文档库 最新最全的文档下载
当前位置:文档库 › 第四章习题与复习题(线性空间)----高等代数教程文件

第四章习题与复习题(线性空间)----高等代数教程文件

第四章习题与复习题(线性空间)----高等代数教程文件
第四章习题与复习题(线性空间)----高等代数教程文件

第四章习题与复习题(线性空间)----高等

代数

习题5. 1

1.判断全体n 阶实对称矩阵按矩阵的加法与数乘是否构成实数域上的线性空间.

2.全体正实数R +, 其加法与数乘定义为

,,k a b ab k a a a b R k R

+⊕==∈∈其中 判断R +按上面定义的加法与数乘是否构成实数域上的线性空间.

3. 全体实n 阶矩阵,其加法定义为

A B AB BA ⊕=-

按上述加法与通常矩阵的数乘是否构成实数域上的线性空间. 4.在22P ?中,{}2222/0,,W A A A P W P ??==∈判断是否是的子空间.

习题5.2

1.讨论22P ?中

1234111111,,,111111a a A A A A a a ????????==== ? ? ? ?????????

的线性相关性.

2.在4R 中,求向量1234ααααα在基,,,下的坐标.其中

1234010011001111ααααα?????????? ? ? ? ? ? ? ? ? ? ?== ? ? ? ? ?- ? ? ? ? ?-??????????

2111,=,=,=,3010

2212342347P ααααα???????????

= ? ? ? ? ?-??????????

110-11-1103.在中求在基=,=,=,=下的坐标.11100000 4.已知3R 的两组基

(Ⅰ): 123111ααα?????? ? ? ? ? ? ? ? ? ???????

11=,=0,=0-11 (Ⅱ):123121βββ?????? ? ? ?

? ? ? ? ? ???????

23=,=3,=443

(1) 求由基(Ⅰ)到基(Ⅱ)的过渡矩阵;

(2) 已知向量123123,,,,,αααααβββ??

?

? ???

1在基下的坐标为0求在基下的坐标-1;

(3) 已知向量123123,,,,,βββββααα??

? ? ???

1在基下的坐标为-1求在基下的坐标2; (4) 求在两组基下坐标互为相反数的向量γ. 5.已知P [x ]4的两组基

(Ⅰ):2321234()1()()1()1f x x x x f x x x f x x f x =+++=-+=-=,,,

(Ⅱ):2323321234()()1()1()1g x x x x x x x x x x x x x =++=++=++=++,g ,g ,g (1) 求由基(Ⅰ)到基(Ⅱ)的过渡矩阵; (2) 求在两组基下有相同坐标的多项式f (x ).

习题5.3

证明线性方程组

12345123451

23453642022353056860

x x x x x x x x x x x x x x x +--+=??

+--+=??--+-=? 的解空间与实系数多项式空间3[]R x 同构.

习题5.4

1.求向量()1,1,2,3α=- 的长度.

2.求向量()()1,1,0,12,0,1,3αβ=-=与向量之间的距离. 3.求下列向量之间的夹角 (1) ()()10431211αβ==--,,,,,,, (2) ()()12233151αβ==,,,,,,, (3)()()1,1,1,2311,0αβ==-,,,

3.设αβγ,,为n 维欧氏空间中的向量,证明: (,)(,)(,)d d d αβαγγβ≤+.

习题5.5

1.在4R 中,求一个单位向量使它与向量组

()()()1,1,1,11,1,1,11,1,1,1321--=--=--=ααα,, 正交.

2.将3R 的一组基1231101,2,1111ααα??????

? ? ?===- ? ? ? ? ? ???????

化为标准正交基. 3.求齐次线性方程组

12345123530

0x x x x x x x x x +-+-=??

+-+=?

的解空间的一组标准正交基. 3.

设1α,2α ,… ,n α 是n 维实列向量空间n R 中的一组标准正交基, A 是n 阶正

交矩阵,证明: 1αA ,2αA ,… ,n A α 也是n R 中的一组标准正交基. 5.设123,,ααα是3维欧氏空间V 的一组标准正交基, 证明

1123212331231

11(22),(22),(22)3

3

3

βαααβαααβααα=+-=-+=--

也是V 的一组标准正交基.

习题四 (A)

一、填空题

1.当k 满足 时,()()()31211,2,1,2,3,,3,,3k k R ααα===为的一组基. 2.由向量()1,2,3α=所生成的子空间的维数为 .

3.()()()()3123,,1,3,5,6,3,2,3,1,0R αααα====中的向量371在基下的坐标为 . 4. ()()()3123123,,2,1,3,1,0,1,2,5,1R εεεααα=-=-=---中的基到基的过渡矩阵为 . 5. 正交矩阵A 的行列式为 .

6.已知5元线性方程组AX = 0的系数矩阵的秩为3, 则该方程组的解空间的维数为 .

()()()()412342,1,1,1,2,1,,,3,2,1,,4,3,2,11,a a a R a αααα====≠7.已知不是的基且a 则满

足 .

二、单项选择题

1.下列向量集合按向量的加法与数乘不构成实数域上的线性空间的是( ). (A ) (){}R x x x x V n n ∈=,,0,,0,111

(B ) (){}R x x x x x x x V i n n ∈=+++=,0,,,21212 (C ) (){}R x x x x x x x V i n n ∈=+++=,1,,,21213 (D) (){}411,0,,0,0V x x R =∈

2.331,23P A ???

?= ? ???

在中由生成的子空间的维数为( ).

(A) 1 (B) 2 (C) 3 (D) 4

331231223311223311223123123123123

,,( )() ,, ()2,23,3

() ,,2 () ,2322,355R R A B C D ααααααααααααααααααααααααααααααα++-+++++++++-++-3.已知是的基,则下列向量组是的基.

33123122313122331122313122313

,, () ,, () 2,2,2() ,, () 2,2,2R R A B C D ααααααααααααααααααααααααααα++++++------4.已知是的基,则下列向量组()不是的基. 5.n 元齐次线性方程组AX = 0的系数矩阵的秩为r , 该方程组的解空间的维数为s, 则( ).

(A) s=r (B) s=n-r (C) s>r (D) s

6. 已知A, B 为同阶正交矩阵, 则下列( )是正交矩阵. (A) A+B (B) A-B (C) AB (D) kA (k 为数)

7. 线性空间中,两组基之间的过渡矩阵( ).

(A) 一定不可逆 (B) 一定可逆 (C) 不一定可逆 (D) 是正交矩阵

(B)

1.已知4R 的两组基 (Ⅰ): 1234, αααα,,

(Ⅱ):11234223433444,βααααβαααβααβα=+++=++=+=,, ( 1 )求由基(Ⅱ)到(Ⅰ)的过渡矩阵; ( 2 )求在两组基下有相同坐标的向量.

31231231312312232313

3123123123123123,, ,, ,

, (1),, ,, ,, ;(3) 2 ,,R R αααβββββαααββααββααββββββαααααααβββ+=+++=++=+=+-2.已知是 的基,向量组满足证明 是的基;

(2)求由基 到基的过渡矩阵求向量 在基 下的坐标.

4

12341234123412341234123412002100,,,,0012002121001100,,,,003500121,,2 2R ααααββββααααββββααααααααα???????? ? ? ? ? ? ? ? ?=== ? ? ? ? ? ? ? ?????????

??

?

? ? ???=++-3.设的两组基,与=,,

且由基,到基,的过渡矩阵为()求基,;

()求向量1234,,ββββ在基,下的坐标.

222123324. ()1,()12,()123[]()6914f x x x f x x x f x x x P x f x x x =++=++=++=++证明是线性空间的一组基,并求在这组基下的坐标.

5.当a 、b 、c 为何值时,矩阵A

= 00010a b

c ??

?

?

? ? ? ?

?

?

是正交阵.

6.设 α 是n 维非零列向量, E 为n 阶单位阵, 证明:T T E A αααα)(/2-=为正交矩阵.

7.设T E A αα2-=, 其中12,,,T

n a a a α=

(), 若 ααT = 1. 证明A 为正交阵.

8. , , , 0.A B n A B A B =-+=设均为阶正交矩阵且证明

高等代数试题及答案

中国海洋大学2007-2008学年第2学期期末考试试卷 a ?? 的子空间.

授课教师命题教师或 命题负责人签字年月日院系负责人签 字年月日 共2 页第2 页

,,是的值域与核都是a b b a a ? ????? ,a b ≠上线性空间V 上的线性变换,多项式

中国海洋大学 2007-2008学年 第2学期 期末考试 数学科学 学院 《高等代数》试题(A 卷)答案 一.判断题 1.× 2.× 3.× 4.√ 5.√ 二.解:A =???? ????????1111111111111111, 3|(4)E A λλλ-=-|,所以特征值为0,4(3重). 将特征值代入,求解线性方程组()0E A x λ-=,得4个线性无关的特征向量(答案可以不唯一),再正交单位化,得4个单位正交向量: 11111 ,,,)'2222α=( ,2α=, 3α= ,4'6662α--=(-. 所以正交阵1 2612 10210 2 2T ?-????? ?=??????????? 而40'00T AT ??????=??????. 三.证:(1) ,.A B M ?∈ 验证,A B kA M +∈即可. (2) 令1101 01 0011 0n E D E -?? ?? ? ??? ? ?== ????? ?????? ,D 为循环阵, 00n k k k E D E -?? = ??? ,(k E 为k 阶单位阵) 则2 1,, ,,n n D D D D E -=在P 上线性无关.

且21121n n n n A a E a D a D a D ---=++++,令112(),n n f x a a x a x -=++有 ()A f D =. B M ?∈,必P ?上1n -次多项式()g x ,使()B g D =,反之亦真. ()()()()AB f D g D g D f D BA ∴=== (3)由上可知:2 1,,, ,n E D D D -是M 的一组基,且dim M n =. 四.解:A 的行列式因子为3 3()(2)D λλ=+, 21()()1D D λλ==. 所以,不变因子为3 3()(2)d λλ=+, 21()()1d d λλ==,初等因子为3 (2)λ+, 因而A 的Jordan 标准形为21212J -?? ??=-?? ??-?? 五.证:"":()()() ()()()0f x g x q x f A g A q A ?=∴== ""?:()0,()0f A g A == 设()()()()f x g x q x r x =+, ()0r x =或(())(())r x g x ?

高等代数试卷及答案1

高等代数 一、填空题 (共10题,每题2分,共20 分) 1.只于自身合同的矩阵是 矩阵。 2.二次型()()11212237,116x f x x x x x ?? ??= ? ????? 的矩阵为__________________。 3.设A 是实对称矩阵,则当实数t _________________,tE A +是正定矩阵。 4.正交变换在标准正交基下的矩阵为_______________________________。 5.标准正交基下的度量矩阵为_________________________。 6.线性变换可对角化的充要条件为__________________________________。 7.在22P ?中定义线性变换σ为:()a b X X c d σ?? = ??? ,写出σ在基11122122,,,E E E E 下的矩阵_______________________________。 8.设1V 、2V 都是线性空间V 的子空间,且12V V ?,若12dim dim V V =,则_____________________。 9.叙述维数公式_________________________________________________________________________。 10.向量α在基12,,,n ααα???(1)与基12,,,n βββ???(2)下的坐标分别为x 、y ,且从基(1)到基(2)的过渡矩阵为A ,则x 与y 的关系为_____________________________。 二、判断题 (共10 题,每题1分,共10分) 1.线性变换在不同基下的矩阵是合同的。( ) 2.设σ为n 维线性空间V 上的线性变换,则()1 0V V σσ -+=。 ( ) 3.平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法,构成实 数域上的线性空间。( ) 4.设1V 与2V 分别是齐次线性方程组120n x x x ++???+=与12n x x x ==???=的解空间,则 12n V V P ⊕= ( ) 5.2 2 11n n i i i i n x x ==??- ??? ∑∑为正定二次型。( ) 6.数域上任意一个矩阵都合同于一对角矩阵。( ) 7.把复数域C 看作复数域上的线性空间,C ξ?∈,令σξξ=,则σ是线性变换。( ) 8.若σ是正交变换,那么σ的不变子空间的真正交补也是σ的不变子空间。( ) 9.欧氏空间中不同基的度量矩阵是相似的。( ) 10.若σ为[]n P x (1n >)中的微分变换,则σ不可对角化。( )

线性空间-知识点及其注释

第五章 线性空间-知识点及其注释 知识点:n 维数组向量,向量空间,线性空间,线性组合,线性表示,向量组等价,线性相关,线性无关,极大无关组,秩,生成子空间,子空间,基,维数,坐标,基变换,坐标变换,同构,交子空间,和子空间,直和,线性方程组的解空间,基础解系,特解,通解。 #n 维数组向量#简称为n 维向量,是指由数域F 中n 个数n a a a ,,,21 组成的n 元有序数组,常记为12(,,,)T n a a a 或),,,(21n a a a ,又称为n 元(数组)向量。由数域F 上所有n 维数组向量所构成的线性空间称为n 维(元)(数组)向量空间,记为n F 。 #线性组合#表达式1122s s k k k ααα+++称为向量组s ααα,,,21 的系数分别为12,,,()s k k k F ∈的线性组合,s k k k ,,,21 称为线性组合系数。 #线性表示#向量α可由向量组s ααα,,,21 线性表示(出)是指存在数域F 中的数s k k k ,,,21 ,使1122s s k k k αααα=+++。 向量组s ααα,,,21 可由向量组12,,,t βββ线性表示是指每个i α(1,2,...,i s =)都可由向量组12,,,t βββ线性表示。显然,向量组的线性表示具有传递性。 在n F 中,向量α可由向量组s ααα,,,21 线性表示?线性方程组 1122 s s x x x αααα+++=有解? 1212(,, ,,)(,, ,)s s rank rank ααααααα=。 #向量组等价#向量组s ααα,,,21 与向量组12,,,t βββ等价是指向量组 s ααα,,,21 与向量组12,,,t βββ可以相互线性表示。显然,向量组等价是 等价关系,即具有自反性、对称性和传递性。

大学高等数学上考试题库(附答案)

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()2g x x = (C )()f x x = 和 ()() 2 g x x = (D )()|| x f x x = 和 ()g x =1 2.函数()()sin 42 0ln 10x x f x x a x ?+-≠? =+?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4 y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 8. x x dx e e -+?的结果是( ). (A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ ( D )ln()x x e e C -++ 9.下列定积分为零的是( ).

高等代数试题附答案

科目名称:《高等代数》 姓名: 班级: 考试时间:120分钟 考试形式:闭卷 ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌ ≌≌≌≌ 一、填空题(每小题5分,共25分) 1、在[]X P 中,向量21x x ++关于基23,1,12+--x x x 的坐标为 。 2、向 量 组 ()()()()()8,3,5,2,1,1,3,0,3,2,4,2,1,2,154321-=-==-=-=ααααα的秩 为 ,一个最大无关组为 .。 3、(维数公式)如果21,V V 是线性空间V 的两个子空间,那么 。 4、假设??? ? ? ??-----=175131023A 的特征根是 ,特征向量分别 为 。 5、实二次型()323121321224,,x x x x x x x x x f ++-= 的秩为 二、是非题(每小题2分,共20分) 1、如果r a a a ,,,21 线性无关,那么其中每一个向量都不是其余向量的线性组合。( ) 2、在][x P 中,定义变换)()(0x f x Af =,其中P x ∈0,是一固定的数,那么变换A 是线性变换。( ) 3、设21,W W 是向量空间V 的两个子空间,那么它们的并 21W W 也是V 的一个子空间。( ) 4、两个欧氏空间同构的充分且必要条件是它们有相同的维数。( )

5、令),,,(4321x x x x =ξ是4R 的任意向量,那么δ是4R 到自身的线性变 换。其中),,,()(24232221x x x x =ξδ。( ) 6、矩阵A 的特征向量的线性组合仍是A 的特征向量。( ) 7、若矩阵A 与B 相似,那么A 与B 等价。( ) 8、n 阶实对称矩阵A 有n 个线性无关的特征向量。( ) 9、在)(2R M 中,若W 由所有满足迹等于零的矩阵组成,那么W 是 )(2R M 的 子空间。( ) 10、齐次线性方程组0)(=-X A E λ的非零解向量是A 的属于λ的特征向量。( ) 三、明证题(每小题××分,共31分) 1、设n εεε,,,21 是线性空间V 的一组基,A 是V 上的线性变换,证明:A 可逆当且仅当n A A A εεε,,,21 线性无关。 (10) 2、设δ是n 维欧氏空间V 的一个线性变幻,证明:如果δ是对称变幻, 2δ=l 是单位变幻,那么δ是正交变换。(11) 3、设V 是一个n 维欧氏空间,证明:如果21,W W 都是V 得子空间,那么() ⊥⊥⊥ =+2121W W W W 。(10) 四、计算题(每小题8分,共24分) 1、求矩阵??? ? ? ??---=466353331A 的特征根与特征向量,并求满秩矩阵P 使 得AP P 1-为对角形矩阵。 2、求一个正交矩阵U ,使得AU U '使对角形式,其中

子空间的和与直和

5.5 子空间的和与直和 授课题目: 子空间的和与直和. 教学目标: 1.理解并掌握子空间的概念. 2.掌握子空间的判别方法,熟悉几种常见的子空间. 3.掌握子空间的交与和的概念. 授课时数:3学时 教学重点:子空间的判别. 教学难点:子空间的交与和. 教学过程: 一 子空间的的和 回忆: 令W 是数域F 上向量空间V 的一个非空子集.如果W 对于V 的加法以及标量与向量的乘法来说是封闭的,那么就称W 是V 的一个子空间. 一个向量空间V 本身和零空间叫做V 的平凡子空间。V 的非平凡子空间叫做V 的真子空间。 1. 定义:设12,W W V ?,则称V 的子集{}121122/,W W αααα+∈∈ 为1212w w W W +与的和,记为 即12W W +={}121122/,W W αααα+∈∈ 定理5.5.1:若12,W W 均为V 的两个子空间,则12W W +仍然是子空间. 证明:12,W W θθθθθ∈∈∴=+∈ 12W W +故12W W +≠φ 对121212,,,,a b F W W αβαααβββ?∈?+=+=+有, 111222,,,W W αβαβ∈∈ 12W W +均为v 子空间. ∴ 111222,a b W a b W αβαβ+∈+∈ 于是 ()()()()1212112212a b a b a b a b W W αβααββαβαβ+=+++=+++∈+ ∴ 12W W +是V 的子空间。 推广:12,,,n W W W V n 为的个子空间,则 {}12121122/,,,n n n n W W W W W W αααααα+++=+++∈∈∈ 仍然是V 的子空间. 补充:若1W =L ()r ααα,,,21 ,()212,,,t W L βββ= 则12W W +=L ()t r βββααα,,,,,,,2121

大一高数试题及解答

大一高数试题及解答

大一高数试题及答案 一、填空题(每小题1分,共10分) ________ 1 1.函数y=arcsin√1-x2+ ────── 的定义域为 _________ √1-x2 _______________。 2.函数y=x+ex上点(0,1)处 的切线方程是______________。 f(Xo+2h)-f(Xo-3h) 3.设f(X)在Xo可导且f'(Xo)=A, 则lim─────────────── h→o h = _____________。

4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是 ____________。 x 5.∫─────dx=_____________。 1-x4 1 6.limXsin───=___________。 x→∞ X 7.设f(x,y)=sin(xy),则fx(x,y)=____________。 _______ R √R2-x2 8.累次积分∫ dx∫ f(X2+Y2)dy化为极坐标下的累次积分为 ____________。 0 0

d3y3d2y9.微分方程─── +──(─── )2的阶数为____________。 dx3xdx2 ∞ ∞ 10.设级数∑ a n 发散,则级数∑ a n _______________。 n=1 n=1000 二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的()内, 1~10每小题1分,11~20每小题2分,共30分) (一)每小题1分,共10分 1 1.设函数f(x)=── ,g(x)=1-x,则f[g(x)]=() x

大学高数试卷及答案

大学高数试卷及答案 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

浙江农林大学 2016 - 2017 学年第 一 学期期中考试 课程名称: 高等数学I 课程类别: 必修 考试方式: 闭卷 注意事项:1、本试卷满分100分。 2、考试时间 120分钟。 一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的选项填在题后的括号内。每小题3分,共21分) 1.下列各式正确的是: ( ) A. sin lim 1x x x →+∞= B. 0sin lim 0x x x →= C. 1lim 1x x e x →+∞??+=- ??? D. 1lim 1x x e x →+∞ ?? += ??? 2. 当0x +→ ( ) 1 B. ln C. 1- 1-3. 设()f x 在x a =的某邻域有定义,则它在该点处可导的一个充分条件是: ( ) A.1lim ()()h h f a f a h →+∞?? +-???? 存在 B. 0(2)()lim h f a h f a h h →+-+存在 C. 0 ()()lim 2h f a h f a h h →+--存在 D. 0()() lim h f a f a h h →--存在 学院: 专业班级: 姓名 学号: 装 订 线 内 不 要 答 题

4. 函数33y x x =-在区间[0,1]上的最小值是: ( ) A. 0 B. 没有 C. 2 D. 29 - 5. 函数21y x =-在区间[1,1]-上应用罗尔定理时,所得到的中值ξ= ( ) A. 0 B. 1 C. 1- D. 2 6.设函数2 ()(1)0 ax e x f x b x x ?≤=?->?处处可导,那么: ( ) A .1a b == B .2,1a b =-=- C .0,1a b == D .1,0a b == 7. 设x a =为函数()y f x =的极值点,则下列论述正确的是 ( ) A .'()0f a = B .()0f a = C .''()0f a = D .以上都不对 二、填空题(每小题3分,共21分) 1. 极限232)sin (1 cos lim x x x x x +-+∞→= . 2 .极限2 lim n n →∞ ?? + + +=. 3.设函数f (x )=2310 22 2 x x x x a x ?+-≠? -??=?在点x =2处连续,则a = . 4. 函数()sin x f x x = 的间断点为 . 5. 函数22ln y x x =-的单调减区间为 . 6. 设函数ln y =dy = . 7.椭圆曲线cos sin x a t y b t =??=? 在4t π =相应的点处的切线方程为 . 三、求下列极限(每小题 6分, 共18分)

线性空间和欧式空间

第六章 线性空间和欧式空间 §1 线性空间及其同构 一 线性空间的定义 设V 是一个非空集合,K 是一个数域,在集合V 的元素之间定义了一种代数运算, 叫做加法;这就是说,给出了一个法则,对于V 中任意两个元素α和β,在V 中都有唯一的一个元素γ与他们对应,成为α与β的和,记为βαγ+=。在数域K 与集合V 的元素之间还定义了一种运算,叫做数量乘法,即对于数域K 中任一数k 与V 中任一元素α,在V 中都有唯一的一个元素δ与他们对应,称为k 与α的数量乘积,记为αδk =,如果加法与数量乘法满足下述规则,那么V 称为数域K 上的线性空间。 加法满足下面四条规则: 1)αββα+=+;交换律 2))()(γβαγβα++=++;结合律 3)在V 中有一个元素0,对于V 中任一元素α都有αα=+0(具有这个性质的元 素0称为V 的零元素); 存在零元 4)对于V 中每一个元素α,都有V 中的元素,使得0=+βα(β称为α的负元素). 存在负元 数量乘法满足下面两条规则: 5)αα=1; 存在1元 6)αα)()(kl l k =. 数的结合律 数量乘法与加法满足下面两条规则: 7)αααl k l k +=+)(; 数的分配律 8)βαβαk k k +=+)(. 元的分配律 在以上规则中,l k ,表示数域中的任意数;γβα,,等表示集合V 中任意元素。 例1. 元素属于数域K 的n m ?矩阵,按矩阵的加法和矩阵的与数的数量乘法,构成 数域K 上的一个线性空间,记为,()m n M K 。 例2. 全体实函数(连续实函数),按函数的加法和数与函数的数量乘法,构成一个实 数域上的线性空间。 例3. n 维向量空间n K 是线性空间。

大学高数试卷及答案

浙江农林大学2016 - 2017 学年第 一学期期中考试 课程名称: 高等数学I 课程类别: 必修 考试方式: 闭卷 注意事 项:1、本试卷满分100分。 2、考试时间120分钟。 题 答 :号学 要 不 :名姓 内 线 ? ?级班 业 专 :院学 题号 -一一 二二二 -三 四 五 六 七 八 得分 得分 评阅人 、单项选择题(在每小题的四个备选答案中,选出一个正确 答案,并将正确答案的选项填在题后的括号内。每小题 3分, 共21分) 1 ?下列各式正确的是: 得分 A. sin x lim 1 B. x x C. lim 1 - x e D. x x 2.当 x 0时,与 f ■- x 等价的无穷小量 是: A. \/1 V x 1 B. In --------------------- x C. 1 J x 3.设 f (x)在 x a 的某邻域有定义, A.J imhfQ ) f(a)存在 叫 H h sin x lim x 0 lim 1 D. cos 、二 则它在该点处可导的一个充分条件是: B. m o H h 叫 H h 在

x 2 3x 10 2 3. 设函数f (x)= x 2 x 在点x=2处连续,则a a x 2 4. 函数f(x)—的间断点为 ___________________ . ________ sin x 5. 函数y 2x 2 lnx 的单调减区间为 _________________ . _________ 6. 设函数 y ln tan x ,贝卩 dy _____________ . _________ x a cost 7. 椭圆曲线 _________________________________ 在t —相应的点处的切线方程为 .______________________________________ y bsi nt 4 A. 0 B ? 没有 C. 2 D. 2 9 5.函数y 1 x 2 在区间[ 1,1]上应用罗尔定理 时, 所得到的中值 () A. 0 B. 1 C. 1 D. 2 6.设函数 ax e f(X ) “ 2 b(1 x x 0 处处可导,那么 )x 0 : ( ) 4.函数y 3x 3 x 在区间[0,1]上的最小值是: () A. a b 1 B . a 2,b 1 C. a 0,b 1 D. a 1,b 0 7.设x a 为函数y f (x)的极值点,则下列论述正确的是 A . f '(a) 0 B f(a) 0 C f"(a) 0 D .以上都不对 、填空题(每小题3分,共21 分) 得分 1.极限lim x x 2 cos x 1 = (x sin x)2 2.极限lim n 2 2 2

高等代数习题及答案(1)

高等代数试卷 一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、)(x p 若是数域F 上的不可约多项式,那么)(x p 在F 中必定没有根。 ( ) 2、若线性方程组的系数行列式为零,由克莱姆法则知,这个线性方程组一定是无解的。 ( ) 3、实二次型),,,(21n x x x f 正定的充要条件是它的符号差为n 。 ( ) 4、 321321;3,2,1,,,x x x i R x x x x W i 是线性空间3R 的一个子空间。( ) 5、数域F 上的每一个线性空间都有基和维数。 ( ) 6、两个n 元实二次型能够用满秩线性变换互相转化的充要条件是它们有相同的正惯性指数和负惯性指数。 ( ) 7、零变换和单位变换都是数乘变换。 ( ) 8、线性变换 的属于特征根0 的特征向量只有有限个。 ( ) 9、欧氏空间V 上的线性变换 是对称变换的充要条件为 关于标准正交基的矩阵为实对称矩阵。 ( ) 10、若 n ,,,21 是欧氏空间V 的标准正交基,且 n i i i x 1 ,那么 n i i x 1 2 。 ( ) 二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写 在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、关于多项式的最大公因式的下列命题中,错误的是( ) ① n n n x g x f x g x f ,, ; ② n j i j i f f f f f j i n ,,2,1,,,1,1,,,21 ; ③ x g x g x f x g x f ,, ; ④若 1,1, x g x f x g x f x g x f 。 2、设D 是一个n 阶行列式,那么( ) ①行列式与它的转置行列式相等; ②D 中两行互换,则行列式不变符号; ③若0 D ,则D 中必有一行全是零; ④若0 D ,则D 中必有两行成比例。 3、设矩阵A 的秩为r r (>)1,那么( ) ①A 中每个s s (<)r 阶子式都为零; ②A 中每个r 阶子式都不为零;

高等代数试卷及答案--(二)

一、填空题 (共10题,每题2分,共20 分) 1.只于自身合同的矩阵是 矩阵。 2.二次型()()11212237,116x f x x x x x ?? ??= ? ????? 的矩阵为__________________。 3.设A 是实对称矩阵,则当实数t _________________,tE A +是正定矩阵。 4.正交变换在标准正交基下的矩阵为_______________________________。 5.标准正交基下的度量矩阵为_________________________。 6.线性变换可对角化的充要条件为__________________________________。 7.在22P ?中定义线性变换σ为:()a b X X c d σ?? = ??? ,写出σ在基11122122,,,E E E E 下的 矩阵_______________________________。 8.设1V 、2V 都是线性空间V 的子空间,且12V V ?,若12dim dim V V =,则_____________________。 9.叙述维数公式_________________________________________________________________________。 10.向量α在基12,,,n ααα???(1)与基12,,,n βββ???(2)下的坐标分别为x 、y ,且从基(1)到基(2)的过渡矩阵为A ,则x 与y 的关系为_____________________________。 二、判断题 (共10 题,每题1分,共10分) 1.线性变换在不同基下的矩阵是合同的。( ) 2.设σ为n 维线性空间V 上的线性变换,则()1 0V V σσ -+=。 ( ) 3.平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法,构成实数域上的线性空间。( ) 4.设1V 与2V 分别是齐次线性方程组120n x x x ++???+=与12n x x x ==???=的解空间,则 12n V V P ⊕= ( ) 5.2 2 11n n i i i i n x x ==??- ??? ∑∑为正定二次型。( ) 6.数域上任意一个矩阵都合同于一对角矩阵。( ) 7.把复数域C 看作复数域上的线性空间,C ξ?∈,令σξξ=,则σ是线性变换。( ) 8.若σ是正交变换,那么σ的不变子空间的真正交补也是σ的不变子空间。( ) 9.欧氏空间中不同基的度量矩阵是相似的。( ) 10.若σ为[]n P x (1n >)中的微分变换,则σ不可对角化。( ) 三、计算题 (共3题,每题10分,共30分)

大学高数试卷及答案

浙江农林大学 2016 - 2017 学年第 一 学期期中考试 课程名称: 高等数学I 课程类别: 必修 考试方式: 闭卷 注意事项:1、本试卷满分100分。 2、考试时间 120分钟。 一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的选项填在题后的括号内。每小题3分,共21分) 1.下列各式正确的是: ( ) A. sin lim 1x x x →+∞= B. 0sin lim 0x x x →= C. 1lim 1x x e x →+∞??+=- ??? D. 1lim 1x x e x →+∞ ?? += ??? 2. 当0x +→ ( ) 1 B. ln C. 1- 1-3. 设()f x 在x a =的某邻域有定义,则它在该点处可导的一个充分条件是:( ) A.1lim ()()h h f a f a h →+∞?? +-???? 存在 B. 0(2)()lim h f a h f a h h →+-+存在 C. 0 ()()lim 2h f a h f a h h →+--存在 D. 0()() lim h f a f a h h →--存在 学院: 专业班级: 姓名: 学号: 装 订 线 内 不 要 答 题

4. 函数33y x x =-在区间[0,1]上的最小值是: ( ) A. 0 B. 没有 C. 2 D. 29 - 5. 函数21y x =-在区间[1,1]-上应用罗尔定理时,所得到的中值ξ= ( ) A. 0 B. 1 C. 1- D. 2 6.设函数2 ()(1)0 ax e x f x b x x ?≤=?->?处处可导,那么: ( ) A .1a b == B .2,1a b =-=- C .0,1a b == D .1,0a b == 7. 设x a =为函数()y f x =的极值点,则下列论述正确的是 ( ) A .'()0f a = B .()0f a = C .''()0f a = D .以上都不对 二、填空题(每小题3分,共21分) 1. 极限232)sin (1cos lim x x x x x +-+∞→= . 2 .极限lim n →∞ ?? +L =. 3.设函数f (x )=2310 22 2 x x x x a x ?+-≠? -??=?在点x =2处连续,则a = . 4. 函数()sin x f x x = 的间断点为 . 5. 函数22ln y x x =-的单调减区间为 . 6. 设函数ln y =dy = . 7.椭圆曲线cos sin x a t y b t =??=? 在4t π =相应的点处的切线方程为 .

《高等代数》试题库

《高等代数》试题库 一、选择题 1.在里能整除任意多项式的多项式是()。 .零多项式.零次多项式.本原多项式.不可约多项式 2.设是的一个因式,则()。 .1 .2 .3 .4 3.以下命题不正确的是()。 . 若;.集合是数域; .若没有重因式; .设重因式,则重因式 4.整系数多项式在不可约是在上不可约的( ) 条件。 . 充分 . 充分必要 .必要.既不充分也不必要 5.下列对于多项式的结论不正确的是()。 .如果,那么 .如果,那么 .如果,那么,有 .如果,那么 6.对于“命题甲:将级行列式的主对角线上元素反号, 则行列式变为;命题乙:对换行列式中两行的位置, 则行列式反号”有( ) 。 .甲成立, 乙不成立;. 甲不成立, 乙成立;.甲, 乙均成立;.甲, 乙均不成立 7.下面论述中, 错误的是( ) 。 . 奇数次实系数多项式必有实根; . 代数基本定理适用于复数域; .任一数域包含;.在中, 8.设,为的代数余子式, 则=( ) 。 . . . . 9.行列式中,元素的代数余子式是()。 .... 10.以下乘积中()是阶行列式中取负号的项。 .; .;.;. 11. 以下乘积中()是4阶行列式中取负号的项。 .; .;.; . 12. 设阶矩阵,则正确的为()。 . . . . 13. 设为阶方阵,为按列划分的三个子块,则下列行列式中与等值的是() . . . . 14. 设为四阶行列式,且,则() . . . . 15. 设为阶方阵,为非零常数,则() . . . . 16.设,为数域上的阶方阵,下列等式成立的是()。 .;. ;

.; . 17. 设为阶方阵的伴随矩阵且可逆,则结论正确的是() . . . . 18.如果,那么矩阵的行列式应该有()。 .; .;.; . 19.设, 为级方阵, , 则“命题甲:;命题乙:”中正确的是( ) 。 . 甲成立, 乙不成立;. 甲不成立, 乙成立;.甲, 乙均成立;.甲, 乙均不成立 20.设为阶方阵的伴随矩阵,则()。 . . . . 21.若矩阵,满足,则()。 .或;.且;.且;.以上结论都不正确 22.如果矩阵的秩等于,则()。 .至多有一个阶子式不为零; .所有阶子式都不为零;.所有阶子式全为零,而至少有一个阶子式不为零;.所有低于阶子式都不为零 23.设阶矩阵可逆,是矩阵的伴随矩阵,则结论正确的是()。 .;.;.;. 24. 设为阶方阵的伴随矩阵,则=() . . . . 25.任级矩阵与-, 下述判断成立的是( )。 . ; .与同解; .若可逆, 则;.反对称, -反对称 26.如果矩阵,则() . 至多有一个阶子式不为零;.所有阶子式都不为零.所有阶子式全为零,而至少有一个阶子式不为零;.所有低于阶子式都不为零 27. 设方阵,满足,则的行列式应该有()。 . . . . 28. 是阶矩阵,是非零常数,则 ( )。 . ; . ;. . 29. 设、为阶方阵,则有(). .,可逆,则可逆 .,不可逆,则不可逆 .可逆,不可逆,则不可逆.可逆,不可逆,则不可逆 30. 设为数域上的阶方阵,满足,则下列矩阵哪个可逆()。 . . . 31. 为阶方阵,,且,则()。 .; .;.;. 32. ,,是同阶方阵,且,则必有()。 . ; . ;.. 33. 设为3阶方阵,且,则()。 .;.;.;. 34. 设为阶方阵,,且,则(). . .或. . 35. 设矩阵,则秩=()。 .1 .2 .3 .4

高等代数真题答案

第六章习题册 1. 检验下述集合关于所规定的运算是否构成实数域R 上的线性空间? (a) 集合{()[]deg()}f x R x f n ∈|=关于多项式的加法和数乘. (b) 集合{()}T n A M R A A ∈|=关于矩阵的加法和数乘. (c) 集合0{{}}n n n x x R ∞=|∈关于数列的加法和数乘. 2. 设V 是数域F 上的线性空间, 证明(αβ)αβk k k ?=?, 这里αβV k F ,∈,∈.

3. 下述集合是否是()n M R 的子空间 (a) { ()}T n V A M R A A =∈|=? (b) {()()[]}V f A f x R x =|∈, 这里()n A M R ∈是一个固定方阵. 4. 叙述并证明线性空间V 的子空间1W 与2W 的并12W W ∪仍为V 的子空间的充分必要条件. 5. 设1S 与2S 是线性空间V 的两个非空子集, 证明: (a) 当12S S ?时, 12()()Span S Span S ?. (b) 1212()()()Span S S Span S Span S =+∪. (c) 1212()()()Span S S Span S Span S ?∩∩.

6. 如果123f f f ,,是实数域上一元多项式全体所成的线性空间[]R x 中三个互素的多项式, 但其中任意两个都不互素, 那么它们线性无关.试证之. 7. 设S 是数域F 上线性空间V 的一个线性无关子集, α是V 中一个向量, αS ?, 则{α}S ∪线性相关充分必要条件α()Span S ∈. 8. (a) 证明{|()}ij ji E E i j +≤是()n M F 中全体对称矩阵组成的子空间的一个基. (b). 求3()M F 的子空间{()()[]}f A f x F x |∈ 的一个基和维数, 这里010001000A ???? =?????? 9. 在4 R 中, 求向量ξ在基1234(εεεε),,,下的坐标, 其中 12341210111112εεεεξ0301311014??????????????????????????????=,=,=,=,=????????????????????????????????????????

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷 (一) 一、选择题(共12分) 1. (3分)若2,0, (),0 x e x f x a x x ?<=?+>?为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0 (3)(3) lim 2h f h f h →--的值为( ). (A)1 (B)3 (C)-1 (D) 12 3. (3 分)定积分22 π π -?的值为( ). (A)0 (B)-2 (C)1 (D)2 4. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分) 1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 . 2. (3分) 1 2 4 1(sin )x x x dx -+=? . 3. (3分) 2 1lim sin x x x →= . 4. (3分) 3 2 23y x x =-的极大值为 . 三、计算题(共42分) 1. (6分)求2 ln(15)lim .sin 3x x x x →+ 2. (6 分)设1 y x = +求.y ' 3. (6分)求不定积分2ln(1).x x dx +?

4. (6分)求3 (1),f x dx -? 其中,1,()1cos 1, 1.x x x f x x e x ? ≤? =+??+>? 5. (6分)设函数()y f x =由方程0 cos 0y x t e dt tdt + =?? 所确定,求.dy 6. (6分)设2()sin ,f x dx x C =+?求(23).f x dx +? 7. (6分)求极限3lim 1.2n n n →∞? ?+ ?? ? 四、解答题(共28分) 1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x 2. (7分)求由曲线cos 2 2y x x π π?? =- ≤≤ ?? ? 与x 轴所围成图形绕着x 轴旋转一周所得旋 转体的体积. 3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程. 4. (7 分)求函数y x =+[5,1]-上的最小值和最大值. 五、证明题(6分) 设()f x ''在区间[,]a b 上连续,证明 1()[()()]()()().2 2 b b a a b a f x dx f a f b x a x b f x dx -''= ++ --? ? (二) 一、 填空题(每小题3分,共18分) 1.设函数()2 312 2 +--= x x x x f ,则1=x 是()x f 的第 类间断点. 2.函数()2 1ln x y +=,则= 'y . 3. =? ? ? ??+∞→x x x x 21lim . 4.曲线x y 1 = 在点?? ? ??2,21处的切线方程为 .

高等代数试题及答案

. . 中国海洋大学2007-2008学年第2学期期末考试试卷 a ?? 的子空间.

授课教师命题教师或 命题负责人签字年月日院系负责人签 字年月日 共 2 页第 2 页

中国海洋大学 XXXX-XXXX 学年 第X 学期 期末考试试卷 五(10分)证明:设A 为n 级矩阵,()g x 是矩阵A 的最小多项式,则多项式()f x 以A 为根的充要条件是()g x |()f x . 六(10分)设V 是数域P 上的n 维线性空间,,是V 上的线性变换,且= . 证明: 的值域与核都是 的不变子空间. 七(10分)设2n 阶矩阵a b a b A b a b a ??????? ? =? ????????? ,a b ≠,求A 的最小多项式. 八(10分)设f 是数域P 上线性空间V 上的线性变换,多项式()(),p x q x 互素,且满足 ()()0p f q f =(零变换) 求证:()()()(),ker ,ker V W S W p f S q f =⊕==

中国海洋大学 2007-2008学年 第2学期 期末考试 数学科学 学院 《高等代数》试题(A 卷)答案 一.判断题 1.× 2.× 3.× 4.√ 5.√ 二.解:A =???? ????????1111111111111111, 3|(4)E A λλλ-=-|,所以特征值为0,4(3重). 将特征值代入,求解线性方程组()0E A x λ-=,得4个线性无关的特征向量(答案可以不唯一),再正交单位化,得4个单位正交向量: 11111 ,,,)'2222α=( ,2α=, 3α= ,4'6662α--=(-. 所以正交阵1 2612 610210 2 2T ?-????-? ?=??????????? 而40'00T AT ??????=??????. 三.证:(1) ,.A B M ?∈ 验证,A B kA M +∈即可. (2) 令1101 01 0011 0n E D E -?? ?? ? ??? ? ?== ????? ?????? ,D 为循环阵, 00n k k k E D E -?? = ??? ,(k E 为k 阶单位阵) 则2 1,, ,,n n D D D D E -=在P 上线性无关.

高等代数试卷及答案一

一、填空题(共 10题,每题2分,共20分)。 1.多项式可整除任意多项式。 2.艾森施坦因判别法是判断多项式在有理数域上不可约的一个条件。 3.在n 阶行列式D 中,0的个数多于个是0D =。 4.若A 是n 阶方阵,且秩1A n =-,则秩A * =。 5.实数域上不可约多项式的类型有种。 6.若不可约多项式()p x 是()f x 的k 重因式,则()p x 是(1) ()k f x -的重因式。 7.写出行列式展开定理及推论公式。 8.当排列12n i i i L 是奇排列时,则12n i i i L 可经过数次对换变成12n L 。 9.方程组12312322232 121x x x ax bx cx d a x b x c x d ++=?? ++=??++=?,当满足条件时,有唯一解,唯一解为。 10.若2 4 2 (1)1x ax bx -∣ ++,则a =,b =。 二、判断题(共10题,每题1分,共10分)。 1.任何两个多项式的最大公因式不因数域的扩大而改变。() 2.两个多项式互素当且仅当它们无公共根。() 3.设12n αααL 是n P 中n 个向量,若n P β?∈,有12,n αααβL 线性相关,则12n αααL 线性 相关。() 4.设α是某一方程组的解向量,k 为某一常数,则k α也为该方程组的解向量。()5.若一整系数多项式()f x 有有理根,则()f x 在有理数域上可约。() 6秩()A B +=秩 A ,当且仅当秩0 B =。() 7.向量α线性相关?它是任一向量组的线性组合。() 8.若(),()[]f x g x P x ∈,且((),())1f x g x =,则(()(),()())1f x g x f x g x +=。() 9.(),()[]f x g x Z x ∈,且()g x 为本原多项式,若()()()f x g x h x =则()[]h x Z x ∈。() 10.若,,,n n A B C D P ?∈,则 A B AD BC C D =-。() 三、选择题(共5题,每题2分,共10分)。 1.A 为方阵,则 3A =()

相关文档
相关文档 最新文档