文档库 最新最全的文档下载
当前位置:文档库 › Tidal Power潮汐能(剑雅9)

Tidal Power潮汐能(剑雅9)

Tidal Power潮汐能(剑雅9)
Tidal Power潮汐能(剑雅9)

Tidal Power

Undersea turbines which produce electricity from the tides are set to become an important source of renewable energy for Britain. It is still too early to predict the extent of the impact they may have, but all signs are that they will play a significant role in the future.

A.Operating on the same principle as wind turbines, the power in the sea turbines comes from tidal currents which turn blades similar to ships’propellers,but, unlike wind, the tides are predictable and the power input is constant. The technology raises the prospect of Britain becoming self sufficient in renewable energy and drastically reducing its carbon dioxide emissions. If tide, wind and wave power are all developed, Britain would be able to close gas, coal and nuclear power plants and export renewable power to other parts of Europe. Unlike wind power, which Britain originally developed and then abandoned for 20 years allowing the Dutch to make it a major industry, undersea turbines could become a big export earner to island nations such as Japan and New Zealand.

B.Tidal sites have already been identified that will produce one sixth or more of UK’s power--and at price competitive with modern gas turbines and undercutting those of the already ailing nuclear industry. One site alone, the Pentland Firth, between Orkney and mainland Scotland, could produce 10% of the country’s electricity with banks of turbines under the sea, and another at Alderney in the Channel Islands three times the 1200 megawatts of Britain’s largest and newest nuclear plant, Sizewell B, in Suffolk. Other sites identified include the Bristol Channel and the west coast of Scotland, particularly the channel between Campbeltown and Northern Ireland.

C.Work on designs for the new turbine blades and sites are well advanced at the University of Southampton’s sustainable energy research group. The first station is expected to be installed off Lynmouth in Devon shortly to test the technology in a venture jointly funded by the department of Trade and Industry and the European Union. AbuBakr Bahaj, in charge of the Southampton research, said: ‘The prospects for energy from tidal currents are far better than from wind because the flows of water are predictable and constant. The technology for dealing with the hostile saline environment under the sea has been developed in the North Sea oil industry and much is already known about turbine blade design, because of wind power and ship propellers. There are a few technical difficulties, but I believe in the next five to ten years we will be installing commercial marine turbine farms.’ Southampton has been awarded £215,000 over three years to develop the turbines and is working with Marine Current Turbines, a subsidiary of IT power, on the Lynmouth project. EU research has now identified 106 potential sites for tidal power, 80% round the coasts of Britain. The best sites are between islands or around heavily indented coasts where there are strong tidal currents.

D.A marine turbine blade needs to be only one third of the size of a wind generator to produce three times as much power. The blades will be about 20 meters in diameter, so around 30 meters of water is required. Unlike wind power, there are unlikely to be environmental objections. Fish and other creatures are thought unlikely to be at risk from the relatively slow-turning blades. The towers will stick out of the water and be lit, to warn shipping, and also be designed to be lifted out

of the water for maintenance and to clean seaweed from the blades.

E.Dr Bahaj has done most work on the Alderney site, where there are powerful currents. The single undersea turbine farm would produce far more power than needed for the Channel Islands and most would be fed into the French Grid and be re-imported into Britain via the cable under the Channel.

F.One technical difficulty is cavitation, where low pressure behind a turning blade causes air bubbles. These can cause vibration and damage the blades of the turbines. Dr Bahaj said: ‘We have to test a number of blade types to avoid this happening or at least make sure it does not damage the turbines or reduce performance. Another slight concern is submerged debris floating into blades. So far we do not know how much of a problem it might be. We will have to make the turbines robust because the sea is a hostile environment, but all the signs that we can do it are good.’

潮汐规律

潮汐规律 潮汐即海水的涨落现象。白天海水的涨落称潮,夜间海水的涨落称汐。海钓不同于淡水钓,除了温度、气压、风向等影响外,与潮汐的关系十密切。 按海洋每天潮汐由小潮转向大潮,由大潮再转向小潮的反复循环规律,以农历为预测,一个月有二次由小潮到大潮循环期。沿海的渔民把每次的潮汐周期按每天列为从小半眼至十二眼(有时十三眼),由一眼水至七眼水是潮落潮涨每天递增过程,由八眼水至半眼水是潮落潮涨每天递减过程。每次潮汐周期末,即十二眼水当天,出现新的潮汐流(新潮水),而旧潮汐(老潮水)还有3-4天才完全退去,这样就形成了天的每天二次海潮汐的景象,小半眼水至二眼水就是每天二次潮水。小半眼水:潮涨潮落较小,今天起4天内,每天都有二次潮涨潮落过程,退潮低水位时,海水平面还在较高潮位中。半眼水:潮涨潮落较小,今天起3天内,每天都有二次潮涨潮落过程,退潮低水位时,海水平面还在较高潮位中。一眼水:潮涨潮落较小,今天起2天内,每天都有二次潮涨潮落过程,退潮低水位时,海水平面还在较高潮位中。二眼水:潮水开始每天增大。潮涨潮落较小,今天有二次潮涨潮落过程,退潮低水位海潮开始退得较低。三眼水:潮水每天都在增大。潮涨潮落开始大,今天只有一次潮涨潮落过程,高潮与低潮落差,一般有4-6米;

退潮低水位海潮开始退得较快较低。四眼水:潮水每天都在增大,潮涨潮落比前一天大。今天只有一次潮涨潮落过程,高潮与低潮落差,一般有5-6.5米;潮水高低潮相隔时间约11小时。退潮低水位海潮开始退得很快很低。五眼水:潮水每天都在增大,潮涨潮落比前一天大。今天只有一次潮涨潮落过程,高潮与低潮落差,一般有6-7米。潮水高低潮相隔时间约11小时。退潮低水位海潮退得很快很低。六眼水:潮水每天都在增大,潮涨潮落比前一天大。今天只有一次潮涨潮落过程,高潮与低潮落差,一般有7-8米。潮水高低潮相隔时间约11小时。退潮低水位海潮退得很快很低。七眼水:潮水今天达到最大,潮涨潮落比前一天大。今天只有一次潮涨潮落过程,高潮与低潮落差,一般有8-9米。潮水高低潮相隔时间约11小时。退潮低水位海潮退得很快很低。八眼水:潮水今天从最大潮开始缓慢减少,但不明显,潮涨潮落比前一天小一点点。今天只有一次潮涨潮落过程,高潮与低潮落差,一般有8-9米。潮水高低潮相隔时间约11小时。退潮低水位海潮退得很快很低。九眼水:潮水今天起从高潮位每天逐步递减中,当天潮水高潮水位比前一日减得明显,但还是在高潮位中,潮涨潮落比前一天小约o.5米。今天只有一次潮涨潮落过程,高潮与低潮落差,一般有7-8米。潮水高低潮相隔时间约11小时。退潮低水位海潮退得较快较低。十眼水:潮水今天

潮汐简便计算法

潮汐简便计算法 人们通过长期的实践、观察,发现海水有规律的涨落,而涨落的时间和高度又有着周期性的变化,由此人们把这种海水涨落的现象叫潮汐。而随着海水的涨落、水位的升降,出现了海水的水平流动,这种海水流动的现象叫潮流。海水有周期性涨落规律,如在每日里出现两次大潮和两次小潮。通过长期实践、观察、发现每日的高潮大多出现在月亮的上、下中天(即过当地子午线时1前后。低潮时间则在月出月落前后,并且每日的高(低)潮时间逐日后程约48分钟,即每天晚48分钟(0.8小时)。每月的两次大潮是农历初一、十五附近几天,两次小潮是在农历的初七、八和甘二、廿三附近几天。人们还发现,潮汐现象同月亮、太阳、地球的相对运动有密切的关系。地球在一定轨道上绕太阳运转,月亮又在一定轨道上绕地球运转,它们之间有一定的吸引力和离心力,这种力就是产生潮汐现象的基本因素。但实际潮汐涨落的主要成因却是月球对地球(表层)的吸引力,其次是太阳对地球的吸引力,太阳的乍用较小,约为月球的2/5,因月球离 地球较近,故此月球的乍用较大。 据科学推测是:月球绕地球转,每一个月(29.5天多一点)转一圈,当月、日、地三者成一直线时,潮涨落的最大,这时是新月和望月(初一、十五)的时候,当日、月、地三者成直角三角形时潮涨落的最小,这是月上弦(初七、八)和下弦(廿二、廿三)的时候。但在实际上形成大潮和小潮的时间,并不正好是上述时间,因为地球形状很复杂,所以各地发生最大潮和最小潮的时间要比理论上拖后几天。如:山东半岛沿海每月的初三和十八潮的涨落最大,而初十和廿五前后潮的涨落又最小。由于地球本身的自转,使地球上某点与月球的相对位置随时发生变化,这种变化每天(太阳约24时48分)为一周期。每24时48分,发生两次高潮和两次低潮。由高潮到低潮约经过6时12分,由第一个高潮到第 二个高潮约经过12时24分。 潮汐的时间,在理论上应该与月球的上中天或下中天的时刻相符合,但实际上常常推迟。发生高潮和月球上中天相差的时间叫高潮间隙。但各地的高潮间隙又大不相同。如:威海是10时50分,烟台是10时25分,龙口是10时20分,足见地理位置的不同,而导致高潮间隙的差目。高潮时和低潮时的大概计算法:高潮时=(日差)0 8×(阴历日子)7-16(上半月-下半月-1,16)+高潮间隙,低潮时=高潮时-6时12分,如计算威海阴历初五的潮时如下:高潮时=0.8)×(5-1)+10:50′=3:12′+10:50′=14:02′(即为第二个高潮)14:02′-12:24′=1:38′(即为第一个高潮)低潮时=14:02′-6:12′=7:50′(即为第一个低潮)以上这样的算法固然)准确,但很繁琐,很难开口就说出来,我们经过多年的海上实践,验证,摸索出一种很有规律的简易计算法。其方法是阴历日子(上半月-3,下半月-18)x0.8,即为当日的高潮潮时。如计算威海阴历初五的潮时如下:高潮时=(5-3)×0.8=1:36′(即第一个高潮)。低潮时=1:36′+6:12′=7:48′(则则第一个低潮)。如计算威海阴历量五的潮时:高潮时=(25-18)×0.8=5:36′(则是第一个高潮)。低潮时=5:36′+6:12′=11:48′(则是第一个低潮)潮流也叫潮汐流,这是水位升降起伏的潮信现象,是由于海水受到引潮力的作用发生了水平流动后所导致的结果。因此潮流和潮汐一样具有周期性的变化规律,但海水流动受到地形条件的影响,故常呈现两种状态,一种是往复性,

潮汐的类型

一、潮汐的类型 潮汐现象非常复杂。仅以海水涨落的高低来说,各地就很不一样。有的地方潮水几乎察觉不出,有的地方却高达几米。在我国台湾省基隆,涨潮时和落潮时的海面只差0.5米,而杭州湾的潮差竟达8.93米。在一个潮汐周期(约24小时50分钟,天文学上称一个太阴日,即月球连续两次经过上中天所需的时间)里,各地潮水涨落的次数、时刻、持续时间也均不相同。潮汐现象尽管很复杂,但大致说来不外三种基本类型。 半日潮型:一个太阴日内出现两次高潮和两次低潮,前一次高潮和低潮的潮差与后一次高潮和低潮的潮差大致相同,涨潮过程和落潮过程的时间也几乎相等(6小时12.5分)。我国渤海、东海、黄海的多数地点为半日潮型,如大沽、青岛、厦门等。 全日潮型:一个太阴日内只有一次高潮和一次低潮。如南海汕头、渤海秦皇岛等。南海的北部湾是世界上典型的全日潮海区。 混合潮型:一月内有些日子出现两次高潮和两次低潮,但两次高潮和低潮的潮差相差较大,涨潮过程和落潮过程的时间也不等;而另一些日子则出现一次高潮和一次低潮。我国南海多数地点属混合潮型。如榆林港,十五天出现全日潮,其余日子为不规则的半日潮,潮差较大。 从各地的潮汐观测曲线可以看出,无论是涨、落潮时,还是潮高、潮差都呈现出周期性的变化,根据潮汐涨落的周期和潮差的情况,可以把潮汐大体分为如下的4种类型: 正规半日潮:在一个太阴日(约24时50分)内,有两次高潮和两次低潮,从高潮到低潮和从低潮到高潮的潮差几乎相等,这类潮汐就叫做正规半日潮。 不正规半日潮:在一个朔望月中的大多数日子里,每个太阴日内一般可有两次高潮和两次低潮;但有少数日子(当月赤纬较大的时候),第二次高潮很小,半日潮特征就不显著,这类潮汐就叫做不正规半日潮。 正规日潮:在一个太阴日内只有一次高潮和一次低潮,像这样的一种潮汐就叫正规日潮,或称正规全日潮。 不正规日潮:这类潮汐在一个朔望月中的大多数日子里具有日潮型的特征,但有少数日子(当月赤纬接近零的时候)则具有半日潮的特征。 凡是一天之中两个潮的潮差不等,涨潮时和落潮时也不等,这种不规则现象称为潮汐的日不等现象。高潮中比较高的一个叫高高潮,比较低的叫低高潮;低潮中比较低的叫低低潮,比较高的叫高低潮。 不论那种潮汐类型,在农历每月初一、十五以后两三天内,各要发生一次潮差最大的大潮,那时潮水涨得最高,落得最低。在农历每月初八、二十三以后两三天内,各有一次潮差最小的小潮,届时潮水涨得不太高,落得也不太低。 二、潮汐要素 涨潮时潮位不断增高,达到一定的高度以后,潮位短时间内不涨也不退,称之为平潮,平潮的中间时刻称为高潮时。 平潮的持续时间各地有所不同,可从几分钟到几十分钟不等。平潮过后,潮位开始下降。 当潮位退到最低的时候,与平潮情况类似,也发生潮位不退不涨的现象,叫做停潮,其中间时刻为低潮时。 停潮过后潮位又开始上涨,如此周而复始地运动着。从低潮时到高潮时的时间间隔叫做涨潮时,从高潮时到低潮时的时间间隔则称为落潮时。

潮汐测量仪器分类(Ivy)

定点方式:一般选在码头或者岸边设立验潮站或者在测区的某一位置进行临时验潮,对于远离岸边的海域,也会选择临时海上定点验潮站。 缺点:受暗滩、河流、气候和海底地形等因素的影响,特别是在地理环境复杂地区,定点观测到的潮位数据不能很好地代表整个测区的水位特点。若离岸超过20km,则采用预报潮位,精度不高。 井式验潮:浮子式、引压钟式属于有井验潮仪 浮子式:利用一浮标在海面的浮子随海面上下浮动,其随动机构将浮子的上下运动转换为记录纸滚轴的旋转,从而记录笔在记录纸上留下潮汐变化的曲线。 引压钟式:将引压钟放置于水底,将海水压力通过管道引到海面以上,由自动记录器进行记录。 井式验潮仪:通过水面上随井内水面起伏的浮筒带动上面的记录滚筒转动,使得记录针在装有记录纸的滚筒上画线,来记录水面的变化,达到自动记录潮位的目的。 适用于:固定于岸边(港口、码头等)的观测站 优点:坚固耐用,滤波性能好,精度较高,维护方便 缺点:安装,成本较高,连通导管易阻塞,对环境要求高,机动性差 声学式验潮仪:固定在水位顶端的声学换能器向下发射声信号,信号遇到声管的校准孔和水面分别产生回波,同时记录发射接收的时间差,进而求的水面高度。 优点:使用方便,工作量小,滤波性能好 水压式验潮仪:通过测量水下或海水相连的水面以上的某一界面上由于海面变化引起的压力变化来测量水位。 机械式:坚固耐用,调整方便,成本低,滤波性良好 电子式:安装方便,精度高,携带方便,从观测数据到数据处理可由计算机自动化处理,效率高,滤波性良好 卫星潮汐遥感:通过卫星测高技术可以得到全球特别是深海和偏远地区所需海面的地形资料,从而获得改地区的潮汐资料。 优点:快速、经济、可靠 GPS:通过测得一段时间内水面载体上的GPS天线的系列高程值计算出潮位数据 优点:定位精度高、观测时间短、执行操作简便、抗干扰性好、保密性强,可以在测船走航的同时进行,节省人力资源,在条件恶劣的环境下,可以直接测量且确保精度。

上海潮汐表

上海潮汐表 农历涨潮落潮涨潮落潮 初九、二十四07:12 13:24 19:36 01:48 初十、二十五08:00 14:12 20:24 02:36 初十一、二十六08:48 15:00 21:12 03:24 初十二、二十七09:36 15:48 22:00 04:12 初十三、二十八10:24 16:36 22:48 05:00 初十四、二十九11:12 17:24 23:36 05:48 初十五、三十12:00 18:12 00:24 06:36 初一、十六00:48 07:00 13:12 19:24 初二、十七01:36 07:48 14:00 20:12 初三、十八02:24 08:36 14:48 21:00 初四、十九03:12 09:24 15:36 21:48 初五、二十04:00 10:12 16:24 22:36 初六、二十一04:48 11:00 17:12 23:24 初七、二十二05:36 11:48 18:00 00:12 初八、二十三06:24 12:36 18:48 01:00 以上数据会有些许误差,但基本准确,红色为最大潮时间(鱼进来机率最大),紫色为小潮时间(鱼进来机率最小) 潮汐时间计算解析:

1.地球各点地方时与太阳的关系:由于地球一刻不停地自西向东自转,一般来说,东边比西边先看到日出,也就是东边的时刻比西边时刻早。古时候,各地都把当地太阳高度最大时刻定为12 点,因此各地的地方是不同的。如右图,在此光照图上我们可以确定此图中任一点的地方时。 2.潮汐与太阳和月球的关系:海洋的潮汐现象是因月球和太阳的引力在地球上分布不均造成的。引潮力是在地球朝向月球(或太阳)的一面和背向月球(或太阳)的一面同时发生的。朝向月球和太阳一面形成的潮汐称顺潮,背向月球和太阳一面形成的潮汐称对潮。据科学推测是:当月、日、地三者成一直线时引力最大,潮涨落的最大,形成大潮,这时是新月和望月(初一、十五)的时候;当日、月、地三者成直角三角形时引力最小,潮涨落的最小,形成小潮,这时是月上弦(初七、八)和下弦(廿二、廿三)的时候。 根据万有引力定律,月球的引潮力是太阳的 2.17 倍,可见,海洋潮汐主要是由月球引潮力引起的。如右图所示:(在一个周期的时间内,最常见到的是两涨两落)但在实际上形成大潮和小潮的时间,并不正好是上述时间,为方便起见,本文只从理论上探讨形成大潮和小潮的时间以及一日内潮汐涨落(高潮和低潮)时间。 3.从上可以看出,地球上各个地方的地方时当地与由太阳的相互位置所决定,而一个地方海水的涨落(潮汐)主要由此地与月球的相互位置决定。潮汐高潮的时间,在理论上应该在月亮的上、下中天

潮汐观测作业指导书

潮汐观测作业指导书 1.观测点的选择 观测点应选择在与外海畅通,水流平稳,不易淤积,波浪影响较小的海域;应避开冲刷严重、易坍塌的海岸;在理论最低潮时,水深应大于1m;尽可能利用防波堤、码头、栈桥等海上建筑物。 2.验潮井的设置 验潮井是为观测潮汐而专门设置的建筑物。它的设计,特别是进水管道必须使井内与井外潮位差小于1cm,并具有良好的消波性能。验潮井的设置应详细记载和归档。 3.水准系统的设置与水准测量 3.1水准点的设置 观测站应在适当位置设置一个基本水准点和一至两个校核水准点。基本水准点是观测站永久性的高程控制点。校核水准点是用于引测和检查水尺零点、读数指针高程的水准点。 基本水准点和校核水准点分别按基本水准标石和普通水准标石的埋设方法埋设,并应采取严格的保护措施,使之不易受到破坏。水准标石埋设的技术设计、选点、埋设方法和要求按GB12898的规定执行,并详细记载和归档。

3.2水准点的水准测量要求 3.2.1基本水准点应按国家三等水准测量要求与国家水准高程系统连测。 3.2.2校核水准点应按国家三等水准测量要求与基本水准点连测。 3.2.3基本水准点与校核水准点启用后每年应复测一次; 两年后若没有发现高程变动,基本水准点每隔四年应复测一次,校核水准点每隔二年应复测一次。 3.2.4水准点的测量按GB 1 2 8 9 8 的有关规定执行,并将各次测量及复测情况详细记载和归档。 3.3潮高基准面的确定 3.3.1测站潮高基准面宜采用当地理论最低潮面,简称测站基面。 3.3.2在未确定潮高基准面的测站,可用开始观测时的第一根水尺零点处的水平面或设定的某一水平面临时作为潮高基准面。在观测一年后,使用所测资料通过推算,确定当地理论最低潮面作为测站潮高基准面 3.3.3测站基面一经确定不应轻易变动,测站基面的高程应记载和归档。 3.3.4 测站基面确定后,测站的潮高资料必须订正到测站基面上。 4.井内、井外水尺的设置

广点通的投放指引,流程介绍

广点通广告是基于腾讯社交网络的效果广告平台,通过广点通广告系统,用户可以在腾讯旗下的qq、qq空间、qq音乐、qq浏览器、腾讯新闻等平台进行广告投放,为产品的品牌宣传和品牌文化做推广。在“互联网+”时代,广点通广告可以覆盖Android,ios等手机系统,其广告的形式主要有开屏广告、插屏广告、banner广告等。而在官方后台可以通过对QQ、微信用户所产生的数据进行深入分析,为广告主提供众多的标签类目,以在广告投放中精确锁定目标人群。同时,不断精进的跨屏定向、人群拓展和智能出价等技术,也将助力广告主持续提升投放效率与效果。 一、广点通广告的优势 1、海量用户 腾讯旗下qq、qq空间、qq音乐、qq浏览器、腾讯新闻等各大社交app,受众覆盖范围广,年龄跨度大,每天有超过8亿用户使用腾讯产品及第三方应用。广点通广告位广告主提供优质的广告展示位置,并与众多外部网站合作,以此获取更多的流量,日均广告曝光量过百亿。帮助广告主与受众建立联系,将优质商业信息推送给真正需要的人。 2、精准定位 依靠腾讯庞大的数据库,结合内部独特算法,提供众多广告定向条件,可以从中选择适合达成商业目标的条件锁定人群。这些条件包括人口属性、商业兴趣、地理位置、使用设备、天气环境等等,,帮助广告主锁定对象,精准定位,实现更高效率更高价值的营销。 3、物美价廉 更合理、透明的费用管理模式,有助于节约成本,平衡成本和收益。多种不同的计费模式,根据需要,保证量的前提,最大程度控制成本。 二、广点通广告的投放指引 1、定位 基于市场,产品,受众的分析以及意识 2、目标 明确市场推广的目标,希望达成什么效果 3、投入 设计及投放人员的投入,持续化运营 三、广点通广告的转化形式 1、品牌曝光: 通过广告投放来获得品牌曝光,主动出击,获得潜在用户和兴趣用户。 2、访问网站: 吸引用户,由曝光升级为访问,广告投放的质量影响受众的质量。

温州沿海潮汐时间表

说明:飞云江比瓯江涨潮和平潮平均提前约1小时。 补充回答: 说明:上面是瓯江的,飞云江比瓯江涨潮和平潮平均提前约1小时。瓯江潮汐时间表----浙江温州

教大家一个公式,误差不会太大,当然,离瓯江口远点的会稍微晚一些:平潮时间=(农历-3)*0.8,如:农历初十的平潮时间大约是:7*0.8=5.6,即5点(与17时)36分左右,初三、十八中午(半夜)平潮。 瓯江潮汐时间表----浙江温州 教大家一个公式,误差不会太大,当然,离瓯江口远点的会稍微晚一些:平潮时间=(农历-3)*0.8,如:农历初十的平潮时间大约是:7*0.8=5.6,即5点(与17时)36分左右,初三、十八中午(半夜)平潮。 潮汐是我国沿海地区的一种自然现象,古代称白天的潮汐为“潮”,晚上的称为“汐”,合称为“潮汐”,它的发生与太阳、月球对地球的吸引力而产生的。也和我国传统农历相对应。在农历每月的初一(十五、十六)即朔点时刻处太阳和月球在地球的一侧,所以就有了最大的引潮力,所以会引起“大潮”。在月相为上弦和下弦时,即农历的初八和二十三时,太阳引潮力和月球引潮力互相抵消了一部分所以就发生了“小潮”。故日照农谚中有“初一、十五涨大潮;初八、二十三,到处见海滩”和“初一十五明(天亮)了满,紧干慢干晌了天;初八二十三,一天两(早晚)个干”之说。由于月球每天在天球上东移13度多,合计为50分钟左右,即每天月亮上中天时刻(为1太阴日=24时50分)约推迟50分钟左右,(下中天也会发生潮水每天一般都有两次潮水)故每天涨潮的时刻也推迟50分钟左右。

潮汐的推算方式 农历上半月,即初一至十五,上午是当天的日子×0.8;下午是当天的日子×0.8+24。假如今天是初九,那么上午涨潮的时间是9x0.8=7.2 。即是7时12分。下午涨潮的时间是9×0.8+24=晚7时36分。下半月只要将农历当天的日子减去15,再按照前面的公式计算就可以了。 由于月亮每天升起来的时间比前一天晚48分钟,所以潮汐的涨落每天也推迟48分钟。 日照沿海赶海拾贝的时间,大约落潮时间后两小时至涨潮时间后一个半小时。 例:初一十六赶海拾贝的时间是:白天9:00——14:42 夜间21:24——3:06(转载) 潮汐是我国沿海地区的一种自然现象,古代称白天的潮汐为“潮”,晚上的称为“汐”,合称为“潮汐”,它的发生与太阳、月球对地球的吸引力而产生的。也和我国传统农历相对应。在农历每月的初一(十五、十六)即朔点时刻处太阳和月球在地球的一侧,所以就有了最大的引潮力,所以会引起“大潮”。在月相为上弦和下弦时,即农历的初八和二十三时,太阳引潮力和月球引潮力互相抵消了一部分所以就发生了“小潮”。故日照农谚中有“初一、十五涨大潮;初八、二十三,到处见海滩”和“初一十五明(天亮)了满,紧干慢干晌了天;初八二十三,一天两(早晚)个干”之说。由于月球每天在天球上东移13度多,合计为50分钟左右,即每天月亮上中天时刻(为1太阴日=24时50分)约推迟50分钟左右,(下中天也会发生潮水每天一般都有两次潮水)故每天涨潮的时刻也推迟50分钟左右。 农历上半月,即初一至十五,上午是当天的日子×0.8;下午是当天的日子×0.8+24。假如今天是初

广点通资源与竞价排名介绍

广点通资源与竞价排名介绍 什么是广点通? 广点通是一个依托优质流量资源,可提供给广告主多种广告形式投放,并利用专业数据处理算法实现成本可控、效益可观、精准定位的效果广告投放系统。 广点通有哪些广告位资源? 广点通广告位资源包括:QQ空间、朋友网、QQ音乐客户端、QQ客户端、手机腾讯网、手机QQ空间、手机QQ客户端、微信、移动联盟等,具体展示位由您在推广计划中选择的投放平台、广告规格及广告质量度共同决定。 广点通充值起价是多少? 首次充值与续费均为1000元起。 广点通竞价排名及扣费原理? 在每一次广告投放中,您的广告是否被展示,取决于您的出价以及广告质量。扣费采用后一位(指在广告系统内部排序中后一位的广告)的出价和质量综合考虑的扣费机制。广告的实际扣费会综合您的广告质量得分、后一位的出价和质量计算得出。

因此,无需担心出价过高而频繁调整出价,因为广告的实际扣费通常会低于您的出价。 每次点击价格:{(下一名的出价×下一名的质量度)/本关键词质量度}+0.01元 广点通有哪些广告计费方式? 主要有CPC(点击计费)和CPM(千次广告展示计费)两种方式。 CPC是0.1元起竞价,CPM是1.5元起竞价。 CPC:每次点击费用={(下一名的出价×下一名的质量度)/本关键词质量度}+0.01元 CPM:每千次广告展现费用=下一名的出价+0.01元 当网民点击一次广告时,广告主才需要支付费用。费用从广告主现金账户中扣除。即广告费用=广告素材的每一次点击计费加在一起。点击才计费,展现全免费。系统默认为CPC计费模式,如想转为CPM,发邮件至官网邮箱:socialads@https://www.wendangku.net/doc/ba3264112.html,申请开通即可。 邮件正文请注明:客户ID、公司名称。

潮汐推算

潮汐推算 潮汐的发生和太阳,月球都有关系,也和我国传统农历对应。在农历每月的初一即朔点时刻处太阳和月球在地球的一侧,所以就有了最大的引潮力,所以会引起“大潮”,在农历每月的十五或十六附近,太阳和月亮在地球的两侧,太阳和月球的引潮力你推我拉也会引起“大潮”;在月相为上弦和下弦时,即农历的初八和二十三时,太阳引潮力和月球引潮力互相抵消了一部分所以就发生了“小潮”,故农谚中有“初一十五涨大潮,初八二十三到处见海滩”之说。另外在第天也有涨潮发生,由于月球每天在天球上东移13度多,合计为50 分钟左右,即每天月亮上中天时刻(为1太阴日=24时50分)约推迟50分钟左右,(下中天也会发生潮水每天一般都有两次潮水)故每天涨潮的时刻也推迟50分钟左右。我国劳动人民在千百年来总结经验出来许多的算潮方法(推潮汐时刻)如八分算潮法就是其中的一例:简明公式为: 高潮时=0.8h×[农历日期-1(或16)]+高潮间隙 上式可算得一天中的一个高潮时,对于正规半日潮海区,将其数值加或减12时25分(或为了计算的方便可加或减12时24分)即可得出另一个高潮时。若将其数值加或减6时12 分即可得低潮出现的时刻——低潮时。但由于,月球和太阳的运动的复杂性,大潮可能有时推迟一天或几天,一太阴日间的高潮也往往落后于月球上中天或下中天时刻一小时或几小时,有的地方一太阴日就发生一次潮汐。故每天的涨潮退潮时间都不一样,间隔也不同。 潮汐能是以位能的形态出现的海洋能,是指海水潮涨和潮落形成的水的势能。海水涨落的潮汐现象是由地球和天体运动以及它们之间的相互作用而引起的。在海洋中,月球的引力使地球的向月面和背月面的水位升高。由于地球的旋转,这种水位的上升以周期为12小时25分和振幅小于1m的深海波浪形式由东向西传播。太阳引力的作用与此相似,但是作用力小些,其周期为12小时。当太阳、月球和地球在一条直线上时,就产生大潮(spring tides);当它们成直角时,就产生小潮(neap tides)。除了半日周期潮和月周期潮的变化外,地球和月球的旋转运动还产生许多其他的周期性循环,其周期可以从几天到数年。同时地表的海水又受到地球运动离心力的作用,月球引力和离心力的合力正是引起海水涨落的引潮力。 除月球、太阳外,其他天体对地球同样会产生引潮力。虽然太阳的质量比月球大得多,但太阳离地球的距离也比月球与地球之间的距离大得多,所以其引潮力还不到月球引潮力的一半。其他天体或因远离地球,或因质量太小所产生的引潮力微不足道。根据平衡潮理论,如果地球完全由等深海水覆盖,用万有引力计算,月球所产生的最大引潮力可使海水面升高0.563m,太阳引潮力的作用为0.246m,夏威夷等大洋处观测的潮差约1m,与平衡潮理论比较接近,近海实际的潮差却比上述计算值大得多。如我国杭州湾的最大潮差达8.93m,北美加拿大芬地湾最大潮差更达19.6m。这种实际与计算的差别目前尚无确切的解释。一般认为当海洋潮汐波冲击大陆架和海岸线时,通过上升、收聚和共振等运动,使潮差增大。潮汐能的能量与潮量和潮差成正比。或者说,与潮差的平方和水库的面积成正比。和水力发电相比,潮汐能的能量密度很低,相当于微水头发电的水平。世界上潮差的较大值约为13~15m,但一般说来,平均潮差在3m以上就有实际应用价值。

潮汐要素复习整理

潮汐原理复习思考题整理 (第四章~第五章) 第四章 1.什么是中期观测资料分析和短期观测资料分析,以及调和常数求解的实际步骤 中期观测资料分析:属于不同群的分潮的会合周期最长为1个月,因此把长度长于一个月但不足一年的观测记录称为中期观测资料 短期观测资料分析:观测的时间长度只有一天或几天 调和常数求解的实际步骤: ?中期观测资料分析(TB P103-107) 1)区分主分潮和随从分潮2)取L 段观测记录,式(4.4)可以写为(4.6) 3)将式(4.6)的余弦函数展开得到(4.7) 4)式(4.7)是包含2(P+Q)+1个未知数的由 () 1 L l l M = ∑ 个方程组成的矛盾方程组 5)通过最小二乘法得到矛盾方程组的法方程(4.10) 6)当L=1时,法方程(4.10)变为TB P106 7)引入Q个随从分潮与相应的主分潮的差比关系后,将给出另外2Q个方程(4.11) 8)进一步求得(4.12) ?短期观测资料分析(TB P116-119) 1)潮汐调和常数的初算2)潮流调和常数的计算 3)噪声方差的估计4)不合理数据的舍弃 5)调和常数和余流的计算6)潮流椭圆要素的计算 2.短期资料观测引入的参数D 和d 代表什么含义,具有什么作用? 振幅系数D 和迟角订正d 用准调和分潮表达式比用调和分潮表达式要简单的多,不但可以简化许多分析过程,而 且对分析实际潮汐特征也能使得问题变得更容易。 3.什么是准调和分潮,它和调和分潮有什么区别 ?实际准调和分潮的振幅和相角与 A 小时前的引潮力准调和分潮相应量有关,与其余时刻,特别是与当时引潮力则没有关系,故A 叫做准调和分潮的潮龄 ?区别 4.了解潮汐和潮流的自报TB P119 第五章 1.潮汐特征值的含义TB P120-121 2.对于不同潮汐类型港口潮汐特征值的计算方法

潮 汐 时 间 表

潮汐时间表(阴历日期) 初一、十六:满潮:10.36、23.00。干潮:4.24、16.48。大活汛 初二、十七:满潮:11.24、23.48。干潮:5.12、17.36。大活汛 初三、十八:满潮; 12.12、24.36。干潮:6.00、18.24。最大活汛初四、十九:满潮:1.24、 13.00。干潮:6.48、19.12。大活汛 初五、二十:满潮: 2.12、13.48。干潮;7.36、20.00。大活汛 初六、二十一:满潮:3.00、14.26。干潮:8.24、20.48。中活汛初七、二十二:满潮:3.48、15.24。干潮:9.12、21.36。中活汛初八、二十三:满潮:4.36、16.12。干潮:10.00、22.24。小死讯初九、二十四:满潮:5.24、17.00。干潮:10.48、23.12。最小** 初十、二十五:满潮:6.12、17.48。干潮:11.36、24.00。小死讯十一、二十六:满潮:7.00、18.36。干潮:12.24、0.48。小死讯十二、二十七:满潮:7.48、19.24。干潮:1.36、13.12。中死讯十三、二十八:满潮:8.36、20.12。干潮:2.24、14.00。中活汛十四、二十九:满潮:9.24、21.00。干潮:3.12、14.48。大活汛十五、三十:满潮:10.12、21.48。干潮:4.00、15.36。大活汛 潮汐的变化规律: 由于太阳与月亮对地球的引力作用,我国大部分沿海地区均有一昼夜各出现海水涨落两次的潮汐现象。每月的农历初一至初五(或农历十六至二十)为大潮汐(当地人称“大活汛”);农历初六至十二(或农历二十一至农历二十五)为小潮汐(当地人称“死汛”);而初九或二十四为最小潮(当地人称“死汛底”)。每天的潮汐时间均后延45分钟左右,如此周而复始.希望到海边去玩的朋友做参考,这样会使您玩的更愉快!

潮汐规律总结

凡是到过海边的人们,都会看到海水有一种周期性的涨落现象:到了一定时间,海水推波逐澜,迅猛上涨,达到高潮;过后一些时间,上涨的海水又自行退去,留下一片沙滩,出现低潮。如此循环重复,永不停息。海水的这种运动现象就是潮汐。“潮”指白天海水上涨,“汐”指晚上海水上涨,不过通常我们往往将潮和汐都叫做“潮”。潮汐的时间,在理论上应该与月球的上中天或下中天的时刻相符合,但实际上常常推迟。发生高潮和月球上中天相差的时间叫高潮间隙。但各地的高潮间隙又大不相同。如:威海是10时50分,烟台是10时25分,龙口是10时20分,足见地理位置的不同,而导致高潮间隙的差目。高潮时和低潮时的大概计算法:高潮时=(日差)0?8×(阴历日子)7-16(上半月-下半月-1,16)+高潮间隙,低潮时=高潮时-6时12分,如计算威海阴历初五的潮时如下:高潮时=0.8)×(5-1)+10:50′=3:12′+10:50′=14:02′(即为第二个高潮)14:02′-12:24′=1:38′(即为第一个高潮)低潮时=14:02′-6:12′=7:50′(即为第一个低潮)以上这样的算法固然)准确,但很繁琐,很难开口就说出来,我们经过多年的海上实践,验证,摸索出一种很有规律的简易计算法。其方法是阴历日子(上半月-3,下半月-18)x0.8,即为当日的高潮潮时。如计算威海阴历初五的潮时如下:高潮时=(5-3)×0.8=1:36′(即第一个高潮)。低潮时=1:36′+6:12′=7:48′(则则第一个低潮)。如计算威海阴历量五的潮时:高潮时=(25-18)×0.8=5:36′(则是第一个高潮)。低潮时=5:36′+6:12′=11:48′(则是第一个低潮)潮流也叫潮

潮汐波浪原理

潮汐波浪原理 一.潮汐运动 潮汐现象是指海水在天体(主要是月球和太阳)引潮力作用下所产生的周期性运动,习惯上把海面垂直方向涨落称为潮汐,而海水在水平方向的流动称为潮流。是沿海地区的一种自然现象,古代称白天的潮汐为“潮”,晚上的称为“汐”,合称为“潮汐”。 凡是到过海边的人们,都会看到海水有一种周期性的涨落现象:到了一定时间,海水推波助澜,迅猛上涨,达到高潮;过后一些时间,上涨的海水又自行退去,留下一片沙滩,出现低潮。如此循环重复,永不停息。海水的这种运动现象就是潮汐。 由于日、月引潮力的作用,使地球的岩石圈、水圈和大气圈中分别产生的周期性的运动和变化,总称潮汐。作为完整的潮汐科学,其研究对象应将地潮、海潮和气潮作为一个统一的整体,但由于海潮现象十分明显,且与人们的生活、经济活动、交通运输等关系密切,因而习惯上将潮汐(tide)一词狭义理解为海洋潮汐。固体地球在日、月引

潮力作用下引起的弹性—塑性形变,称固体潮汐,简称固体潮或地潮;海水在日、月引潮力作用下引起的海面周期性的升降、涨落与进退,称海洋潮汐,简称海潮;大气各要素(如气压场、大气风场、地球磁场等)受引潮力的作用而产生的周期性变化(如8、12、24小时)称大气潮汐,简称气潮。其中由太阳引起的大气潮汐称太阳潮,由月球引起的称太阴潮。 形成原因: 月球引力和离心力的合力是引起海水涨落的引潮力。地潮、海潮和气潮的原动力都是日、月对地球各处引力不同而引起的,三者之间互有影响。因月球距地球比太阳近,月球与太阳引潮力之比为11:5,对海洋而言,太阴潮比太阳潮显著。大洋底部地壳的弹性—塑性潮汐形变,会引起相应的海潮,即对海潮来说,存在着地潮效应的影响;而海潮引起的海水质量的迁移,改变着地壳所承受的负载,使地壳发生可复的变曲。气潮在海潮之上,它作用于海面上引起其附加的振动,使海潮的变化更趋复杂。

潮汐自动观测系统技术参数

潮汐自动观测系统技术参数 1、仪器设备名称: 潮汐自动观测系统 2、技术指标: ★潮汐自动观测系统要求与国家海洋局宁波海洋环境监测中心站现有的水文气象自动观测系统完全兼容;环境性能符合海洋行业标准《海洋仪器基本环境试验方法》(HY016—1992);数据记录及传输格式符合GB/T14914—2004《海滨观测规范》的规定。 配置要求: (1)水文数据采集器(浮子式水位计): 1.1测量范围:水位(0~1000)cm; 1.2准确度:水位±1cm; 1.3数据传输:可通过RS485、RS232、GSM或GPRS/CDMA等方式传输数据; 1.4工作方式:连续工作; 1.5工作温度:(-10~45) ℃; 1.6供电电源:DC12V; 1.7必须提供检定证书。 (2)温盐传感器: 2.1温度测量范围:-5~45℃;精度:±0.01℃(0~35℃);

2.2盐度测量范围:2~70mS/cm,精度:±0.01mS/cm(2~65mS/cm); 2.3电源电压:12V DC;工作电流≤60mA; 2.4使用水深: ≥50m; 2.5信号输出RS232接口; 2.6信号电缆:五芯水密电缆线。 2.7 要求传感器为国产。 2.8必须提供检定证书。 (3)数据接收机 3.1处理器:Intel I5-9500 3.2内存:8G 3.3存储:1T硬盘 3.4鼠标键盘:罗技光电键盘、鼠标套装 3.5显示器: 19寸液晶显示器 (4)多功能通讯控制箱 4.1实现前端采集器与数据处理计算机之间的网络、3G双通讯,预留第三种通讯(北斗)接口。 4.2单独直流供电(9-28V)。 (5)相关配件 码盘、电源供电系统、相关配件应与国家海洋局宁波海洋环境监测中心站现有型号的水文气象自动观测系统完全兼容。 3、数量(台/套) 如上,见表格。 4、到货地点: 浙江省宁波市象山县丹河东路878号水利和渔业局 收货人:包希伟 安装地点等具体事宜由采购方指定。 5、到货时间: 交货期:合同生效后30天内到货。 安装时间:合同生效后45天以内完成安装。 资金结算:合同生效后,全部设备到货由供应商负责安装调试正常后,经采购方组织现场验收,确认合格后采购方向供货商支付合同款95%的货款,质保期满后付清5%余款。 6、售后服务: (1)保修维修:卖方须对所提供的设备提供至少12个月的质保期,时间从设备验收合格、买方接受使用之日算起。并提供终身免费技术支持,如有必要,须提供现场免费维护和维修,零部件更换费用由买方承担。质保期内的工作应包括终身免费技术支持以及必要的设备免费维修和保养等工作,卖方须负责修理和替换任何由于设备自身的质量问题造成的损坏及故障,所发生的费用由卖方承担。具体的内容须在投标时说明。 (2)安装调试:由卖方派人负责完成自动观测系统的安装、调试,安装地点由买方指

潮汐的组成

潮汐的组成 潮汐的变化是多种不同周期活动最终的结果,这种影响称为潮汐的组成。 潮汐变化的时间尺度范围从数小时到一年,所以要在固定的观测站以潮汐表精确的纪录水位的高低变化,可以筛选出变化周期短于一分钟的水位变化。这些资料将会和参考值(或已知数),通常是平均海平面,做比较。 主太阴半日潮 因为地球自转快于月球公转, 涨潮会在月球至中天前到来(月球公转与地球自转方向相同),相差约3度[8]。月球与潮汐隆起(tidal bulge,或称隆堆)相互吸引,使得地球自转渐渐变慢,而月球公转渐快。这使得当前每一年月球轨道约推离地球38毫米,而地球的一日延长约23微秒。因为月球对地球万有引力的作用,地球视作一固态整体,较背对月球一侧的海水更被拉近月球,因此背对月球一侧的海水形同“升高”了。[9]这造成两端的潮汐隆起与每天两次的涨潮。 在大多数的地区,潮汐最主要的成分是主太阴半日潮,也称为M2,它的周期是12小时25.2分钟,正好是太阴潮汐日的一半,也是月球至下一次中天所需的一半时间,也是地球上同一个地点因为自转再一次正对着月球的周期。使用简单的潮汐钟就可以追踪这个成分的潮汐。因为月球以和地球公转相同的方向环绕着地球运转,因此太阴日比地球日长一点。以手表上的分针做比较就可以了解:分针与时针在12:00重合,但再次重合的时间是1:05,而不是1:00就可以了解了。 变动的范围:大潮和小潮 半日潮的潮差(在半天之内水域的最高和最低位置的变化)各自有两个星期或14天周期的不同变化。在新月和满月,当太阳、月球和地球的在一条线上,也就是朔望的时刻,太阳的潮汐力会加强月球的潮汐,潮汐的潮差会达到最大:称为大潮(英文为spring tide,但与春季无关,不能译为春潮,而是在字面上源自较古老的含义:跳跃、向前喷出、上升等水文学的自然现象)。当月球在上弦或下弦的位置,从地球看到的太阳和月球相距90度,太阳的力量抵销了部分的月球力量,使两者的合力效果最小。在月相周期的这种位置上,潮汐的潮差最小:称为小潮(英文neap tide的字源不清楚)。大潮的时候,高水位高于平均值,而低水位低于平均值,憩潮的时间比平均短,但潮流比平均值强大;小潮的结果是一切都小于平均值。大潮和小潮的时间间隔大约是7天。 月球与地球之间的距离变化也影响到潮汐的高度,当月球在近地点,潮汐的潮差会增加,而在远地点时潮汐的潮差会减少。每7.5个朔望月,新月或满月会和近点月重合,会造成近点月大潮使潮汐的潮差达到最大。如果在此时有风暴出现在沿海地区,其结果是造成的灾害(各种形式上的财物损失,等等)会特别的严重。 半日潮潮差的差异

潮汐

潮汐表表底部有一句"潮高基准面:在平均海面下255CM" 是什么意思 回复: 关于“潮高基准面:在平均海面下255cm”。 “潮高基准面”——潮汐表上预报潮位值的零点(可理解为零点“标高”)称为潮高基准面,一般位于平均海平面以下,水深图或海图(包括潮汐表)都是以当地理论深度基准面起计算的,该基面也是潮汐潮高的起算面。 在北海海域,其潮汐的起算面在平均海面下255cm位置,该位置也就是本地计算潮位的零点位置。 平均海平面简介 平均海平面(mean sea level),水位高度等于观测结果平均值的平静的理想海面。观测时间范围不同,有不同概念的平均海平面,如日平均海平面、年平均海平面和多年平均海平面等等。一些验潮站常用18.6年或19年里每小时的观测值求出平均值,作为该站的平均海平面。 海平面的年较差 因为观测值受天气状况而变,且具有季节性、周期性的变化。一年中月平均海平面的最大值与最小值之差,称为年较差。例如渤海的月平均海平面的年较差为60~70厘米,黄海为35~50厘米,东海为

30~35厘米,南海为20~40厘米,而恒河口可达170厘米,太平洋的檀香山仅约8厘米。年平均海平面的差异,可达10厘米左右。海平面基准 1956年,中华人民共和国规定以青岛验潮站的多年平均海平面为中国统一的高程起算面,称为青岛平均海平面或黄海基准面。中国出版的地图上的海拔高度都由这个基准面起算。至于航海图上的深度,则从海图的基准面向下计算。 海平面的变化 日平均海平面不但随天气状况而变,而且具有季节、半年、一年和多年周期的变化。月平均海平面在一年中的最大变幅,即最高值和最低值之差,称为年较差。渤海月平均海平面的年较差为60~70厘米,黄海为35~50厘米,东海为30~35厘米,南海为20~40厘米,孟加拉湾恒河口的月平均海平面年较差可达170厘米,而太平洋的火奴鲁鲁(檀香山)则仅约8厘米。这种差异,主要由该地区的海洋水文和气候条件所决定。年平均海平面的差异,可达10厘米左右,它主要取决于气候和天体运动的长周期变化。至于地质年代中的海平面变化,则与冰川的消长和地壳的变迁有关。

潮汐现象的力学分析

潮汐现象的力学分析 地球上的海洋周期性的涨落称为海洋潮汐。我国自古有“昼涨称潮,夜涨称汐”的说法[1]。在公元前2世纪已记载月望(满月)之日可以看到十分壮观的海潮(枚乘:《七发》140 B.C ),东汉王充在《论衡》中已写道“涛之起也,随月盛衰,大小,满损不齐同”指出潮汐与月球的关系,其后更有余靖、张君房、燕肃、沈括、郭守敬等人对潮汐观测得到相当精确的结果[2],李约瑟(Joseph Needham,1900—1995)曾说:“ 近代以前,中国对潮汐现象的了解与兴趣总的来说是多余欧洲的”[3]。 古人称白天为“朝”, 晚上为“夕”, 所以以海洋潮汐为例, 白天海水上涨为“潮”, 晚上海水上涨为“汐”。潮汐现象是一种普遍的自然现象。有资料[4]称:“地球上海洋的周期性涨落称为潮汐”,并解释说是“一昼夜中两次潮水涨起,随之有两次跌落”。这一注解容易使人误认为海水的潮汐就是一昼夜的两涨两落现象。事实上潮汐有多种, 就海洋潮汐而言, 就有根据太阳、月亮、地球排列位置分的“大潮”和“小潮”;根据月球与地球距离分的“近地潮”和“远地潮”;根据引潮力方向分“顺潮”和“对潮”等。以一昼夜高、低潮出现的次数不同又可分为以下几类: 半日潮:是指一昼夜内出现两次高潮和两次低潮。 全日潮:是指一昼夜内只有一次高潮和一次低潮。 混合潮:是指一个月内有些日子出现两次高潮和两次低潮, 有些日子出现一次高潮和一次低潮[5]。 所以潮汐现象不仅仅是一昼夜中海水的两涨两落现象。下面以海水的半日潮为例分析其形成过程及物理本质。 1 潮汐现象的力学分析 1.1 引潮力产生的分析 月球对海水的引力是造成潮汐的主要原因,太阳的引力也起一定的作用。潮汐现象的特点(半日潮)是每昼夜有两次高潮。所以,在同一时刻,围绕地球的海平面总有两个突起部分,在理想的情况下它们分别出现在地表离月球最近和最远的地方。如果仅把潮汐看成是月球引力造成的,那么在离月球最近的地方海水隆起,是可以理解的。为什么离月球最远的地方海水也隆起呢? 如果说潮汐是万有引力引起的,潮汐力在大小就应该与质量成正比,与距离平方成反比。太阳的质量比月球大7 2.710?倍,而太阳到地球距离的平方只比月球的大5 1.510?倍[6],两者相除,似乎太阳对海水的引力比月球还应该大180

相关文档