文档库 最新最全的文档下载
当前位置:文档库 › Leslie人口模型及例题详解

Leslie人口模型及例题详解

Leslie人口模型及例题详解
Leslie人口模型及例题详解

Leslie 人口模型

现在我们来建立一个简单的离散的人口增长模型,借用差分方程模型,仅考虑女性人口的发展变化。如果仅把所有的女性分成为未成年的和成年的两组,则人口的年龄结构无法刻划,因此必须建立一个更精确的模型。20世纪40年代提出的Leslie 人口模型,就是一个预测人口按年龄组变化的离散模型。 模型假设

(1) 将时间离散化,假设男女人口的性别比为1:1,因此本模型仅考虑女性人口的发展变 化。假设女性最大年龄为S 岁,将其等间隔划分成m 个年龄段,不妨假设S 为m 的整数倍,每隔m S /年观察一次,不考虑同一时间间隔内人口数量的变化;

(2) 记)(t n i 为第i 个年龄组t 次观察的女性总人数,记

)](,),(),([)(21t n t n t n t n m

第i 年龄组女性生育率为i b (注:所谓女性生育率指生女率),女性死亡率为i d ,记

1,i i s d 假设,i i b d 不随时间变化;

(3) 不考虑生存空间等自然资源的制约,不考虑意外灾难等因素对人口变化的影响;

(4) 生育率仅与年龄段有关,存活率也仅与年龄段有关。 建立模型与求解

根据以上假设,可得到方程

)1(1 t n = m

i i i t n b 1

)(

)()1(1t n s t n i i i 1 i ,2.…,m -1

写成矩阵形式为

)()1(t Ln t n

t

1

t

其中,L =

00

000

000121

121m m m s s s b b b b (1)

)]0(,),0(),0([)0(21m n n n n (2)

假设n (0)和矩阵L 已经由统计资料给出,则

()(0),

0,1,2,t n t L n t L

为了讨论女性人口年龄结构的长远变化趋势,我们先给出如下两个条件: (i) s i > 0,i =1,2,…,m -1;

(ii) b i 0 ,i =1,2,…,m ,且b i 不全为零。

易见,对于人口模型,这两个条件是很容易满足的。在条件(i )、(ii )下,下面的结果是成立的: 定理1

L 矩阵有唯一的单重的正的特征根0 ,且对应的一个特征向量为

*n =[1,s 1/0 ,s 1s 2/20 ,…,s 1s 2 …s m -1/10

m ]T

(3) 定理2

若1 是矩阵L 的任意一个特征根,则必有01 。 定理3

若L 第一行中至少有两个顺次的0,1 i i b b ,则 (i )若1 是矩阵L 的任意一个特征根,则必有01 。 (ii )t t t n 0/)(lim

=*cn , (4)

其中c 是与n (0)有关的常数。

定理1至定理3的证明这里省去。由定理3的结论知道,当t 充分大时,有

*)(0n c t n t (5) 定理4

记121i i i b s s s L ,q ( )=1 / +2 / 2+…+m /m

,则 是L 的非零特征根的

充分必要条件为

q ( )=1 (6)

所以当时间充分大时,女性人口的年龄结构向量趋于稳定状态,即年龄结构趋于稳定形态,而各个年龄组的人口数近似地按 -1的比例增长。由(5)式可得到如下结论:

(i) 当 >1时,人口数最终是递增的; (ii) 当 <1时,人口数最终是递减的; (iii) 当 =1时,人口数是稳定的。 根据(6)式,如果 =1,则有

b 1 + b 2s 1 + b 3s 1s 2 + … + b m s 1 s 2…s m-1=1

R = b 1 + b 2s 1 + b 3s 1s 2 + … + b m s 1 s 2…s m-1 (7)

R 称为净增长率,它的实际含义是每个妇女一生中所生女孩的平均数。当R >1时,人口递

增;当R <1时,人口递减。

Leslie 模型有着广泛应用,这里我们给出一个应用的例子,供大家参考。 公园大象管理

南非的一家大型自然公园放养了大约11000头大象,管理部门希望为大象创造一个健康的生存环境,将大象的总数控制在11000头左右。每年,公园的管理人员都要统计当年大象的总数。过去20年里,公园每年都要处理一些大象,以便保持大象总数维持在11000头左右,通常都是采用捕杀或者迁移的方法来实现。统计表明,每年约处理600-800头大象。

近年来,公众强烈反对捕杀大象行为,而且即使是迁移少量的大象也是不允许的。但是一种新的给大象打避孕针的方法也被研制成功。一只成年母象打了避孕针后,两年内不再怀孕。

公园有一些关于大象的资料,供建模参考:

1几乎不再迁入或迁出大象;

2目前性别比接近1:1,采取控制后,也希望维持这个比例;

3初生象的性别比也是大约1:1,生双胎的比例为1.35%

4母象初次怀孕大约在10-12岁,一直到60岁大约每3.5年怀胎一次,60岁后不再受孕,怀孕期为22个月;

5避孕针可能引起大象每个月都发情,但不受孕,因为大象通常每3.5年生育1次,所以按月循坏的方案是不足取的;

6避孕针对母象没有副作用,打了避孕针的母象2年内不再受孕;

7初生象存活到1岁的比例为70%-80%,此后,直至60岁前,存活率都比较均匀,大约在95%以上,大象一般只活到70岁;

8公园里不存在捕杀行为,偷猎可以不考虑;

公园管理部门有一份过去两年移出公园大象的粗略统计,不幸的是没有捕杀或公园大象的具体数据;

你的任务是,构造一个模型,利用模型研究如何采用避孕措施控制公园大象的总数.同时需要完成以下任务:

1 建立并利用模型推算2-60岁大象可能的存活率,以及目前的大象年龄结构;

2估计每年需要避孕多少大象,才能保证大象总数控制在11000头左右,说明数据不确定性对你的结论的影响,评价一下年龄结构的变化以及对旅游的影响,(你可能被要求观察30-60年);

3假设每年可以移出50-300头大象,避孕大象数可以减少多少,评价如何根据经济效益平衡两种方案;

4有一些反对观点认为,假如出现疾病或者失控的偷猎,使大象总数突然大幅度下降,即使停止避孕,也会对大象群的恢复存在不良影响,研究并回答这个问题;

5公园公管理部门正在构造模型,特别希望批驳那些以缺乏完整数据为由而嘲笑利用模型指导决策的观点.希望你的模型包括一份技术报告能给公园管理部门提一些建议,提高公园管理部门的信心,除此之外,你的报告,还应该包括一个详细的技术流程(最多3页)回答公共关心的问题。

6假如非洲其它公园对你的模型感兴趣,有意利用你的模型,请为公园大象数在300-25000头规模的公园提供一份避孕计划,顺便考虑一下存活率稍有不同或者可以有迁移的情况.

附过去两年的迁出数据

年龄 0 1 2 3 4 5 6 7 8 9

总量1 103 77 71 70 68 61 58 51 52 51

母象1 50 36 41 29 31 30 28 24 22 29

总量2 98 74 69 61 60 54 52 59 58 57

母象2 57 34 33 29 34 28 27 31 25 25

年龄 10 11 12 13 14 15 16 17 18 19

总量1 51 50 51 48 47 49 48 47 43 42

母象1 27 27 26 27 26 25 28 27 19 25

总量2 60 63 64 60 63 59 52 55 49 50

母象2 26 36 38 30 33 34 24 30 21 30

年龄 20 21 22 23 24 25 26 27 28 29

总量1 42 37 39 41 42 43 45 48 49 47

母象1 18 16 19 24 17 25 21 26 29 27

总量2 53 57 65 53 56 50 53 49 43 40

母象2 29 27 40 23 29 24 21 26 24 16

年龄 30 31 32 33 3 4 35 36 37 38 39

总量1 46 42 44 44 46 49 47 48 46 41

母象1 24 22 20 22 24 24 23 25 21 24

总量2 38 35 37 33 20 33 30 29 29 26

母象2 17 16 18 18 15 18 12 17 16 13

年龄 40 41 42 43 4 4 45 46 47 48 49

总量1 41 42 43 38 34 34 33 30 35 26

母象1 24 19 26 20 20 15 16 13 20 11

总量2 10 24 25 22 21 22 11 21 21 19

母象2 6 11 14 10 10 12 8 11 12 9

年龄 50 51 52 53 54 55 56 57 58 59

总量1 21 18 14 5 9 7 6 0 4 4

母象1 10 9 8 4 4 4 3 0 3 2

总量2 15 5 10 9 7 6 5 4 7 0

母象2 6 4 5 4 4 2 3 2 4 0

年龄 60 61 62 63 64 65 66 67 68 69 70

总量1 4 3 2 2 1 3 0 2 1 0 2

母象1 2 1 1 1 0 3 0 0 1 0 2

总量2 2 3 0 2 0 2 0 1 0 0 0

母象2 2 1 0 0 0 1 0 1 0 0 0

假设与分析

1大象性别比接近1:1,初生象的性别比也是大约1:1,采取控制后,也希望维持这个比例;

2过去两年迁出的大象是随机抽样,其结构反映了象群总体的年龄结构;

3 避孕是随机的,母象是否避孕是不可识别的,假设各个年龄的母象是等比例避孕的,比例系数为k ,仅通过调节k 来控制公园大象数量;

4母象初次怀孕大约在10-12岁,简化假设大象初孕时间为11岁,当前状态下,成年象的成活率为s ,生育母象率为r ,老年象的成活率是线性逐渐递减的,因此其成活率可表示为

(70)/10,(6070)i s s i i

设初生象活到1岁的存活率为0s 。

5避孕针对母象没有副作用,打了避孕针的母象2年内不再受孕;且无论打避孕针前母象是否怀孕,一旦打了避孕针,母象就被避孕或中止怀孕,平均每年有 比例的母象处于避孕状态;每年母象的避孕率为 ,每年的避孕方案时瞬时完成的。

6 假设大象的年龄结构是稳定的。

数据处理与分析

(1)2-60岁大象的存活率与年龄结构 母象生育率为

r =1/3.5+(1+0.0135)/2=0.1448头/年 12岁的母象生育母象的生育率为r /6。

由题设知道存活率)99.0,95.0( s 。 以下是第一年迁移出0至70岁大象数据

x1=[103,77,71,70,68,61,58,51,52,51,51,50,51,48,47,49,48,47,43,42,42,37,39,41,42,43,45,48,49,47,46,42,44,44,46,49,47,48,46,41,41,42,43,38,34,34,33,30,35,26,21,18,14,5,9,7,6,0,4, 4, 4 ,3,2,2,1,3,0,2,1,0,2 ]; 以下是第二年迁移的0-70岁大象数据

x2=[98,74 69 61 60 54 52 59 58 57 60 63 64 60 63 59 52 55 49 50 53 57 65 53 56 50 53 49 43 40 38 35 37 33 20 33 30 29 29 26 10 24 25 22 21 22 11 21 21 19 15 5 10 9 7 6 5 4 7 0 2 3 0 2 0 2 0 1 0 0 0];

x=x1+x2;x0=x/norm(x,1);

以下是第一年迁移的0-59岁母象数据

y1=[50 36 41 29 31 30 28 24 22 29 27 27 26 27 26 25 28 27 19 25 18 16 19 24 17 25 21 26 29 27 24 22 20 22 24 24 23 25 21 24 24 19 26 20 20 15 16 13 20 11 10 9 8 4 4 4 3 0 3 2];

以下是第二年迁移的0-59岁母象数据

y2=[57 34 33 29 34 28 27 31 25 25 26 36 38 30 33 34 24 30 21 30 29 27 40 23 29 24 21 26 24 16 17 16 18 18 15 18 12 17 16 13 6 11 14 10 10 12 8 11 12 9 6 4 5 4 4 2 3 2 4 0];

考虑到有些数据较小及抽样的随机性,我们取两次抽样的平均值作为分析的基本数据。

t1=x1(2:11);t2=x2(2:11);

tt=t1+t2;

tt1=tt(1:9);tt2=tt(2:10);tn=tt2./tt1;

mean(tn)

ans =

0.9672

t1=x1(12:21);t2=x2(12:21); tt=t1+t2; tt1=tt(1:9);

tt2=tt(2:10);tn=tt2./tt1; mean(tn)

ans =

0.9820

t1=x1(12:31);t2=x2(12:31); tt=t1+t2; tt1=tt(1:19);

tt2=tt(2:20);tn=tt2./tt1; mean(tn)

ans =

0.9859

t1=x1(12:41);t2=x2(12:41); tt=t1+t2; tt1=tt(1:29); tt2=tt(2:30);tn=tt2./tt1; mean(tn)

ans =

0.9765

t1=x1(12:51);t2=x2(12:51); tt=t1+t2; tt1=tt(1:39); tt2=tt(2:40);tn=tt2./tt1; mean(tn)

ans =

0.9771

t1=x1(12:60);t2=x2(12:60); tt=t1+t2;

tt1=tt(1:48);tt2=tt(2:49);tn=tt2./tt1; mean(tn)

ans =

0.9719

n1=zeros(1,71);

n1(1)=1;n1(2)=0.75;

for i=3:61

n1(i)=n1(i-1)*0.98;

end

n1;

for i=62:71

n1(i)=n1(61)*(1-(i-61)/10);

end

n1;

N1=n1(12:50);

xx=x(12:50);

xx=100*xx/norm(xx,1);

N1=100*N1/norm(N1,1);

t=1:39;plot(t,N1,t,xx);axis([10,40,0,5]);title('图1')

通过以上分析大致可以得到,1-60岁大象的存活率约为0.98。0-70岁年龄结构向量见图2。

y0=100*x0/norm(x0,1);

a=0:70; bar(a,y0,'stacked'); title('图2')

下面我们取0120.75,0.98s s s 。

m1=zeros(1,71);

m1(1)=1;

m1(2)=0.75/1.029; for i=3:61

m1(i)=m1(i-1)*0.977/1.029;

end

m1;

for i=62:71

m1(i)=m1(61)*(1-(i-61)/10);

end

m1;

m1=100*m1/norm(m1,1);

bar(a,m1,'stacked');

title('图3 稳定的年龄结构')

plot(a,m1,'r-',a,y0,'b-.');

title('图4 年龄结构当前状态与稳定状态比较')

ans =

0.1981 -0.0694

从所给的数据来看,象群的年龄结构还没有达到相对稳定的状态。 根据以上数据,大体可以得到

l=zeros(71,71); l(1,13)=0.1448/6;l(2,1)=0.75; for i=14:61 l(1,i)=0.1448; end l;

for j=3:61 l(j,j-1)=0.98; end; l;

for k=62:71

l(k,k-1)=0.98-0.98*(k-61)/10; end l;

eig(l);

矩阵的唯一正特征值为1.0322。

对于不同的存活率,得到的唯一正特征值为:

0000.75,0.97, 1.023;0.75,0.98, 1.0322;0.75,0.99, 1.042.

s s p s s p s s p

下面我们估计每年处于避孕状态母象的比率 。此时,女性生育率为0.1448(1) 。 记

0120.75,0.98s s s

111112

13010120.1448(1)/6,0.1448(1)(1461)i i s s s s s i L

由(6)式得

131461(1)1q L 解得 1148

012221

10.376,0.6240.1448[1/6(1)/(1)]

s s s s s

1-1/(0.1448*0.75*0.98^11*(1/6+(0.98-0.98^49)/0.02)) ans = 0.6240

即每年应该有62.4%的母象处于避孕状态。

为了保证有62.4%的母象处于避孕状态,下面分析每年应该打避孕针母象的比例 。 在假设3和假设5的前提下,如果每年打避孕针母象比例为 。母象可以分成3类:即 当年被打避孕针而上一年没有被打避孕针或上一年被打避孕针而本年没有被打避孕针,比例为

2(1) ;连续两年被打避孕针2 ;连续两年没有被打避孕针。只有最后一类母象具有生育

能力。因此,只需要 满足方程 2

2(1) 1-sqrt(0.376)

ans = 0.3868 ans = 0.3868 0.3868*5500 ans =

2.1274e+003

解得 0.387 ,即每年大约需要给2127头母象打避孕针。

在方案实施过程中,实际上根本不需要打这么多针,因为许多小象还是可以识别的。可以采取随机抽样的打针方式,对于抽到的小象只计数不打针,直至计满2127头母象,就算完成当年任务。采取打避孕针的方案对象群的年龄结构是由一些影响的,下面给出了打与不打避孕针情况下稳定的象群年龄结构与各你阿爸年龄段象群数的比较。 m1=zeros(1,71);

m1(1)=1;m1(2)=0.75/1.0322; for i=3:61

m1(i)=m1(i-1)*0.98/1.0322;

end; m1;

for i=62:71

m1(i)=m1(61)*(1-(i-61)/10);

end; m1;

n1=zeros(1,71);

n1(1)=1;n1(2)=0.75;

for i=3:61

n1(i)=n1(i-1)*0.98;

end; n1;

for i=62:71

n1(i)=n1(61)*(1-(i-61)/10);

end;n1;

subplot(1,2,1)

a=0:70;

plot(a,m1,'r-',a,n1,'b--');

title('图5年龄结构比较');

axis([0,70,0,1]);

M1=5500*m1/norm(m1,1);N1=5500*n1/norm(n1,1);

a=0:70;

subplot(1,2,2)

plot(a,M1,'r-',a,N1,'b--')

title('图5各年龄段大象数比较图')

axis([-0,70,0,300])

通过以上两个图的比较,可以发现采取避孕措施,将使幼象、小象数减少,中老年象数增加。

由于采取避孕措施,使得初生小象数减少,因此会不可避免地引起象群年龄结构的改变,下面分析,15年、30年、60年后的象群年龄结构。

L=zeros(71,71);

L(1,13)=0.1448*0.376/6;L(2,1)=0.75;

for i=14:61

L(1,i)=0.1448*0.376;end; L;

for j=3:61

L(j,j-1)=0.98; end; L;

for k=62:71

L(k,k-1)=0.98-0.98*(k-61)/10; end; L;

eig(L);

n15=L^15*x0';n30=L^15*n15;n60=L^30*n30;

n15=100*n15/norm(n15,1);n30=100*n30/norm(n30,1);

n60=100*n60/norm(n60,1);

M15=5500*n15/norm(n15,1);M30=5500*n30/norm(n30,1); M60=5500*n60/norm(n60,1);

bar(a,55*y0)

title('图6a 避孕前种群量分布');axis([0,70,0,250])

bar(a,M15)

title('图6b 避孕15年后种群量分布');axis([0,70,0,250])

bar(a,M30)

title('图6c避孕30年后种群量分布');axis([0,70,0,250])

M60=5500*n60/norm(n60,1);

bar(a,M60)

title('图6d 避孕前种群量分布');axis([0,70,0,250])

n70=L^70*x0';n70=100*n70/norm(n70,1);k1=100*m1/norm(m1,1);

图7给出了避孕前后年龄结构稳定状态的比较

plot(a,k1,'r-',a,n70,'b-.');

title('图7 避孕前后稳定的年龄结构');axis([0,70,0,5])

数据不确定性对结果的影响

分别取0120.7,0.8,0.95,0.99s s s

1148

012221

10.421,0.5790.1448[1/6(1)/(1)]

s s s s s

1-1/(0.1448*0.7*0.95^11*(1/6+(0.95-0.95^49)/0.05)) ans = 0.0115

1-sqrt(1-0.0115) ans =

0.0058

1-1/(0.1448*0.8*0.99^11*(1/6+(0.99-0.99^49)/0.01)) ans = 0.7466

1-sqrt(1-0.7466) ans = 0.4966

[0.012,0.757]

每年需避孕的母象比例为0.6%—49.7% 。

对于每年可以迁移50-300头大象及0120.75,0.98s s s ,下面分析避孕方案的变化及最经济的方案。

设增长率为p ,对于 0120.75,0.98s s s

111112

13010120.1448(1)/6,0.1448(1)(1461)i i s s s s s i L 121360

131461()///1q p p p p L

0011221111121301

1401

2

'/,'/,'/'0.1448(1')'/6,'0.1448(1')'(')(')(1461)

i s s p s s p s s p

s s s s s i

131461()'''1q p L

1148

012221

1'0.1448''[1/6'(1')/(1')]

s s s s s

当 1.01p ,每年的避孕率为28.2%,每年迁出110头; 当 1.02p ,每年的避孕率为16.8%,每年迁出220头; 当 1.025p ,每年的避孕率为11.3%,迁出275头。

1-1/(0.1448*0.75*0.98^11*(1/6+(0.98-0.98^49)/0.02)) ans = 0.6240 1-sqrt(0.376) ans = 0.3868

p=1.01;

1-p^12./(0.1448*0.75*0.98^11*(1/6+(0.98./p-(0.98./p).^49)/(1-0.98./p)))

ans = 0.4848

1-sqrt(0.5152) ans = 0.2822

p=1.02;

1-p.^12./(0.1448*0.75*0.98^11*(1/6+(0.98./p-(0.98./p)^49)/(1-0.98/p))) ans = 0.3080 1-sqrt(0.692) ans = 0.1681

p=1.025;

1-p.^12./(0.1448*0.75*0.98^11*(1/6+(0.98./p-(0.98./p)^49)/(1-0.98/p))) ans = 0.2036 1-sqrt(0.7864) ans =

0.1132

进一步分析可以知道,对于 0120.75,0.98s s s ,如果增长率为

(1 1.0322,11000(p-1))p p 即每年移,

0011221111121301

14012

'/,'/,'/'0.1448(1')'/6,'0.1448(1')'(')(')

(1461)

i s s p s s p s s p

s s s s s i

1148

012221

'10.1448''[1/6'(1')/(1')]

s s s s s

每年需要避孕的母象为5500' ,每年需要迁移的大象数为11000(1)p 。从相关的文献中我们大致可以得到,设平均每迁移一头大象的成本约避孕一头大象费用的 倍,由此得到增长率为p 时的总费用函数为

()(5500*'11000**(1))c p k t p

()'2(1)y p t p

易见,1,0.3868, 1.01,0.346, 1.02,0.396p y p y p y

clear;

p=1:0.002:1.032;

q=1-p.^12./(0.1448*0.75*0.98^11*(1/6+(0.98./p-(0.98./p).^49)./(1-0.98./p)))

q =

Columns 1 through 5

0.6240 0.5989 0.5725 0.5446 0.5154

Columns 6 through 10

0.4848 0.4526 0.4189 0.3836 0.3467

Columns 11 through 15

0.3080 0.2676 0.2254 0.1814 0.1354

Columns 16 through 17

0.0875 0.0376

a=1-sqrt(1-q)

a =

Columns 1 through 5

0.3868 0.3667 0.3461 0.3252 0.3039

Columns 6 through 10

0.2822 0.2601 0.2377 0.2149 0.1917

Columns 11 through 15

0.1681 0.1442 0.1199 0.0952 0.0702

Columns 16 through 17

0.0448 0.0190

y=a+15*(p-1)

y =

Columns 1 through 5

0.3868 0.3967 0.4061 0.4152 0.4239

Columns 6 through 10

0.4322 0.4401 0.4477 0.4549 0.4617

Columns 11 through 15

0.4681 0.4742 0.4799 0.4852 0.4902

Columns 16 through 17

0.4948 0.4990

Leslie矩阵模型预测人口

Leslie 矩阵模型预测人口 Leslie 矩阵模型的基本概念 参数定义[11] 我们将中国人口按年龄段分成数段,因此当段数到达一定大小的时候就能包含全部年龄层的人。再将时间序列也分割成数段(一年为一段即可研究年度人口总数),得到: x k (i )——在时间周期 k 第 i 个年龄段的人数 i =1,2,3,…n 注:这里的x k (1)表示的最低年龄段的人数,如0岁~5岁的人数;一定存在整数n 使得 x k (n )表示的是年龄最高的人的人数,如“100岁以上的人”的数量。 其他关于人口的参数: 1)b k (i)——在时间周期 k 第 i 年龄组的女性的生育率,即女性生的孩子的人数与女性数的比例,我们也称其为年龄别生育率 2)d k (i)——在时间周期k 第i 年龄组的死亡率,即死亡人数除以这一年龄组总人数,我们也称其为年龄别死亡率 Leslie 矩阵 1.转移过程 在一个时间周期内x k?1(i )里的人数转移到x k (i +1)里,考虑死亡的人数我们得到如下式子: 11(1)()(1()),1,2, k k k x i x i d i i n --+=-= (4-1) 下面来讨论i =0的情况,即新生儿人数,在这里我们做了一个假设,女性人口大致占总人口的一半(通过以往的人口普查可以得到证实),因此在时间周期k 的第个i 年龄段的女性人数为 1 ()2 k x i ,则可以通过女性的年龄别生育率预测第一个递推关系如下: 1111 ()() ()2 n k k k i x i b i x i --==∑ (4-2) 2. 人口发展模型 1 11111111 11 1(0) (1)(1)()22 2 2 1(0) 00 001(1)00001(1) 0k k k k k k k k k b b b n b n d x x d d n --------??- ? ?- ? =? ?- ? ? ?--? ? (4-3)

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1. 相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 例1. A,B,C,D,E 五人并排站成一排,如果 A,B 必须相邻且B 在A 的右边,则不同的排法有( ) A 、60 种 B 、48 种 C 、36 种 D 、24 种 2. 相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几 个元素全排列,再把规定的相离的 几个元素插入上述几个元素的空位和两端 ? 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440 种 B 、3600 种 C 、4820 种 D 、4800 种 3. 定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法 例3.A,B,C,D,E 五人并排站成一排,如果 B 必须站在A 的右边(A, B 可以不相邻)那么不同的排法有 ( ) 4. 标号排位问题分步法:把元素排到指定位置上, 可 先把某个元素按规定排入, 第二步再排另一个元素, 如 此继续下去,依次即可完成 ? 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所 填数字均不相同的填法有( ) A 、6 种 B 、9 种 C 、11 种 D 、23 种 5. 有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法 例5.( 1 )有甲乙丙三项任务,甲需 2人承担,乙丙各需一人承担,从 10人中选出4人承担这三项任务, 不同的选法种数是( ) A 、1260 种 B 、2025 种 C 、2520 种 D 、5040 种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口 6. 全员分配问题分组法: 例6.( 1)4名优秀学生全部保送到 3所学校去,每所学校至少去一名,则不同的保送方案有多少种? A 、24 种 B 、60 种 C 、90 种 D 、 120 种 4人,则不同的分配方案有( 4 4 4 C 12C 8C 4 种 4 4 3C 12C 8C C 、 C 12C 8 A 3 种

人口预测模型经典

中国人口预测模型 摘要 本文对人口预测的数学模型进行了研究。首先,建立一次线性回归模型,灰色序列预测模型和逻辑斯蒂模型。考虑到三种模型均具有各自的局限性,又用加权法建立了熵权组合模型,并给出了使预测误差最小的三个预测模型的加权系数,用该模型对人口数量进行预测,得到的结果如下: 其次,建立Leslie人口模型,充分反映了生育率、死亡率、年龄结构、男女比例等影响人口增长的因素,并利用以1年为分组长度方式和以5年为 负指数函数,并给出了反映城乡人口迁移的人口转移向量。 最后我们BP神经网络模型检验以上模型的正确性 关键字:一次线性回归灰色序列预测逻辑斯蒂模型Leslie人口模型BP神经网络

一、问题重述 1. 背景 人口增长预测是随着社会经济发展而提出来的。由于人类社会生产力水平低,生产发展缓慢,人口变动和增长也不明显,生产自给自足或进行简单的以货易货,因而对未来人口发展变化的研究并不重要,根本不用进行人口增长预测。而当今社会,经济发展迅速,生产力达到空前水平,这时的生产不仅为了满足个人需求,还要面向社会的需求,所以必须了解供求关系的未来趋势。而人口增长预测是对未来进行预测的各环节中的一个重要方面。准确地预测未来人口的发展趋势,制定合理的人口规划和人口布局方案具有重大的理论意义和实用意义。 2. 问题 人口增长预测有短期、中期、长期预测之分,而各个国家和地区要根据实际情况进行短期、中期、长期的人口预测。例如,中国人口预期寿命约为70岁左右,因此,长期人口预测最好预测到70年以后,中期40—50年,短期可以是5年、10年或20年。根据2007年初发布的《国家人口发展战略研究报告》(附录一)及《中国人口年鉴》收集的数据(附录二),再结合中国的国情特点,如老龄化进程加速,人口性别比升高,乡村人口城镇化等因素,建立合理的关于中国人口增长的数学模型,并利用此模型对中国人口增长的中短期和长期趋势做出预测,同时指出此模型的合理性和局限性。 二、问题的基本假设及符号说明 问题假设 1. 假设本问题所使用的数据均真实有效,具有统计分析价值。 2. 假设本问题所研究的是一个封闭系统,也就是说不考虑我国与其它国家的人口迁移问题。 3. 不考虑战争 瘟疫等突发事件的影响 4. 在对人口进行分段处理时,假设同一年龄段的人死亡率相同,同一年龄段的育龄妇女生育率相同。 5. 假设各年龄段的育龄妇女生育率呈正态分布 6.人类的生育观念不发生太大改变,如没有集体不愿生小孩的想法。 7.中国各地各民族的人口政策相同。 符号说明 ()i a t --------------------第t 时间区间内第i 个年龄段人口总数 ()i c t --------------------第t 时间区间内第i 个年龄段人口总数占总人口的比例 ()k i c t --------------------第t 时间区间内第i 个年龄段中第k 年龄值人口总数占总人口 的比例 ()A t --------------------第t 时间区间内各年龄段人口总数的向量 ()P t --------------------第t 时间区间各年龄段人口总数向量转移矩阵

排列组合问题经典题型解析含答案

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A 的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种D、120种

4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( ) A 、6种 B 、9种 C 、11种 D 、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( ) A 、1260种 B 、2025种 C 、2520种 D 、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( ) A 、44412 8 4 C C C 种 B 、44412 8 4 3C C C 种 C 、44312 8 3 C C A 种 D 、 4441284 33 C C C A 种

人口预测的最小二乘模型

实验24 人口预测的最小二乘模型 据统计,上世纪六十年代世界人口数据如下: 表24-1 世界人口数据(单位:亿) 年1960 1961 1962 1963 1964 1965 1966 1967 1968 人口29.72 30.61 31.51 32.13 32.34 32.85 33.56 34.20 34.83 的方法就是数据拟合方法。 一、问题分析 据人口增长的统计资料和人口理论,当人口总数N 不是很大时,在不长的时期内,人口增长率与人口数N成正比,这就是著名的马尔萨斯人口模型,用微分方程描述为 dN =(24.1) bN dt 其中,b为人口增长系数。用分离变量法解常微分方程,得ln N = b t + a,即 =(24.2) ()a bt N t e+ 由此可知,马尔萨斯模型是人口数量按指数函数递增的模型。由于指数函数表达式中a和b均未知,需要用人口数据来确定。即用指数函数对数据进行拟合,确定指数函数中参数使指数函数与人口数据偏差(残差平方和)尽可能小。下图是经数所拟合后的指数函数图形与原始数据散点图的对比,残差平方和为3.6974×10- 4 图24-1指数函数图形与原始数据散点图 为了计算方便,将上式两边同取对数,还原为ln N = a + b t,令 y = ln N或N = e y

- 160 - 第三章 综合实验 160 变换后的拟合函数为 y (t ) = a + b t (24-3) 由人口数据取对数(y = ln N )计算,得下表 表24-2 世界人口数据(单位:亿) 二、求解超定方程组的数学原理 根据表中数据及等式a + b t k = y k ( k = 1,2,……,9)可列出关于两个未知数a 、b 的9个方程的线性方程组 ????? ??? ?? ?? ???=+=+=+=+=+=+=+=+=+5505 .319685322.319675133.319664920.319654763.319644698.319634503.319624213.319613918.31960b a b a b a b a b a b a b a b a b a (24-4) 由于这一问题中方程数目多于未知数个数,被称为超定方程组,用矩阵形式表示 为 AU = f (24-5) 显然A 矩阵的行数大于列数。求解这一类方程组的数学原理是将等式左、右同时乘以A 的转置矩阵,得新的线性方程组 A T AU =A T f (24-6) 令G =A T A , b = A T f 。得系数矩阵为方阵的线性方程组。 GU=b 求解得原方程组的最小二乘解(广义解)。由于原方程组一般无解,将最小二乘解代入下式计算 R = f – A U (24-7) 通常会得非零向量,这一向量称为残差。残差的内积可以用来度量最小二乘解的逼近程度。

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析 一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -=+---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质: .2 n n n n n m n m n m n m n n m n C C C C C C C C 21011 =+++=+=+--…… ,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-++++ +=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

Leslie人口模型及例题详解

Leslie 人口模型 现在我们来建立一个简单的离散的人口增长模型,借用差分方程模型,仅考虑女性人口的发展变化。如果仅把所有的女性分成为未成年的和成年的两组,则人口的年龄结构无法刻划,因此必须建立一个更精确的模型。20世纪40年代提出的Leslie 人口模型,就是一个预测人口按年龄组变化的离散模型。 模型假设 (1) 将时间离散化,假设男女人口的性别比为1:1,因此本模型仅考虑女性人口的发展变 化。假设女性最大年龄为S 岁,将其等间隔划分成m 个年龄段,不妨假设S 为m 的整数倍,每隔m S /年观察一次,不考虑同一时间间隔内人口数量的变化; (2) 记)(t n i 为第i 个年龄组t 次观察的女性总人数,记 )](,),(),([)(21t n t n t n t n m = 第i 年龄组女性生育率为i b (注:所谓女性生育率指生女率),女性死亡率为i d ,记 1,i i s d =-假设,i i b d 不随时间变化; (3) 不考虑生存空间等自然资源的制约,不考虑意外灾难等因素对人口变化的影响; (4) 生育率仅与年龄段有关,存活率也仅与年龄段有关。 建立模型与求解 根据以上假设,可得到方程 )1(1+t n = ∑=m i i i t n b 1 )( )()1(1t n s t n i i i =++ 1=i ,2.…,m -1 写成矩阵形式为 )()1(t Ln t n =+ 其中,L =?????? ? ? ??--00000000 0121121m m m s s s b b b b (1) 记 )]0(,),0(),0([)0(21m n n n n = (2) 假设n (0)和矩阵L 已经由统计资料给出,则 t 1 +t

高中排列组合知识点汇总和典型例题[全]

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3)111111(1)! (1)! (1)!(1)! !(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计 数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4)两种途径:①元素分析法;②位置分析法。 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空

人口模型预测数学建模作业

上传是为了分析数学的乐趣,请粘贴复制的时候也多思考哈。为了更多的学子们 2014 年数学建模论文 第二套 题目:人口增长模型的确定 专业、姓名:土木135 提交日期:2015/7/2 晚上

题目:人口增长模型的确定 摘要 对美国人口数据的变化进行拟合,并进行未来人口预测,在第一个模型中,考虑到人口连续变化的规律,用微分方程的方法解出其数量随时间变化的方程,用 matlab 里的 cftool 工具箱求出参数,即人口净增长率 r=, 对该模型与实际数据进行对比,并计算了从 1980年后每隔10 年的人口数据,与实际对比,有很大出入。因此又改进出更为符合实际的阻滞增长模型,应用微分方程里的分离变量法和积分法解出其数量随时间变化的方程,求出参数人口增长率r=和人口所能容纳最大值 x m =, 与实际数据对比,拟合得很好,并预测出 1980年后每隔 10 年的人口数据,与实际对比,比较符合。为了便于比较两个模型与实际数据的描述情况作对比,又做出了两个模型与实际数据的对比图,以及两个模型的误差图。 关键词:人口预测微分方程马尔萨斯人口增长模型阻滞增长模型 一、问题重述 1790-1980 年间美国每隔 10 年的人口记录如下表所示 表 1 人口记录表 试用以上数据建立马尔萨斯 (Malthus) 人口指数增长模型,并对接下来的每隔十年预测五次人 口数量,并查阅实际数据进行比对分析。 如果数据不相符,再对以上模型进行改进,寻找更为合适的模型进行预测。 二、问题分析 由于题目已经说明首先用马尔萨斯人口增长模型来刻划,列出人口增长指数增长方程并求解,并进行未来 50 年内人口数据预测,但发现与实际数据有较大出入。考虑到实际的人口增长率是受实际情况制约的,因此,使人口增长率为一变化的线性递减函数,列出人口增长微分方程,求出其方程解,并预测未来五十年内人口实际数据。 三、问题假设

中国人口预测模型

全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮 件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问 题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他 公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正 文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反 竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):西安理工大学 参赛队员 (打印并签名) :1. 2. 3. 指导教师或指导教师组负责人 (打印并签名): 日期: 20011 年 7 月4 日赛区评阅编号(由赛区组委会评阅前进行编号):

中国人口增长模型 摘要:人口数量的变化,关系到一个国家的未来。认识人口数量的变化规律,建立人口模型,能过较准确的预报,是有效控制人口增长的前提。针对题目所提要求,我们首先建立了Malthus模型。此模型假设人口增长率为常数,即人口按指数增长。但实际上人口增长率受环境、资源等多重因素影响,并不是常数。用Malthus模型计算1982~2005年的中国人口总量并与实际值比较发现,在短期内(1982~1995)Malthus模型能过较准确的计算出人口总量,但中长期的计算值误差较大,所以此模型只适用于短期的人口预测。为使人口预报特别是中长期预报更好地符合实际情况,必须修改指数增长模型关于人口增长率是常数这个基本假设。分析人口增长到一定数量后增长率下降的主要原因,注意到,自然资源、环境条件等因素对人口起着阻滞作用,并随着人口的增加,阻滞作用越来越大。假设人口增长率随着人口总量的增加线性递减,从而建立了性能更好的Logistic 模型。经对比发现,作为短期预测,Malthus模型和Logistic模型不相上下,但作为中长期预测Logistic模型比Malthus模型更合理一些。

排列组合专题复习及经典例题详解

排列组合专题复习及经典例题详解 1.学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 m种不完成一件事,有几类办法,在第一类办法中有1.分类计数原理(加法原理):1mm种不同的方法,类型办法中有种不同的方法……在第n同的方法,在第2类办法中有n2N?m?m?...?m 种不同的方法.那么完成这件事共有n12m种不步有个步骤,做第12.分步计数原理(乘法原理):完成一件事,需要分成n1mm种不同的方法;那么完成这步有种不同的方法……,做第同的方法,做第2步有n n2N?m?m?...?m种不同的方法.件事共有n12特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n m?nm?n 时叫做全排列. 时叫做选排列,排列个不同元素中取出m个元素的一个,4.排列数:从n个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n个不同m P. 个元素的排列数,用符号表示元素中取出m n n!?m)?Nmn(m?)...()(1n?2n?m1)??,n、?(?Pnn5.排列数公式: n(n?m)!1mmm?mPPP??排列数具有的性质:nn1?n特别提醒: 规定0!=1 1 6.组合:从n个不同的元素中,任取m(m≤n)个不同元素,组成一组,叫做从n个不同元素中取m个不同元素的一个组合. 7.组合数:从n个不同元素中取m(m≤n)个不同元素的所有组合的个数,叫做从n个m C. 个不同元素的组合数,用符号表示不同元素中取出m nm Pn(n?1)(n?2)...(n?m?1)n!mn???C.组合数公式:8 nm)!m!(n?m!mP mmn?mmmm?1C?CC?C?C;②组合数的两个性质:①nnnnn?1特别提醒:排列与组合的联系与区别. 联系:都是从n个不同元素中取出m个元素. 区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.

leslie人口增长模型

人口增长预测模型 摘要 本文建立了我国人口增长的预测模型,对各年份全国人口总量增长的中短期和长期趋势作出了预测,并对人口老龄化、人口抚养比等一系列评价指标进行了预测。最后提出了有关人口控制与管理的措施。 模型Ⅰ:建立了Logistic人口阻滞增长模型,利用附件2中数据,结合网上查找补充的数据,分别根据从1963年、1980年、2005年到2012年四组总人口数据建立模型,进行预测,把预测结果与附件1《国家人口发展战略研究报告》中提供的预测值进行分析比较。得出运用1980年到2005年的总人口数建立模型预测效果好,拟合的曲线的可决系数为0.9987。运用1980年到2005年总人口数据预测得到2010年、2020年、2033年我国的总人口数分别为13.55357亿、14.18440亿、14.70172亿。 模型Ⅱ:考虑到人口年龄结构对人口增长的影响,建立了按年龄分布的女性模型(Leslie模型):以附件2中提供的2001年的有关数据,构造Leslie矩阵,建立相应Leslie模型;然后,根据中外专家给出的人口更替率1.8,构造Leslie矩阵,建立相应的 Leslie模型。 首先,分别预测2002年到2050年我国总人口数、劳动年龄人口数、老年人口数(见附录8),然后再用预测求得的数据分别对全国总人口数、劳动年龄人口数的发展情况进行分析,得出:我国总人口在2010年达到14.2609亿人,在2020年达到14.9513亿人,在2023年达到峰值14.985亿人;预测我国在短期内劳动力不缺,但须加强劳动力结构方面的调整。 其次,对人口老龄化问题、人口抚养比进行分析。得到我国老龄化在加速,预计本世纪40年代中后期形成老龄人口高峰平台,60岁以上老年人口达4.45亿人,比重达33.277%;65岁以上老年人口达3.51亿人,比重达25.53%;人口抚养呈现增加的趋势。 再次,讨论我国人口的控制,预测出将来我国育龄妇女人数与生育旺盛期育龄妇女人数,得到育龄妇女人数在短期内将达到高峰,随后又下降的趋势的结论。 最后,分别对模型Ⅰ与模型Ⅱ进行残差分析、优缺点评价与推广。 关键词 Logistic人口模型 Leslie人口模型人口增长预测 MATLAB软件

人口预测论文

人口增长预测 数学实验 指导教师:何仁斌 城市建设与环境工程学院环境工程1班 姓名:郑惋月 学号:20096545

人口增长预测 摘要:人口问题是当前世界上人们最关心的问题之一.认识人口数量的变化规律,作出较准确的预报,是有效控制人口增长的前提。 本文主要介绍了两个最基本的人口模型,即人口指数增长模型和阻滞增长模型,并利用美国1790年至1980年人口统计数据,对模型做出检验,最后用它预测2010年美国人口。 模型一:建立了指数增长模型,根据规律建立模型公式——年增长率r不变。我们要验证该模型是否适用。取题目中给出的数据1790年至1900年的,数据拟合用MATLAB软件计算的增长率r以及初始人口数。讲以上两参数带入公式,算的人口数量,将之与实际人口数相比较画出对比图形,发现比较相符。又取1790至2000年的数据,重复刚才步骤。发现算出数据前半部分相符,但后半部分明显增加的比实际数据快。所以,Malthus人口模型只适用于短期,并不适用于长期的人口预测。因为人口在增长到一定程度时,由于资源和环境对人口增长的阻滞作用使增长率下降。 模型二:建立了阻滞增长人口阻滞增长模型,利用题目中给出的数据。根据公式做出人口的时间变化率与人口容量的关系图,以及人口与时间的关系图。选择1860年至1990年的数据(去掉个别异常数据),用MATLAB软件计算出增长率和人口容量。根据得到的数据带入公式的到计算的人口数量与实际数据作比较。可以看出这个模型的吻合度相当好,由于阻滞增长人口模型。可以据此模型有效的预测在以后一段时间内如2020的美国人口增长。依次内推也可以利用此模型来预测世界人口在相当一段时间内的人口增长。 模型三:对模型进行了进一步的修正。 最后,分别对三模型进行优缺点评价与改进。 关键字:人口预测; matlab软件;人口指数增长模型;阻滞增长模型

排列组合问题经典题型(含解析)

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A、6种 B、9种 C、11种 D、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是() A、1260种 B、2025种 C、2520种 D、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有() A、 444 1284 C C C 种 B、 444 1284 3C C C 种 C、 443 1283 C C A 种 D、 444 1284 3 3 C C C A种 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为() A、480种 B、240种 C、120种 D、96种 7.名额分配问题隔板法: 例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A、210种 B、300种 C、464种 D、600种 (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种? (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?

中国人口预测模型(精)

中国人口预测模型 天津师范大学数学科学学院 1003班 刘瑶(10505135)周丽(10505110) 2013年6月17日星期一

中 国 人 口 预 测 模 型 摘 要 为了加快中国的经济建设进程,全面落实科学的发展观,按照构建社会主义和谐社会的要求,实现人口与经济社会资源环境的协调和可持续发展。我们确定人口发展战略,必须既着眼于人口本身的问题,又处理好人口与经济社会资源环境之间的相互关系,构建社会主义和谐社会,统筹解决人口数量、素质、结构、分布等问题。 本文是以《中国人口统计年鉴》公布的部分人口数据为基准(其他部分数据通过网站查询得到),通过合理的假设和数学模型得到了对于中国人口增长预测的统计模型。对Leslie 人口模型改进,构建了反映生育率和死亡率变化率负指数函数。基于leslie 的改 进模型: (t)X B B B +(t)X A A A =t)▽n +X(t 22) -(n 3 2112) -(n 3 21 此模型考虑到了生育率的变化,并是针对总人口分布处理的,克服了leslie 模型的不足,很适合做长期预测。得到结论:人口数量先增大后减小,峰值出现在2040年,届时人口数量将达到最大,为15.869亿。 关键词: 人口预测, Leslie 人口模型改进 , 长期预测 一 问题的背景 中国是世界上人口最多的发展中国家,人口多,底子薄,耕地少,人均占有资源相对不足,是我国的基本国情,人口问题一直是制约中国经济发展的首要因素。新中国成立50多年来,我国人口发展经历了前30年高速增长和后20年低速增长两大阶段:从建国初期到上世纪70年代初,中国人口再生产由旧中国的高出生、高死亡率进入高出生、低死亡率的人口高增长时期,1950-1975年人口出生率始终保持在30‰以上, 最高达到37‰(附录1)。70年代以后,人口过快增长的势头得到迅速扭转,人口出生率、自然增长率、妇女总和生育率有了明显下降,人口出生率由70年代初的33‰大幅度下降到80年代的21‰, 妇女总和生育率也由6下降到2.3左右。90年代以来,随着我国经济高速发展,人民文化和健康水平逐步提高,计划生育工作的不断深入,在20-29岁生育旺盛人数年均超过1亿的情况下, 人口出生率依然呈现大幅下降的趋势,到2000年底人口出生率从1990年的21.06‰下降到14.03‰,自然增长率由1990年的14.39‰下降到7.58‰, 妇女总和生育率也下降到2以下。进入90年代末期, 我国人口再生产实现了低出生、低死亡、低增长的历史性转变,我国用20多年时间完成了国外近200年的历程。到2000年底全国总人口为12.6743亿, 成功实现了“九五”计划将人口控制在13亿的奋斗目标。 中国政府自1980年在全国城乡实行计划生育基本国策以来成果卓著,据国家计生委“计划生育投入与效益研究”课题组的研究成果,20年共少生2.5亿个孩子。若从70年代算起,至今至少少生3亿人口,这有效地控制了人口的快速增长,为中国现代化建设、全面实现小康打下坚实的基础, 这同时也是对世界人口的增长和控制做出了杰出贡献。但是由于中国人口基数大,人口增长问题依然十分严峻,1990-1999年每年平均净增人口约1300万,这仍然对我国社会和经济产生巨大的压力。在我国现代化进程中,必须实现人口与经济、社会、

人口预测模型

一、问题重述 人口的数量和结构是影响经济社会发展的重要因素。从20世纪70年代后期以来,我国实行计划生育政策,有效地控制了我国人口的过快增长,对经济发展和人民生活的改善做出了积极的贡献。但该政策实施30多年来,其负面影响也开始显现。如临近超低生育率水平、人口老龄化、出生性别比失调等问题,这些对经济社会健康、可持续发展将产生一系列影响,引起了中央和社会各界的重视。党的十八届三中全会提出了开放单独二孩,今年以来许多省、市、自治区相继出台了具体的政策。政策出台前后各方面人士对开放“单独二孩”的效应进行了大量的研究和评论。 党的十八届三中全会《决定》提出,启动实施单独两孩政策。这是新时期我国生育政策的重大调整完善,备受社会关注。 请解决以下问题: (1)针对国家卫生计生委副主任王培安单独二孩不会导致人口大增的人口预测,根据每十年一次的全国人口普查数据,建立模型,对单独二孩会不会导致人口大增进行分析,并发表自己的独立见解。 (2)建立数学模型,针对深圳市讨论计划生育新政策(可综合考虑城镇化、延迟退休年龄、养老金统筹等政策因素,但只须选择某一方面作重点讨论)对未来人口数量、结构及其对教育、劳动力供给与就业、养老等方面的影响。 二、问题分析 问题1、启动实施单独二胎政策,是经过充分的论证和评估的。对于我国目前为什么要放开二胎政策这个问题,以及为什么单独二孩不会导致人口大增是有以下情况决定的。 进入本世纪以来,我国人口形势发生了重大变化。一是生育水平稳中趋降,我国目前总和生育率为1.5-1.6,如果不实行单独二胎新政策,总和生育率将继续下降。二是人口结构性问题,劳动年龄人口开始减少,人口老龄化速度加快,出生人口性别比长期偏高。三是家庭规模持续缩减。四是城乡居民生育意愿发生很大变化,少生优生、优育优教的生育观念正在形成。 通过建立动态差分方程模型预测老龄化的人口数、劳动人口数以及总人口数。根据预测的数据画出老龄化程度的趋势图和人口红利的趋势图,最终通过分析老龄化程度、生育率高低、出生性别比例和人口红利变化来验证单独二孩政策的必要性以及单独二孩不会导致人口大增的预测。

排列组合题目

排列组合问题经典题型与通用方法 解析版 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有() 例1.,,,, A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. A B C D E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有例3.,,,, () A、24种 B、60种 C、90种 D、120种 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A、6种 B、9种 C、11种 D、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是() A、1260种 B、2025种 C、2520种 D、5040种 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?7.名额分配问题隔板法: 例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计. 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有() A、210种 B、300种 C、464种 D、600种 10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式 ()()()() ?=+-? n A B n A n B n A B 例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案? 11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。 例11.现1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种? 12.多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理。 例12.(1)6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是() A、36种 B、120种 C、720种 D、1440种 .13.“至少”“至多”问题用间接排除法或分类法:

中国人口预测模型

中国人口预测模型 专业:数学与应用数学姓名:蒲世吉指导教师:焦玉娟 摘要本文针对我国人口现状,综合考虑城镇和乡村男女性比率、出生率、死亡率及国内人口迁移等因素,建立人口发展方程,结合最优控制原理及曲线拟合等技术,分别建立了城镇和乡村男、女性人口变化模型.通过实际数据的检验,结果表明该模型能够较好地刻画我国目前的人口现状,从而用它可以预测我国人口的未来发展趋势并为国家进行相关人口政策的制定提供必要的理论指导. 根据模型预测,在2015年,我国人口将达到139846万人;在2030年,我国人口将达到峰值144679万人;在2050年将达到141527万人.这与国家人口发展战略研究报告中预测的数据接近.从全国总人口变化曲线上直接看来,在国家人口政策相对稳定的情况下,2030年后我国人口逐渐有所减少. 关键词人口模型,人口发展方程,最优化控制原理,人口增长率 ABSTRACT This paper concerns the status of our country's population,with consideration of the sex ratio ,birthrate ,mortality and inland migration of counties and towns, this paper establish both the male and female population model of the chinese counties and towns with optimal control theory and curve fitting and so on. Through checking the model with real data, the results manifest that this model

相关文档