文档库 最新最全的文档下载
当前位置:文档库 › 杆状病毒表达系统简介

杆状病毒表达系统简介

杆状病毒表达系统简介
杆状病毒表达系统简介

体外基因表达系统包括原核细胞系统和真核细胞系统。原核细胞系统主要是大肠杆菌细胞,它操作简便、周期短收益大及表达产物稳定,但是表达基因的相对分子质量有限,不宜过大,且不能对表达产物进行一些翻译后加工、修饰。真核细胞系统包括 CHO等哺乳动物细胞、酵母细胞和昆虫细胞等。昆虫细胞表达系统(即杆状病毒表达系统)具有独特的生物学特性,日益受到人们的重视。

1、杆状病毒的生物学特性

杆状病毒只来源于无脊椎动物,虽然已发现600多种杆状病毒,但进行分子生物学研究的不到20种。杆状病毒的基因组为单一闭合环状双链DNA分子,大小为80~160 kb,其基因组可在昆虫细胞核复制和转录。DNA复制后组装在杆状病毒的核衣内,后者具有较大的柔韧性,可容纳较大片段的外源DNA插入,因此是表达大片段DNA的理想载体。其中,用作外源基因表达载体的杆状病毒,目前仅限于核型多角体病毒(nuclear polyhedrosis virus,NPV)。该病毒颗粒在细胞内可由多角体蛋白包裹形成长度约1~5 m的包含体病毒,呈多角体形状。核型多角体病毒有两种形式:一种为包含体病毒(occluded virus,OV),另一种则为细胞外芽生病毒(budded virus,BV)。它们在病毒感染中扮演的角色不同,包含体病毒是昆虫间水平感染的病毒形式,昆虫往往是食入污染OV的食物后引起感染。包含体病毒外层裹了一层蛋白晶体,即为29 000的多角体蛋白,它对病毒的水平感染起以下作用:

①保护病毒颗粒在外界传播过程中免遭环境因素的破坏而失活。

②保证病毒颗粒在适当的位置释放,引起感染。

昆虫中肠上皮局部的强碱性环境(pH=10.5),可使病毒颗粒释放蛋白酶溶解多角体。BV病毒是个体内细胞间的感染形式,由细胞芽生出BV,进入血淋巴系统中感染其它部位的细胞或直接在临近细胞内感染。

近几十年,有关杆状病毒基因结构、功能和表达调节的研究进展迅速,其中研究最深入的是苜蓿银蚊夜蛾(autogra— phacalifornica)多核型多角体病毒(multiple nuclear polyhedro-sis virus,MNPV),简称AcMNPV或AcNPV。该病毒是杆状病毒科 Baculoviridae的原型,是一种大的、带外壳的双链DNA病毒,能感染30多种鳞翅目昆虫,被广泛用作基因表达系统载体。其它作为表达载体的杆状病毒,主要是来自家蚕的NP~(bombyx moil,BmNP~)。由于家蚕幼虫体内系统适合大规模地制备生产外源蛋白,且成本低,显示出良好的应用前景。本文主要介绍 AcNPV病毒,BmNPV在许多方面与其具有共同的特征。

AcNPV的基因表达分为4个阶段:立即早期基因表达、早期基因表达、晚期基因表达和极晚期基因表达。前两个阶段的基因表达早于DNA复制,而后两个阶段的基因表达则伴随着一系列的病毒DNA合成。其中在极晚期基因表达过程中,有两种高效表达的蛋白,它们是多角体蛋白和P10蛋白:多角体蛋白是形成包含体的主要成分,感染后期在细胞中的积累可高达30%

~50%,是病毒复制非必需成分,但对病毒粒子却有保护作用,可使之保持稳定和感染能力另一类高效表达的极晚期蛋白为P10蛋白,也是一类病毒复制非必需成分,可在细胞中形成纤维状物质,可能与细胞溶解有关。多角体基因和P10基因现在都已被定位和克隆这两个基因的启动子具有较强的启动能力,因此这两个基因位点成为杆状病毒表达载体系统理想的外源基因插入位点。

杆状病毒基因组的结构和功能研究

杆状病毒基因组为双链环状 DNA分子。DNA以超螺旋方式被压缩包装在杆状核衣壳

(rod.shaped nueleocapsid)内,核衣壳包被脂质蛋白囊膜(envelope)后形成病毒粒子。核衣壳包括衣壳(capsid)蛋白和髓核(COle)。其中衣壳蛋白是杆状病毒粒子的主要结构蛋白;髓核由病毒DNA分子和与其密切相关的碱性蛋白构成。碱性蛋白同DNA紧密结合以维持其复杂有序的超螺旋结构。

目前已知基因组全序列的杆状病毒有苜蓿丫纹夜蛾核型多角体病毒(AcMNPV)b]、家蚕核多角体病毒(BmNPV) 、黄杉毒蛾多核衣壳核多角体病毒(OpMNPV)、舞毒蛾多核衣壳核多角体病毒(LdMNPV) 、甜菜夜蛾多核衣壳核多角体病毒(SeMNPV)、棉铃虫核型多角体病毒(HaNPV),以及斜纹夜蛾核型多角体病毒(SphMNPV)。

目前AcMNPV基因组的研究最为深入,它是双链超螺旋大分子环状DNA,其大小为90~160kb,约编码154个基因。AcMNPV基因组的基因组织(gene organization)较为复杂,基因组的不同区域具有功能分化,基因的分布尚无规律可循,但AcMNPV基因组含有8个同源区,每区含有不等的重复或倒置重复序列,这些重复序列由位于中间的不完整回文序列及其两侧各约20bp 的序列构成。同源区是杆状病毒基因组普通存在的功能域结构,对于基因表达的调节具有增强作用,同时也是 DNA复制的原点。

杆状病毒中现已鉴定的基因近70种,可分为结构蛋白基因和非结构蛋白基因两大类。结构蛋白基因如 polh、P10、gp64、p6.9、gp41、vp39等基因。非结构基因中,与DNA复制相关的重要基因有helicase基因(he1)、 dnapol、lef-1、lef-2、lef-3、ie-1、/ie-2、p35、pe-38等;起表达调节作用的基因主要有 ie-1、ie-2、lef类基因、p35、pe38等。这些代表性基因与其功能的关系见表1。

2、杆状病毒载体表达系统的特点

AcNPV病毒用作外源基因的表达载体,通常是通过体内同源重组的方法,用外源基因替代多角体蛋白基因而构建重组病毒。由于多角体基因启动子在感染后18~24h开始转录和翻译,一直持续到70 h。外源基因置换掉多角体基因后,并不影响后代病毒的感染与复制,意味着重组病毒不需要辅助病毒的功能。

杆状病毒表达系统自从第一次用来表达干扰素以后在许多重组蛋白的表达中得到广泛应用,例如用于表达白介素(IL)一2,3、BMP及多种病毒蛋白等。相对其他表达系统它具有以下几个方面的特点:

①重组蛋白具有完整的生物学功能:杆状病毒表达系统可为高表达的外源蛋白在细胞内进行正确折叠、二硫键的搭配及寡聚物的形成提供良好的环境,可使表达产物在结构及功能上接近天然蛋白。

②能进行翻译后的加工修饰:杆状病毒表达系统具有对蛋白质完整的翻译后加工能力,包括糖基化、磷酸化、酰基化、信号肽切除及肽段的切割和分解等,修饰的位点与天然蛋白在细胞内的情况完全一致:对比实验证明,在昆虫细胞发生的糖基化位点与哺乳动物细胞中完全一致,但修饰的寡糖种类却不完全一样。这种不一致对不同目的蛋白的活性影响不同,所以昆虫表达系统还可作为一个研究糖基化对蛋白质结构与功能影响方面的理想模型。

③表达水平高:与其它真核表达系统相比较,此系统最突出的特点就是能获得重组蛋白高水平的表达,最高可使目的蛋白的量达到细胞总蛋白的50%。

④能容纳大分子的插入片段:杆状病毒毒粒可以扩大,并能包装大的基因片段,但目前尚不知杆状病毒所能容纳的外源基因长度的上限。

⑤能同时表达多个基因:杆状病毒表达系统具有在同一细胞内同时表达多个基因的能力。既可采用不同的重组病毒同时感染细胞的形式,也可在同一转移载体上同时克隆两个外源基因,表达产物可加工形成具有活性的异源二聚体或多聚体。

另外,昆虫杆状病毒表达系统具有剪切的功能,能表达基因组DNA;还有对重组蛋白进行定位的功能,如将核蛋白转送到细胞核上,膜蛋白则定位在膜上,分泌蛋白则可分泌到细胞外等。最后,杆状病毒对脊椎动物无感染性,现有研究也表明其启动子在N-%动物细胞中没有活性,因此在表达癌基因或有潜在毒性的蛋白时可能优于其它系统。

3、杆状病毒载体的重组与筛选

杆状病毒由于基因组庞大,外源基因的克隆不能通过酶切连接的方式直接插入,必须通过转移载体的介导.即将极晚期基因(如多角体基因及其边界区)克隆入细菌的质粒中,消除其编码区和不合适的酶切位点,保留其5’端对高效表达必需的调控区,并在其下游引入合适的酶切位点供外源基因的插入,即得到转移载体。将要表达的外源基因插入其启动子下游,再与野生型AcNPV DNA共转染昆虫细胞,通过两侧同源边界区在体内发生同源重组,使多角体蛋白基因被外源基因取代。而将外源基因整合到病毒基因组的相应位置,由于多角体基因被破坏,则不能形成多角体。这种表型在进行常规空斑测定时,可同野生型具有多角体的病毒空斑区别开来,这就是最初的筛选重组病毒的方式。但由于重组效率较低(0.1%-1%),表型差别不显

著,应用上有一定的困难。为此,经过不断探索,在重组杆状病毒的筛选与鉴定方面取得了很大改进,具体方法有以下几种。

(1)半乳糖苷酶的蓝白筛选

1990年,Vialard等在多角体基因的上游,利用pl0基因启动子带动LacZ基因构建了转移载体pJVNheI。将其共转染sf细胞后,重组病毒可表达B-半乳糖苷酶,通过加入x-gal使之形成蓝色空斑,便可进行重组病毒的筛选。1990年,Kins提出了线形化技术,其原理是线形化的杆状病毒基因组感染性很低,但仍具有与引入细胞内的同源序列进行同源重组的能力。如果同源序列位于线形化杆状病毒的两端,则基因组即可环化恢复完整的感染性,使阳性重组率大大提高。

(2)体外酶促定位重组

Cre-Loxp系统最早由Sternberg等最早建立,噬菌体Pl含有1个重组位点Lox(1ocus

of(rossover)和1个Cre酶基因,其产物(Cre酶)为重组所必需:Cre酶已被克隆纯化;Lox 序列已被测定由34个核苷酸组成,其两端为 13 bp的反转重复序列。中间为8 bp的非回文序列。将此序列引入AcNPV基因组即得vAclox,转移载体引入lox后可获得plox。vAclox和plox在Cre酶存在条件下,两者即可发生体外定点重组,而将载体上的相应序列转到病毒的基因组中(这是1个可逆酶促反应),将反应混合物转染草地夜蛾 (spodoptera frugiperda)sf 细胞中,即可得到高比例的重组子代病毒。这个方法的特点是体外重组,通过控制反应的条件可达到很高的重组率。但由于重组是位点特异性的,反应产物往往是转移载体多次插入亲代病毒的结果,因而要进行多轮空斑实验纯化病毒。

(3)Bacmid

后来Luckow等又发明了一种新的杆状病毒重组技术。他们根据 F因子载体原理,用类似于酵母体内重组的方法,构建了一种新杆状病毒穿梭载体Bacmid。该载体可像质粒一样在大肠杆菌中生长,又对鳞翅目昆虫细胞具有感染性。Bacmid含有F因子复制子(可在大肠杆菌中复制)、卡那霉素抗性基因及Tn7转座位点attTn7。转移载体中,外源基因置于杆状病毒启动子之下,两端分别为Tn7的左右端。以其转化含Bacmid的E coli菌株,由辅助质粒提供反式作用发生转座,而将外源基因转到 Bacmid的attTn7位置。这种重组了外源基因的 Bacmid转染的昆虫细胞,可得到 100%阳性重组病毒。这种方法都是在大肠杆菌中进行的,非常简便,由于没有本底干扰,同样不需进行空斑纯化。缺点是 F因子提取不很方便,其稳定性也有待于观察。

(4)TK基因

胸苷激酶可将核苷类似物转变成的有毒的中间体而抑制病毒的复制。该核苷类似物作为疱疹病毒编码胸苷激酶(HSV—TK)的底物,能特异性地抑制单纯疱疹病毒、巨细胞病毒和EB病毒的复制。由于这些类似物对病毒的胸苷激酶有高度的选择性,而细胞自身胸苷激酶对这些类似物的结合常数很低,故能选择性地杀死表达 HSV-TK基因的细胞。

(5)Neo基因

Neo是经典的显性选择标记,这是一种细菌编码的磷酸转移酶基因,可使氨基糖苷类抗生素

G418失活。后者又是一种蛋白质合成抑制剂,可干扰真核细胞80S功能。Neo曾被引入几种脊椎动物病毒(如痘苗病毒和EB病毒)的基因组中,作为选择标记。1989年,Jarls将Neo引入sf细胞染色体中而得到 G418抗性的细胞系,说明Neo可作为选择标记用于重组病毒的筛选。本方法和TK基因相比较略显繁琐,需经连续传代,但其不用改造辅助病毒,只需在转移载体中引入Neo基因即可。其它如 PCR、DNA斑点杂交及有限稀释法等,也可用于筛选重组病毒。以上方法各具特点。虽然有些新方法需一定的条件,但一旦建立起来后就可方便、迅速地得到重组病毒,为杆状病毒表达系统的普及应用创造了良好的条件

4、影响外源蛋白表达的因素

利用杆状病毒昆虫表达系统表达外源基因的理论基础,就是杆状病毒的基因表达与调控,但有关病毒晚期基因高表达和其调控机制目前还不十分清楚。利用多角体基因的启动子表达外源基因,影响表达水平的因素除与病毒本身的因素有关外,还与受感染细胞的种类和生理状况乃至培养基的质量有关。

(1)病毒的稳定性

杆状病毒在细胞中多次传代后,可能引起基因组的变化。最明显的变化就是形成ov的能力降低。由于细胞间不需要ov形成感染,只需通过BV病毒感染即可。多次传代的病毒也可能出现少多角体(few polyhedfin,FP)表型的变化,一般每个感染细胞只含有10个多角体病毒。其中突变病毒多角体的表达水平也有所降低,应用这种突变病毒会对外源基因的表达带来不利。若重组前病毒是变异FP,通过肉眼分辨重组与非重组病毒时,有可能发生假象。另外,长期多次传代的病毒也往往引起表达水平的降低,为避免上述情况的发生,要限制病毒的传代次数,一般控制在2-3代以内。

(2)在昆虫细胞内表达与幼虫体内表达

虽然目前大部分工作是在细胞培养条件下进行的,当需要大量制备某类表达产物时,最好采用昆虫蛹。因为培养昆虫幼虫远比培养细胞简单、便宜,而且在昆虫体内培养可以提高表达量。一般在幼虫体内的淋巴液中,蛋白含量较在细胞培养基中高l0倍以上,例如小鼠IL-3的表达量在淋巴液中较在细胞培养上清中高 500倍,可能是细胞培养基中含有的蛋白酶使之降解所致。

(3)启动子类型

在构建转移载体时,使用不同的启动子就需构建相应的同源序列。目前最常用的启动子有晚期Polh(polyhedrin)启动子和P10启动子,还有碱性启动子以及少数早期启动子。同一目的基因在不同启动子控制下,表达水平会有很大差异。研究发现,分泌类蛋白使用PIO启动子或碱性启动子的效果更好。

(4)外源基因序列的本身因素

能在重组杆状病毒有效表达的外源基因5’端及3’端非编码区越短越好,一般长度在3~400个核苷酸以内。影响表达的其他因素包括:密码子的使用情况(是否为昆虫细胞所常用)、mRNA 的稳定性及蛋白质的稳定性等。外源基因附近的序列很重要。Kozak分析了数百个真核序列,得出两点结论:首先,启动子下游第1个ATG常作为起始密码子;其次是在 ATG附近的序列并不是随机的。有95%表达的真核基因在ATG前-3位是嘌呤(而且常是A),+4位是G。如果-3的A或+4的G有1个被嘧啶替代,翻译水平就下降5~l0倍。如果-3位和+4位均被嘧啶所替代,翻译水平就下降20倍。因此,Kozak提出,(GCC)GGC A/GCC AUG G是高等真核基因起始密码附近的保守序列,其中-3处A最为保守。

(5)重组病毒基因的表达与调控

多角体启动子控制的外源基因的表达,紧靠上游的序列对基因的转录调节是最重要的。许多研究表明,当外源基因5 端加有1~58个多角体蛋白的氨基酸序列以融合蛋白形式表达时,效果最好。用高、中与低3种表达的外源基因进行实验的结果表明,保留一部分多角体5’端序列与外源基因以相同的框架相融合,表达水平最高;如果框架不同,那么从距启动子最近的起始码开始翻译,表达产物水平相对偏低。

昆虫杆状病毒系统表达外源基因的新进展

1、杆状病毒载体及其表达系统进展

昆虫杆状病毒表达系统进行外源基因表达时,存在的一个问题是筛选带有外源基因的重组病毒的效率较低(最初仅0.1%~1%),而且产物较难纯化。为此,人们设计了各种方法来改进病毒载体,如 NPV DNA线性化,体外定点酶促重组,以及酵母-昆虫细胞和大肠杆菌-昆虫细胞的穿梭载体的开发等。其中Posse等设计的重组-救活可线性AcNPV病毒载体BacPAK6的重组效率较高,高达80%以上,具有重要的应用价值。该重组技术的基本原理为:先找一个在AcMNPV基因组中不存在的 Bsu36 I酶切位点,采用体外突变,在多角体基因两侧的非必需基因ORF603基因和必需基因ORF1629基因中各引入一个Bsu36 I位点,然后通过重组将突变了的由ORF603基因、多角体基因启动子控制的半乳糖苷酶基因、ORF1629基因引入AcNPV基因组,获得重组病毒载体 BacPAK6。(BacPAK6)DNA经Bsu36 I酶切而破坏了必需基因OBF1629,因而靠自身环化不能成活,必须与携带多角体蛋白基因启动子控制的外源基因和OBF1629基因的转移载体发生重组,病毒才能复制而救活,因此,该法的重组率很高。这一系统现已扩展到了BmNPV表达系统。易咏竹等副通过克隆的家蚕核多角体病毒解螺旋基因DNA,与重组救活可线性化的苜蓿尺蠖核多角体病毒基因工程载体病毒(BacPAK6)DNA在昆虫细胞中发生重组,经累代筛选获得了既可感染家蚕又可感染秋粘虫细胞Sf-21的宿主域扩大的昆虫杆状病毒表达载体 (HyBacPAK6),它与含植酸酶基因的转移载体Pvl1393phy在家蚕细胞中的重组率达90%以上。

此外,Bac—to.Bac表达系统是效率很高的表达系统,它利用穿梭质粒bacmid在大肠杆菌

中高效复制后,再提纯用于转染昆虫细胞,大大缩短了时间。王汉中等根据BactoBac表达系统的基本原理,也构建了一种新颖的棉铃虫单粒包埋核多角体病毒表达系统(HaBac—to—Bac)。该系统中供体质粒pFastPhP10中插入了带有多角体启动子序列的完整的多角体蛋白基因,因而多角体蛋白基因的表达和包涵体的形成也可作为转染成功的重要识别标记等,这是商品化的 AcBac—to.Bac系统所不具备的。

目前可被应用于昆虫杆状病毒表达系统的细胞系较多,但应用较多的细胞系是秋粘虫

s.frugiperda卵巢组织的细胞系sf-9,以及家蚕细胞系。洪华珠等建立了一株高水平表达重组蛋白的昆虫细胞系HNU—Tn.FB1。它是粉纹夜蛾Trichoplusia ni脂肪体的传代细胞系。在辅以 5%胎牛血清的商品无血清培养基 Excell400中,该细胞群体的倍增时间为22.9h,最高密度可达2.2×106/ml,表达由AcMNPV构建的重组p.半乳糖苷酶的水平达

(225.5±13.4)IU/ml。该细胞系在表达重组蛋白方面与目前商业上最好的“高五”细胞(BTI.Tn.5B1-4)相当,是一株很有价值的细胞系,具有广阔的应用前景。

另外,一些影响杆状病毒系统表达外源基因产物的因素在近两年得到了研究。杆状病毒吸附宿主细胞的动力学参数是影响细胞感染效果和表达物产量的因素之一。Petricevich等以表达轮状病毒的重组蛋白VP4为例,对病毒吸附动力学的参数进行了研究,发现影响细胞感染效果的主要参数是胎牛血清浓度。不用胎牛血清或经高温处理后再使用,反而可以获得更高浓度的表达产物。重组病毒感染 sf-9的效果与细胞周期有关,Saito等对GFPuv基因在杆状病毒系统中表达的研究表明,当在宿主细胞的G.期感染时,细胞内的荧光强度是在 G2/M期感染的 1.3倍,同时在宿主细胞的G。/S期感染时,感染量是在G:/M期感染的1.5-1.8倍。该研究结果对于选择病毒感染宿主细胞的时期有一定的借鉴意义。 01ejnik等讨论了高渗透压对昆虫细胞表达重组蛋白产量的影响。采用补料分批培养发现,Trichoplusia ni

BTI.TN.5B1-4(Tn-5)细胞具有很强的耐高渗透压能力,表达的重组核蛋白产量比等渗环境下的高出72%。该结果对于提高重组蛋白的产量具有重要意义,可能的原因是高渗透压下,葡萄糖的比耗率增加,细胞内重组蛋白的合成代谢更加旺盛。另外,杆状病毒易被紫外线钝化,Dustin等将海藻病毒的嘧啶特殊二聚物糖基化酶(CV.PDG)用杆状病毒(AcMNPV)表达后,发现重组 AcMNPV受紫外线钝化的影响比野生型降低了3倍。该研究为提高杆状病毒抗紫外线能力提供了一个可行的办法。

2、杆状病毒表达系统的最新应用

杆状病毒表达系统由于对外源基因克隆容量大,重组病毒易于筛选,具有完备的翻译后加工修饰系统和高效表达外源基因的能力等特点,现已广泛用于一些在其它表达系统表达有困难的高价值蛋白质的表达。新近报道的如人骨骼肌基因突变而产生的a-辅肌动蛋白,一直未找到较好的系统来表达它。Akkari等首次采用杆状病毒系统实现了它的高效表达和纯化。钙运转调节肽 (caltfin)在动物授精过程中可以抑制钙流人精子,避免过早地产生顶体反应而导致授精失败。目前获取它的唯一方法是从动物体内提取,但如能通过生物技术手段大量生产,无疑具有广阔的应用前景。Phan等首次用昆虫杆状病毒系统高效表达了cahrin,并筛选出了有效的纯化方案。新近用杆状病毒表达系统表达成功的其它一些高价值蛋白见表2。

昆虫杆状病毒系统的应用展望

由于昆虫杆状病毒表达系统独特的性质,现已被广泛应用于药物研发、疫苗生产、重组病毒杀虫剂等众多领域中。近几年的研究发现,AcNPV病毒也可以将外源基因导入哺乳动物的细胞,如人的肝细胞。这意味着AcNPV病毒可能成为哺乳动物基因治疗的媒介载体,因此杆状病毒有望在未来人类的基因治疗中得到应用。

另一方面,利用昆虫杆状病毒系统进行重组杆状病毒杀虫剂的研究也仍然具有十分重要的意义。由于昆虫杆状病毒对人、畜安全,不易引起广泛规模的生态平衡的破坏等特点,昆虫病毒杀虫剂已成为当今生物农药研究与开发的热点。但野生型杆状病毒有必要进行重组改造,因其杀虫速度较慢。此外,昆虫杆状病毒系统本身及其相关技术尚需进一步完善和提高。如该系统无法进行连续性表达;糖基化方式与哺乳动物细胞存在一定差异,糖侧链甘露糖的成分较高,而复合寡糖缺乏。在杆状病毒系统的基础研究和应用技术方面,目前杆状病毒的基因组学,特别是功能基因组学的研究相对薄弱,有关病毒晚期基因的高表达和调控机制等仍不明了。另外杆状病毒可能的其它宿主还不十分清楚,表达产物的纯化和多元表达等方面的技术还不够理想等,都需要今后进一步研究。当前应重点加强杆状病毒的基因组学,特别是功能基因组学的深入研究,一是有助于杆状病毒载体的进一步改良,二是随着一些调节外源蛋白表达的基因结构和功能的深入了解,有利于外源基因的高效表达和调控。

昆虫杆状病毒表达系统安全性好,表达水平高,可进行翻译后加工及表达产物的异源性小,是一种非常理想的真核表达系统。目前研究及应用最多的杆状病毒为AcNPV,尽管它可感染30多种细胞,但主要在sf细胞中繁殖,因此,对于其它细胞是否易感,以及外源蛋白的表达水平、转录后加工等问题还需深入研究。如果在重组产物纯化过程中混有昆虫细胞的蛋白,则可能在应用时引起过敏反应。所以,如何进一步纯化表达产物,将其致敏原性降到最低限度是值得重视和探讨的问题。

由于该系统独特的性质,使其被广泛地应用于基因工程、药物开发、疫苗生产、表达免疫活性分子和某些致瘤病毒蛋白以及基因表达调控研究等多个领域中。迄今为止,已有数百个基因在昆虫细胞或幼虫体内得到高效表达,为获得大量的类原型蛋白及其功能研究提供了可能。

(注:本资料素材和资料部分来自网络,仅供参考。请预览后才下载,期待你的好评与关注!)

过表达慢病毒载体构建和包装手册 version1

过表达慢病毒载体构建和包装手册 Version1.0 吉凯基因 二零一一年五月

目录 简介 (3) 第一部分过表达慢病毒载体的制备 实验流程 (4) 实验材料 (5) 过表达克隆制备 (6) 第二部分慢病毒包装与滴度检测 实验流程 (17) 实验材料 (18) L e n t i v i r u s病毒包装 (21) 病毒的收获及浓缩 (22) L e n t i v i r u s滴度测定 (24) 参考文献 (33)

简介 慢病毒(Lentivirus)载体是以人类免疫缺陷型病毒(HIV)为基础发展起来的基因治疗载体,它对分裂细胞和非分裂细胞均具有感染能力,并可以在体内较长期的表达且安全性高。吉凯基因提供的慢病毒为“自杀”性病毒,即病毒感染目的细胞后不会再感染其他细胞,也不会利用宿主细胞产生新的病毒颗粒。慢病毒中的毒性基因已经被剔除并被外源性目的基因所取代,属于假型病毒。但该病毒仍然具有可能的潜在的生物学危险,吉凯基因建议不要使用编码已知或可能会致癌的基因的假型病毒,除非已经完全公认某个基因肯定没有致癌性,否则均不建议采用假型病毒进行生物学实验。 吉凯基因慢病毒载体系统由GV慢病毒载体系列、pHelper 1.0载体和pHelper 2.0载体三质粒组成。GV慢载体中含有HIV的基本元件5’LTR和3’LTR以及其他辅助元件,例如WRE (woodchuck hepatitis virus posttranscriptional regulatory element)。通常根据不同的实验目的针对GV载体改造以进行基因功能研究。pHelper 1.0载体中含有HIV病毒的gag基因,编码病毒主要的结构蛋白;pol基因,编码病毒特异性的酶;rev基因,编码调节gag和pol基因表达的调节因子。pHelper 2.0载体中含有单纯疱疹病毒来源的VSV-G基因,提供病毒包装所需要的包膜蛋白。 吉凯基因过表达慢病毒产品可通过对GV慢病毒载体的改造和病毒包装,获得带有特定基因序列的慢病毒颗粒,以满足不同的实验需求。 本手册为吉凯基因RNAi慢病毒载体的构建和病毒包装的通用操作流程,目的是为了方便大家交流使用,部分细节内容未能做到一一详述,敬请谅解。同时希望大家能够针对手册中的错误和问题,提出宝贵的意见。

慢病毒系统简介及应用

慢病毒包装系统简介及应用 一、慢病毒包装简介及其用途 慢病毒(Lentivirus)载体是以HIV-1(人类免疫缺陷I 型病毒)为基础发展起来的基因治疗载体。区别一般的逆转录病毒载体,它对分裂细胞和非分裂细胞均具有感染能力。慢病毒载体的研究发展得很快,研究的也非常深入。该载体可以将外源基因有效地整合到宿主染色体上,从而达到持久性表达。在感染能力方面可有效地感染神经元细胞、肝细胞、心肌细胞、肿瘤细胞、内皮细胞、干细胞等多种类型的细胞,从而达到良好的基因治疗效果,在美国已经开展了临床研究,效果非常理想,因此具有广阔的应用前景。 目前慢病毒也被广泛地应用于表达RNAi的研究中。由于有些类型细胞脂质体转染效果差,转移到细胞内的siRNA半衰期短,体外合成siRNA对基因表达的抑制作用通常是短暂的,因而使其应用受到较大的限制。采用事先在体外构建能够表达siRNA的载体,然后转移到细胞内转录siRNA的策略,不但使脂质体有效转染的细胞种类增加,而且对基因表达抑制效果也不逊色于体外合成siRNA,在长期稳定表达载体的细胞中,甚至可以发挥长期阻断基因表达的作用。在所构建的siRNA表达载体中,是由RNA聚合酶Ⅲ启动子来指导RNA合成的,这是因为RNA聚合酶Ⅲ有明确的起始和终止序列,而且合成的RNA不会带poly A尾。当RNA聚合酶Ⅲ遇到连续4个或5个T时,它指导的转录就会停止,在转录产物3' 端形成1~4个U。U6和H1 RNA启动子是两种RNA聚合酶Ⅲ依赖的启动子,其特点是启动子自身元素均位于转录区的上游,适合于表达~21ntRNA和~50ntRNA茎环结构(stem loop)。在siRNA表达载体中,构成siRNA 的正义与反义链,可由各自的启动子分别转录,然后两条链互补结合形成siRNA;也可由载体直接表达小发卡状RNA(small hairpin RNA, shRNA),载体包含位于RNA聚合酶Ⅲ启动子和4~5T转录终止位点之间的茎环结构序列,转录后即可折叠成具有1~4个U 3 '突出端的茎环结构,在细胞内进一步加工成siRNA。构建载体前通常要通过合成siRNA的方法,寻找高效的siRNA,然后从中挑选符合载体要求的序列,将其引入siRNA表达载体。 慢病毒载体(Lentiviral vector)较逆转录病毒载体有更广的宿主范围,慢病毒能够有效感染非周期性和有丝分裂后的细胞。慢病毒载体能够产生表达shRNA的高滴度的慢病毒,在周期性和非周期性细胞、干细胞、受精卵以及分化的后代细胞中表达shRNA,实现在多种类型的细胞和转基因小鼠中特异而稳定的基因表达的功能性沉默,为在原代的人和动物细胞组织中快速而高效地研究基因功能,以及产生特定基因表达降低的动物提供了可能性。 慢病毒表达载体包含了包装、转染、稳定整合所需要的遗传信息。慢病毒包装质粒可提供所有的转录并包装RNA到重组的假病毒载体所需要的所有辅助蛋白。为产生高滴度的病毒颗粒,需要利用表达载体和包装质粒同时共转染细胞,在细胞中进行病毒的包装,包装好的假病毒颗粒分泌到细胞外的培养基中,离心取得上清液后,可以直接用于宿主细胞的感染,目的基因进入到宿主细胞之后,经过反转录,整合到基因组,从而高水平的表达效应分子。 二、这一系统的目的,主要是为了解决以下问题: 1. 对于一些较难转染的细胞,如原代细胞、干细胞、不分化的细胞等,能大大提高目的基因转导效率,而且目的基因整合到宿主细胞基因组的几率大大增加,这就为RNAi,cDNA克隆以及报告基因的研究提供了一个有利的途径。 2. 进行稳转细胞株的筛选;

杆状病毒表达系统简介

体外基因表达系统包括原核细胞系统和真核细胞系统。原核细胞系统主要是大肠杆菌细胞,它操作简便、周期短收益大及表达产物稳定,但是表达基因的相对分子质量有限,不宜过大,且不能对表达产物进行一些翻译后加工、修饰。真核细胞系统包括 CHO等哺乳动物细胞、酵母细胞和昆虫细胞等。昆虫细胞表达系统(即杆状病毒表达系统)具有独特的生物学特性,日益受到人们的重视。 1、杆状病毒的生物学特性 杆状病毒只来源于无脊椎动物,虽然已发现600多种杆状病毒,但进行分子生物学研究的不到20种。杆状病毒的基因组为单一闭合环状双链DNA分子,大小为80~160 kb,其基因组可在昆虫细胞核复制和转录。DNA复制后组装在杆状病毒的核衣内,后者具有较大的柔韧性,可容纳较大片段的外源DNA插入,因此是表达大片段DNA的理想载体。其中,用作外源基因表达载体的杆状病毒,目前仅限于核型多角体病毒(nuclear polyhedrosis virus,NPV)。该病毒颗粒在细胞内可由多角体蛋白包裹形成长度约1~5 m的包含体病毒,呈多角体形状。核型多角体病毒有两种形式:一种为包含体病毒(occluded virus,OV),另一种则为细胞外芽生病毒(budded virus,BV)。它们在病毒感染中扮演的角色不同,包含体病毒是昆虫间水平感染的病毒形式,昆虫往往是食入污染OV的食物后引起感染。包含体病毒外层裹了一层蛋白晶体,即为29 000的多角体蛋白,它对病毒的水平感染起以下作用: ①保护病毒颗粒在外界传播过程中免遭环境因素的破坏而失活。 ②保证病毒颗粒在适当的位置释放,引起感染。 昆虫中肠上皮局部的强碱性环境(pH=10.5),可使病毒颗粒释放蛋白酶溶解多角体。BV病毒是个体内细胞间的感染形式,由细胞芽生出BV,进入血淋巴系统中感染其它部位的细胞或直接在临近细胞内感染。 近几十年,有关杆状病毒基因结构、功能和表达调节的研究进展迅速,其中研究最深入的是苜蓿银蚊夜蛾(autogra—phacalifornica)多核型多角体病毒(multiple nuclear polyhedro-sis virus,MNPV),简称AcMNPV或AcNPV。该病毒是杆状病毒科 Baculoviridae 的原型,是一种大的、带外壳的双链DNA病毒,能感染30多种鳞翅目昆虫,被广泛用作基因表达系统载体。其它作为表达载体的杆状病毒,主要是来自家蚕的NP~(bombyx moil,BmNP~)。由于家蚕幼虫体内系统适合大规模地制备生产外源蛋白,且成本低,显示出良好的应用前景。本文主要介绍 AcNPV病毒,BmNPV在许多方面与其具有共同的特征。 AcNPV的基因表达分为4个阶段:立即早期基因表达、早期基因表达、晚期基因表达和极晚期基因表达。前两个阶段的基因表达早于DNA复制,而后两个阶段的基因表达则伴随着一系列的病毒DNA合成。其中在极晚期基因表达过程中,有两种高效表达的蛋白,它们是多角体蛋白和P10蛋白:多角体蛋白是形成包含体的主要成分,感染后期在细胞中的积累可高达30%~50%,是病毒复制非必需成分,但对病毒粒子却有保护作用,可使之保持稳定和感染能力另一类高效表达的极晚期蛋白为P10蛋白,也是一类病毒复制非必需成分,可在细胞中形成纤维状物质,可能与细胞溶解有关。多角体基因和P10基因现在都已被定位和克隆这两个基因的启动子具有较强的启动能力,因此这两个基因位点成为杆状病毒表达载体系统理想的外源基因插入位点。 杆状病毒基因组的结构和功能研究 杆状病毒基因组为双链环状 DNA分子。DNA以超螺旋方式被压缩包装在杆状核衣壳(rod.shaped nueleocapsid)内,核衣壳包被脂质蛋白囊膜(envelope)后形成病毒粒子。核衣壳包括衣壳(capsid)蛋白和髓核(COle)。其中衣壳蛋白是杆状病毒粒子的主要结构蛋白;髓核由病毒DNA分子和与其密切相关的碱性蛋白构成。碱性蛋白同DNA紧密结合以维持其复杂有序的超螺旋结构。 目前已知基因组全序列的杆状病毒有苜蓿丫纹夜蛾核型多角体病毒(AcMNPV)b]、家蚕核多角

慢病毒Cas9表达系统使用说明

慢病毒Cas9表达系统使用说明 本说明书用于: ?构建Cas9蛋白表达细胞系 ?在Cas9蛋白表达细胞系中敲除目的基因 适用于以下产品 货号货号 pLV‐Cas9载体系列 CR2001,CR2002 pLV‐Cas9‐Nick载体系列 CR2003,CR2004 pGR载体系列 CR2011~CR2013 pGR‐EGFP载体系列 CR2014~CR2016 北京英茂盛业生物科技有限公司 北京市昌平区沙河镇青年创业大厦B‐916 Tel:010‐62495135 Emai:order@https://www.wendangku.net/doc/b34657846.html, Web site:https://www.wendangku.net/doc/b34657846.html,

目录 1、产品简介 (2) 1.1CRISPR/gRNA基因敲除原理 (2) 1.2慢病毒Cas9表达系统特点 (2) 2、Cas9表达慢病毒制备 (3) 2.1试剂准备 (3) 2.2简要实验流程 (4) 2.3实验前准备 (4) 2.4病毒制备步骤 (5) 2.4 PEG纯化慢病毒 (6) 3、筛选Cas9表达稳定细胞株 (7) 3.1 试剂 (7) 3.2 实验前准备 (7) 3.3 筛选细胞系实验步骤 (8) 3.4 Cas9表达细胞系检测 (9) 4、用pTYNE载体对Cas9表达细胞系进行验证 (10) 4.1验证Cas9蛋白表达细胞系 (10) 4.2验证Cas9Nicknase蛋白表达细胞系 (11) 5、pGR和pGR‐EGFP载体构建 (13) 5.1 pGR和pGR‐EGFP载体图谱 (13) 5.2 靶点设计 (13) 5.3 pGR载体构建步骤 (14) 附录1 用到的产品 (17) 附录2 引物列表 (17) 1

慢病毒载体,稳定表达

慢病毒载体,稳定表达 一、慢病毒 逆转录病毒(Retrovirus):是一种RNA病毒,在复制时需在逆转录酶的作用下首先将RNA 转变为cDNA,再在DNA复制、转录、翻译等蛋白酶作用下扩增。主要包括RNA肿瘤病毒、慢病毒及泡沫病毒等三种亚科。 慢病毒(Lentivirus):属于逆转录病毒科,名称源自该种病毒长达数年的潜伏期。 最经典的慢病毒是由HIV病毒改造而来,而且HIV-1/HIV-2系统也得到了广泛的应用,除了HIV病毒系统以外,后续还有猿类免疫缺陷病毒(simian immunodeficiency virus, SIV)载体系统、猫免疫缺陷病毒(felines immunodeficiency virus, FIV)载体系统、绵羊梅迪-维斯纳病毒(MMV)载体系统和马传染性贫血(EIA)载体系统等。 慢病毒结构: 2个调节基因: (1)tat基因:反式激活因子,对HIV基因起正调控作用。 (2)rev基因:病毒蛋白表达调节因子,增加gag和env基因对结构蛋白的表达。 4个辅助蛋白(附属)基因: (1)vif和vpu调节感染性病毒颗粒的产生; (2)vpr和nef参与疾病的表现。 慢病毒的优势: 1.慢病毒携带的基因组可整合到宿主基因组,使宿主细胞长时间稳定表达外源基因; 2.可感染分裂和非分裂细胞; 3.低免疫原性,直接注射活体组织不易造成免疫反应,适用于动物实验; 4.可以更换特异性启动子; 5.野生型的HIV大小约为9.8 kb,插入片段可长达5-6 kb;

二、慢病毒载体 慢病毒载体(Lentivirus)是一类改造自人免疫缺陷病毒(HIV)的病毒载体,是逆转录病毒的一种,基因组是RNA,其毒性基因已经被剔除并被外源性目的基因所取代,属于假型病毒。可利用逆转录酶将外源基因整合到基因组中实现稳定表达,具有感染分裂期与非分裂期细胞的特性。 慢病毒包装过程: 慢病毒基因组进入细胞后,在细胞浆中反转录为DNA,形成DNA整合前复合体,进入细胞核后,DNA整合到细胞基因组中。整合后的DNA转录成mRNA,回到细胞浆中,表达目的蛋白;或产生小RNA。慢病毒介导的基因表达或小RNA干扰作用持续且稳定,并随细胞基因组的分裂而分裂。 慢病毒包装和侵染细胞的过程(元和生物) 三、慢病毒的使用和优势 慢病毒的使用量的取决因素:滴度,感染体积,MOI ,细胞密度 滴度(Titer):单位体积液体中有感染能力的病毒或噬菌体数目。单位:TU/mL (活性滴度单位)、copies/mL (物理滴度单位) 检测方法:定量PCR检测干扰后细胞基因组中外源DNA拷贝数。 实验原理:慢病毒介导外源基因以逆转录方式整合进目的细胞基因组。 图3 MOI(multiplicity of infection):感染复数或者复感染指数。指感染时病毒和细胞数量的比值。在实验中也将某个细胞达到80%感染时所需的MOI 值定义为这个细胞的MOI值。加的病毒量(μl)=细胞数×MOI/滴度(…/ml) ×1000。 最后,818 一些有关慢病毒方面的产品: 1.关于慢病毒载体构建方面: ORF表达克隆产品【LPP-货号-载体-100,ORF/Promoter/lncRNA慢病毒】 shRNA克隆产品【LPP-货号-载体-050,shRNA慢病毒】 miRNA克隆产品【LPP-货号-载体-050,miRNA/inhibitor慢病毒】

昆虫杆状病毒诱导宿主行为变化及其分子机制

Science of Sericulture 蚕业科学 收稿日期:2013-06-14接受日期:2013-06-30资助项目:国家自然科学基金项目(No.31272506)。第一作者信息:王国宝(1987-),男,博士研究生。 E-mail :gbwang0216@163.com 通信作者信息:吴小锋,教授,博士生导师。 E-mail :wuxiaofeng@zju.edu.cn * Corresponding author.E-mail :wuxiaofeng@zju.edu.cn 2013,39(5):1005-1010 ISSN 0257-4799;CN 32-1115/S E-mail :CYKE@chinajournal.net.cn 昆虫杆状病毒诱导宿主行为变化及其分子机制 王国宝吴小锋 (浙江大学动物科学学院,杭州310058) 摘要最近的研究发现杆状病毒感染能够诱导宿主昆虫产生行为变化,典型的表现为寄主运动能力的增强。从生物学的 角度分析,这是杆状病毒有利于自身传播的操控策略。本文综述了3种典型杆状病毒诱导宿主昆虫行为发生变化的现象以及其可能的分子机制。其中,舞毒蛾核型多角体病毒(LdMNPV )的egt 基因能够引起吉普赛舞毒蛾(Lymantria dispar )出现异常活跃的攀爬行为;而家蚕(Bombyx mori )与甜菜夜蛾(Spodoptera exigua )幼虫分别被家蚕核型多角体病毒(BmNPV )和苜蓿银纹夜蛾核型多角体病毒(AcMNPV )感染后,出现爬行异常活跃的行为则是由于病毒中ptp 基因的存在。不同种类的杆状病毒对宿主昆虫行为的操控策略不同,对杆状病毒操控宿主行为的分子机制的探索是一个新的研究领域,其研究成果不仅有助于揭示杆状病毒与寄主的互作关系,而且将为农林病虫害的生物防治提供新的参考策略。关键词 杆状病毒;egt 基因;ptp 基因;昆虫宿主;行为 中图分类号 S884.5+1 文献标识码 A 文章编号0257-4799(2013)05-1005-06 Host Behavior Alteration and Its Underlying Molecular Mechanism upon Infection of Insect Baculovirus WANG Guo-Bao WU Xiao-Feng * (College of Animal Sciences ,Zhejiang University ,Hangzhou 310058,China )Abstract Recent studies discovered that baculovirus infection could induce behavior alteration on their host insects.A typ- ical consequence of it is the enhanced locomotor activity.In view of biology ,it is a manipulatory strategy of baculovirus that favors its own transmission.This paper describes behavior alterations in host insect caused by three types of baculov-irus and possible molecular mechanisms underlying the alterations.Among them ,the egt gene of LdMNPV is essential for the hyperactive climbing behavior of Lymantria dispar ,while the ptp gene of BmNPV and AcMNPV is the cause of abnor-mal wandering behavior of Bombyx mori and Spodoptera exigua lavrae.Different types of baculovirus have various mecha-nisms in manipulating host insect behavior.Studies on the underlying molecular mechanisms of such behavior manipula-tions constitute a new and fascinating research field.It will not only uncover the interactive relationship between baculovirus and their host insects but also provide new strategy for biological control of agricultural and forestry pests /diseases.Key words Baculovirus ;egt gene ;ptp gene ;Insect host ;Behavior 杆状病毒是一个庞大的病毒家族,其基因组大 小在80 180kb 之间,为共价闭合环状双链DNA ,包含100多个基因。有趣的是,其中超过10%的基因是从原始宿主中通过水平转移获得的,这些基因 被利用后更加有利于病毒的复制和传播[1] 。已发现的几百种昆虫杆状病毒分为杆状病毒属(NPV )和颗粒体病毒属(GV )2个属。杆状病毒在感染循环过程中会产生遗传物质完全一致但表型具有差

杆状病毒对昆虫有什么危害

杆状病毒对昆虫有什么危害 杆状病毒感染会让昆虫患病,目前发现的有: 1.颗粒病体 根据39蜂疗网调查目前仅见于鳞翅目昆虫。其自然侵染过程与细胞病变均类似于核型多角体病,但病虫症状与核型多角体病不同,病虫皮色变灰或乳黄,虫尸以腹部前端1~2对腹足握持植物枝条,虫尸以“∧”型倒挂。幼虫被感染后至少至4日龄才发病,死于化蛹前,病虫生存期常大于21天。 2.核型多角体病 现已发现280余种核型多角体病,约占昆虫病毒病总数的40%,大多侵染鳞翅目昆虫。 核型多角体病的自然感染过程为:昆虫吞食了被病毒污染的食物,病毒即进入中肠,在昆虫中肠碱性消化液的作用下,多角体被溶解,释放出病毒粒子,游离病毒粒子的囊膜与中肠上皮细胞绒毛的膜融合,核衣壳侵入细胞中,脱壳后,病毒的DNA经细胞核膜的核孔侵入细胞核内,开始其增殖过程。 随病毒的增殖,细胞表现的病理变化为:细胞核内染色质凝集成块,核仁增大,数目增多,RNA合成旺盛,合成出的RNA不断转移到细胞质中;凝集的染色质块集中于细胞核中部形成网状结构的病毒发生基质,在病毒发生基质中病毒的DNA大量合成。随后,在病毒发生基质表面核衣壳开始装配,并不断移到细胞核周围,大部分包入新形成的囊膜内,成为成熟的病毒粒子。最后在病毒发生基质周围形成一个环状带,在带上开始多角体的结晶,病毒粒子随机地包入多角体中,多角体约到一定大小后停止生长,在其表面形成了一层难溶的多角体膜。从多角体开始形成时起,病毒发生基质开始缩小,待多角体充满细胞核后,病毒发生基质消失,核膨大,破裂,细胞随之崩解。 小部分未被包入多角体的病毒粒子,可随细胞崩解进入昆虫血体腔。血体胶中病毒粒子的靶细胞为:气管皮膜细胞,脂肪细胞,肌肉细胞,真皮细胞,血细胞及神经、生殖腺、丝腺等几乎所有组织的细胞。 最后新形成的大量多用体充满了昆虫整个血体腔。 蛀虫幼虫被感染后,4~5天体液是乳白色,厌食,不喜运动,多数移到植物枝条顶部后死亡,虫体软化,脚失去握持力,仅以1~2对臀足附着在植物枝条上,最后松弛倒挂死之。体内组织完全溶解,变成黑褐色,表皮完整但脆弱易破裂。从感染到处亡约1~2周。

慢病毒转染手册

慢病毒(Lentivirus)载体是以HIV-1(人类免疫缺陷I型病毒)为基础发展起来的基因治疗载体。区别一般的逆转录病毒载体,它对分裂细胞和非分裂细胞均具有感染能力。 基本概述 慢病毒载体的研究发展得很快,研究的也非常深入。该载体可以将外源基因有效地整合到宿主染色体上,从而达到持久性表达。在感染能力方面可有效地感染神经元细胞、肝细胞、心肌细胞、肿瘤细胞、内皮细胞、干细胞等多种类型的细胞,从而达到良好的的基因治疗效果,在美国已经开展了临床研究,效果非常理想,因此具有广阔的应用前景。 慢病毒的应用 目前慢病毒也被广泛地应用于表达RNAi的研究中。由于有些类型细胞脂质体转染效果差,转移到细胞内的siRNA半衰期短,体外合成siRNA对基因表达的抑制作用通常是短暂的,因而使其应用受到较大的限制。采用事先在体外构建能够表达siRNA的载体, 然后转移到细胞内转录siRNA的策略,不但使脂质体有效转染的细胞种类增加,而且对基因表达抑制效果也不逊色于体外合成siRNA,在长期稳定表达载体的细胞中,甚至可以发挥长期阻断基因表达的作用。在所构建的siRNA表达载体中,是由RNA聚合酶Ⅲ启动子来指导RNA合成的,这是因为RNA聚合酶Ⅲ有明确的起始和终止序列,而且合成的RNA不会带poly A尾。当RNA聚合酶Ⅲ遇到连续4个或5个T时,它指导的转录就会停止,在转录产物3’端形成1~4个U。U6和H1 RNA启动子是两种RNA聚合酶Ⅲ依赖的启动子,其特点是启动子自身元素均位于转录区的上游,适合于表达~21ntRNA和~50ntRNA茎环结构(stem loop)。在siRNA表达载体中,构成siRNA的正义与反义链,可由各自的启动子分别转录,然后两条链互补结合形成siRNA;也可由载体直接表达小发卡状RNA(small hairpin RNA, shRNA), 载体包含位于RNA聚合酶Ⅲ启动子和4~5T转录终止位点之间的茎环结构序列,转录后即可折叠成具有1~4 个U 3 ’ 突出端的茎环结构,在细胞内进一步加工成siRNA。构建载体前通常要通过合成siRNA的方法,寻找高效的siRNA,然后从中挑选符合载体要求的序列,将其引入siRNA表达载体。 慢病毒载体

杆状病毒——昆虫细胞表达系统

实验材料: 1. 重组杆状病毒质粒:Bacmid/nsp-6及阳性对照Bacmid/CAT,已构建成功。 2. 昆虫细胞Sf9、High Five及其相关培养基、转染试剂均购自Invitrogen公司。抗His单克隆抗体购自Oncogene公司,CAT-ELISA试剂盒购自Roche。 实验步骤: 一、昆虫细胞转染: 1. Sf9细胞计数,取6孔板中的两孔,每孔加入9×10 5个细胞(其中一孔设为正常对照),并以全培培养至少1小时,使细胞贴壁。 2.准备重组质粒和细胞转染试剂的混合物: a. 溶解1μg纯化重组杆状病毒重组质粒于100μl 无添加成分的Grace’s Medium。 b. 转染试剂充分摇匀后取6μl加入100μl 无添加成分的Grace’s Medium,混匀。 c. 将上述稀释好的质粒及稀释好的转染剂混匀,室温孵育20min。 3.重组质粒与转染剂混合液孵育的同时,以2ml无添加成分的Grace’s Medium洗涤待转染的一孔细胞并弃去洗液。 4.取0.8ml无添加成分的Grace’s Medium加入质粒与转染剂的混合液中,轻轻混匀后,总体积约为1ml。加入上步洗涤后的细胞孔中,27℃继续培养5h。 5.移除质粒、转染剂混合物,加入2ml全培。27℃湿盒孵育,直到病变现象产生。 二、病毒贮液的制备: 1. 病毒感染晚期(正常24-72h)可见细胞停止生长、黏附,呈颗粒状外观。即收集含病毒的培养上清,500g离心5min,去除细胞和碎片。 2. 上清即为P1病毒贮液,移入新的离心管中4℃避光保存。长期保存分装冻存于-80℃。 3. 病毒贮液的扩增,按以下公式进行所需病毒P1贮液的量: 感染所需病毒贮液量(ml)= [MOI(pfu/cell) ×细胞数÷病毒贮液效价(pfu/ml)] 注:若不进行病毒空斑测定,P1贮液效价按照1×10 6到1×10 7计。 4. 扩增P1液制备P2病毒贮液方法如下: a. 转染当天,取2×106个细胞/孔加入六孔板中,贴壁生长至少1h。 b. 每孔加入适量的P1贮液,27℃湿盒孵育48h。 c. 根均细胞病变情况(约48h后)收集各孔中的病毒上清液,500g离心5min取上清,即为P2病毒贮液。4℃避光保存。长期保存分装冻存于-80℃。 d. 制备了高效价的P2液后,按上述方法扩增P3贮液,用于高效表达。 三、病毒贮液初步鉴定 1. SDS-PAGE蛋白电泳:取P2或P3病毒贮液浓缩后上样(或直接上样)进行SDS-PAGE 蛋白电泳,初步根据分子量对表达蛋白进行鉴定。CAT-his融合蛋白分子量约为28KDa,nsp6-his融合蛋白分子量约为34KDa。 2. western blot:以小鼠抗his单克隆抗体鉴定在相应条带出是否有his标记。 3. 以CAT-ELISA检测试剂盒检测Bacmid/CAT对照的蛋白表达情况。方法详见CAT-ELISA 试剂和说明书。 结果 1. CAT-ELISA检测试剂盒成功检测出对照CAT质粒在细胞中的表达,同时可测于上清和细

杆状病毒表达蛋白

杆状病毒表达蛋白 1 donor vector的构建 1.1 外源基因的连接 1.2 转化 1.2.1 取10μL连接产物放入100μL感受态细胞中。 1.2.2 冰浴30min。 1.2.3 42℃,90s。 1.2.4 马上放入冰浴中,2min。 1.2.5 加入800μL LB培养基,37℃,150rpm摇1hr。(LB 37℃预热) 1.2.6 取200μL涂Amp+LB平板。 1.2.7 37℃,恒温培养箱,倒置培养12-16hr。 1.3 鉴定 1.3.1 挑取10个单菌落于Amp+LB培养基中,37℃,225rpm,摇过夜。 1.3.2 小量提取质粒,操作步骤见附录2。 1.3.3 用SalI及XbaI双酶切鉴定连接结果。 1.3.4 取1ml菌液测序。 1.4 菌种的保存 1.4.1挑取单菌落于1-2ml Amp+LB培养基中。 1.4.2 37℃,225rpm摇至平稳期。 1.4.3 0.85ml细菌培养物+0.15ml灭菌甘油,混匀。 1.4.4 -80℃保存。 2 转座 2.1 转座反应 2.1.1 将DH10Bac放入冰中备用。 2.1.2 轻轻混匀,取100μL DH10Bac细胞于遇冷的15ml圆底灭菌管中。 2.1.3 加入下列质粒DNA并轻混匀。 pFastBac TM construct 1ng(5μL) pFastBac TM control 1ng PUC19 control 50pg 2.1.4于冰中放置30min。 2.1.5 42℃,热激45s,不要摇动。 2.1.6 马上放入冰浴中,2min。 2.1.7 加入900μL室温LB培养基。 2.1.8 37℃,225rpm摇4hr。 2.1.9准备一系列10倍稀释的细菌培养物(10-1、10-2、10-3),每板加入100μL的稀释菌液。(平板为:50μg/ml kana、7μg/ml的genta、10μg/ml tet、100μg/ml Bluo-gal、40μg/ml IPTG)。 2.1.10 37℃,倒置培养48hr,挑取白斑进行分析。

杆状病毒表达系统(The Baculovirus Expression System)

Baculovirus Facility in Cambridge The Baculovirus Expression System The Baculovirus Expression Vector System (BEVS) has been widely used in research and scientific industrial communities for the production of high levels (up to 1000mg/mL) of properly post-translationally modified (folding, disulfide bond formation, oligomerization, glycosylation, acylation, proteolytic cleavage), biologically active and functional recombinant proteins. The Baculovirus Expression Vector System is based on the introduction of a foreign gene into nonessential for viral replication genome regio n via of homologous recombination with a transfer vector containing target gene. The resulting recombinant Baculovirus lacks one of nonessential gene (polh, v-cath, chiA etc.) replaced with foreign gene encoding heterologous protein which can be expressed in cultured insect cells and insect larvae. Baculovirus Facility in Cambridge offers services on protein expression and production - from recombinant baculovirus production to large scale protein expression. Several features make the Baculovirus Expression Vector System attractive for researchers: - High levels of heterologous gene expression are often achieved compared to other eukaryotic expression systems, particularly for intracellular proteins. In many cases, the recombinant proteins are soluble, post-translationally modified and easily recovered from infected cells late in infection when host protein synthesis is diminished. -The cell lines used for AcMNPV propagation grow well in suspension cultures, permitting the production of recombinant proteins in large-scale bioreactors. - Expression of hetero-oligomeric protein complexes can be achieved by simultaneously infecting cells with two or more viruses or by infecting cells with recombinant viruses containing two or more expression cassettes. - Baculoviruses have a restricted host range, limited to specific invertebrate species. They are safer to work with than most mammalian viruses since they are noninfectious to vertebrates.

杆状病毒介绍

杆状病毒 关键词:昆虫病毒,杆状病毒,核型多角体病毒,颗粒体病毒,质型多角体病毒 杆状病毒是一类在自然界中专一性感染节肢动物的DNA病毒,病毒粒子呈杆状,基因组为双链环状DNA分子,DNA以超螺旋形式压缩包装在杆状衣壳内,大小在90~180 Kb之间。目前杆状病毒作为高效、安全的无公害生物虫剂广泛应用于害虫防治。杆状病毒只来源于无脊椎动物,虽然已发现600多种杆状病毒,但进行分子生物学研究的不到20种。杆状病毒的基因组为单一闭合环状双链DNA 分子,大小为80~160 kb,其基因组可在昆虫细胞核复制和转录。DNA复制后组装在杆状病毒的核衣内,后者具有较大的柔韧性,可容纳较大片段的外源DNA 插入,因此是表达大片段DNA的理想载体。其中,用作外源基因表达载体的杆状病毒,目前仅限于核型多角体病毒(nuclear polyhedrosis virus,NPV)。该病毒颗粒在细胞内可由多角体蛋白包裹形成长度约1~5 m的包含体病毒,呈多角体形状。核型多角体病毒有两种形式: 一种为包含体病毒(occluded virus,OV), 另一种则为细胞外芽生病毒(budded virus,BV)。 它们在病毒感染中扮演的角色不同,包含体病毒是昆虫间水平感染的病毒形式,昆虫往往是食入污染OV的食物后引起感染。包含体病毒外层裹了一层蛋白晶体,即为29 000的多角体蛋白,它对病毒的水平感染起以下作用:①保护病毒颗粒在外界传播过程中免遭环境因素的破坏而失活。②保证病毒颗粒在适当的位置释放,引起感染。昆虫中肠上皮局部的强碱性环境(pH=10.5),可使病毒颗粒释放蛋白酶溶解多角体。BV病毒是个体内细胞间的感染形式,由细胞芽生出BV,进入血淋巴系统中感染其它部位的细胞或直接在临近细胞内感染。近几十年,有关杆状病毒基因结构、功能和表达调节的研究进展迅速,其中研究最深入的是mùxu苜蓿银蚊夜蛾(autogra—phacalifornica)多核型多角体病毒(multiple nuclear polyhedro-sis virus,MNPV),简称AcMNPV或AcNPV。该病毒是杆状病毒科 Baculoviridae的原型,是一种大的、带外壳的双链DNA病毒,能感染30多种鳞翅目昆虫,被广泛用作基因表达系统载体。其它作为表达载体的杆状病毒,主要是来自家蚕的NP~(bombyx moil,BmNP~)。由于家蚕幼虫体内系统适合大规模地制备生产外源蛋白,且成本低,显示出良好的应用前景。本文主要介绍 AcNPV病毒,BmNPV在许多方面与其具有共同的特征。 AcNPV的基因表达分为4个阶段:立即早期基因表达、早期基因表达、晚期基因表达和极晚期基因表达。前两个阶段的基因表达早于DNA复制,而后两个阶段的基因表达则伴随着一系列的病毒DNA合成。其中在极晚期基因表达过程中,有两种高效表达的蛋白,它们是多角体蛋白和P10蛋白:多角体蛋白是形成包含体的主要成分,感染后期在细胞中的积累可高达30%~50%,是病毒复制非必需成分,但对病毒粒子却有保护作用,可使之保持稳定和感染能力另一类高效表达的极晚期蛋白为P10蛋白,也是一类病毒复制非必需成分,可在细胞中形成纤维状物质,可能与细胞溶解有关。多角体基因和P10基因现在都已被定位和克隆这两个基因的启动子具有较强的启动能力,因此这两个基因位点成为杆状病毒表达载体系统理想的外源基因插入位点。

昆虫病原微生物研究进展

2 国内外研究进展 2.1 主要研究应用类群 昆虫病原真菌是昆虫病原微生物中最大的一个类群, 共有 100 多个属 700 余种, 分属于真菌的半知菌亚门、接合菌亚门、鞭毛菌亚门、子囊菌亚门及担子菌亚门中, 大部分是兼性或专性病原体。在含有昆虫病原真菌的 100 多个真菌属中, 约 50 多个属于半知菌亚门。目前已在生产上得到应用的主要有白僵菌、绿僵菌、拟青霉、莱氏野村菌、汤普森被毛孢、蜡蚧轮枝菌等。 3. 1 昆虫病原真菌的入侵机理 根据报道 ,白僵菌、绿僵菌、汤普生多毛孢、莱氏野村菌与根虫瘟霉在入侵寄主昆虫体内直至使昆虫死亡的过程中均大致有下面 4 个阶段。 3. 1. 1 分生孢子附着于寄主体表 ,产生或不产生附着孢。 3. 1. 2 附着的分生孢子产生胞外酶 ,主要是几丁质酶和各种不同的蛋白酶类 ,可分解寄主昆虫的体壁。 3. 1. 3 萌发的孢子侵入寄主昆虫体内。 3. 1. 4 菌丝体在虫体内生长 ,消耗虫体内营养并分泌毒素杀死寄主昆虫。 许多资料报道认为:病原真菌分泌的毒素是昆虫死亡的主要原因。较新近的对金龟子绿僵菌侵机理更为细致的研究认为:几丁质酶和蛋白酶类以及真菌毒素的产生与昆虫病原真菌的致病力有关。国外专家经系统地研究绿僵菌的酶系 ,认为弹性凝乳蛋白酶的活性决定绿僵菌的侵染力 ,并且对编码弹性凝乳蛋白酶的基因进行了克隆 ,准备在植物中选用这种基因[ 23 ],这为用分子生物学技术改良菌株或育种创造了条件。 昆虫病原真菌代谢产物及其作用 昆虫病原真菌的代谢产物从作用上可分为 3 类。除了可杀死昆虫的毒素外 ,还有对植物生长有调节作用的激素类物质以及对人体有保健作用的营养物质 ,有些真菌的分泌物还可抑制植物病害的发生。 4. 1 产生杀虫毒素的昆虫病原真菌的主要类别 目前已报道的可以产生毒素的昆虫病原真菌主要包括球孢白僵菌和卵孢白僵菌 ,它们在孢子萌发 及菌丝生长中均能分泌毒素。绿僵菌的培养滤液和菌丝体中均能提取出毒素物质。虫霉菌也能产生毒 素 ,主要发现在冠耳霉( Conidiobol us coronata)的培养液中,尖突耳霉( C. apiculata) 也产生毒素。拟 青霉属的种类、镰刀菌的许多种类、莱氏野村菌及蜡蚧轮枝孢菌均产毒素。虫草属( Cordycepin)的种类 在培养物中可提取出毒素。有报道认为交链孢属的链格孢菌也有毒素产生 2 国内、外已报道的真菌杀虫剂种类 从20 世纪 60 年代以来,欧美国家及日本在昆虫病原真菌的应用上取得了一些突破。20 世纪 90 年代报道的真菌杀虫剂有 7 种类 24 个商品,分属 8 个国家(名录略写) ,以后报道增至 8 种类 26 种商 品[2 ] 。2000 年还报道了美国密西西比地区防治白蚁 Ret icul i termes f lavi pes 使用的由金龟子绿僵菌制 成的商品“Bioblat”。中国目前能工厂化生产的种类有白僵菌、绿僵菌 ,拟青霉中有 2 种已得到应用[ 2 ]

昆虫病毒怎样分离与纯化

昆虫病毒怎样分离与纯化 不同病毒的分离纯化过程并不相同,但所采用的技术大同小异,通过39蜂疗网调查发现病毒分离纯化主要是以下几种常用的通用技术。 1.差速离心 所谓差速离心,就是对同一份样品,用高速、低速循环交替离心,高速使病毒沉淀;沉淀饴浆再悬浮,低速除去污染杂质,最终获得较纯净的病毒粗提物。差速离心,可以除去大部分比病毒粒子大或小的杂质。但与病毒粒子大小相似的颗粒却难以除尽,并且由于杂质的吸附作用,实际病毒获得量低,这是本法的缺点。 差速离心的高速、低速是相对而言的;所需的时间也因溶液的密度、黏度的不同而有变化。 2.密度梯度离心 〔1)蔗糖密度梯度区带离心事先于离心管内分层注入不同密度(浓度)的蔗糖溶液,密度大的位于管底部,密度小的在顶部,形成一个蔗糖密度梯度。将需离心分离的混合液置梯度的顶部,离心过程中,不同密度的粒子,移行到与本身密度相同的蔗糖密度部位,即不再向下移行,达到平衡状态,形成致密的沉淀带。有时不同密度粒子尚未移到各自密度相同的梯度部位,但根据粒子大小、密度不同,沉降速度不同,已分别形成清晰的区带,亦可达到良好的分离目的,离心结束后,各区带可按次分部收集。 (2)平衡密度梯度离心将待分离的混合物,均匀地悬浮于适当浓度的重金属盐溶液中(如CsCl、RbCl等),经长时间离心,重金属盐溶液建立起稳定而连续的密度梯度。待分离的粒子被离心力场驱入溶液密度与粒子本身密度相同的区域内,即达到平衡,从而获得了良好的分离效果。 3. 判断沉淀纯度 可以根据紫外吸收光谱判断。各沉淀组分(或沉淀带),稀释到一定浓度,分别置紫外分光光度计中,在波长200~300nm的范围内测定其紫外吸收值。看其是否具有核蛋白的特征性光谱。核蛋白的特征光谱为:最小吸收值在245nm左右,最大吸收值在260nm左右,260nm 于280nm吸光度的比例大干1,小于2,越接近2,纯度越高。

相关文档