文档库 最新最全的文档下载
当前位置:文档库 › 透明显示技术的进展_胡凯

透明显示技术的进展_胡凯

透明显示技术的进展_胡凯
透明显示技术的进展_胡凯

显示器件的发展历史

平面的魅力--纯平显示器漫谈 PC显示器技术从诞生开始就没有多少真正的变化。尽管显示器变得越来越大、越来越清晰,但基本的阴极射线管技术仍然是以几十年前的旧电视技术为基础。目前,在传统CRT 显示器中,日益发展的“纯平”技术越来越引人瞩目。 一、显像管形状的发展历史 组成显示器最重要的部件无疑是显像管。显像管的发展历史几乎就代表了显示器的发展历史。显像管的形状有球面、柱面、平面直角、超平面、纯平面等之分。 球面显像管其形状是球体的一部分,在垂直和水平方向都有弯曲,所以在边缘处会造成图像的变形。一般而言偶数英寸(14、16、20英寸)的显示器采用这种显像管。球面显示器采用的是荫罩显像管,它在荧屏前方有一张很薄的穿孔金属片,用以生成分离的荧光点。由于荫罩显像管中荧光点排列的方式,所以能产生边缘清晰的图象,很适合文字的显示。 柱面显像管代表产品有索尼的Trinitron和三菱的DiamondTron,在垂直方向是平直的,在水平方向有弯曲。垂直方向的直线造型既减少了图象的变形,也避免了上方灯光反射的干扰。柱面显示器采用的是荫栅显像管,它透过一列绷紧的细线生成垂直的荧光线,在屏幕下方可以看到一根极细的固定荫栅的水平减振线。荫栅显像管具有比荫罩显像管更高的亮度和对比度,同时不失精确的聚焦。因此这种显像管比较适于图象编辑工作。但它在水平方向的弧度不太利于文字的显示。 平面直角显像管它的屏幕实际上也是一个球体的一部分,只是这个球体的直径很大,使得屏幕看起来几乎是个平面。它消除了图象的变形,并避免了灯光的反射。目前绝大多数的15、17、19、21英寸显示器都是平面直角的。几乎所有的平面直角显示器都用的是荫罩显像管,只有NEC的CromaClear是个例外。它采用的是一系列垂直排列的椭圆形栅孔,据称结合了荫罩显像管和荫栅显像管二者的优点。 纯平面的显像管上述这些显像管,都没有达到完全的平面,因此,所显示的画面或多或少都会有一点变形和扭曲,依然不够令人满意。直到现在,一些崭新显示器――纯平显示器的出现,才使CRT显示器终于走上了完全平面的道路。 二、“纯平”显像管的性能特点 从最早的球面显像管到现在应用最多的平面直角显像管(FST),再到以SONY特丽珑(Trinitron)和三菱钻石珑(Diamondtron)为代表的柱面显像管,显像管弧度已经越来越小,特丽珑显像管已实现了垂直方向的零弧度,但在水平方向仍然没有达到完全的平面。纯平面显示器,屏幕在水平和垂直方向都是笔直的,就象一面镜子那样平,失真、反光,都被减小到了最低限度。正如几年前平面直角显像管取代球面显像管一样,纯平面显像管必然将取代现在的平面直角显像管和柱面显象管,形成新的风潮,这是CRT显示器发展的必然趋势。现在最新出现的一些“纯平”显像管(IFT)技术,使传统CRT显示器终于走上了完全平面的道路。

数码管显示动态数字 单片机报告

目录 一、设计题目 (2) 二、设计目的 (2) 2.1设计目的要求 (2) 2.2 系统设计意义 (2) 三、系统硬件图 (3) 四、程序流程图 (3) 五、系统说明与分析 (4) 5.1系统主要组成部分 (4) 5.2 单片机最小系统部分 (4) 5.2.1 MCS-51系列单片机概述 (4) 5.2.2 MCS-51系列单片机的并行I/O口 (5) 5.2.3 MCS-51系列单片机的工作方式和时序 (8) 5.3串行转并行部分 (10) 5.3.1 74ls164的概述 (10) 5.3.2 74ls164的功能 (15) 5.4数码显示部分 (16) 5.4.1概述 (16) 5.4.2 LED数码管引脚结构 (16) 5.4.3 LED数码管显示原理 (17) 5.4.4 LED数码管的驱动方式 (17) 5.5电路板的制作 (18) 5.6 系统连线说明分析 (19) 六、源程序 (20) 七、总结 (22) 八、参考文献 (23)

一、设计题目 通过51系列单片机的串行口和74ls164显示0~9十个数字。 二、设计目的 该单片机最小应用系统设计目的及要求如下: 2.1设计目的要求 1、通过本次实验,掌握单片机串行口的扩展功能; 2、通过对单片机的使用和编程,了解单片机的应用编程; 3、搭建单片机最小应用系统,进一步加深对单片机应用的理解,提高处理实际问题的能力和独立分析思考的能力; 4、掌握单片机汇编编程技术中的设计和分析方法; 5、学会使用并熟练掌握电路绘制软件Protel99SE(或DXP); 6、掌握电路图绘制及PCB图布线技巧。 2.2 系统设计意义 1、在系统掌握单片机相应基础知识的前提下,熟悉单片机最小应用系统的设计方法及系统设计的基本步骤。 2、完成所需单片机最小应用系统原理图设计绘制的基础上完成系统的电路图设计。 3、完成系统所需的硬件设计制作,在提高实际动手能力的基础上进一步巩固所学知识。 4、进行题目要求功能基础上的软件程序编程,会用相应软件进行程序调试和测试工作。 5、用AT89S51,74ls164设计出题目所要求的数字显示,实现循环显示,并针对实际设计过程中软、硬件设计方面出现的问题提出相应解决办法。 6、通过单片机应用系统的设计将所学的知识融会贯通,锻炼独立设计、制作和调试单片机应用系统的能力;领会单片机应用系统的软、硬件调试方法和系统的研制开发过程,为进一步的科研实践活动打下坚实的基础。

新型显示技术发展研究_孔彬

52?2013年7/8月号 总第102/103期? 显示技术是人机联系和信息展示的窗口,广泛应用于工业、娱乐、通讯、教育、交通、医疗、军事等社会生产,生活的各个方面。 显示产业也是年产值超过千亿美元的战略性新兴产业,是信息时代的先导性支 柱产业,产业带动力和辐射力强。为实现新型显示产业的加速创新发展,2012年8月21日,科技部组织编制了《新型显示科技发展“十二五”专项规划》(下简称“规划”),倡导新型显示技术的发展潮流。 1.概况 100余年来,世界显示技术日益呈现出技术融合化、种类多元化、应用综合化的发展态势,其发展大致经历了4个主要阶段(图1): 一是传统的显示技术阶段,主要以物理光学显示为主,包括镜片投影显示。二是现代显像管显示技术阶段,以1897年发明CRT 技术为标志。三是现代平板显示技术阶段,开始出现在20世纪60年代,现已形成了全球迅猛发展的趋势和格局。四是当代新型显示技术阶段,20世纪90年代以来,网络、数字化、多媒体技术和高清晰度电视的发展,引发了全球显示产业的一场变革。随着信息技术、新材料技术和先进制造技术的迅猛发展,新型显示技术迅速取代CRT 等传统显示技术,出现了液晶显示、等离子显示、有机发光显示等新型平板显示技术和产品互相补充、互相竞争、共同发展的局面,如图1所示。 目前,显示技术处于多种技术路线并存、产业发展迅速的黄 金阶段。其中,阴极射线管显示已基本退出显示技术历史舞台,液晶显示技术和等离子体显示已经成为显示主流技术,激光显示、3D 显示、有机发光显示、电子纸显示、场发射显示将是未来主流 新型显示技术发展研究 孔彬 显示技术。我国激光显示是最有可能领先国际水平的显示技术,3D 显示是最有生命力且终将成为显示技术共性平台的下一代显示技术,有机发光显示是最具发展潜力的新型显示技术,电子纸显示和场发射显示是值得关注的下一代显示技术。 近年来,在市场需求和技术创新推动下,我国新型显示技术得到了迅速发展,产业链中上游技术创新与国际水平差距逐步缩小,下游整机应用系统集成技术得到跨越式发展。其中,我国激光显示技术保持与国际同步,3D 显示技术与国际同行差距较小,有机发光显示、电子纸显示产业发展迅速。液晶显示和等离子体显示等主流显示技术自主产业创新步伐明显加快。目前,我国具有相对优势的激光显示技术和产业均处于蓄势待发阶段,未来显 示储备技术场发射显示的发展势头也较明显, 多种显示技术在移动互联网终端显示的集成应用得到快速发展。我国新型显示技术创新和产业发展迎来了十分难得的机遇期。 激光显示和3D 显示技术已经被人们熟知并处于大规模应用阶段,下文将重点介绍有机发光显示、电子纸显示和场发射显示等三种新型显示技术。 2.有机发光显示 有机发光显示,又称OLED(Organic Electroluminescence Display)。有机发光显示的发光原理和无机发光显示相似。当元件受到直流电(Direct Current ;DC)所衍生的顺向偏压时,外加之电压能量将驱动电子(Electron)与空穴(Hole)分别由阴极与阳极 注入元件,当两者在传导中相遇、结合,即形成所谓的电子-空穴复合(Electron-Hole Capture)。而当化学分子受到外来能量激发后,若电子自旋(Electron Spin)和基态电子成对,则为单 重态(Singlet),其所释放的光为所谓的荧光(Fluorescence);反之,若激发态电子和基态电子自旋不成对且平行,则称为三重态 (Triplet),其所释放的光为所谓的磷光(Phosphorescence)。OLED 的基本结构是由一薄而透明具半导体特性之铟锡氧化物(ITO),与电力之正极相连,再加上另一个金属阴极,包成如 近年来,在市场需求 和技术创新推动下,我国新型显示技术得到了迅速发展,产业链中上游技术创新与国际水平差距逐步缩小,下游整机应用系统集成技术得到跨越式发展 图1 显示技术发展总体历程

LED数码管的动态显示

实验四 LED数码管的动态显示 一、实验目的 1、学习LED数码管的静态和动态显示编程。 2、学习使用定时/计数器。 一、实验说明 1、定时器 51单片机有两个16位内部定时器/计数器(T/C,Timer/ Counter)。若是计数内部晶振驱动时钟,则是定时器;若是计数8051的输入引脚的脉冲信号,则它是计数器。定时器实际上也是工作在计数方式下,只不过对固定频率的脉冲计数。由于脉冲周期固定由计数值可以计算出时间,有定时功能。定时器有关的寄存器有工作方式寄存器TMOD和控制寄存器TCON。 1)定时器初始化步骤 在使用51系列单片机的T/C前,应对它进行编程初始化,主要是对TCON 和TMOD编程,还需要计算和装载T/C的计数初值。一般完成以下几个步骤: (1)确定T/C的工作方式——编程TMOD寄存 (2)计算T/C中的计数初值,并装载到TH和TL; (3)T/C在中断方式工作时,必须开CPU中断和源中断——编程IE寄存器; (4)启动定时器/计数器——编程TCON中TR1或TR0位。 2、LED动态显示 数码管显示方式分为两种:静态显示和动态显示。静态显示的特点是各LED 能稳定地同时显示各自字形,动态显示是指各LED轮流显示各自字符,利用人眼的视觉惰性使人感觉不到是一位一位显示的,而是一起显示的。 三、实验内容及步骤 1、了解GL10实验箱中四位数码管硬件电路,电路如图4-1所示 图4-1数码管硬件电路 2、启动PC机,按照GL10硬件安装指导书(附件2)和GL10驱动程序安装指导书(附件完成PC和GL10实验箱的连接 3、打开Keil uVision2仿真软件,首先建立本实验的项目文件,接着建立源

用单片机实现动态数码显示

用单片机实现动态数码显示 1.制作简介 利用AT89S51单片机来实现数码的动态显示,P0端口接动态数码管的字形码笔段,P2端口接动态数码管的数位选择端,P1.7接一个开关,当开关接高电平时,显示“12345”字样;当开关接低电平时,显示“HELLO”字样。 2.电路原理图

3.系统板上硬件连线 1.把“单片机系统”区域中的P0.0/AD0-P0.7/AD7用8芯排线连接到“动态数码显示”区域中的a-h端口上; 2.把“单片机系统”区域中的P2.0/A8-P2.7/A15用8芯排线连接到“动态数码显示”区域中的S1-S8端口上; 3.把“单片机系统”区域中的P1.7端口用导线连接到“独立式键盘”区域中的SP 1端口上。 4.程序设计内容 1.动态扫描方法 动态接口采用各数码管循环轮流显示的方法,当循环显示频率较高时,利用人眼的暂留特性,看不出闪烁显示现象,这种显示需要一个接口完成字形码的输出(字形选择),另一接口完成各数码管的轮流点亮(数位选择)。 2.在进行数码显示的时候,要对显示单元开辟8个显示缓冲区,每个显示缓冲区装有显示的不同数据即可。 3.对于显示的字形码数据我们采用查表方法来完成。 5.程序框图

6.汇编源程序 ORG 00H START: JB P1.7,DIR1 MOV DPTR,#TABLE1 SJMP DIR DIR1: MOV DPTR,#TABLE2 DIR: MOV R0,#00H MOV R1,#01H

NEXT: MOV A,R0 MOVC A,@A+DPTR MOV P0,A MOV A,R1 MOV P2,A LCALL DAY INC R0 RL A MOV R1,A CJNE R1,#0DFH,NEXT SJMP START DAY: MOV R6,#4 D1: MOV R7,#248 DJNZ R7,$ DJNZ R6,D1 RET TABLE1: DB 06H,5BH,4FH,66H,6DH TABLE2: DB 78H,79H,38H,38H,3FH END

BOS技术在流动测量中的应用

国防科技大学学报 第32卷第1期J OUR NAL OF NA TIONA L UNIVERSI TY OF DEFENSE TECHNO LO GY Vol.32No.12010 文章编号:1001-2486(2010)01-0001-05 BOS技术在流动测量中的应用X 何霖,易仕和,赵玉新,田立丰,程忠宇 (国防科技大学航天与材料工程学院,湖南长沙410073) 摘要:背景纹影技术是新近提出的一种流动显示技术。与纹影、干涉等传统流动显示方法相比,BOS技术不仅具有高时空分辨率,同时还可以对流场密度梯度场进行定量测量。根据BOS技术的原理,搭建了一套BOS系统,采用该系统测量了蜡烛火焰上方的热对流流场,得到了热对流流场的瞬态流动结构,验证了B OS系统的性能。在此基础上,采用BOS系统对超声速混合层进行了实验研究,得到了超声速混合层的精细空间结构和密度梯度场的定量分布,实验结果充分体现出B OS技术在流动测量中的巨大优势。 关键词:BOS;纹影;流动显示;密度梯度;定量测量 中图分类号:V211文献标识码:A The Application of BOS in Flow Measurement HE Lin,YI Sh-i he,ZHAO Yu-xin,TIAN L-i feng,CHENG Zhong-yu (College of Aerospace and M ateri al Engineering,National Univ.of Defense Technology,Changsha410073,China) Abstract:Background oriented schlieren(BOS)is a new technique for flow https://www.wendangku.net/doc/b317055879.html,pared with schlieren and interferometry,B OS can measure density gradient quan titatively with high spatiotemporal resolution.Based on its principle,a BOS system is set up i n this https://www.wendangku.net/doc/b317055879.html,ing this system,the thermal convection flow field over a candle flame is measured,and i ts transient flow structure is visualized.The whole process verifies the performance of the B OS system.Then,a supersonic mixing layer is studied, i ts fine flow structures and quantitative density gradien t distribution are acq uired.The results show obvious advantages of BOS in flow measurement. Key words:BOS;schlieren;flow visualization;densi ty gradient;quantitative measurement 在流动测量中,基于折射率场的光学非接触式测量方法是一类常用的流动显示方法,如纹影、阴影和干涉等[1]。但纹影、阴影主要用于定性测量,在定量测量方面存在不足;干涉方法虽然可以实现定量测量,但其测量结果的分辨率较低,无法满足对精细流动结构测量的要求。Meier于1998年提出的BOS 技术弥补了上述流动显示方法的不足[2],该技术具有较高的时空分辨率,能够定量测量密度梯度场,借助重构方法可定量测量流场的密度分布。目前,BOS技术在风洞实验和户外全尺寸流场的测量中得到了广泛的应用[3-6]。另外,Elsinga等人还将BOS技术和彩色纹影技术进行了比较[7],两种方法的实验结果吻合,但BOS技术体现出更高的时空分辨率和测量精度;Sourgen等人将数值模拟的结果与BOS的测量结果进行了比较[8],验证了B OS技术的合理性;Erik等人对如何提高B OS技术的灵敏度、准确度和分辨率进行了讨论[9]。为研究BOS技术在流动测量中应用,本文搭建了一套B OS系统,通过对蜡烛火焰上方的热对流流场和超声速混合层的实验测量,研究了BOS技术运用于流动测量的能力。 1BOS技术的基本原理 BOS技术的原理与传统的纹影方法类似,利用气体折射率与流场密度梯度之间的关系,进行光学非接触式流动测量,但BOS技术借助数字图像处理技术的互相关算法进行数据的后处理,可以定量获取流场的信息。其操作方法是在所需测量的流场区域的两侧分别放置一幅背景图案和一台数字相机,使 X收稿日期:2009-06-10 基金项目:国家自然科学基金资助项目(10672178,10772168) 作者简介:何霖(1982)),男,博士生。

立体显示技术简介

立体显示技术简介 陈 曦 (四川长虹电器股份有限公司多媒体产业公司四川绵阳 621000) 【 摘 要 】 传统显示技术只显示二维平面的信息,而立体显示技术显示的是物体的深度信息,它利用人眼的立体视觉特性来复现立体图像。本文将对立体显示技术的发展历程、显示原理、常见立体显示技术以及长虹立体显示产品开发历程进行初步的介绍。 【 关键词 】立体显示、光栅法、分时法、分光法 一、引子 随着显示技术的飞速发展,电视机产品正在进行更新换代,以LCD、PDP为代表的新一代高清数字平板显示设备迅速崛起并快速取代了传统的CRT显示设备。这些新的显示技术的应用推广,虽然让电视画面的清晰度和主观效果得到了大幅度的提高,但显示技术仍停留在二维平面显示阶段。 随着3D标准的制定、HDMI1.4版本的发布以及蓝光碟机对3D的支持,3D产业链正在形成。现代显示技术在继数字化、高清化之后,正开始迎来立体化的新一轮升级大发展。美国、日本、韩国等国家或地区纷纷开播3D电视,尤其是2010CES消费电子展上各厂家纷纷推出3D显示设备,以及电影《阿凡达》的上映,在全球迅速掀起3D热潮,包括长虹在内的各大电视厂家纷纷研发出3D电视并上市销售。本文将对立体显示技术的显示原理、常见立体显示技术以及长虹立体显示产品开发历程进行初步的介绍。 二、立体显示原理 研究人员发现,无论用两只眼睛还是只用一只眼睛观察物体均可以获得立体感觉。总的说来,立体视觉的形成因素包括双眼视觉差异、透视感觉、画面细腻程度的差异、光照造成的阴影深浅变化、物体运动导致其大小及角度的变化等。其中双眼视觉差异是获取立体感觉的主要因素,这是由于人的两只眼睛之间存在约65毫米左右的距离,因此在观察物体时,两只眼睛所获取的图像信息会存在一定的细微差异。正是基于双眼视觉差异产生立体感觉的原理,研究者们绞尽脑汁,设计出了多种不同的方法来重现立体图像。 三、常见立体显示技术 常见的立体显示技术主要有分色法、分光法、分时法、分屏法、光栅法以及全息法等。其中分色法、分光法、分时法、分屏法等均需要佩戴专用的眼镜,而光栅法、全息法属于自由立体显示技术,适用于裸眼观看。 通常在发送端用两台或多台摄像机,从不同方位模拟双眼进行摄像,得到具有视觉差异的图像信号,再通过一定的处理方法融合一路信号传送,电视机接收到上述信号后解码还原成分别供两眼观看的图

一,显示技术的发展史及其特点

一、显示技术的发展史及其特点 1-1 显示器件的分类及显示技术的发展史 研究表明人的各种感觉器官从外界获得的信息中视觉占60%,听觉占20%,触觉占15%,味觉占3%,嗅觉占2%,近2/3的信息是通过眼睛获得的由此也就促进人们对显示技术的研究开发,从而图像显示成为显示中最重要的方式。 电子显示器件可分为主动发光型和非主动发光型两大类。前者是利用信息来调制各像素的发光亮度和颜色,进行直接显示;后者本身不发光,而是利用信息调制外光源而使其达到显示目的。显示器件的分类有各种方式,屏幕大小、显示内容形状……;按显示材料可分固体(晶体和非晶体)、液体、气体、等离子体和液晶体显示器。但是最常见的是按显示原理分类,其主要有:阴极射线管(CRT)、显示液晶显示(LCD)、等离子体显示板(PDP)显示、电致光显示(ELD)发光二极管(LED)显示、有机发光二极管(OLED)显示、真空荧光管(VFD)显示,场发射显示(FED)。前七种都为主动发光显示,只有LCD为非主动发光显示,其他还有但市场很小。 在20世纪,图像显示器件中,阴极射线管(CRT)占了绝对统治地位,如电视机显示器等绝大多数都采用CRT。与此同时平板显示器也在迅速的发展,其中液晶显示器以其大幅度改善的质量、持续下降的价格、低辐射量等优势在中小屏幕显示中代替CRT。而另一种适合大屏幕的显示器件――等离子显示器(PDP),也逐渐发展并且商品化。 1-2 显示器件的主要参量发展前景 由于显示器件可用来重现图像图形、显示信号波形和参数,因此对显示器来说最重要的是显示彩色图像的质量。目前CRT显示器件以其高的性能价格比和高性能的图像质量仍占据着大部分的显示市场,而LCD显示器以其不断下降的价格和不断提高的图像质量已作为平板显示器件的代表填补了CRT显示器件推出的市场,并且还在扩充者市场。CRT、LCD 都已大规模生产,基本上已达到物美价廉,因此其他显示器件只能在CRT、LCD显示器件所不能适应的领域发展。以下是对显示器件主要参数进行说明: 1 亮度 亮度(L)的单位是坎德拉每平方米(cd/m2)。对画面的亮度要求与环境的光亮度有关,例如,在电影院中,电影亮度有30-45cd/m2就可以了;在室内看电视,要求显示器画面亮度应大于70cd/m2;在室外看则要求画面亮度应达到300cd/m2;所以对高质量的显示器亮度的要求应为300cd/m2左右。 2 对比度和灰度 对比度(C)是指画面上的最大亮度Lmax 和最小亮度Lmin 之比,即C= Lmax / Lmin(无环境光的前提下)。在实用中都是有环境光线的,所以显示器件必须有足够的亮度才能实现实用状态下的对比度:C’=Lmax+L外/Lmin+L内 灰度是指图像黑白亮度的层次。一般人眼可分辨的最大亮度层次为100级。显示字码、图形、表格曲线对灰度没有要求,只要对比度高级可。但显示图像不但要求有足够的对比度,还要要求有丰富的灰度级。 3 分辨力(清晰度) 分辨力是指分辨电视图像的最小细节的能力,是人眼观察图像清晰程度的标志。分为水平和垂直两种,在电视显示中垂直即电视帧的扫描线数,受电视广播制式的限制,PAL 制625 扫描线,NTSC 制525扫描线,高清晰数字制式,如1080I/60HZ信号的扫描线为1080线。虽电视机的品牌不同,但此参数都必须是一样的,后来不同厂家进行100HZ 和逐行扫描处理,只是减少了图像的大面积闪烁和行间闪烁。

微尺度流动研究中的显示技术-中科院力学所

微尺度流动显示及速度测量 李战华郑旭 中国科学院力学研究所非线性力学国家重点实验室(LNM),北京100080 摘要:本文综述了微尺度流动显示和速度测量的前沿技术:MicroPIV、Confocal、TIRFM、MTV、QD等,介绍其工作原理、主要技术指标、适用范围等。通过对各种系统的分析说明观测微流动需要解决的主要问题,为进行微流动的实验研究和发展微流动观测技术提供参考。 关键字:微流动、流动显示、MicroPIV、Confocal、TIRFM、MTV、QD 1.引言 微尺度流动是指特征尺度在0.1μm ~ 1mm之间的流动,通常出现在微机电系统(MEMS),特别是微流控芯片(Microfluidic)中。例如,DNA检测使用的毛细管电泳芯片,微分析系统(μTAS)中使用的微分离器、微阀等器件,均由微米尺度的通道组成。微尺度流动的主要特点是:低Re数,表面力作用为主,与Capillary数、Bond数有关,工作液体多为复杂液体等。微尺度流动特性对系统的性能有很大影响,对微流动特性的研究一直受到关注。 微流动特性研究的重要手段之一是进行流场观测。微尺度流动显示与宏观流动显示主要不同是需要提高空间分辨度和利用高亮度探测仪器等。宏观速度测量仪器的空间分辨率在几十微米以上:热膜流速仪的探头直径为5μm,长1.25mm,LDV的光斑直径约2mm,这些仪器无法用于微尺度流动测量。宏观流动显示的示踪粒子直径>1μm,而微流动中的荧光示踪粒子直径在50-500nm。按照Reyleigh散射定律粒子光强与直径的6次方成比例衰减,因此需要高光学灵敏度探测器。为了实现微尺度流动诊断,必须对宏观流动显示方法进行改进,采用新的实验仪器或手段。 目前微流动显示方法很多,按照所使用的显微镜系统分为:倒置荧光显微镜、透射显微镜系统、共聚焦显微系统Confocal等。按照选用的入射光种类分为:利用激光光源的Micro-PIV,利用x射线的X-PIV,利用近场隐失波的TIFMR等。按照选用的示踪粒子分为:荧光粒子法、分子示踪法和量子点示踪法等。本文将综述微尺度流动显示和速度测量的主要方法:MicroPIV、Confocal、TIRFM、MTV、QD等,介绍其工作原理、主要技术指标、适用范围等。通过对系统的分析说明观测微流动的困难和需要解决的主要问题,为进行微流动的实验研究、观测微流控器件的流动特性和发展微流动观测技术提供参考。 2.微观粒子图像测速(Micro-PIV) 2.1特点与发展现状 (1)原理 Micro-PIV是将宏观PIV测量原理应用于微尺度流动的流场测量技术,它在宏观PIV测量系统中增加了光学显微镜(图1),利用粒子的荧光提取流场信息。 (2)发展现状 著名实验流体力学家Adrian研究组的Santiago(1998)[1]首次利用连续激光器、CCD和荧光显微镜组成Micro-PIV系统,测量了绕30μm柱体的Hele-Shaw流。实验中采用的示踪粒子是直径为300nm

平板显示技术复习资料 (考中版)

一、填空 1、电子显示器:?主动发光型:利用信息来调制各像素的发光亮度和颜色,进行直接显示;?非主动发光型:本身不发光,利用信息调制外光源而使其达到显示的目的。 2、显示器件参量:?亮度L :2/cd m ;?max min L C L =最大亮度对比度最小亮度,灰度 max min 'L L C L L += +外外 (L 外 为环境光照到显示器上产生的亮度),灰度是指图像的黑白亮度层次;?分辨率:指能够分辨出电视图像的最小细节的能力,是人眼观察图像清晰程度的标志;?响应时间:从施加电压到出现图像显示的时间,又称上升时间。余辉时间:从切断电源到图像显示消失的时间,又称下降时间;?显示色:发光型显示器件发光的颜色和非发光型显示器件航向或反射光的颜色;?发光效率:发光型显示器件所发光的光通量与器件所消耗功率之比,单位/ lm w ;?工作电压与消耗电流:驱动显示器 件所施加的电压为工作电压,流过的电流为消耗电流;?存储功能:外加电压除去之后,仍能保持显示状态的功能;?寿命。 3、阴极射线管(CRT )包含三大部件:电子枪、偏转系统、荧光屏,其优点:?价格低;?易调整分辨率;?形状大小变化很大;?优越的性能价格比;?寻址很简单;?可视性好;?发光效率好;?色彩丰富;?寿命长;?好的彩色和灰度能力;⑴可大规模生产。缺点:?体积重量大;?屏面内有光散射;?图像有闪烁和抖动;?直观显示尺寸有限制;?无数字寻址;?图像有畸变;?应用电压很高。 4、明视觉下 锥体 细胞起作用,暗视觉下 杆体 细胞起作用。 5、在明视觉条件下,人眼对0.38~0.78um 可见光谱范围的不同波长的辐射,即各种色光具有不同的感受性,对 等能量 的各色光,人眼觉得 黄绿色 最亮,其次是 蓝、紫 ,最弱的是 红色 。光谱效率函数就是达到同样亮度时,不同波长所需能量的 倒数 ,即()1/V E λλ=。 6、闪光融合频率或临界闪烁频率,简称为 CFF 。 7、光通量 φ:能够被人的视觉系统所感受到的那部分光辐射功率的大小的度量,单位: lm ,发光强度d I d φ =Ω (cd )。 8、照度的距离平方反比定律: 2 I E R = (lx ). 9、表面色:非自发光的物体色;光源色:自发光的物体色。 10、颜色的三个基本属性: 色调 、 明度 、 饱和度 。 11、彩色电视呈现的颜色是 空间加色法 。 12、整个画面中分解成成的最小图像单元称为 像素 ,对于黑色图像每个像素点为 黑白程度不同 的小点,对于彩色图像每个像素点由 红绿蓝 三个彩色点组成。 13、图像的顺序传送制:在发送端把被传送图像上各像素的亮度、色度按一定的顺序逐一地转变为相应的电信号,并依次经过一个通道,在接收端再按相同的顺序,将各像素的电信号在电视机屏幕相应位置上转变为不同亮度、色度的光点,只要这种顺序传送的速度足够快,那么由于人眼的视觉暂留和发光材料的余辉特性,就会感到整幅图像在同时发光。 14、 逐行扫描 是指电子束从左到右沿垂直方向从上到下均匀速度依次地一行紧接一行扫过屏幕。称水平方向的扫描为行扫描,称垂直方向的扫描为帧扫描。 隔行扫描 是指将一帧图像分成两场,第一场扫描奇数行,第二场扫描偶数行的扫描方式。 15、在电视中,同步是指使收、发两端扫描同频、同相和波形相似,满足比条件的扫描称 同步扫描 。 16、整的全电视信号是指具有 图像信号 、 复合同步脉冲 、 复合消隐脉冲 的电信号。 17、我国电视体制:行扫描线为625行,但显示在画面上的行数为575行。 18、电视图像信号特点: 脉冲性 、 周期性 。 19、我国电视体制参数:每帧行数655行,帧频25Hz ,场频50Hz 。(全电视信号带宽6MHZ ,图像信号采用调幅方式,声音信号采用调频方式) 20、现代彩色电视系统中三个需传送的信号是 一个亮度信号 和 两个色差信号 。 21、大面积着色原理:由于人眼对彩色的分辨力比对黑白细节的分辨力低很多,这样可以只传送景物中大面积的彩色部分,而彩色细节则用黑白图像代替,这一处理彩色的方式称为大面积着色原理。 22、彩色电视的制式:目前世界都采用兼容制彩色电视制式,分为NTSC 制式、PAL 制式和SECAM 制式。 23、CRT 必须包含三大部件:?发射电子并将它们会聚成细束的 电子枪 ;?使电子束在荧光屏上扫描的 偏转系统 ;?根据电子束通车强弱而发出不同亮度光的 荧光屏 。 24、黑底技术:为了保证色纯,不同颜色分点或粉条间留有间隙,即荧光屏中约有25%~30%的面积是不发光的,于该处涂以黑色吸光物质可以提高对比度40%。 25、液晶显示的特点:?低压、微功耗;?平板结构;?被动显示型;?显示信息量大;?易于彩色化;?长寿命;?无辐射、无污染。液晶显示的缺点:?显示视角小;?响应速度慢。 26、液晶:液晶是一种有序流体,一方面具有像液体一样的流动性和连续性,另一方面又具有像晶体一条的各向异性,处于中间状态下的物质仍保留着晶体的某种有序排列,只有这样才会在宏观上表现出物理性质的各向异性。 27、液晶显示:用于显示的都是工作于室温的热致液晶。 28、热致液晶由于分子排列有序状态不同,分为?近晶(层状)液晶(S 型):分子质心位置在层内无序,可自由平衡,具有流动性,粘度很大,光学上具有正性双折射性;?向列(丝状)液晶(N 型):分子质心没有长程有序性,有类似于普通液体的流动性,分子不能排列成层;?胆甾相(螺旋状)液晶(CH 型):分子呈扁平状,排列成层,层内分子相互平行,分子长轴平行于层平面,不同层的分子长轴方向稍有变化,沿层的法线方向排成螺旋状结构。 29、液晶的各向异性:?介电各向异性ε? ;?电阻率ρ和电导率δ ;?光学折射 率各向异性;?弹性系数k ;?粘滞系数η。 30、正性液晶( p N ) :偶极矩平行于分子长轴的一类液晶;负性液晶(n N ):偶极矩垂直于分子长轴的一类液晶。 31、液晶具有部分晶体特性,对入身光会表现出晶体特有的各向异性,在从多液晶显示器件中绝大多数使用 偏振光 工作。 32 33、液晶呈单轴的光学各向异性,有光学特性:?能使入射光的前进方向向液晶分子长

数码管动态显示数字

/***********************用译码器*******************************************/ #include #define GPIO_DIG P0 sbit LSA=P2^0; sbit LSB=P2^1; sbit LSC=P2^2; unsigned char code DIG_CODE[17]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f, 0x77,0x7c,0x39,0x5e,0x79,0x71};//共阴极数码管字型码0~F void Delay10ms(unsigned int c) //误差0us { unsigned char a, b; for (;c>0;c--) { for (b=38;b>0;b--) { for (a=130;a>0;a--); } } } void main() { unsigned char i=0; P2=0x00; //位显示 while(1) { GPIO_DIG=DIG_CODE[i++]; //段显示 Delay10ms(100); //55us GPIO_DIG=0x00;//消隐 P2=(P2+1)%8; if(i==8) i=0; } } /*******************不用译码器****************************************/ #include //--定义使用的IO口--// #define GPIO_DIG P0 //段选 #define GPIO_PLACE P1 //位选 //--定义全局变量--// unsigned char code DIG_PLACE[8] = {

流动测试技术

现代测量方法的比较 马丽 M120721 摘要:由于离心泵特殊的几何结构及复杂的内部流动,现在对内部流动的实验测量技术提出了更苛刻的要求,要求具有较高的频率响应特性、微型化和高速数据采集与处理系统,要求能够进行多点、多相、空间、瞬态测试。现对适用于离心泵内部流场测试的现代测试方法进行总结介绍。 叶轮机械及离心泵内部流动测量技术主要有非光学测量技术和流动显示技术。非光学测量技术主要包括探针和热线热膜技术,如多孔探针、旋转探针、热线热膜风速仪(HWFA,Hot Wire and Film Anemometry)和涡量探针等,缺点是:探针和热线/热膜的介入会扰动真实流场,需配置复杂的遥测技术将采集信号从转子传递到静止参考系。流动显示技术有传统的流场显示技术和现代流场显示技术,而传统的流动显示技术又可分为壁面显迹法、丝线法、示踪法和光学法四类,具体有氢气泡法、彩色氦气泡法、油流法、丝线法、阴影法、纹影法、干涉法等。 由于工程的迫切需要,随着光纤技术、芯片技术、激光技术、数字信号处理技术、图像图形处理技术、计算机处理技术日益成熟和完善,流动显示技术得到新的发展,产生了高响应、非接触的现代流动显示技术,包括激光多普勒测速(LDV,Laser Doppler Veloeimetry)技术、相位多普勒(PDPA,Phase Doppler Particle Analyer)技术、粒子图像测速(PIV, Particle Image Velocimetry)技术、激光诱发荧光(LIF,Laser Induced Fluorescence)技术、激光分子测速(LMV,Laser Molecule Velocimetry)技术和压敏涂层测压(PSP,Pressure Sensitive Paints)技术等[1]。 由于离心泵特殊的几何结构及复杂的内部流动,现在对内部流动的实验测量技术提出了更苛刻的要求,要求具有较高的频率响应特性、微型化和高速数据采集与处理系统,要求能够进行多点、多相、空间、瞬态测试。适用于离心泵内部流场测试的现代测试方法主要有以下几种: (1)片光流动显示技术 某些流场中存在一些特定的区域,其流速与周围流场的流速有明显的差异,如果在该区域的上游投入示踪粒子,用片光照亮该区域与其周围流场的某个截面,当示踪粒子流过该截面时就被照亮,发生散射。由于速度较低的示踪粒子在片光区内滞留的时间较长,而速度高的粒子滞留时间短,因此在某个小的时间间隔内,片光截面上的流场中速度较低处的示踪粒子数量密度将大于速度较高处的示踪粒子的数量密度,散射光较强,而后者散射光较弱。这样,由流过片光截面的示踪粒子群体散射的光强差别就可显示出流场中某个截面上的流速差异。随着该技术的发展,在基本原理和基本装置的基础上,发展出多种片光显示技术及装置,如光学多片光流动显示技术、扫描片光流动显示技术、复合片光流动显示技术和光导纤维片光流动显示技术等。 (2)激光多普勒测速技术(LDV) 当发射一定频率波的发射源与探测器之间存在相对速度时,探测器接收到的频率与发射源的频率会存在一定的频移,这种频移是由二者之间的相对速度引起的,其频移量反映了相对速度的大小,这就是多普勒效应。

几种显示技术的比较

几种常见显示技术的比较 平板显示器件包括液晶显示器件(LCD)、等离子体显示器件(PDP)、发光二极管显示器件(LED),场发射显示器件(FED )、表面传导发射显示器件(SED )、无机电致发光器件(IOEL)、有机电致发光器件(OLED ) 等。下面就其中的几种做简要的介绍。 1、液晶显示器件(LCD ) 液晶显示器件是液晶应用的主体,发展很快。液晶显示器的优缺点: (1)结构和产品体积。传统显示器由十使用CRT,必须通过电子枪发射电子束到屏幕,因而显像管的管颈不能做得很短,当屏幕增加时也必然增大整个显示器的体积。液晶显示器通过显示屏上的电极控制液晶分子状态来达到显示目的,即使屏幕加大,它的体积也不会成正比的增加(只增加尺寸不增加厚度所以不少产品提供了壁挂功能,可以让使用者更节省空间),而且重量上比相同显示面积的传统CRT显示器要轻得多。同时液晶显示器由十功耗只在十电极和驱动IC上,因而耗电量比传统CRT显示器也要小得多。 (2)辐射和电磁波干扰。传统CRT显示器由十采用电子枪发射电子束,在打到屏幕上后会产生辐射,尽管现有产品在技术上有很大的提高,把辐射损害降到最小,但不可能根除。在这一点上,液晶显示器具有先天的优势,它根本没有辐射可言。至十电磁波的干扰,液晶显示器只有来自驱动电路的少量电磁波,只要将外壳严格密封即可排除电磁波外泄,而传统CRT显示器为了散热,不得不将外壳钻上散热孔,所以电磁波干扰就不可避免了。所以液晶显示器也被称为冷显示器或环保显示器。 (3)平面直角和分辨率。液晶显示器一开始就使用纯平面的玻璃板,其平面直角的显示效果比传统显示器看起来好得多。不过在分辨率上,液晶显示器理论上可提供更高的分辨率,但实际显示效果却差得多。而传统显示器在较好显卡的支持下达到完美的显示效果。 (4)显示品质。传统显示器的显示屏幕采用荧光粉,通过电子束打击荧光粉显示,因而显示的明亮度比液晶的透光式显示(以口光灯为光源)更为明亮,在可视角度上也比液晶显示器要好得多。LCD理论上只能显时18位色,但CRT的

显示技术发展历程及市场变革

显示技术发展历程及市场变革 一、技术发展历程 在2013年FPD峰会上,京东方董事长王东升将显示技术进行了一个分类,将CRT和PDP归类为真空显示;把TFT-LCD、AMOLED、柔性显示等归类为半导体显示。半导体显示是指通过半导体器件独立控制每个最小显示单元的显示技术统称。它有三个基本特征:一是以TFT阵列等半导体器件独立控制每个显示单元状态;二是主要应用非晶硅(a-Si)、低温多晶硅(LTPS)、氧化物(Oxide)、有机材料(Organic)、碳材料(Carbon Material)等具有半导体特性的材料;三是主要采用半导体制造工艺。与半导体显示技术和产品相关的材料、装备、器件和相关终端产业链统称为半导体显示产业。王东升总结LCD替代CRT、PDP的原因为“TFT-LCD脱颖而出是因为它顺应了半导体技术替代真空电子技术这一历史大趋势。” 1.1从CRT到LCD/PDP:平板显示与球面显示的竞争

1897年CRT诞生,CRT包含一个能够通过电子束触及磷光表面创造出图像的真空管。之后,此项技术被用于早期电视和电脑显示器上显示图像,一直到20世纪80-90年代CRT逐步被LCD显示所替代,到目前为止CRT已基本退出历史舞台。1964年首个LCD(液晶显示器)和首个PDP(等离子显示器)双双问世。LCD技术使得平板显示成为可能。1972年首台液晶电视的诞生。2005-2006年LCD液晶显示的销售份额超过CRT,成为显示主流技术,到2010年市场上已基本没有CRT产品。 CRT被淘汰的原因:由于本身重最重且很厚,加之结构(阴罩技术的限制)三基色荧光粉不能做小,因此无法实现屏幕大型化和轻便化以及像素性高清晰显示(只能达到800×600像素),还有闪烁、X射线辐射、几何失真、清晰度和亮度不高等缺陷。 表CRT、LCD、PDP性能对比

电视显示技术的发展史

电视现象技术的发展史 你们和朋友在一起吹牛、侃大山时,你们是不是还在以谈论那些明星的八卦为荣?那你们就太俗了···俗不可耐。你们知道现在侃山高手都聊什么吗?告诉你们人家都聊科学、聊知识,这叫潮流、这叫时尚。快来学知识吧,学会了你也可以成为侃山高手。 一、开山鼻祖:CRT显像管电视 CRT显像管电视的发明可以说不仅为电视发展史奠定了基础,甚至可以说为人类文明的发展做出了巨大贡献。CRT显像管的发明不能归功于某个人或某个国家,从1883年尼普柯夫第一次尝试传输图像到1923年发明电子扫书描式显像管

直至1925年第一台电视的试播,其中承载了多国科学家的不解努力。经过科学家的孜孜探索,1939年第一台黑白电视机产生,1951年发明三枪荫罩式彩色显像管。 CRT显像管电视从面试至今一直活跃在人们的生活中,现在也不难看见CTR 显像管电视的身影。虽然CRT显像管电视正在慢慢的从人们的视线中消失,但是我们永远不要忘了电视机的开始鼻祖--CRT显像管电视。 二、等离子电视 等离子电视的技术在上世纪70年代被提出,等离子电视的成像原理通俗地说就是在两张玻璃板之间充填中性的放电气体,施加电压使之产生离子气体激励平板显示屏上的红绿蓝三基色磷光体荧光粉发出可见光。等离子腔体的明暗和颜色变化,合成各种灰度和色彩的电视图像。 等离子电视中的每一个等离子腔体都是一个单独的像素点,所以理论上只要像素点足够小,等离子电视的像素可以无限高,这样就打破了CRT电视清晰度的限制。同时等离子不再需要后置或下置投影枪,厚度大大减小,达到了壁挂的要求。

但是等离子电视的普及率很低,使用等离子电视的用户微乎其微,等离子电视只能怨自己生不逢时,那个年代全球经济形势不乐观、而且那个年代CRT电视正如日中天,此外在价格方面等离子电视让很多消费者望而却步。 三、LCD液晶电视 LCD液晶电视被发明的就恰逢其时,随着消费者需要的改变,CRT电视已经很难满足消费者的需求而等离子液晶电视又因为价格原因让大部分消费者望而却步,LCD液晶电视抓住了这一良机。 LCD液晶电视的工作原理可以概括为两张玻璃基板之间加入液晶分子,通入电压后分子排列发生曲折变化,屏幕通过电子群的冲撞,制造画面并通过外部光线的透视反射来形成画面。这种液体晶体显像的方式的优势主要体现在:画面的细腻程度超过以往所有的显示设备,并且分辨率的提高更加容易。但是LCD液晶电视也有一些劣势,LCD液晶电视体积较大、时间用久了灯管会老化发黄,使用寿命偏短。 四、LED液晶电视

相关文档