文档库 最新最全的文档下载
当前位置:文档库 › 人教版高中化学选修三教案-2.3 分子的性质 第二课时

人教版高中化学选修三教案-2.3 分子的性质 第二课时

人教版高中化学选修三教案-2.3 分子的性质 第二课时
人教版高中化学选修三教案-2.3 分子的性质 第二课时

第三节分子的性质

[讲]范德华力:分子之间存在着相互作用力。范德华力很弱,约比化学键能小l一2数量级。相对分子质量越大,范德华力越大;分子的极性越大,范德华力也越大。

[板书](2)大小判断:

1 影响分子间作用力的主要因素:分子的相对分子质量、分子的极性等

2 组成和结构相似的物质,相对分子质量越大,分子间作用力越大。

3 分子的极性越强,分子间作用力越大。

[学与问]怎样解释卤素单质从F2~I2的熔、沸点越来越高?[汇报]相对分子质量越大,范德华力越大,熔、沸点越来越高。

[板书]2、分子间作用力对物质的熔、沸点的影响:范德华力越大,物质的熔沸点越高。

[投影]

[讲]能量远小于化学键能,分子间作用力一般只有每摩尔几千焦至几十千焦,比化学能小1-2个数量极,分子间作用力主要影响分子晶体类型物质的物理性质,而化学键主要影响物质的化学性质。存在于分子之间,且分子间充分接近时才有相互间的作用力,如固体和液体物质中。

[问]夏天经常见到许多壁虎在墙壁或天花板上爬行,却掉不下来,为什么?

[讲]壁虎为什么能在天花板土爬行自如?这曾是一个困扰科学家一百多年的谜。用电子显微镜可观察到,壁虎的四足覆盖着几十万条纤细的由角蛋白构成的纳米级尺寸的毛。壁虎的足有多大吸力?实验证明,如果在一个分币的面积土布满100万条壁虎足的细毛,可

以吊起20kg重的物体。近

年来,有人用计算机模拟,

证明壁虎的足与墙体之间

的作用力在本质上是它的

细毛与墙体之间的范德华

力。

[投影]

[设问]你是否知道,常见物质中,水是熔、沸点较高的液体之一?你是否知道,冰的密度比液态的水小?

[投影]为什么水、氟化氢和氨的沸点出现反常。

[板书]四、氢键及其对物质性质的影响

[讲]为了解释水的这些奇特性质,人们提出了氢键的概念。氢键是除范德华力外的另一种分子间作用力,它是由已经与电负性很强的原子形成共价键的氢原子(如水分子中的氢)与另一个分子中电负性很强的原子(如水分子中的氧)之间的作用力。

[板书] 1、氢键:是由已经与电负性很强的原子形成共价键的氢原子(如水分子中的氢)与另一个分子中电负性很强的原子(N、O、F)之间的作用力。

[讲]以HF为例,在HF分子中,由于F原子吸引电子的能力很强,H-F键的极性很强,共用电子对强烈地偏向F原子,亦即H原子的电子云被F原子吸引,使H原子几乎成为“裸露”为质子。这个半径很小、带部分正电荷的H核,与另一个HF分子带部分负电荷的F原子相互吸引。这种静电吸引作用就是氢键。

[讲]氢键不是化学键,为了与化学键相区别,在下图中用“…”来表示氢键,注意三个原子要在同一条直线上。

[板书]2、氢键表示方法:X—H…Y。

[投影]

[讲]在用X-H…Y表示的氢键中,氢原子位于其间是氢键形

成的最重要条件之一,同时,氢原子两边的X原子和Y原子所属元素具有很强的电负性、很小的原子半径是氢键形成的另一个条件。由于X原子和Y原子具有强烈吸引电子的作用,氢键才能存在。这类原子应该是位于元素周期表的右上角元素的原子,主要是氮原子、氧原子和氟原子。有机物分子中含有羟基时,通常能形成氢键。

[板书]3、氢键的形成条件

[投影]

[讲]由于氢键的存在,大大加强了水分子之间的作用力,使水的熔、沸点较高。另外,实验还证明,接近水的沸点的水蒸气的相对分子质量测定值比用化学式H2O计算出来的相对分子质量大一些。用氢键能够解释这种异常性:接近水的沸点的水蒸气中存在相当量的水分子因氢键而相互“缔合”,形成所谓“缔合分子”。后来的研究证明,氢键普遍存在于已经与N、O、F等电负性很大的原子形成共价键的氢原子与另外的N、O、F等电负性很大的原子之间。例如,不仅氟化氢分子之间以及氨分子之间存在氢键,而且它们跟水分子之间也存在氢键。

[板书]4、氢键的类型:分子间氢键、分子间内氢键

[讲]氢键既可以存在于分子之间,也可存在于分子内部的原子团之间。如邻羟基苯甲醛在分子内形成了氢键,在分子之间不存在氢键,对羟基苯甲醛不可能形成分子内氢键,只能在分子间形成氢键,因而,前者的沸点低于后者的沸点。[投影]分子内氢键和分子间氢键

[强调]尽管人们把氢键也称作“键”,但与化学键比较,氢键属于一种较弱的作用力,其大小介于范德华力和化学键之间,约为化学键的十分之几,不属于化学键。

[讲]下面,让我们回到之前的问题,为什么水、氟化氢和氨的沸点出现反常。如上图所示,NH3、HF和H2O的沸点反常,分子间形成氢键会使物质的熔点和沸点升高,这是因为固体熔化或液体汽化时必须破坏分子间的氢键,从而需要消耗较多能量的缘故。

[板书]5、氢键对物质的影响:分子间氢键使物质熔点升高分子内氢键使物质熔点降低

[讲]以水为例,由于水分子间形成的氢键,增大了水分子间的作用,使水的熔沸点比同周期元素中H2S高。当水结冰时,体积膨胀,密度减小。这些反应的性质均与氢键有关。[投影]

[讲]在水蒸气中水以单个H2O 分子形式存在;在液态水中,经常是几个水分子通过氢键结合起来,形成(H2O)n;在固态水(冰)中,水分子大范围地以氢键互相联结,形成相当疏松的晶体,从而在结构中有许多空隙,造成体积膨胀,密度减少,因此冰能浮在水面上。水的这种性质对水生物生存有重要的意义。

[讲]除此之外,接近水的沸点时,用实验测定的水蒸气的

相对分子质量比用化学式H2O计算出来的相对分子质量大

一些。这也是由于氢键的存在使接近水的沸点的水蒸气中存

在相当量的水分子相互“缔合”,形成了一些“缔合原子”的原因。

[阅读]资料卡片及科学视野:生物大分子中的氢键。

[投影小结]分子间作用力与氢键的比较

分子间作用力(范

德华力)

氢键

物质分子之间存

在的微弱相互作

用(实际上也是静

电作用)

分子中与氢原子形成共价键的非金

属原子,如果吸引电子的能力很强,

原子半径又很小,则使氢原子几乎

成为“裸露”的质子,带部分正电荷。

这样的分子之间,氢核与带部分负

电荷的非金属原子相互吸引。这种

静电作用就是氢键

分子间某些含氢化合物分子间(如HF、H2O、

NH3)及某些有机化合物分子内

强比化学键弱得多比化学键弱得多,比分子间作用力

备课注意事项:

1、立足课本。

2、明确目标。

3、明确重点。

4、把握重难点。

5、注重学习自学和互学。

6、教师少说学生多练习。

7、练习要梯度。

8、当堂训练批改作业。

相关文档