文档库 最新最全的文档下载
当前位置:文档库 › 工业机器人用永磁同步电机设计

工业机器人用永磁同步电机设计

工业机器人用永磁同步电机设计
工业机器人用永磁同步电机设计

工业机器人用永磁同步电机设计

发表时间:2019-04-24T15:50:16.983Z 来源:《防护工程》2019年第1期作者:于帅涛

[导读] 实验结果和仿真数据基本一致,验证了方案的可行性。本文设计方案已经应用在某工业机器人用电机中。

摘要:伴随着我国现代化的飞速发展,国内的先进科学技术也随之逐渐增强。机器人用永磁同步电机要求具有高转矩倍数、高效率和低转矩脉动等特性。通过分析电机的技术要求,确定了该电机的基本尺寸参数。用有限元分析软件对电机进行分析和仿真。对常用的永磁电机的槽极配合进行分析,选择最佳的槽极配合。采用不等厚永磁体结构,对电机的齿槽转矩进行优化。设计了大小圈绕组结构,有效地提高了电机的效率。为工业机器人用永磁同步电机的设计和改进提供了一种设计的方法。

关键词:工业机器人;永磁同步电机;设计

引言

永磁同步电机采用永磁体为励磁,大大减轻了电机的体积和质量,在工业机器人上有很好的应用空间。而工业机器人同样也给永磁同步电机提出了更严苛的要求。本文针对的是面向机床自动化生产的机器人用电机,要求电机过载倍数要有3.3倍,电机效率也要求较高;同时电机的转矩脉动也要保持在较小的水平。

1永磁同步电机概述

1.1永磁同步电机

众所周知,电机是将电能转化为机械能的设备,但这种能量的转换需要建立磁场,异步电机建立磁场的能量需从电网吸取,需励磁电流、励磁绕组,而永磁电机由永磁材料产生磁场,无需励磁电流,这就是永磁电机。

1.2永磁同步电机优点

转速恒定。转速与电机频率保持恒定,为同步转速,可简化空载系统。功率因数高。通过合理设计能达到极限值1.0。效率高。正常运转时,转子无绕组铜耗;高功率因数,可使定子电流较小,定子绕组铜耗小。起动力矩大。温升低。

1.3永磁同步电机节电的机理

定子铜耗变化原因是定子电流减少,I2R减少;转子铜耗的变化原因是永磁电机同步运转,无滑差;定子铁耗的变化原因是永磁电机采用了低损耗矽钢片;转子铁耗的变化原因是永磁电机同步运转,无滑差;励磁铜耗的变化原因是励磁动率电磁钢提供;杂散损耗的变化原因是永磁电机单边气隙大;风摩损耗的变化原因是永磁电机温升低,可使用节能风扇。由于永磁同步电机各种损耗的明显减少,导致永磁同步电机效率的提高,因此永磁同步电机相对于异步电机实实在在地在节能。

1.4永磁同步电机与异步电机能效等级的对比

永磁同步电机可达到一级能耗,异步电机最多可达到二级能耗,一般为三级或四级能耗。

1.5异步电机和永磁同步电机可能达到的能效等级

异步电机能达到能效二级,欲达到能效一级就十分困难;而永磁同步电机能达到能效一级(IE4)。经过努力,采取必要的技术措施,永磁同步电机能效限定值达到IE5也是有可能的,所以永磁同步电机将成为我国电机行业节能减排、能效提升的龙头产品,应用将越来越广泛。

1.6永磁同步电机的上游技术业已成熟

我国稀土资源丰富,稀土矿的储量占世界储量的80%,居世界首位。稀土永磁材料和稀土永磁电机的科研水平都达到了国际先进水平,实现了产业化充分发挥我国稀土资源丰富的优势,大力研究和推广应用以稀土永磁电机为代表的各种节能电机,将资源优势转化为经济优势,具备了前提性条件和基础。

2工业机器人用永磁同步电机的设计

2.1电机尺寸的选择

电机的主要尺寸可由所需要的最大转矩和动态响应指标确定。永磁同步电机的最大转矩、电磁负荷和主要尺寸满足下面的关系:

式中:Bδ1为气隙磁密基波幅值;Lef为电机的铁心长度;A为电机的电负荷。

由于面向机床自动化生产的机器人机械手臂关节的限制,电机的外径和长度只能在较小的范围内选择。参照相同功率永磁电机的外径,最终电机选择了定子外径为123mm,铁心长度为55mm。由上可知,随着电机气隙磁密的增大,只需要较小的电负荷就能满足电机最大转矩的要求,所以本文选用了高性能钕铁硼永磁体材料,其气隙磁密最高达0.85T,电负荷取180A/cm。

2.2槽极配合的选择

本文从市面上成熟的常用永磁电机的槽极配合入手,选择10种不同的槽极配合,即9/6,18/6,36/6,12/8,18/8,24/8,36/8,48/8,12/10,15/10,分析比较筛选出最合适的槽极配合。已有学者研究了不同的槽极配合的磁动势谐波不一样。而气隙磁密谐波含量的增加会使电机的性能变坏,直接影响电机的振动和电机的噪声。

永磁电机的特殊结构会引起电机固有的齿槽转矩,会使电机的转矩波动增大。但这是无法消除的,只能最大程度地削弱。齿槽转矩的变化是有规律的,在一个齿距的范围内,定子和转子相对位置的变化周期主要受电机的极数和槽数影响。合理地选择极数和槽数组合,能使电机在一个齿距内齿槽转矩的变化周期数增大,这样就可以明显地减小电机齿槽转矩。电机的一个齿距周期变化范围内的周期数越大,电机的齿槽转矩就越小。

2.3转子磁路结构的选择

永磁体在电机转子内部的称为内置式,永磁体在转子外部的称为表贴式。内置式的永磁体嵌在转子铁心中,加工难度较大;而且电机绕组端部的漏磁系数较大,需要特别的隔磁处理,但永磁体结构牢固,适合应用在转速较高的电机之中。表贴式的永磁体结构较为简单,易进行于对形状要求更高的加工,易于实现电机气隙磁场的优化设计。本文采用表贴式的永磁体转子结构。采用表面凸式的转子磁路,其

爪极永磁同步电机的设计特点

爪极永磁同步电机的设计特点 李开成张健梅(华中理工大学武汉430074) 【摘要】介绍爪极永磁同步电机转子的结构及设计特点,并说明了一些主要结构尺寸间的关系。 【叙词】永磁电机同步电机设计 1引言 爪极永磁同步电机的永久磁铁形状简单,极间漏磁大,磁铁过载能力强,机械强度高,普遍用于变流机和变频机,发电机的制造容量自数百瓦到数千瓦。当频率在1000Hz以内时,制造容量可达数十千伏安。这种电机由于转子采用爪极结构,而爪极的形状又可多种多样,因此,较普通永磁同步电机计算复杂。这种电机的分析和设计,在国内外文献中介绍较少。本文介绍爪极永磁同步电机的设计特点及爪极转子的设计。 2爪极式转子的结构及其特点

爪极式转子通常由两个带爪的法兰盘和一个圆环形永久磁铁组成,如图1所示。图la和c为左右两个带爪子的法兰盘,二者爪数相等,且等于极数的1/2。图lb为圆环形磁铁沿转子轴向充磁。图ld为装配图,左右为两个法兰盘对合,二者爪子互相错开,沿圆周均匀分布。圆环形永久磁铁夹在两个带爪法兰盘中间,使一个法兰盘上的爪子皆为N极性,另一个法兰盘上的爪子皆为S极性,形成如图le所示的多极转子结构。显然,法兰盘上的爪子起了极靴的作用。 爪极永磁同步电机中,电机的全部磁通(P对极)轴向穿过圆环形磁铁,进入爪极,经气隙进入定子,爪极中的磁路如图2所示。 爪极通常由10号钢制成,或由钢板冲成,也可由粉末冶金直接压制成形。由于磁通轴向通过爪子,爪子的每一截面通过的磁通不相等,爪尖最少,爪根最多。爪子的截面积沿电机轴向是变化的,爪尖部分的面积最小,爪根部分最大。爪极的形状多种多样,有等宽爪极、梯形爪极,还有正弦爪极。图3为梯形爪极形状。

电机设计方法

第2章电磁场有限元分析简介 电磁场的边值问题实际上是求解给定边界条件下的麦克斯韦(Maxwell)方程组及由方程组深化出的其他偏微分方程问题。从求解问题的技术手段上来说,它可以分为解析求解和数值求解两大类。对于简单模型,有时可以得到方程的解析解。若模型复杂度增加,则往往很难获得模型的解析解。随着计算工具,特别是高速大容量电子计算机的发展,电磁场数值分析已深入到工业生产各个领域,解决问题的面越来越广,分析的问题也日趋复杂。电磁场数值分析是一门综合性的学科,涉及电磁场理论、数值分析、计算方法、计算机基础知识及高级语言等多个方面,但在计算上存在着共性。有限元法是一种常用的数值方法,并有相应的电磁软件问世,其中ANSOFT公司的Maxwell 3D/2D就是非常优秀的电磁分析软件。 本章将对电磁场的基本理论、电磁场有限元的求解及ANSOFT公司的Maxwell 3D/2D 作简单的介绍。至于完整的电磁理论描述,读者可以参考许多教科书。如果读者已熟悉电磁理论,完全可以略过本章,直接从第2章开始学习如何使用Maxwell电磁软件。 1.1电磁场基本理论 1.1.1麦克斯韦方程组 在19世纪中叶,麦克斯韦在总结前人工作的基础上,提出了适用于所有宏观电磁现象的数学模型,称之为麦克期韦方程组。它是电磁场理论的基础,也是工程电磁场数值分析的出发点。 麦克斯韦方程组包括微分和积分两种形式,在此仅给出它们的微分形式,通过它们可以导出能用有限元处理电磁问题的微分方程。 麦克斯韦方程组为 法拉第电磁感应定律 麦克斯韦-安培定律 高斯电通定律 高斯磁通定律 电荷守恒定律

式中,E为电场强度,V/m;D为电通量密度,C/m;H为磁场强度,A/m;B为磁通量密度,T;J为电流密度,A/㎡;P为电荷密度C/m3。 上面5个方程中包含两个旋度方程式(1.1)、式(1.2)和3个散度方程式(1.3)、式(1.4)和式(1.5)。

刘亚敏1520310052--电机现代设计方法与优化作业

电机现代设计方法与优化作业 电气工程刘亚敏 1520310052 1、所用算法的寻优策略 本篇论文所采用的算法为蚁群算法,又称蚂蚁算法,其定义为:各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种挥发性分泌物pheromone (信息素,该物质随着时间的推移会逐渐挥发消失,信息素浓度的大小表征路径的远近)来实现的,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物。有些蚂蚁并没有像其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果另开辟的道路比原来的其他道路更短,那么,渐渐地,更多的蚂蚁被吸引到这条较短的路上来。最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。 蚁群算法是一种新型的模拟进化算法,该算法通过模拟蚂蚁觅食的方式,使一定数量的蚂蚁在解空间内进行随机搜索,对路径上蚂蚁释放的信息素进行更新,按照转移概率决定前进的方向,最后收敛于全局最优解。蚁群算法具有较强的鲁棒性。相对于其它算法,蚁群算法对初始路线要求不高,即蚁群算法的求解结果不依赖子初始路线的选择,而且在搜索过程中不需要进行人工的调整。其次,蚁群算法的参数数目少,设置简单,易于蚁群算法应用到其它组合优化问题的求解。现在蚁群算法己经在电力网络优化、网络路中分配、函数优化和集成电路布线等领域得到应用。本文将蚁群算法进行了改进,将其用于永磁同步电机的优化设计中。

2、论文对算法的改进 算法与其它智能优化算法相比,存在搜索时间长的缺陷,该算法的复杂度可以反映这一点;而且该算法容易出现停滞现象,即搜索到一定程度后,所有个体发现的解完全一致,不能对解空间进行进一步的搜索,不利于发现更好的解。本文借鉴蚁群算法的进化思想,针对以上提及的两个问题,将算法的数学模型做了三方面的改进。 2.1转移规则的改进 对每只蚂蚁i ,定义其函数值为相应的目标函数值Zi ,并记蚂蚁i 与蚂蚁j 的目标函数值的差值为 蚂蚁j 到蚂蚁i 的转移概率为 式中:———蚂蚁j 邻域内的信息素数量; α和β———算法的权重因子,本文取α=β =1。 2.2信息素更新规则的改进 由于信息素强度Q 是表征蚂蚁所经轨迹数量的一个常数,它影响算法的全局收敛速度[ 5]。蚂蚁之间通过信息素进行交流,因此, 本文针对蚁群算法寻优过程易陷入局部最小的弊端,提出根据算法搜索的情况,动态修改需要增加的信息素的方法。即用时变函数Q(t)

异步起动永磁同步电机设计

Ansoft EM专题讨论(三)——异步启动永磁同步电机设计最近有感于论坛Ansoft版区学习的氛围越来越好了,这与各位版主的努力都是分不开的。看到前面两个专题中,我们的超版和技术精英们都做了很多工作,本着向大家学习的原则,我也来凑个热闹 本人在读研期间曾经涉猎过这种电机的设计与仿真,下面就把我很久以前做的一个练习分享给大家。做的不一定对,希望大家多多批评指正!这也是和大家学习的过程,望各位不吝赐教 其实,这种电机在实际设计过程中需要注意的问题还是很多的。很遗憾在校期间没能彻底解决这个领域的一些问题。这里也希望大家广泛针对该类电机的设计进行讨论和交流,向大家学习了! 下面先给出电机结构示意图 电机为典型的4极36槽结构,绕组为单层交叉,Y接形式,内置径向W型永磁体,采用冲片类型为DW315-50。具体的其他的电机参数将在RMxprt设计中给出区别于前面两位版主的纯V11仿真,该算例采用了Ansoft RMxprt V5.0版本与Maxwell V11.1版进行了简易的联合2D仿真。对新人而言,V5.0的界面更加人性化和易于上手,推荐新同学使用。 运用Ansoft RMxprt V5.0进行基本的电磁设计,输入相应电机参数反复调试运行。下面给出本例的参数设置

基本参数 定子内外径和槽形尺寸

转子内外径和磁钢设计

转子槽形和端环设计 以上需要补充说明的是Ansoft RMxprt V5.0的材料设置问题和绕组编辑问题 就材料设置而言,大家可以利用软件自带的.h-b文件自行添加所需要的硅钢片材料,主要是需要查找一些手册来添加磁化曲线和损耗曲线,用记事本的格式进行编辑添加,放在指定的文件夹中,即可在设计中引用,图例DW315-50的.h-b文件,要对应操作窗口的各项参数进行添加,方可正确使用

玩具设计中马达的选用技巧和方法

玩具设计中马达的选用技巧和方法(总2页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

玩具设计中马达的选用技巧和方法 马达是玩具能够保持持续动力的主要动力源。设计人员在玩具生产中很少有机会设计一个马达,主要是选用。玩具马达的选用也有很多技巧和方法。 在玩具制造中常用的马达(电机),有万宝制(Mabuchi)、标准(Standard)等,这些马达生产厂家的产品都有马达性能的参照表,设计人员很少有机会设计一个马达,主要是选用,当然也可能因为某种原因而专门设计一个马达(很多马达厂的工程师都是从Mabuchi出来的,所以Mabuchi的标准基本可以用作玩具业的马达标准)。 用试验找出合适的转速比和扭矩 马达厂的标准是空载的转速,而转速比计算时,一般就是用空载转速的计算。行走类玩具的转速比在80~150之间,因玩具产品并非是一种精密的机械,所以可以通过调节齿轮的传动来得出实际需要的传动比。比如:齿轮传动中某一节的齿数比为20:8,实验发现转速太慢则可以试一下22:6,如果转速太快,又可以换18:10,这种办法非常方便。 马达产品都有一个最大载荷的数据,还有一个载荷与转速的关系。因为玩具产品一般不会很大而且是用电池驱动的较多,所以马达的载荷也不会很大。一般来说,载荷与扭矩越大,马达的体积也越大,所要的电池也越多,而且玩具的重量也越重,所以尽量选用合适的马达。一般保险起见,载荷与转速在曲线上升区的马达就管用。如果要节约成本,在找到一个大功率马达就可以起作用的情况下,换一个小功率的试一下。通过反复试验,找到一个功率较小又能满足要求的马达。 用收音机做干扰测试 马达的工作原理是不断地通过电刷来改变线圈中的电流,从而保证连续的转动。可以想像,马达里的磁铁越大,线圈越长,则扭矩会越大,而这种电流的改变会形成一个电磁波。电磁波的存在会对很多种家用电器造成干扰。如果一个小孩在等飞机的时候玩带有这种马达的玩具,还有可能影响飞机的起降。所以在实际工作中会增加一个抗干扰的垫圈(如DV WASHER , 0.5港币左右),但一般设计时都会在马达的两个电极上并联上一个陶瓷片电容或一个电阻(稳定电路的作用),一方面减少电刷与线圈转换时产生的电流影响,另一方面起稳定作用。实际工作中,用一个小收音机来做干扰测试器材,如不影响所有波段的电台就基本可以了。 马达转动轴一般是铁轴,而铁轴一般直接紧配一个6齿或8齿的0.5模数的齿轮(或一个小带轮或锅杆),当是齿轮或锅杆时,特别是锅杆时,会因为刚起动的瞬间,齿与齿之间会卡位,这时线圈中的电流会加大,而导致铁轴串动,串动就会解卡,所以在固定马达时千万不要把轴在轴的方向上固定死(致少要有0.5mm的余量)。

调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析 1 引言 与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率 密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航 天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。 随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电 动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速 永磁同步电动机也应运而生。变频调速永磁同步电动机可分为两类,一类是反电 动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另 一类是两种波形都是正弦波的一般意义上的永磁同步电动机。这类电机通常由变 频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。 本文使用Ansoft Maxwell 软件中的RMxprt 模块进行了一种调速永磁同步电 动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D 中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行 了瞬态特性分析。 2 调速永磁同步电动机的电磁设计 2.1 额定数据和技术要求 调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子 冲片设计、定子绕组的设计、永磁体的设计等。通过改变电机的各个参数来提高 永磁同步电动机的效率η、功率因数cos ?、起动转矩st T 和最大转矩max T 。本例所设计永磁同步电动机的额定数据及其性能指标如下: 额定数据 数值 额定功率 N 30kw P = 相数 =3m 额定线电压 N1=380V U 额定频率 =50Hz f 极对数 =3p 额定效率 N =0.94η 额定功率因数 N cos =0.95? 绝缘等级 B 级 计算额定数据:

maxwell软件- 三相同步电机设计

10 三相同步电机 本章我们将简化RMxprt 一些基本介绍,以便介绍一些更高级的使用。有关RMxprt 基本操作的详细介绍请参考第一部分的章节。 10.1 分析方法 三相凸极同步电机有发电机和电动机之分,两者的结构基本相同。三相同步发电机是工业、商业以及民用的主要电能来源,它将机械能转化为电能,其转子上装有由直流电励磁的多级绕组,定子上装有三相正弦分布绕组,转子旋转在气隙中产生旋转磁场。定子上感应出电压,频率为: 60pn f /= (10.1) 其中p 是极对数, n 是转子的机械转速,单位rpm ,又称为同步转速,电机可以根据负载需要来产生有功功率和无功功率。 通常采用频域矢量图来对电机进行分析,发电机和电动机的矢量图如图10.1所示。 a. 发电机 b. 电动机 图10.1 同步电机矢量图 图中R 1和X 1分别为电枢绕组电阻和漏电抗,X ad 和X aq 分别为d 轴电枢电抗和q 轴电枢电抗。相量图中X ad 是经过线性化处理的非线性参数。 以输入电压U 为参考相量,则电流相量为: ?-∠=I I (10.2) 设功率因数角为φ, 是电压相量U 与电流相量I 的夹角, 图中OM 所代表的相量可表示为 ???++-+++=motor for X X R generator for X X R OM aq 11aq 11)j j ()j j (I U I U (10.3) 设E 0与U 的夹角为θ,(对于发电机θ称为功率角,对于电动机θ,称为力矩角),则E 0与I 的夹角为 θ?ψ+= (10.4)

d 轴和q 轴电流可分别按下式求出 ??????=??????=ψψcos sin I I I q d I (10.5) 图中ON 相量代表由d 轴磁链所产生的d 轴反电势。由磁路空载特性曲线,可确定E 0,X ad 和励磁电流I f 1. 对于发电机: 输出电功率: ?cos UI 3P 2= (10.6) 输入功率(机械功率) : ex Cuf add Fe Cua fw 21P P P P P P P P ++++++= (10.7) 式中:P fw , P Cua ,P Fe ,P add ,P cuf 和P ex 分别为风摩损耗、电枢铜损、铁心损耗、附加损耗、励磁绕组铜损和励磁机损耗 输入机械转矩: ω1 1P T = (10.8) 式中ω为同步角速度,单位:rad/s 2. 对于电动机: 输入电功率: ?cos UI 3P 1= (10.9) 输出机械功率: ()ex Cuf add Fe Cua fw 12P P P P P P P P +++++-= (10.10) 式中:P fw , P Cua ,P Fe ,P add ,P cuf 和P ex 分别为风摩损耗、电枢铜损、铁心损耗、附加损耗、 励磁绕组铜损和励磁机损耗 输出机械转矩: ω22P T = (10.11) 电机效率: %100P P 12?=η (10.12) 10.2 主要特点 10.2.1 适用于同步电动机和同步发电机 凸极同步电动机和发电机结构基本相同,相量关系和计算方法有些差别,输出性能数据也有所不同。故RMxprt 将同步电机分为两个设计模块:同步电动机和同步发电机。 10.2.2 三相绕组的自动排布 几乎所有常用的三相和单相,单层和双层,整数槽和分数槽交流绕组都能自动设计。用户不需要一个接一个的自己定义线圈。

高效永磁同步电动机设计技术研究

高效永磁同步电动机设计技术研究

目录 1、基本情况及背景介绍 (2) 2、高效永磁同步电动机关键技术的研究 (3) 2.1优化转子磁路结构,提高电机的可靠性 (3) 2.2永磁电机防退磁技术研究 (5) 2.3漏磁系数准确计算的研究 (7) 2.4稀土永磁材料的高温退磁特性及应用技术的研究 (10) 2.5稀土永磁材料的剩磁测试技术的研究 (14) 2.6电机的起动性能 (16) 2.7失步转矩倍数 (17) 2.8其它性能指标 (18)

1、基本情况及背景介绍 稀土永磁是一种高性能的功能材料,它的高剩磁密度、高矫顽力、高磁能积等优异磁性能特别适合于制造电机。用它制成的永磁同步电机,不需要用以产生磁场的无功励磁电流,可显著提高功率因数,减少定子电流和定子电阻损耗。在稳定运行时没有转子电阻损耗,使电机温升有较大裕度,从而可将风扇减小甚至不安装风扇,以减少风摩损耗提高电机效率。与普通的电励磁同步电动机相比,不需要用以产生磁场的励磁绕组和直流励磁电源,取消了容易出问题的集电环和电刷装置,成为无刷电机,运行可靠,又效率提高。因此,国内外都投入大量人力物力从事高效钕铁硼永磁电机的研制开发。 相对于异步电机,永磁同步电动机(PMSM)具有体积小、功率密度高等优点,效率比同规格的感应异步电机高2~8%。我国稀土永磁资源储量占世界储量的80%,发展永磁电机具有得天独厚的优势。 早在1980年,我国有关高校及科研院所就开始从事高效永磁电动机的研制开发,先后研制开发出多种类型电动机的样机,技术水平参差不齐,还存在着转子磁路单一、永磁材料可能退磁、测试和制造工艺复杂等问题,性能价格比不够理想,价格偏高。 为了充分发挥钕铁硼永磁材料的优异磁性能,针对钕铁硼永磁电动机在磁、电、机、热等方面的特点,进行技术集成和创新,特别对转子磁路结构、钕铁硼永磁材料的热稳定性做了深入研究,并应用于产品开发过程,提高其效率、性价比,可靠性(主要指不退磁),扩大应用领域,为把稀土资源优势转化为经济优势作贡献。

电机设计知识点总结

电机设计知识点总结 《电机设计》是XX年6月1日清华大学出版社出版的图书,作者是戴文进。以下是小编整理的电机设计知识点总结,欢迎阅读。 电机设计的任务是根据用户提出的产品规格、技术要求,结合技术经济方面国家的方针政策和生产实际情况,运用有关的理论和计算方法,正确处理设计是遇到的各种矛盾,从而设计出性能良好、体积小、结构简单、运行可靠、制造和使用维修方便的先进产品。 额定功率 额定电压 相数及相间连接方式 额定频率 额定转速或同步转速 额定功率因数 1、准备阶段 通常包括两个方面的内容:首先是熟悉相关打国家标准,手机相近电机的产品样本和技术资料,并听取生产和使用单位的意见和要求;其次是在国家标准及分析有过资料的基础上编制技术任务书或技术建议书。 2、电磁设计 本阶段的任务是根据技术任务书的规定,参照生产实践

经验,通过计算和方案比较来确定与所设计电机电磁性能有关的的尺寸和数据,选定有关材料,并和算其电磁性能。 3、结构设计 结构设计的任务是确定电机的机械结构、零部件尺寸、加工要求与材料的规格及性能要求,包括必要的机械计算及通风和温升计算。 结构设计通常在电磁设计之后进行,但有时也和电磁设计平行交叉的进行,以便相互调整。 一、负载的转矩特性:负载的转矩特性是指生产机械工作机构的负载转矩与转速之间的关系即:n=f___恒转矩负载特性恒转矩负载是指负载转矩为常数, 其大小与转速n无关,恒转矩负载分反抗性恒转矩负载和位能性恒转矩负载。反抗性恒转矩负载特性:恒值负载转矩Tf总是与转速nf的方向相反,即作用方向是阻碍运动的方向。当正转时nf为正, Tf与nf方向相反,应为正,即在第一象限,当反转时nf为负, Tf与nf方向相反,应为负,即在第三象限;当转速nf=0时外加转矩不足以使系统运动。位能性恒转矩负载特性特点:Tf的方向与nf的方向无关。 Tf具有固定不变的方向。例如:起重机的提升机构,不论是提升重物还是下放重物,重力的作用总是方向朝下的,即重力产生的负载转矩方向固定。当nf>0时, Tf>0,是阻碍运动的制动性转矩;当nf0,是帮助运动的拖动性转矩。故

Ansoft永磁同步电机 设计 报告

现代电机设计 利用Ansoft软件对异步起动永磁同步电动 机的分析计算 2013 年7 月

目录 第1章引言………… 第2章 RMxprt在永磁同步电机中的电机性能分析………… 2.1 Stator项设置过程………… 2.2 Rotor项设置过程………… 2.3 Line Start-Permanent Magnet Synchronous Machine的电机仿真………… 2.4 计算和结果的查看………… 第3章静态磁场分析………… 3.1 电机模型和网格剖分图………… 3.2 磁力线分布图…………………… 3.3 磁密曲线 3.3.1 气隙磁密分布………… 3.3.2 定子齿、轭部磁密大小………… 3.3.3 转子齿磁密大小………… 第4章瞬态场分析………… 4.1 额定稳态运行性能………… 4.1.1 电流与转矩大小………… 4.1.2 各部分磁密………… 4.2 额定负载启动………… 4.2.1 转矩-时间曲线………… 4.2.2 电流-时间曲线………… 4.2.3 转速-时间曲线………… 4.2.4 转矩-转速曲线…………

第1章引言 Ansoft Maxwell作为世界著名的商用低频电磁场有限元软件之一,在各个工程电磁场领域都得到了广泛的应用。它基于麦克斯韦微分方程,采用有限元离散形式,将工程中的电磁场计算转变为庞大的矩阵求解。该软件包括二维求解器、三维求解器和RMxprt旋转电动机分析专家系统这3个主要模块,不仅可以进行静磁场、静电场、交直流传导电场、瞬态电场、涡流场、瞬态磁场等不同的基本电磁场的特性分析,还可以通过RMxprt电动机模块仿真多种电动机模型,为实际电动机设计提供帮助。利用Ansoft软件进行仿真可以帮助我们了解电动机的结构特性。 本文是一台4极、36槽绕组永磁同步电动机,利用RMxprt模块进行电机的建模、仿真以及导入到Maxwell2D的有限元模块的方法,然后再对Maxwell2D 中的永磁体模型进行修正,最后对该电机在静态磁场和瞬态磁场的情况下进行分析。

(完整版)无刷电机的设计最终版

9-10 直流无刷电机的设计 9-10-1直流无刷电机的概述 直流电机有无可伦比的优点,体积小,重量轻,结构简单,速度变化范围大,供源简单,移动方便,价格低廉,制造简单,工艺性好等等,是我国用量最大的一种电机。 但是直流电机由于换向的需要,因此必需要由电刷和换向器来换向。由于换向器和电刷的作用,就给电机带来各种不良的影响,如噪声,电刷运行寿命,电机干扰和电机本身体积等问题。直流电机最大的缺点是电机寿命远远不如交流电机,交流同步电机等等无刷电机。 交流电机,交流同步电机是交流供电的,由于用的是交流电源,在50HZ 的交流电源中,一对极的交流异步电机的同步理论转速是:m in /30001 50 6060r p f n =?=?= ,在交 流同步电机中的同步转速也应该为m in /3000r ,如果把电源的频率调高或调低,则电 机的工作转速也可以很高或者较低的。但这个电机的供源是交流电,如果把直流电源通过电 路的转换,变成可以交变的波形供给交流电机或交流同步电机,那么交流异步电机或交流同步电机也可以很好的转动起来的,这就是直流无刷电机的最直观的概念。 要把直流电转换成单相或三相交变电源,在上世纪中叶还是一个非常麻烦的事,那时只有电子真空管,体积很大,输出电流很小,那时台式收音机就有12英寸的电视机那么大,无法和现在手指那么大的MP3相比拟。后来发明了半导体和相应的各种半导体技术使电子控制技术推向了一个新纪元。各种电源逆变,分配技术,换相技术的相继出现,许多高性能,高功率的半导体器件的研制成功,从而使电机领域出现了机电一体化的步进电机,直流无刷电机,并迅速在各个领域得到了广泛的应用。 当出现了永磁直流无刷电机后,就体现了它强大的生命力,永磁直流无刷电机有许多优点,如干扰小,(电路部分有一定的电磁干扰的),运行寿命长,调速性能好,控制方法多,输出力矩大,过载能力强,调速范围宽,起动响应快,运行平稳,效率高等。永磁无刷直流电机有许多交流异步电机,步进电机和直流电机不具备的优点。它广泛应用于办公机械,电脑,音响,通风行业,自动控制,仪器仪表,汽车,国防工业等等领域,特别一提的是,在电脑中,光驱动器,硬盘,DVD 等大量用了非常精密的形式不一的永磁无刷直流电机,目前社会上人们所骑的电动自行车上的电机绝大都数是采用了永磁直流无刷电机,这个量非常可观,这些也是用得最广泛,生产量最多的直流无刷电机。永磁直流无刷电机已经在时刻影响着人们的生活,在左右人类的生活的历史。 随着控制器的小型化,模块化,以前做得较大的控制器现在可以做得更小,有的可以和电机做在一起,使永磁无刷电机使用起来那么方便,那么的得心应手。许多永磁直流电机日益被永磁无刷直流电机所替代。在电机界,研究,开发永磁直流无刷电机是一种新的趋势。这方面的论著也比以往多起来了。 9-10-2永磁直流无刷电机工作原理 从电磁原理看,电机中如果一个永磁多极磁钢的转子(一对极也可以),外面的定子是由相对应极数的线圈组成,定子线圈如果能够产生一个单向的旋转磁场(不是脉振磁场)的话,转子因为该磁场的磁极作用而跟转,这样电机就可以转动起来,如果转子上加了个负载,为

开关磁阻电机的电磁设计方法样本

年5 月 摘要 开关型磁阻电动机驱动系统(Switched Reluctance Drive,简称SRD电动机)。是20世纪80年代迅猛发展起来一种新型调速电机驱动系统。它是由功率变换电路、双凸极磁阻电机、控制器及位置检测器构成。它构造极其简朴,调速范畴宽,调速性能优秀,并且在整个调速范畴内都具备较高效率,系统可靠性高,是各国研究和开发热点之一。 本文简介了开关磁阻电机发展历史,应用领域以及它长处;对三相6/4构造开关磁阻电机与四相8/6构造开关磁阻电机进行了比较;对开关磁阻电机电磁设计与参数优化进行了分析与研究,简朴简介了ANSYS软件在开关磁阻电机电磁分析中应用;提出8/6构造开关磁阻电机一种设计方案;并对开关磁阻电机磁通波形和电机损耗进行了分析。 核心词:开关磁阻电机,磁场,电磁设计,参数优化

ABSTRACT The switched reluctance drive (SRD) is a new-type drived-electromotor system which develops rapidly since 1980,and consists of power converter circuits、the doubly-salient reluctance motor、the controller and the examination of position. The structure of the SRD is simple. It has a wide range and excellent performance in speed. It also has a high efficiency and high reliability. So the SRD is one of the hot spots which is studied and designed all over the world. This thesie introduced the SRD development history,the application domain as well as its merit;comparison to the three-phase 6/4 structure SRD with four-phase 8/6 structure SRD overall performance. also analysis and research SRD electromagnetism design and parameter optimization,and introduced ANSYS software in SRD electromagnetism analysis application;Proposes 8/6 structure SRD one kind of design proposal;And analysis to the switched reluctance drive magnetic flux profile and the loss of machine.

ANSOFT 永磁同步电动机设计

IPM ADJUSTABLE-SPEED SYNCHRONOUS MOTOR DESIGN File: Setup1.res GENERAL DATA Operation Type: Motor Source Type: AC Rated Output Power (kW): 20 Rated Power Factor: 0.95 Capacitive Power Factor: N o Frequency (Hz): 200 Rated V oltage (V): 254 Load Type: Const Power Rated Speed (rpm): 3000 Operating Temperature (C): 75 STATOR DATA Stator Core Type: SLOT_AC Stator Position: Outer Number of Poles: 8 Outer Diameter of Stator (mm): 180 Inner Diameter of Stator (mm): 110 Length of Stator Core (mm): 120 Stacking Factor of Stator Core: 0.95 Steel Type of Stator: M19_24G Number of Stator Slots: 48 Type of Stator Slot: 1 Stator Slot hs0 (mm): 0.5 hs2 (mm): 15 bs0 (mm): 2 bs1 (mm): 3.25 bs2 (mm): 6.5 Top Tooth Width (mm): 4.18306 Bottom Tooth Width (mm): 2.90211 Number of Sectors per Lamination: 1

永磁同步电机的设计与温度场分析解释

永磁同步电机的设计与温度场分析解释 摘要:21世纪,科学技术飞速发展,高新技术不断涌现,节电、环保意识日益 增强,使得永磁同步电机发展的前途一片光明,尤其是高性能钕铁硼永磁同步电 机及其伺服系统,随其技术的快速发展和日渐成熟,结构型式将日趋多样化,也 将会赢得更为广泛的发展空间,获得更加广泛的应用。 关键词:永磁;同步电机;设计;温度场;分析解释 1 引言 近年来,永磁同步电机逐渐在各个领域得到广泛应用,日益成为人们生产和生活不可或 缺的一部分。永磁同步电机在运行的过程中会产生损耗,这些损耗会通过热量的形式逸散出来,使电机内部温度升高。随着电力电子技术、微电子技术、新型电机控制理论和钕铁硼永 磁材料的快速发展,永磁同步电动机得以迅速的推广应用。与传统的电励磁同步电机相比, 永磁同步电机,特别是钕铁硼永磁同步电机具有高效率、高功率因数、高效区宽广、功率密度高、节电效果明显的优点。 2大功率高速永磁同步电机的设计 2.1 主要设计特点 永磁同步电机的定子一般与相应的异步电机的定子冲片相同,最主要的是对转子的设计。本文设计的大功率高速永磁同步电机的使用场合较为特殊,对于这样的大电机要求运行可靠、大功率、高转速、高效率、防爆要求较高。所以不仅要设计合理的电磁磁路,又要在相应的 技术参数基础上(机、电、热、材料、工艺、环境)对电机的性能进行改善。 所以在设计过程中要综合以下方面综合考虑: 2.1.1 高压变频 高压变频起动永磁同步电机无需起动绕组,这样需要大功率的变频器来与之相匹配,同 样还要加强电气强度,提高安全系数。 2.1.2 大容量 电机为4级,定子额定电流约为660A,额定电压约为10kV,额定功率约为10MW,定子 绕组采用Y型连接方式,相数为3相,额定频率为160Hz,额定转矩为20kN?m 。 2.1.3 高转速 电机额定转速约为4800rpm,功率大、效率高、转速高,调速宽而且能满足S1工作制。 结合实际大功率高速永磁电机技术水平,合理选择永磁体的励磁方式,以及结构设计。 2.1.4 防爆 天然气是极易发生燃烧爆炸的气体,所以对电机要进行防爆措施,选择合适的材料以及 防爆等级。 2.1.5 冷却 中小功率电机一般是利用空气进行通风冷却,但随着单机容量的增加,大功率高速电机 的散热面积和风路安排受到诸多限制,使通风冷却较为困难。所以,为了保证电机温升不超 过允许值,需要用不同的冷却方式和通风系统。一般采用水风混合冷却,即内循环冷却采用 水冷,外循环冷却采用风冷。 3 永磁同步电动机的控制策略 任何电动机的电磁转矩都是由主磁场和电枢磁场相互作用产生的。直流电动机的主磁场 和电枢磁场在空间互差90°,因此可以独立调节;交流电机的主磁场和电枢磁场互不垂直, 互相影响。交流电动机的转矩控制性能较差。目前的永磁同步电动机的控制方式有矢量控制、直接转矩控制等方案。 3.1 矢量控制 高性能的交流调速系统需要现代控制理论的支持,对于交流电动机,目前使用最广泛的 当属矢量控制方案。自1971年德国西门子公司F.Blaschke提出矢量控制原理,该控制方案 就倍受青睐。 矢量控制的基本思想是:在普通的三相交流电动机上模拟直流电机转矩的控制规律,磁

工业机器人用永磁同步电机设计

工业机器人用永磁同步电机设计 发表时间:2019-04-24T15:50:16.983Z 来源:《防护工程》2019年第1期作者:于帅涛 [导读] 实验结果和仿真数据基本一致,验证了方案的可行性。本文设计方案已经应用在某工业机器人用电机中。 摘要:伴随着我国现代化的飞速发展,国内的先进科学技术也随之逐渐增强。机器人用永磁同步电机要求具有高转矩倍数、高效率和低转矩脉动等特性。通过分析电机的技术要求,确定了该电机的基本尺寸参数。用有限元分析软件对电机进行分析和仿真。对常用的永磁电机的槽极配合进行分析,选择最佳的槽极配合。采用不等厚永磁体结构,对电机的齿槽转矩进行优化。设计了大小圈绕组结构,有效地提高了电机的效率。为工业机器人用永磁同步电机的设计和改进提供了一种设计的方法。 关键词:工业机器人;永磁同步电机;设计 引言 永磁同步电机采用永磁体为励磁,大大减轻了电机的体积和质量,在工业机器人上有很好的应用空间。而工业机器人同样也给永磁同步电机提出了更严苛的要求。本文针对的是面向机床自动化生产的机器人用电机,要求电机过载倍数要有3.3倍,电机效率也要求较高;同时电机的转矩脉动也要保持在较小的水平。 1永磁同步电机概述 1.1永磁同步电机 众所周知,电机是将电能转化为机械能的设备,但这种能量的转换需要建立磁场,异步电机建立磁场的能量需从电网吸取,需励磁电流、励磁绕组,而永磁电机由永磁材料产生磁场,无需励磁电流,这就是永磁电机。 1.2永磁同步电机优点 转速恒定。转速与电机频率保持恒定,为同步转速,可简化空载系统。功率因数高。通过合理设计能达到极限值1.0。效率高。正常运转时,转子无绕组铜耗;高功率因数,可使定子电流较小,定子绕组铜耗小。起动力矩大。温升低。 1.3永磁同步电机节电的机理 定子铜耗变化原因是定子电流减少,I2R减少;转子铜耗的变化原因是永磁电机同步运转,无滑差;定子铁耗的变化原因是永磁电机采用了低损耗矽钢片;转子铁耗的变化原因是永磁电机同步运转,无滑差;励磁铜耗的变化原因是励磁动率电磁钢提供;杂散损耗的变化原因是永磁电机单边气隙大;风摩损耗的变化原因是永磁电机温升低,可使用节能风扇。由于永磁同步电机各种损耗的明显减少,导致永磁同步电机效率的提高,因此永磁同步电机相对于异步电机实实在在地在节能。 1.4永磁同步电机与异步电机能效等级的对比 永磁同步电机可达到一级能耗,异步电机最多可达到二级能耗,一般为三级或四级能耗。 1.5异步电机和永磁同步电机可能达到的能效等级 异步电机能达到能效二级,欲达到能效一级就十分困难;而永磁同步电机能达到能效一级(IE4)。经过努力,采取必要的技术措施,永磁同步电机能效限定值达到IE5也是有可能的,所以永磁同步电机将成为我国电机行业节能减排、能效提升的龙头产品,应用将越来越广泛。 1.6永磁同步电机的上游技术业已成熟 我国稀土资源丰富,稀土矿的储量占世界储量的80%,居世界首位。稀土永磁材料和稀土永磁电机的科研水平都达到了国际先进水平,实现了产业化充分发挥我国稀土资源丰富的优势,大力研究和推广应用以稀土永磁电机为代表的各种节能电机,将资源优势转化为经济优势,具备了前提性条件和基础。 2工业机器人用永磁同步电机的设计 2.1电机尺寸的选择 电机的主要尺寸可由所需要的最大转矩和动态响应指标确定。永磁同步电机的最大转矩、电磁负荷和主要尺寸满足下面的关系: 式中:Bδ1为气隙磁密基波幅值;Lef为电机的铁心长度;A为电机的电负荷。 由于面向机床自动化生产的机器人机械手臂关节的限制,电机的外径和长度只能在较小的范围内选择。参照相同功率永磁电机的外径,最终电机选择了定子外径为123mm,铁心长度为55mm。由上可知,随着电机气隙磁密的增大,只需要较小的电负荷就能满足电机最大转矩的要求,所以本文选用了高性能钕铁硼永磁体材料,其气隙磁密最高达0.85T,电负荷取180A/cm。 2.2槽极配合的选择 本文从市面上成熟的常用永磁电机的槽极配合入手,选择10种不同的槽极配合,即9/6,18/6,36/6,12/8,18/8,24/8,36/8,48/8,12/10,15/10,分析比较筛选出最合适的槽极配合。已有学者研究了不同的槽极配合的磁动势谐波不一样。而气隙磁密谐波含量的增加会使电机的性能变坏,直接影响电机的振动和电机的噪声。 永磁电机的特殊结构会引起电机固有的齿槽转矩,会使电机的转矩波动增大。但这是无法消除的,只能最大程度地削弱。齿槽转矩的变化是有规律的,在一个齿距的范围内,定子和转子相对位置的变化周期主要受电机的极数和槽数影响。合理地选择极数和槽数组合,能使电机在一个齿距内齿槽转矩的变化周期数增大,这样就可以明显地减小电机齿槽转矩。电机的一个齿距周期变化范围内的周期数越大,电机的齿槽转矩就越小。 2.3转子磁路结构的选择 永磁体在电机转子内部的称为内置式,永磁体在转子外部的称为表贴式。内置式的永磁体嵌在转子铁心中,加工难度较大;而且电机绕组端部的漏磁系数较大,需要特别的隔磁处理,但永磁体结构牢固,适合应用在转速较高的电机之中。表贴式的永磁体结构较为简单,易进行于对形状要求更高的加工,易于实现电机气隙磁场的优化设计。本文采用表贴式的永磁体转子结构。采用表面凸式的转子磁路,其

1.永磁同步电机设计课题背景及研究的目的和意义

课题背景及研究的目的和意义(环境问题—国家政府支持---课题的可实现必要性)伴随着汽车工业的迅猛发展,根据中国有关部门的统计数据,截至2012 年6 月底,全国机动车总保有量达2.33 亿辆,仅次于美国位居世界第二,在未来的10 年时间里,我国将成为世界上最大的汽车消费国。巨大的汽车保有量使我国无法依赖任何一种单一的能源,然而,汽车尾气的排放对环境造成的极大危害将极大地制约我国经济健康发展;在这种背景下,大力发展新能源汽车,使用电能代石油,是解决我国环境问题的必然要求,也是保证国家能源安全的重要战略措施。电动汽车是新能源汽车中的主力军,发展电动汽车是解决能源问题以及环境问题的必然要求,也是当下世界各国大力扶持的重点。 挪威电动车市场发端于2010年,走在奥斯陆的街头随处可见的电动车,他们都已经是寻常的代步工具。在挪威购买电动车免征登记税和增值税,也不征收过路税;在美国,政府对电动汽车产业的支撑早已形成了体系,奥巴马总统上任以后,积极推动新能源汽车的发展,拨款24亿美元用于电动汽车的研发,成为美国有史以来在电动汽车领域做出的最大投资;在法国,电力来源中核电占了将近80%。旅游行业是法国的一大经济支柱,发展电动汽车,用核电驱动汽车,既可以减少能源依赖,又可以保护环境,政府在电动汽车购买补贴方面的大力支持,另外充电桩的覆盖率在世界上数一数二。早在20世纪70年代日本政府就已将电动车的发展列入汽车工业的产业规划,并且为电动车发展制定了诸如建设和改造充电站、研 能与高性能的电机驱动技术可以最大限度地展现电动汽车的节能优势。目前,一次充电的续驶里程问题和制造运行成本问题已经成为制约电动汽车发展的关键问题,因此,使用高效的电动机与电动机驱动系统是电动汽车发展的极为重要的方向。与其他电动机相比,永磁同步电动机具有更高的效率,更高的功率密度和更高的控制精度,在最新的电动汽车中有着极为广泛的应用,是目前世界各国电动汽车驱动电机研究的热点。我国稀土资源储备丰富,总储量是世界其他国家储量总和的四倍,这使得我国使用稀土永磁同步电机具备了一个天然优势,同时,永磁同步电机研究与在电动车上的广泛应用也将极大地提高我国稀土出口的附加值。然而,目前新能源汽车驱动用电机的设计方法还不够成熟,永磁同步电机的设计过程中还存在着许多问题。

电动机课程设计方案要点

摘要: 三相异步电机主要用作电动机,拖动各种生产机械。三相异步电动机的调速方法有变极调速、变频调速和变转差率调速。其中变转差串调速包括绕线转子异步电动机的转子串接电阻调速、串级调速和降压调速。三相异步电动机有三种制动状态:能耗制动、反接制动(电源两相反接和倒拉反转)和回馈这三种制动状态的机械特性曲线、能量转换关系及用途、特点等均与直流电动机制动状态。本文主要针对三相异步电动机三种制动状态作出了详细研究。

2010-2011第二学期综合课程设计任务书 一设计题目三相绕线转子异步电机制动方法的应用与研究 二课程设计的内容 1、论证三相绕线转子异步电机制动方法及其特点。 2、根据已知条件为一台三相绕线式异步电机设计制动方法及设备参数:P N= 7.5kw,n N=1430r/m,r2=0.06欧。今将此电机用在起重装置上,加在电机 轴上的静转矩M c=4kg·m,要求电机以500r/m的转速将重物降落。问此时在转子回路中每相应串入多大电阻(忽略机械损耗和附加损耗)。 三课程设计要求 1、对各种制动方法进行论证,画出电气原理图,给出工作原理描述。 2、绘制各制动方法的人为特性曲线。 3、参数计算准确。 4、写出课程设计过程中自己的体验与收获。 5、文字通顺,全文要求打印。 四课程设计时间安排 2011.6.17------2011.6.19查阅资料 2011.6.20----2011.6.21原理分析设计 2011.6.22------2011.6.23参数设计及电路图绘制 2011.6.24-完成设计报告书 五课程设计成绩 六指导教师签字 刘霞 七教研室审核 同意。

相关文档
相关文档 最新文档