20%的误差,看看算法能不能够把这20%的误差纠正过来。如果没有纠错功能,SOC会按照SOCI的曲线走。算法输出的SOC是CombinedSOC也即是图中的蓝色实线。CalculatedSOC是根据最后的验证结果反推回去的真正SOC。 SOP是下一时刻比如下一个2秒、10秒、30秒以及持续的大电流的时候电池能够提供的最大的放电和被充电的功率。当然,这里面还应该考虑到持续的大电流对保险丝的影响。 SOP的精确估算可以最大限度地提高电池的利用效率。比如在刹车时可以尽量多的吸收回馈的能量而不伤害电池。在加速时可以提供更大的功率获得更大的加速度而不伤害电池。同时也可以保证车在行驶过程中不会因为欠压或者过流保护而失去动力即使

相关文档
相关文档 最新文档