文档库 最新最全的文档下载
当前位置:文档库 › 直接甲醇燃料电池进入实用阶段_徐维正

直接甲醇燃料电池进入实用阶段_徐维正

直接甲醇燃料电池进入实用阶段_徐维正
直接甲醇燃料电池进入实用阶段_徐维正

Vo.l 14,No .1精细与专用化学品第14卷第1期F i n e and Specialty Che m ica ls

2006年1月6日

市场资讯

直接甲醇燃料电池进入实用阶段

摘 要:直接甲醇燃料电池是全球当前研发追求的新电源,在电能密度、效率、使用寿命等功能方面占有明显优势,而且不用充电即可连续补充使用。直接甲醇燃料电池潜在应用市场广阔,目前,世界各国的厂商都在全力进行D M FC 的研制应用,其中大部分厂商都承诺要在2005年推出自己的产品。

关键词:直接甲醇燃料电池;便携式电子产品;甲醇

由于国际能源的价格高涨与长期短缺,开发低成本、高储能密度、高功率的替代能源已成为各国追求的共同目标。燃料电池(Fue lC ell)技术因具备高储能密度、高功率、零污染等特性,已成为近年来最被看好的替代能源供应技术主流。

燃料电池与传统的锂电池等最大的不同在于锂电池要充电再放电,当电用毕后必须重新蓄电才能再次放电;而燃料电池则是能源转换器,只要持续供应燃料,即可源源不断的提供电力,没有电力中断或多次充电的问题。

燃料电池是一种电化学反应装置,能将燃料和氧化剂的化学能转化为低压直流电。燃料电池具有无噪音、低污染、免充电、高效可靠和燃料更换容易等许多优点,用途包括可移动发电机、汽车、小型电动摩托车、便携式电子产品以及军事/太空等许多领域,是极具发展潜力的新产品。据业内人士估计,2004年全球燃料电池各种用途产品的产值约为24亿美元,2009年将增至70亿美元,而2011年可能猛增至300亿美元。

1 直接甲醇燃料电池是全球追求的新电源

目前正在研发的燃料电池的种类有:碱性燃料电池、磷酸燃料电池、熔融碳酸燃料电池、固态氧化物燃料电池、质子交换膜燃料电池(PE MFC)和直接甲醇燃料电池(d irect m e t h ano l fue l cel,l D M FC )等。在这些燃料电池中,以PE MFC 和DM FC 最有希望实现工业化量产,其电池燃料包括氢气和甲醇。氢气可取自水等再生资源,且电解氧化容易,但氢气为气体,存在贮运和携带等问题,故PE M FC 使用受到一定的局限和阻碍。相比之下,D M FC 更具有发展优势,它可直接使用甲醇液体,来源易得、贮运和携带方便、污染少、不需要复杂昂贵的燃料加工和内冷却处理、可直接由阳极连续氧化、操作温度低、电能密度高和结构简单而易于小型化等。近年来,DM-FC 已成为各国追求和厂商非常看好的未来电子用品的主流电源。

燃料电池的性能指标见表1,传统电池的性能指标见表2。

表1 燃料电池的性能指标

燃料电池燃料标称电压/V

功率/W 效率/%工作温度/ 储电密度

/(mW /c m 2)理想电压使用寿命费用

/(美元/k W h)

H 2PEM FC H 20 71-40+50~6050~100380~13501 23无限制1~2DM FC

甲醇

0 6

1-40+

20~50

50~200

100~600

1 18

无限制

2~5

表2 传统电池的性能指标

传统电池类型标称电压/V 功率/W 瓦特-小时容量/Ah 储电密度/(W h /kg)比能/(W h /L)使用寿命费用

/(美元/k W h)

非充电的

碱性AAA-D 1 2~1 50 54~0 841 875~271 25~1850~150120~3409~25h 90~890可充电的 镍-铬

AAA-D 1 221 60 3~60 25~525~5060~160500~2000次7 50 镍金属氢化物AAA-D 1 231 20 9~2 640 75~2 225~75140~220500次/6h 18 50 锂离子AAA-D 3 65 42 16~5 04

0 6~1 475~135120~360500~1000次

8 5 锂金属

AA

3 0

0 03

2 4

0 8

141

324

700次

不详

26

2006年1月6日徐维正:直接甲醇燃料电池进入实用阶段

从表1和表2可见,与传统非充电和充电电池相比较,以甲醇为原料的D M FC和以氢为燃料的质子交换膜燃料电池(H2PE M FC)在电能密度、效率和使用寿命等功能方面占有明显优势,而且不用充电即可连续补充燃料使用。

2 D M FC实现批量生产和推广应用在望

自20世纪60年代开发至今,DMFC技术取得显著进展。目前,世界各国的厂商都在全力进行D M FC的研制应用,其中大部分厂商都承诺要在2005年推出自己的产品。例如,2003年3月,日本东芝公司(Tosh i b a)推出全世界第一套最小的DM-FC笔记本电脑样品。东芝展示的D M FC如姆指般大(2 2c m 5 6c m 0 9c m),装满燃料时重8 5g,一次注入2c m3的甲醇,DMFC即可提供20h、100m W的电力,若想把甲醇加满也轻而易举。其原理是:D M FC的一端储存稀释的甲醇,另一端储存氧气,两者起化学反应即可产生电力。两者透过1层可渗透的薄膜接触后,氢离子便从甲醇那端游离到氧这端,连带沿着连结电池两端的电路产生电流。甲醇和氧随后转化为二氧化碳和水。据悉,东芝发明的原型电池运用 被动燃料供给系统 (passive f u el supply syste m)技术,可直接把甲醇填充到电池内与水结合,营造出一种浓度梯度,让燃料以甲醇占10%和水占90%的比例在薄膜层交会。

除东芝外,2003年3月NEC公司也展示了一种内装DMFC的笔记本电脑样品,燃料匣装有300m L 甲醇可供使用5h。韩国三星和日立等公司也宣布计划推出个人电子产品用的工业化DMFC。2005年以来,MTI微燃料电池公司展示一款用于笔记本电脑和掌上型电脑的燃料电池。Po lyFue l公司也展示了使用催化薄膜的燃料电池,用于笔记本电脑和手机。

3 D M FC潜在应用市场广阔

D M FC潜在市场大约可分为个人用便携式电子产品(100W以下)、电机(100~1000W)、电动摩托车(不超过1 5k W)、住宅用发电装置(5~15k W)、电动汽车(50~100k W)和小型电站(1MW)等。其中最有发展潜力的市场是个人便携式电子产品,包括数码相机、手机、个人数字助理(PDA)、摄像机、收音机和笔记本电脑等。

长期以来,便携式电子产品主要采用传统的锂离子类充电电池作电源,但不用充电、更方便而有效的D M FC的开发和推广应用必将取代各种传统电池而逐步占有便携式电子产品市场更大份额。2002~ 2007年全球和各地区电池市场发展情况见表3。

业内人土指出,2006年燃料电池将开始大幅进入上述各种电子产品市场,预计最初的市场占有率只有1%,但以后占有率可望逐年增长。除手机等电子产品应用外,预计2006年DMFC还将进入可移动发电机和小型摩托车等一类大规模应用市场。据悉,G iner公司截至目前已收到一些150W的DM-FC可移动发电机订单。2006年以后,可移动发电机和小型摩托车用DM FC的需求量将逐年大幅度增长:估计2006年为5000件,2007年跃增至10 2万件,2008年为20万件,2009年为32万件,2010年51 8万件,2011年将猛增至77 5万件。与此同时,甲醇作为燃料的需求量也将随之相应增加,预计其可移动发电机和小型摩托车等的甲醇需求量将从2006年3700t/a逐年增至2010年的82 97万t/a, 2011年将突破百万吨,详见表4。

此外,住宅发电机、小动力装置和汽车用DM-FC市场也很有发展前途。然而,开拓这些应用市场的关键还取决于DM FC技术在降低成本和提高效率两方面要有所进展。

目前,它的实用技术特别在汽车应用方面正取得快速进展。如果技术突破并获得实际应用,那么甲醇的需求量可能大增,其需求水平可能是目前甲醇生产水平的许多倍。在目前传统充电电池费用高和产能有限的情况下,估计DMFC将首先进入特种军用和个人便携式电子产品的应用市场。随着DM-FC技术的进步,费用将持续下降,预计在其他应用市场也会愈来愈有竞争力。

在美国,军用DM FC的费用约为5000~7000美元/k W,个人便携式电子产品的费用约为3000~ 5000美元/k W,与一些高功能锂离子电池费用高达11000美元/k W相比较,D M FC还是有竞争力的。但业内人士认为,D M FC费用仍然偏高,不利于推广应用。随着电极催化剂和质子交换膜等关键材料进一步开发改进以及实现大规模生产,费用会大幅度下降。

尽管目前D M FC仍存在不足之处,需要进一步改进,但一些公司认为它的发展前途是十分光明的。

27

精细与专用化学品第14卷第1期

表3 2002~2007年全球和各地区电池市场发展情况百万件200220032004200520062007年均增长率/%

全球

便携式摄像机 10 11 5 13 3 15 5 17 8 20 3 15 2 数码相机7 19 511 71519 325 328 9 手机304 6322 5343 6371408 4447 28 0 笔记本电脑33 837 141 2475462 513 1 个人数字助理13 416 719 723 729 23621 9 合计368 9397 3429 5472 2528 7591 39 9

北美

便携式摄像机3 54 25 16 37 79 321 6 数码相机34 24 96 48 310 929 4 手机83 889 696 9104 7115 5126 48 6 笔记本电脑1415 417 420 223 427 314 3 个人数字助理6 37 99 812 115 219 124 8 合计110 6121 3134 1149 7170 119311 8

欧洲

便携式摄像机4 14 555 76 36 911 0 数码相机2 12 83 85 27 19 836 1 手机123 8129 9136 4146 3160 6175 87 3 笔记本电脑9 410 511 813 615 718 214 1 个人数字助理4 65 66 88 310 41323 1 合计144153 3163 8179 1200 1223 79 2

亚洲

便携式摄像机2 42 83 23 53 84 111 3 数码相机22 533 43 94 618 1 手机97103110 3120132 31458 4 笔记本电脑10 411 21213 214 91710 3 个人数字助理2 53 23 13 33 63 99 3 合计114 3122 7131 6143 4158 5174 68 8

表4 2006~2011年可移动发电机和小型摩托车用甲醇需要估计万t/a

使用D M FC的产品类型200620072008200920102011

200W-RVs0 041 994 878 1512 2518 24

200W-M ed i cal0 209 8819 7531 6045 4359 25

200W-踏板车0 020 100 300 731 522 75

1k W GenSets0 080 973 639 6421 8041 55

1k W踏板车0 00 00 040 240 631 42

2Kw M ilitary GenSets0 040 160 400 791 342 21

合计0 3713 0328 9951 1582 97125 42

D M FC技术在手机和便携式电脑等个人电子产品应用方面,比传统一次性和充电电池有技术和费用优势。今后几年,DM FC在这些方面将获得广泛商业应用。估计2010年,这些用途的甲醇需求量将突破100万t/a。Polyfuel、G iner等一些公司开发DMFC 膜技术的发展可进一步提高其效率和电能密度,从而大大降低D M FC用聚合物膜(P

E M)的费用。此外,在费用和功能方面的改善可能提高DMFC在小型住宅动力站等其他应用领域的吸引力。

(徐维正编译)

28

微型直接甲醇燃料电池概述

微型直接甲醇燃料电池概述 课题背景 在社会高速发展的今天,能源和人类社会的生存发展休戚相关,是经济发展进步的动力源泉,也是衡量一个国家的综合国力、科学发达程度以及人民生活水平的重要指标[1-2]。当前全球消耗的能源,主要以非可再生能源——煤、石油、天然气等为主,而各国的工业化的急速发展使得这些非可再生能源消耗的每况愈下,人类对这些能源的依附却有增无减[3-4]。与此同时,这些能源的消耗过程中排放物给生态环境带来了很大的负面影响,使环境污染问题成为日前全球性的问题[5],对人类生存环境的威胁日趋严重,更关系到未来人类社会的可持续发展与生存[6-8]。故亟需找到一种理想的能源资源或动力装置,来代替现有的能源资源[9]。“氢”能清洁、高效、可持续,是能源系统的重中之重[10],而甲醇燃料电池是“氢”能技术的最佳代表之一,其研究开发受到世界各国的青睐,被认为是本世纪首选的清洁的、高效的发电装置[11-13]。尤其是微型甲醇燃料电池,它低污染、质量轻、体积小、容易操作、比能量密度高,更是成为了便携式电子装置的理想动力装置之一[14-15]。近些年MEMS技术的迅猛发展为微型甲醇燃料电池的制造及应用提供了新的实现方法。基于MEMS技术制造的微型甲醇燃料电池主要具有以下优势: (1)燃料电池结构可以简化[16],体积和重量减小; (2)可制作复杂的微流场结构[17],控制燃料流动,提高电池性能; (3)易批量生产,并成本降低; (4)安全性、可靠性更高[18],更换燃料方便简易。 (5)可将微型燃料电池和传感器、电子器件等集成在芯片上,节省系统体积,使燃料电池的系统结构更简单[19-21]。 因此, 微型直接甲醇燃料电池的研发和生产,必成为电化学和能源科学研究与发展的一个备受关注热点和主要方向[22]。目前小型DMFC的研发的重点主要集中在燃料来源和降低成本,要想使μDMFC尽快实现商业化还需要大量细致的研究工作,如MEA新的制备工艺及结构优化技术,高效抗CO中毒的阳极催化剂、高质子电导率的阻醇质子交换膜的研制,DMFC电池组的封装及系统集成等。现在,DMFC单电池及电池组的样机已经问世,对于样机在实际应用中的工作状态、寿命及有效降低成本等方面已经成为微型DMFC研究中的新热点。微型DMFC的应用如图1-1所示。 图1-1 微型DMFC的应用 微型直接甲醇燃料电池概述 1.2.1国内外研究现状 近年来,世界各国对微型甲醇燃料电池的研发,都投入了大量的经费,很大程度上推动了微型直接甲醇燃料电池的发展。 Kah-YoungSong [23]等提出在阴极扩散层基底上引入微孔层,降低阴极扩散层基底的憎水

制药工艺学试题及习题答案

《化学制药工艺学》第一次作业 一、名词解释 1、工艺路线: 一个化学合成药物往往可通过多种不同的合成途径制备,通常将具有工业生产价值的合成途 径称为该药物的工艺路线。 2、邻位效应: 指苯环内相邻取代基之间的相互作用,使基团的活性和分子的物理化学性能发生显著变化的 一种效应。 3、全合成: 以化学结构简单的化工产品为起始原料,经过一系列化学反应和物理处理过程制得化学合成 药物,这种途径被称为全合成。 4、半合成: 由具有一定基本结构的天然产物经化学结构改造和物理处理过程制得化学合成药物的途径。 5、临时基团: 为定位、活化等目的,先引入一个基团,在达到目的后再通过化学反应将这个基团予以除去,该基团为临时基团。 6、类型合成法: 指利用常见的典型有机化学反应与合成方法进行合成路线设计的方法。 7、分子对称合成法: 由两个相同的分子经化学合成反应,或在同一步反应中将分子相同的部分同时构建起来,制得具有分子对称性的化合物,称为分子对称合成法。 8、文献归纳合成法: 即模拟类推法,指从初步的设想开始,通过文献调研,改进他人尚不完善的概念和方法来进行药物工艺路线设计。 二、问答题 1、你认为新工艺的研究着眼点应从哪几个方面考虑? 答: (1)工艺路线的简便性, (2)生产成本因素, (3)操作简便性和劳动安全的考虑, (4) 环境保护的考虑, (5) 设备利用率的考虑等。 2、化学制药工艺学研究的主要内容是什么? 答: 一方面,为创新药物积极研究和开发易于组织生产、成本低廉、操作安全和环境友好的 生产工艺;另一方面,要为已投产的药物不断改进工艺,特别是产量大、应用面广的品种。研究和开发更先进的新技术路线和生产工艺。 3、你能设计几种方法合成二苯甲醇?哪种路线好? 答:

有机合成试题及答案

高二化学3.4练习卷 (HGB ) 1.有机物A 为绿色荧光蛋白在一定条件下水解的最终产物之一,结构简式为: 请回答下列问题: (1)A 的分子式为 。 (2)A 与氢氧化钠溶液反应的化学方程式为 。 (3)已知:两个氨基乙酸分子 在一定条件下反应可以生成 两个A 分子在一定条件下生成的化合物结构简为 。 (4)符合下列4个条件的同分异构体有6种,写出其中三种 。 ①1,3,5-三取代苯 ②遇氯化铁溶液发生显色反应 ③氨基与苯环直接相连 ④属于酯类 2.(16分)以石油裂解气为原料,通过一系列化学反应可得到重要的化工产品增塑剂G 。 请回答下列问题: (1)反应①属于 反应(填反应类型),反应③的反应条件是 (2)反应②③的目的是: 。 (3)写出反应⑤的化学方程式: 。 (4)写出G 的结构简式 。 O =C NH —CH 2 CH 2—NH C =O NH 2 CH —COOH OH CH 2—CH —COOH NH 2 HOOCCH =CHCOOH

3.(16分)M 是生产某新型塑料的基础原料之一,分子式为C 10H 10O 2,其分子结构模型如图,所示(图中球与球之间连线代表化学键单键或双键)。 拟从芳香烃 出发来合成M ,其合成路线如下: 已知:M 在酸性条件下水解生成有机物F 和甲醇。 (1)根据分子结构模型写出M 的结构简式 。 (2)写出②、⑤反应类型分别为 、 。 (3)D 中含氧官能团的名称为 ,E 的结构简式 。 (4)写出反应⑥的化学方程式(注明必要的条件) 。 4.建筑内墙涂料以聚乙烯醇(CH 2 CH n OH )为基料渗入滑石粉等而制成,聚乙 烯醇可由下列途径合成。 试回答下列问题: (1)醋酸乙烯酯中所含官能团的名称__________________(只写两种)。 (2)上述反应中原子利用率最高的反应是______________(填序号)。 (3)可以循环使用的原料是___________(写结构简式)。 (4)反应③可看作________________反应(填反应类型)。 —C =CH 2 CH 3 —C =CH 2 CH 3 溴水 ① A B : C 9H 12O 2 ② NaOH/H 2O ③ O 2/Cu D :C 9H 10O 2 E :C 9H 10O 3 ④ F M ⑤ ⑥

甲醇燃料电池

甲醇燃料电池 22.据报道,最近摩托罗拉(MOTOROLA)公司研发了一种由甲醇和氧气以及强碱做电解质溶液的新型手机电池,电量是现用镍氢电池和锂电池的10倍,可连续使用1个月充电一次。假定放电过程中,甲醇完全氧化产生的CO2被充分吸收生成CO32- (1)该电池反应的总离子方程式为___________________________________。(2)甲醇在____极发生反应(填正或负),电池在放电过程中溶液的pH将____(填降低或上升、不变);若有16克甲醇蒸气被完全氧化,则转移的电子物质的量为________。 22.(1)2CH3OH+3O2+4OH-=2CO32-+6H2O (2)负下降8mol 28.据报道,最近摩托罗拉(MOTOROLA)公司研发了一种由甲醇和氧气以及强碱做电解质溶液的新型手机电池,电量是现用镍氢电池和锂电池的10倍,可连续使用1个月充电一次。假定放电过程中,甲醇完全氧化产生的CO2被充分吸收生成CO32- (1)该电池反应的总离子方程式为______________________________________。(2)甲醇在____极发生反应(填正或负),电池在放电过程中溶液的pH将____(填降低或上升、不变);若有16克甲醇蒸气被完全氧化,产生的电能电解足量的CuSO4溶液,(假设整个过程中能量利用率为80%),则将产生标准状况下的O2________升。 28.(1)2CH3OH+3O2+4OH-=2CO32-+6H2O (2)负下降13.44 6.(广东省惠州市2006届高三第一次调研考试·9)2004年美国圣路易斯大学研制了一种新型的乙醇电池,它用磺酸类质子溶剂,在200o C左右时供电,乙醇电池比甲醇电池效率高出32倍且更安全。电池总反应为: C2H5OH+3O2=2CO2+3H2O,电池示意如图,下列说法不正确 ...的是()。 A.a极为电池的负极 B.电池工作时电流由b极沿导线经灯泡再到a极 C.电池正极的电极反应为:4H+ +O2+4e-=2H2O D.电池工作时,1mol乙醇被氧化时就有6mol电子转移 解析:根据反应C2H5OH+3O2==2CO2+3H2O,得到C2H5OH被氧化,所以a极为电池的负极;O2被还原,所以b极为电池的正极。电流由b极(正极)沿导线经灯

直接甲醇燃料电池实验报告

研究生专业实验报告 实验项目名称:被动式直接甲醇燃料电池学号: 姓名:张薇 指导教师:陈蓉 动力工程学院

被动式直接甲醇燃料电池 一、实验目的 1、了解和掌握被动式空气自呼吸直接甲醇燃料电池(DMFC)的基本工作原理; 2、了解和掌握对燃料电池进行性能测试的基本方法; 3、了解和掌握燃料电池性能评价方法; 4、观察和认识影响燃料电池性能的主要因素。 二、实验意义 燃料电池是一种将燃料的化学能直接转化为电能的能源转化装置,具有环境友好、效率高、工作安静可靠等显着优点,被誉为继核能之后新一代的能源装置。在众多燃料电池种类中,空气自呼吸式直接甲醇燃料电池(DMFC)因具有系统结构简单、能量密度高、环境友好、更换燃料方便、可在常温下工作等优点,成为便携式设备最有前景的可替代电源,是电化学和能源科学领域的研究热点。本实验旨在对被动式空气自呼吸直接甲醇燃料电池进行实验研究,使同学们了解和掌握燃料电池测试的基本方法,加深对燃料电池基本工作原理的认识和理解。 三、实验原理 燃料电池是将燃料的化学能直接转化为电能的能源转化装置。一个典型的直 接甲醇燃料电池的示意图如图1所示。 图1: 直接甲醇燃料电池的典型结构 从图1中可以看出,典型的直接甲醇燃料电池包括阳极扩散层、阴极扩散层、阳极催化剂层、阴极催化剂层、质子交换膜、集流体等部件。在被动式空气自呼吸直接甲醇燃料电池中,电池阳极发生的是甲醇的氧化反应: CH 3OH+H 2 O→CO 2 +6H++6e-,E0=0.046 V (1) 电池阴极发生的是氧气的还原反应: 3/2O 2+6H++6e-→3H 2 O,E0=1.229 V (2) 总反应式为: CH 3OH+3/2O 2 →CO 2 +2H 2 O,△ E=1.183 V (3) 在被动式直接甲醇燃料电池阳极,甲醇水溶液扩散通过阳极扩散层到达阳极催化层,甲醇在阳极催化层被氧化,生成二氧化碳、氢离子和电子,如式(1)所示。氢离子通过质子交换膜迁移到阴极,电子通过外电路传递到阴极;在阴极侧,氧气通过暴露在空气中的阴极扩散层传输至阴极催化层,在电催化剂的作用下,氧气与从阳极迁移过来的质子以及从外电路到达的电子发生还原反应生成水,如式(2)所示。理论上直接甲醇燃料电池的开路电压能达到1.183 V,但实际上DMFC 的开路电压一般只有0.7 V左右,其主要原因是部分燃料(甲醇)在浓度差的作

化学工艺学试题答案

《化学工艺学》考查课期末试题 班级:08化工(1)班学号:08003028姓名:李强 1.现代化学工业的特点是什么? 答:1、原料、生产方法和产品的多样性与复杂性;2、向大型化、综合化、精细化发展;3、多学科合作、技术密集型生产;4、重视能量合理利用、积极采用节能工艺和方法;5、资金密集,投资回收速度快,利润高;6、安全与环境保护问题日益突出。 2.什么是转化率?什么是选择性?对于多反应体系,为什么要同时考 虑转化率和选择性两个指标? 答:1、转化率:指某一反应物参加反应而转化的数量占该反应物起始量的分率 或百分率,用符号X表示。定义式为X=某一反应物的转化量/该反应物的起始量对于循环式流程转化率有单程转化率和全程转化率之分。 单程转化率:系指原料每次通过反应器的转化率 XA=组分A在反应器中的转化量/反应器进口物料中组分A的量 =组分A在反应器中的转化量/新鲜原料中组分A的量+循环物料中组分A的量全程转化率:系指新鲜原料进入反应系统到离开该系统所达到的转化率 XA,tot=组分A在反应器中的转化量/新鲜原料中组分A的量 2、选择性:用来评价反应过程的效率。选择性系指体系中转化成目的产物的某 反应量与参加所有反应而转化的该反应物总量之比。用符号S表示, 定义式S=转化为目的产物的某反应物的量/该反应物的转化总量 或S=实际所得的目的产物量/按某反应物的转化总量计算应得到的目的产物理论量 3、因为对于复杂反应体系,同时存在着生成目的产物的主反应和生成副产物的 许多副反应,只用转化率来衡量是不够的。因为,尽管有的反应体系原料转化率很高,但大多数转变成副产物,目的产物很少,意味着许多原料浪费了。所以,需要用选择性这个指标来评价反应过程的效率。 3.催化剂有哪些基本特征?它在化工生产中起到什么作用?在生产 中如何正确使用催化剂? 答:1、基本特征包括:催化剂是参与了反应的,但反应终止时,催化剂本身未 发生化学性质和数量的变化,因此催化剂在生成过程中可以在较长时间内使用;催化剂只能缩短达到化学平衡的时间(即加速反应),但不能改变平衡;催化剂具有明显的选择性,特定的催化剂只能催化特定的反应。 2、作用:提高反应速率和选择性;改进操作条件;催化剂有助于开发新的反应

直接甲醇燃料电池资料

直接甲醇燃料电池研究进展 摘要: 介绍了直接甲醇燃料电池的工作原理、研究现状及最新进展, 认为直接甲醇燃料电池是目前较理想的燃料电池, 有广阔的发展前景。直接甲醇燃料电池(DMFC) 具有燃料易运输与存储、重量轻、体积小、结构简单、能量效率高等优点,以固体聚合物作为电解质的直接甲醇燃料电池是理想的车用动力电源,具有广阔的发展前景。 关键词:直接甲醇燃料电池;甲醇;渗透;膜;电催化剂 Performance study on direct methanol fuel cell Abstract: Working principle, current research situation and latest progress of direct methanol fuel cell are introduced .Fuel cell of this kind is regarded as a perfect one so far, with bright prospects to be expected. Direct methanol fuel cells (DMFC) had several advantages including ease transportation and storage of the fuel, reduced system weight, size and complexity, high energy efficiency. Polymer electrolyte membrane direct methanol fuel cells (PEMDMFC) were ideal power source for vehicles with bright prospects to be expected. . Key words: DMFC; methanol; crossover; membrane; electrocatalyst 0引言 由于汽车尾气污染越来越严重, 从而引起世界各国的关注。汽车尾气污染的根源在于汽车发动机使用的汽油。甲醇是一种易燃液体, 燃烧性良好, 辛烷值高,抗爆性能好。甲醇又是一种洁净燃料, 燃烧时无烟,燃烧速率快, 排气污染少。不管燃烧汽油还是燃烧甲醇作汽车的动力都需要使用内燃机, 因此其噪音污染及燃料燃烧不完全引起的排放物污染是不可避免的。使用电动汽车是解决汽车尾气污染的根本办法, 同时还可以减少内燃机造成的噪音污染。燃料电池有内燃机使用燃料重量轻, 补充燃料方便等优点, 无需充电, 它的最大优点在于可把燃料的化学能直接转变成电能, 其效率不受卡诺循环限制。直接甲醇燃料电池( Direct Methanol Fuel Cell,简称为DMFC) 无需将甲醇转变成氢源, 利用甲醇

化学试题与答案

绝密★考试结束前 2018年11月镇海中学选考科目模拟考试 化学试题 姓名:____________ 准考证号:____________ 本试题卷分选择题和非选择题两部分,共8页,满分100分,考试时间90分钟。其中加试题部分为30分,用【加试题】标出。 考生注意: 1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。 2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。 3.非选择题的答案必须使用黑色字迹的签字笔或钢笔写在答题纸上相应区域内,作图时可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑,答案写在本试题卷上无效。 4.可能用到的相对原子质量:H-1 D-2 Li-7 Be-9 C-12 N-14 O-16 Na-23 Mg-24 Al-27 Si-28 S-32 Cl-35.5 K-39 Ca-40 Fe-56 Cu-64 Ag-108 Ba-137 选择题部分 一、选择题(本大题共25小题,每小题2分,共50分。每个小题列出的四个备选项中只有一个是符合题 目要求的,不选、多选、错选均不得分) 1.下列属于复盐的是 A .NaHCO 3 B .CaCl(ClO) C .(NH 4)2Fe(SO 4)2 D .Na 2SO 4·10H 2O 2.下列仪器可用来灼烧的是 A . B . C . D . 3.下列属于电解质的是 A .明矾 B .盐酸 C .氨气 D .钾钠合金 4.下列物质溶于水后溶液显酸性的是 A .KHCO 3 B .NH 2CH 2COONa C .NH 4NO 3 D .CH 3OH 5.下列属于物理变化的是 A .氯气的液化 B .由海水生产氯化镁 C .乙烯生产聚乙烯 D .由煤焦油得到苯、甲苯制硝酸苯、TNT 6.下列说法不正确... 的是 A .油脂可以制造肥皂和油漆 B .工业酒精中含有乙醇,不含甲醇 C .工业上可以用淀粉、纤维素为原料生产葡萄糖 D .天然气与煤、柴油相比是清洁的能源 7.下列变化过程中,加入还原剂才能实现的是 A .H 2O 2→O 2 B .Cu →CuO C .FeCl 3→FeCl 2 D .KMnO 4→MnO 2 8.下列表示不正确的是 A .磷原子结构示意图: B .溴苯的分子式: C 6H 5Br C .乙烯的球棍模型: D .MgF 2的电子式: 5 8 +15 2

甲醇合成精馏试题

、填空题: 1、甲醇的分子式为CH30H ,相对分子量为32. 4 ,甲醇的国家卫生标准为50mg/m3,甲醇的密度随温度的增加而减小。 2、氢回收工序额定驰放气处理能力为16500Nm3/h ;处理气体中的某些杂质成分如液态水、甲醇_ 、—灰分_、芳烃类物质_ 等对纤维管分离器的分离效率影响很大。 3、列管式换热器按结构不同分为_固定管板式、浮头式_、U形管式—和填料函式;固定管板式换热器管壁和壳壁的温差大于50摄氏度时,为克服温差应力对换热器造成影响应设置_膨胀节_。 4、为防火防漏,罐区设有_围堰_、_消防水_、_灭火装置_、一氮气隔离_、_可燃气体检测报警等—等设施。 5、写出下面设备位号代表的设备名称: S15403 ________ R15401 甲醇合成塔__________________ J15401B_ 喷射器 B E15401入塔气换热器 E15801H 氢回收列管换热器T15501 T15501预塔回流槽 P15501A/B加压塔讲料泵P15508A/B_碱液泵 C15504回收塔T15702杂醇油贮罐 6、写出下面设备名称的位号: 精甲醇成品罐 T41101ABC 火车装车泵 P41101ABCD 常压塔回流槽 T15503 常压塔冷凝器 E15508 配碱槽 T15505 预精馏塔 C15501 加压塔回流槽T15502 粗甲醇预热器E15501 常压塔回流泵 P15505AB 粗甲醇贮罐 T15701AB 7、甲醇为有毒化合物,口服5~10ml可引起严重中毒10ml以上可导致失明。 8、正常生产中,新鲜气氢碳比的合理值为_2.05~2.15_。 9、合成塔内列管的管径为_44mm,长度为一_7000 mm 10、加压精馏塔的塔顶压力为_800kpa ______________ ,温度为_128 C _ ;塔釜压力为 _812kpa_ 一_温度为_134°C __。 11、四台精馏塔的压降依次为8 kpa二、12kpa、10kpa _、8 kpa二。 12、合成汽包液位的低报警值为_25%一__:低低联锁值为20%_,其联锁动作为净化来新鲜气调节阀XV-15301关闭。 13、FO代表该调节阀为气关阀,FC代表该调节阀为气开阀。

微型燃料电池简介剖析

课程论文 学 院 化 学 化 工 学 院 专 业 应 用 化 学 年 级 2013 级 姓 名 张 忆 恒 课 程 化学电源 论文题目 微型燃料电池简介 指导教师 卢 先 春 成 绩 2016年5月20 日

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords: (1) 引言 (1) 1 微型H2-O2(空气)燃料电池 (2) 2 微型直接甲醇燃料电池 (3) 2.1 μDMFC结构和工作原理 (4) 3 微型甲酸燃料电池 (6) 4 微型固体氧化物燃料电池 (6) 5 结论 (7)

信阳师范学院化学化工学院课程论文 微型燃料电池的研究进展 学生姓名:张忆恒学号:20135052012 化学化工学院2013级应用化学 课程名称化学电源 摘要:燃料电池因其清洁无污染,比功率密度高,无需充电,补给燃料快速方便等优点越来越受重视。且微型燃料电池因其尺寸微小倍受青睐。本文讨论了分别以纯氢、甲醇和甲酸为燃料的微型燃料电池和微型固体氧化物燃料电池;对微型直接甲醇燃料电池的结构和原理做了简单的介绍。 关键词:微型燃料电池;氢;甲醇;甲酸 Research progress in micro-fuel cells Abstract: Many pay more and more attentions to the fuel cells because of its clean and non-polluting, high specific power density, without charge, fast and easy refueling.Meanwhile micro-fuel cells is acclaimed for its small size.The micro-fuel cells using hydrogen from pure hydrogen, methanol and formic acid as fuels and micro solid oxide fuel cell were discussed. The materials used in micro-fuel cells for the portable electronics were outlined. The preparation technologies of micro-fuel cell such as micro lectomechanical system technology were analyzed.Meanwhile it made a brief introduction of the structure and principles of Micro Direct Methanol Fuel Cell(MDFC). Keywords:micro-fuel cell; hydrogen; methanol; formic acid 引言 近年来,随着移动电话、个人数字助手、笔记本电脑等便携式电子产品的迅猛发展,对微型能源提出了越来越高的要求。燃料电池是不经过燃料的燃烧而将化学能直接转换为电能的一种能量转换装置。微型燃料电池作为一种新型的便携能源,具有高效、高能量密度、体积小、成本低、环境好等优点。因此近年来,用于便携式电子设备的微型燃料电池的研究引起了人们极大兴趣。

甲醇合成试题答案

甲醇合成考试题(A) 一.填空题(每空2分,共30分) 1.甲醇是最简单的饱和醇,又名木醇或木精,分子式CH3OH,通常为无色、略带乙醇香味的挥发性可燃液体,分子量3 2.04,爆炸极限5.5%—44.0%。 2.影响甲醇反应的因素有哪些:温度,压力,气体组成,触媒性能,空速,惰性气含量。 3.实际生产中,甲醇合成操作压力上升,调节方法有:①适当增加循环气流量。②适当提高循环气中一氧化碳含量。③适当提高循环气中二氧化碳含量。④适当开大系统压力调节阀,降低惰性气含量。二.判断题(每题2分,共10分) 1.甲醇凝固点-97.8℃,沸点(64.8℃,0.1013MPa),自燃点461℃~473℃。(√) 2.合成反应温度高不会影响产品质量。(×) 3.空速过高,反应温度下降,有时温度难以维持,产量下降(√) 4.CO2的存在,一定程度上抑制了二甲醚的生成。(√) 5.液体甲醇带入塔内会引起催化剂层的温度不变。(×)三.问答题(每题10分,共40分) 1.合成甲醇的化学反应有哪些? (1)主反应: CO+2H2=CH3OH+Q

CO2+3H2=CH3OH+H2O+Q (2)副反应: 2CO+4H2=CH3OCH3+H2O+Q CO+3H2=CH4+H2O+Q 4CO+8H2=C4H9OH+3H2O+Q CO2+H2=CO+H2O-Q nCO+2nH2=(CH2)n+nH2O+Q 2.甲醇催化反应过程有几个步骤? 答:甲醇合成反应是一个气固相催化反应的过程,共分五步: (1) CO和H2扩散到催化剂表面; (2) CO和H2被催化剂表面吸附; (3)CO和H2在催化剂表面进行化学反应; (4) CH3OH在催化剂表面脱附; (5)CH3OH扩散到气相中去。 3.影响水冷器冷却效果的主要原因有哪些? 答:(1)水量小或水压低,应开大进水阀或提高水压。 (2)冷却器换热管结垢,清理积垢。 (3)冷却水温度高,联系供水,降低水温。 合成甲醇时有石蜡生成,附着在水冷器管壁上,降低水冷效果。可适当减少冷却水量,用温度较高的合成气来熔化石蜡。 4.进入容器设备的八必须? 申请办证,并得到批准

20190327国内外甲醇燃料电池汽车发展历程 (下)

国际甲醇燃料电池汽车发展史(下篇) 上文说到,甲醇重整制氢在海外经历了长达10年(2006-2016年)的低潮期,仅仅在备用电源领域有所应用。国内从2010年起,开始有企业对此关注,做相应的研究,但没有企业有念头和实力,将甲醇重整燃料电池系统集成到汽车上。 直到2014年,深圳开始出现2012年大运会期间投入的纯电动大巴车续航里程衰减严重的现象,迫切需要解决方案,有人开始考虑用燃料电池给锂电池随车充电——增程式。 2015年,Mirai横空出世,7万美元的售价,113kW的电堆,一下子打开了中国氢燃料电池工作者的思路:燃料电池可以做到很便宜。性能上不需要一步到位到100kW以上,可以从30kW开始。 在这个技术路线的指导下,基于甲醇重整燃料电池发电系统开始登上历史舞台,并开始在中国得到深入研究。 甲醇重整制氢+氢燃料电池系统作为“发电机”系统,主要有三种技术路线: A.第一类技术是甲醇重整+高温燃料电池,这类技术是现阶段发展最快的技术路径,已在电动车和特殊领域得到了众多成功应用。 高温燃料电池是指工作温度在160℃以上的质子交换膜技术。相比于常温/低温的系统85℃左右工作温度,高温燃料电池的160℃工作温度可以保证氢气在电堆内反应后的产物都是水蒸气,而不存在液态水的可能。这样可以避免淹堆、反极等低温燃料电池电堆会碰到的问题。从硬件配置上来讲,可以规避氢气循环泵、增湿器等,对于空压机的要求也会低很多,可以大大简化系统的设计。 图1:典型的甲醇重整高温燃料电池系统图 这类高温燃料电池兼顾了PAFC磷酸燃料电池和PEM质子交换膜燃料电池的优点,采用了PEM燃料电池的结构,通过使用PBI(聚苯并咪唑)膜和H3PO4磷酸传导质子,虽然功率密度比基于Nafion(全氟磺酸膜)的低温质子交换膜小,但是系统效率高。最重要的是,高温堆能耐受2%的CO,不会形成铂催化剂中毒。 这套系统中,甲醇和水的混合液重整制氢的过程是一个吸热的过程,相比之下,还有其他的重整技术,可以实现甲醇自热重整反应:导入一定量的氧气参与氧化,这样重整器当中

硅基微型直接甲醇燃料电池结构的研究

硅基微型直接甲醇燃料电池结构的研究 文章对于直接甲醇燃料电池(?滋DMFC)的双极板结构进行了设计并制作、测试。设计了两种电极板的结构:点型极板和蛇型极板流场结构,并且应用ANSYS进行了模拟。采用微机械加工技术在硅基上制作了不同的流场结构的微型直接甲醇燃料电池并且进行了测试。结果发现采用点型流场结构作为DMFC 的阴阳两极极板比蛇型流场结构能够有效提高甲醇传输性能,表现出较好的电池性能。通过测试发现点型和蛇型各自的最高电流密度可达13mA/cm-2和3.9mA/cm-2,而功率密度点型的要比蛇型的高一个数量级。 關键词:硅;微机械加工;ANSYS;?滋DMFC 前言 一直以来,不同种类燃料和结构的各种类型的燃料电池持续得到关注,其中微型直接甲醇燃料电池表现出来比较突出的特性,比如能量转化效率高、环境友好、可在室温下工作、结构简单以及较高的电流密度和功率密度[1]。它既可作为固定电站为边远地区的居民、哨所供电以及城市重要场所的备用电源,又可以作为移动电源应用于电动汽车、摩托车和自行车,还可以用于许多对电池性能要求很高的场合,如移动电话、航天器、军用通讯、导航系统等[2]。 极板结构是影响?滋DMFC性能至关重要的内容,它不仅为电池结构提供支撑,提供氧气与甲醇反应的场所,而且还要收集反应生成的电子,同时也要求产生的H2O和CO2能很快离开电池,从而始终保持流场畅通,不存在死区,所以合理的极板结构对?滋DMFC性能的影响是非常关键的[3,4]。MEMS加工技术对于硅基材料的极板制备提供了良好的制作方法,完全可以实现对于不同结构的极板结构的制备[5,6]。 1 结构设计与仿真 阴阳极板的流场结构对于微型直接甲醇燃料电池的性能影响是很重要的。流场包括沟道和支撑部分,流场用于物质的输运与传输,提供电化学反应的燃料;支撑部分为反应的质子交换膜MEA提供支撑。流场的设计需要综合考虑沟道燃料传输的特性确保提供足够反应燃料和MEA膜的支撑部分宽度。基于以上因素,文章设计了点型和蛇型两种流场结构,如图1所示。采用ANSYS模拟了两种流场结构的速度和压力分布,由结论可知,蛇型流场结构的极板上速度分布比点型流场的更均匀,但是点型流场的流速比蛇型的慢。点型流场的进出口压力差比蛇型流场的要小,所以点型的燃料运动速度比蛇型的速度要慢一些,这样甲醇燃料可以在极板沟道实现更有效的反应。也就是说极板结构的仿真结果点型优于蛇型。 2 极板制备

直接甲醇燃料电池的单电池实验测试及性能优化_魏永生

文章编号:1673-0291(2010)06-0090-05 直接甲醇燃料电池的单电池实验测试及性能优化 魏永生1,朱 红2,郭玉宝1,郭志军1,张新卫1 (1.北京交通大学理学院,北京100044;2.北京化工大学理学院,北京100029) 摘 要:以新型阻醇材料Na 2Ti 3O 7/Nafion 复合膜为质子交换膜,利用热压法制备膜电极(M EA),对直接甲醇单电池进行测试.考察了电池温度、阴极加湿温度、甲醇浓度、甲醇流速和空气流速5个 参数对直接甲醇燃料电池极化曲线性能的影响.实验结果表明,电池温度对电池性能的影响较为明显,提高电池温度有利于得到较好的电池性能.甲醇浓度对电池性能影响也比较明显,较低甲醇浓度有利于提高电池性能.甲醇流速和空气流速对电池性能的影响较小,阴极加湿温度对电池性能几乎没有影响.通过分析优化,该直接甲醇燃料电池的电池性能最佳工作条件是在80 情况下,低电流密度工作区采用较低浓度甲醇溶液,高电流密度工作区采用高浓度甲醇溶液.关键词:直接甲醇燃料电池;质子交换膜;Na 2Ti 3O 7/Nafion;极化曲线中图分类号:TK91 文献标志码:A Experimental Test and Performance Optimization of Single Cell in Direct Methanol Fuel Cell WEI Yongsheng 1 ,ZH U H ong 2 ,G UO Yubao 1 ,G UO Zhijun 1 ,ZH AN G X inw ei 1 (1.School of Science,Beijing Jiaotong U niversity,Beijing 100044,China; 2.School of Science,Beijing U niversity of Chemical T echno logy,Beijing 100029,China) Abstract :With new com posite membrane materials of Na 2Ti 3O 7/Nafion for proton ex chang e mem -brane,Membrane Electrode Assembly (MEA)was prepared using hot -pressing method,and had been tested in single direct methanol fuel cell.Operation parameters of cell temperature,cathode humidify -ing temperature,methanol concentration,methanol flow rate and air flow rate have been em ployed to study on the effect of direct methanol fuel cells polarization curve.Experimental results show that the effect of cell tem perature on the cell performance is obvious,so increase cell temperature is helpful to g et better cell performance.Effect of methanol concentrations on cell performance is also obvious.The low er methanol concentration is favorable to improve cell properties.The effect of m ethanol flow rate and air flow rate to the cell performance is lesser.Effect of cathode humidification temperature on cell performance almost has no effect.T hrough the analysis and optimization,the better operation cond-i tions of direct methanol fuel cells is in cell temperature of 80 ,and the low concentration of methanol w hen the cell w orks in low current density,or high concentrations of methanol w hen the cell works in high current density. Key words:direct methanol fuel cell;proton ex change membrane;Na 2T i 3O 7/Nafion;polarization curve 收稿日期:2010-12-01 基金项目:国家自然科学基金重点资助项目(20636060);国家自然科学基金资助项目(50674006,20876013);国际合作项目(2006DFA61240,2009DFA63120) 作者简介:魏永生(1984 ),男,江苏徐州人,博士生.email:06118340@https://www.wendangku.net/doc/bb3742051.html,. 朱红(1957 ),女,安徽合肥人,教授,博士,博士生导师. 第34卷第6期 2010年12月 北 京 交 通 大 学 学 报 JOU RN AL O F BEIJIN G JIAOT O NG U N IV ERSI T Y V ol.34N o.6Dec.2010

有机化学试题及答案

有机化学复习题 一、选择题: 下列各题只有一个正确答案,请选出。 1. CH 3-CH-CH 2-C-CH 2CH 33CH 3 3 分子中伯、仲、叔、季碳原子的比例是 A. 5:2:1;1 B. 2:4:2:1 C. 5:1:2:1 D. 4:3:1:1 2.烷烃系统命名中的2-甲基丁烷在普通命名法中又称为: A. 异戊烷 B. 异丁烷 C. 新戊烷 D. 叔丁烷 3.下列化合物不属于脂环烃的是 A. 甲苯 B. 2-甲基环己烯 C. 环己炔 D. 1.2-二甲基环己烷 4 烯烃中碳原子的杂化状态是 A. SP 3 B. SP 2 C. SP D. SP 3和SP 2 5. 炔烃中碳原子的杂化状态是 A. SP 3和SP B. SP C. SP 2 D SP 3 6.在下列脂环烃中,最不稳定的是 A. 环戊烷 B. 环丁烷 C. 环己烷 D. 环丙烷 7.马尔科夫尼科夫规律适用于 A. 烯烃与溴的加成反应 B. 烷烃的卤代反应 C. 不对称烯烃与不对称试剂的加成 D. 烯烃的氧化反应 8.下列化合物用KMnO 4/H +氧化只得到一种产物的是 A. (CH 3)2C=CHCH 3 B. CH 3CH=CHCH 2CH 2CH 3 C. CH 3CH=CH 2 D. (CH 3)2C=C(CH 3)2

9.经催化加氢可得2-甲基丁烷的化合物是 A. B.3 CH 3-C=CH 2 CH 3-CH=CH-CH 3C. 3 CH 3-CH-C CH D.3CH 3-CH C=CH 2 3 10. 化合物C=C H 3C CH 3 H 5C 2COOH 属于 A. E 型或顺式 B. E 型或反式 C. Z 型或顺式 D. Z 型或反式 11. 1-戊炔和2-戊炔属于 A. 碳链异构 B. 顺反异构 C. 位置异构 D. 构象异构 12. 可鉴别2-丁炔与1-丁炔的试剂为 A. 溴水 B. Cu(OH)2 C. HIO 4 D. Ag(NH 3)2NO 3 13. 下列基团中,属于间位定位基的是 A. –OH B. –CH 2CH 3 C. –NO 2 D. –Cl 14. 下列基团中,属于邻、对位定位基的是 A. –COOH B. –NH 2 C. –CN D. –CHO 15. 下列化合物氧化后可生成苯甲酸的是 A. C(CH 3) 3 B. CH(CH 3)2 C. CH 3CH 3 D. CH 3 16. 下列化合物中,属于叔卤代烷结构的是

直接甲醇燃料电池技术分析与展望

龙源期刊网 https://www.wendangku.net/doc/bb3742051.html, 直接甲醇燃料电池技术分析与展望 作者:穆昕 来源:《中国化工贸易·下旬刊》2017年第02期 摘要:直接甲醇燃料电池(Direct Methanol Fuel Cell ,DMFC)是直接以甲醇作为阳极燃料的质子交换膜燃料电池。本文介绍了直接甲醇燃料电池的工作原理,重点分析了目前DMFC 技术的核心问题,并指出了相应的解决方案,展望了发展前景。 关键词:甲醇;燃料;电池技术 直接甲醇燃料电池(DMFC)由于使用液体甲醇作燃料,电池安全,系统简单,运行方便,具有很广阔的商业化前景。 1 工作原理 甲醇水溶液被输送到阳极,发生电催化氧化反应,生成CO2,同时释放出电子和质子,电子经过外电路到达阴极,而质子则通过电解质传导至阴极,和电子及氧气发生反应,生成水。 2 DMFC技术分析 目前,在DMFC技术中,甲醇氧化动力学慢过程和甲醇渗透是制约其发展的主要问题,很多研究围绕着如何解决着两个问题展开。 2.1 甲醇氧化动力学慢过程 在DMFC 中,甲醇的阳极氧化涉及六个电子的传递过程,比氢气的氧化更为困难。很多学者就其氧化机理做了研究,并且致力于开发高效的阳极电催化剂。 2.1.1 阳极电催化剂 最常用的是Pt或Pt合金催化剂。在基础研究方面,Wieckowski等研究发现,Pt (1 1 1)晶面抗中毒能力最强;通常添加Ru做为助剂,Dinh等提出,低电位下Ru+H2O→RuOH,RuOH的存在有助于CO的脱除;Ru含量在50%时,活性最好;J.W.Long等认为,Ru以RuOxHy形式存在时,催化活性高,因此制备时应尽量扩大纳米级Pt与RuOxHy的接触界 面。另外,活性与分散度有关,Watanabe等发现,当催化剂的粒径大于20?时,活性不再提高;Kaurenan等发现,金属相在炭黑(acetylene black)分散度低,在炭黑(Vulcan XC-72)分散度高,因为上面有大量微孔结构。因此在制备过程中,都要尽量提高活性组分的分散度,分散度越高,活性越好。

直接甲醇微型燃料电池的高聚物封装方法与设计

直接甲醇微型燃料电池的高聚物封装方法与设计 1.微型燃料电池封装研究的现状和进展 微型直接甲醇燃料电池(Micro Direct Methanol fuel cell )具有能量密度高、使用方便、清洁环保等优点,非常适用于各类便携式电子产品(手机、笔记本电脑、Mp3、单兵作战电源等)及微机电系统(Micro Electronic Mechanical System,MEMS )等领域,基于微型燃料电池应用的广阔前景,世界各地的研究机构对此产生了极大兴趣,希望能开发出更轻、更小、能量密度更大、性能更优异的微型燃料电池。当前,微型燃料电池从原理论证到实验验证再到实现商业化的发展过程中仍然面临着大量的技术困难,其中一个非常重要的瓶颈问题是燃料电池的封装工艺的方法、设计和优化等[1]。 图1燃料电池的广泛应用 1.1燃料电池的封装结构 微型燃料电池的组成通常是将质子交换膜MEA 置于两块流场板之间,然后在两端用刚度较大的端板将中间部分结构夹紧,最后用高聚物封装将整个结构起来。图2中电池的四周用高聚物封装填充。 图2微型燃料电池的外形 微小型直接甲醇燃料电池

图3微型燃料电池的结构图 1.2燃料电池的封装工艺现状 可靠的封装是微型燃料电池发挥其正常效能的前提条件,在微型燃料电池中有着举足轻重的作用,研究表明目前封装费用仍占微型燃料电池总成本的60%~70%,且封装技术发展的相对滞后已被公认为微型燃料电池实现产业化的主要瓶颈之一[2]。作为一类特殊的微型燃料电池,微型燃料电池封装结构需为整个电池提供稳定的机械支撑、电气互连和物料进出通道,以便维持微型燃料电池各活性区域工作状态的均衡及稳定,提高燃料电池的整体输出性能,延长其工作寿命。由于受结构、尺寸和工艺条件的限制,传统机械连接方法(如螺栓连接、铆接、夹具固定等)已很难适用于MEMS微型燃料电池的封装中,借鉴现有微器件封装方法实现对MEMS燃料电池的封装成为必然选择[1]。 目前针对微型燃料电池的封装方法主要是高聚物封装和热压键合两类。本文主要讨论高聚物的封装方法。 高聚物封装是在借鉴微电子及MEMS 器件塑封工艺的基础上发展起来的,是目前MEMS 燃料电池封装技术的主要发展方向之一。该方法主要利用高聚物的可模塑、可粘接特性实现对MEMS燃料电池的封装。MEMS燃料电池中常用的封装高聚物有聚二甲基硅氧烷( Polydimethyl siloxane, PDMS)和环氧树脂两类。近年来在这一领域的代表性工作有:2002年5月,加拿大Stanley等[3]首次报道使用常温固化环氧树脂,在1.5Mpa的正压力下实现MEMS直接甲醇燃料电池的密封和进出口微管连接,其MEMS-μDMFC输出功率密度峰值达到了1.5mWcm-2;2003年9月,德国Albert-Ludwig大学的Muller等[4]报道了一种外形尺寸只有1.4×1.4×0.5mm氢氧型MEMS质子交换膜燃料电池。该电池使用极薄的金属箔作为集流板,MEA和集流板之间的封装采用了银粉填充的环氧型导电胶,在工作电压0.4V时,输出功率密度达到了2mWcm-2;2004年8月, 美国路易斯安娜大学微制造研究所Shah等[5]采用PDMS实现了MEMS氢氧燃

相关文档