文档库 最新最全的文档下载
当前位置:文档库 › 固定污染源废气 铅的测定 火焰原子吸收分光光度法 (暂行)(HJ 538—2009)

固定污染源废气 铅的测定 火焰原子吸收分光光度法 (暂行)(HJ 538—2009)

固定污染源废气 铅的测定 火焰原子吸收分光光度法 (暂行)(HJ 538—2009)
固定污染源废气 铅的测定 火焰原子吸收分光光度法 (暂行)(HJ 538—2009)

目次

前言 (iv)

1 适用范围 (1)

2 规范性引用文件 (1)

3 方法原理 (1)

4 干扰和消除 (1)

5 试剂和材料 (1)

6 仪器和设备 (2)

7 样品 (2)

8 分析步骤 (2)

9 结果计算 (3)

10 质量保证和质量控制 (3)

固定污染源废气铅的测定

火焰原子吸收分光光度法(暂行)

1 适用范围

本标准规定了测定固定污染源废气中铅的火焰原子吸收分光光度法。

本标准适用于固定污染源废气中铅的测定。

方法检出限为5 μg/50 ml试样溶液,当采样体积为400 L时,检出限为0.013 mg/m3,测定下限为0.052 mg/m3。

2 规范性引用文件

本标准内容引用了下列文件或其中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。

GB/T 16157 固定污染源排气中颗粒物测定与气态污染物采样方法

HJ/T 373 固定污染源监测质量保证与质量控制技术规范(试行)

GB/T 6682 分析实验室用水规格和试验方法

3 方法原理

用石英纤维滤筒采集废气样品,经消解制备成试样溶液,用原子吸收分光光度计测定试样溶液中铅的浓度。

4 干扰和消除

超过铅100倍的Fe3+、A13+、Be3+、Cr3+、Cd2+、Cu2+、Zn2+、Co2+、Hg2+、Sn2+、Mn2+、Mg2+、Ag+等离子不干扰测定,SiO32?稍有干扰。Na+、K+、Ca2+稍有增感作用,当浓度高时,可采用稀释的方法消除干扰。

5 试剂和材料

除非另有说明,分析时均使用符合国家标准的分析纯试剂;实验用水,GB/T 6682,二级。

5.1 硝酸:ρ(HNO3)=1.42 g/ml,优级纯。

5.2 高氯酸:ρ(HClO4)=1.67 g/ml,优级纯。

5.3 过氧化氢:w(H2O2)=30%,优级纯。

5.4 硝酸溶液:?(HNO3)=1%。

用硝酸(5.1)配制。

5.5 硝酸溶液:1+1。

用硝酸(5.1)配制。

5.6 铅标准贮备液:ρ(Pb)=1.00 mg/ml。

称取0.500 0 g金属铅(99.99%)于100 ml烧杯中,用(1+1)硝酸溶液(5.5)15 ml溶解,冷却后,移入500 ml容量瓶中,用水稀释至标线。

铅标准贮备液也可使用市售有证标准溶液。

5.7 铅标准使用液:ρ(Pb)=100 μg/ml。

将铅标准贮备液(5.6)用1% HNO3(5.4)稀释为每毫升含100 μg铅的标准使用液。

HJ538—2009

5.8 乙炔:纯度不低于99.6%。

6 仪器和设备

除非另有说明,分析时均使用符合国家标准的A级玻璃仪器。

6.1烟尘采样器:流量范围5~50 L/min。

6.2石英纤维滤筒。

注:如滤筒空白值较高,使用前可先用热(1+1)硝酸溶液(5.5)浸泡约3 h(不能煮沸,以免破坏滤筒)。从酸中取出后,在水中浸泡10 min,取出用水淋洗至近中性,烘干后即可使用。

6.3 原子吸收分光光度计。

6.4 电热板。

7 样品

7.1 样品的采集

按照GB/T 16157进行样品采集。当温度低于400℃时在管道内等速采样。当温度高于400℃时,铅

呈气态存在,应将废气导出管道外,使温度降至400℃以下,以20 L/min流量恒流采样10~30 min。

7.2 样品的保存

滤筒样品采集后将封口向内折叠,竖直放回原采样盒中,放入干燥器中保存。

7.3 试样的制备

将滤筒剪成小块,放入250 ml锥形瓶中,加入(1+1)硝酸溶液(5.5)50 ml和30%过氧化氢(5.3)

15 ml浸没样品滤筒,瓶口插入一小漏斗,于电热板上加热至微沸,保持微沸2 h。冷却后小心滴加30%

过氧化氢(5.3)5 ml,必要时可补加少量水,再在电热板上加热至微沸,保持微沸1 h。冷却后过滤,

滤液滤入烧杯中,用水洗涤锥形瓶、滤渣三次以上,洗涤液与滤液合并。将装有滤液的烧杯放在电热板

上,将滤液蒸至近干(蒸干温度不宜太高,以免崩溅),再加入(1+1)硝酸溶液(5.5)2 ml,加热使

残渣溶解,冷却后将溶液转移至50 ml容量瓶中,用水稀释至标线。

7.4 空白试样的制备

取同批号空白滤筒两个,和样品同时处理操作,制备成空白试样。

8 分析步骤

8.1 原子吸收分光光度计工作条件

仪器参数可参照说明书进行选择,以下所列条件和参数供参考。

波长:283.3 nm;狭缝宽度:0.8 nm;灯电流:5 mA;火焰类型:空气-乙炔;气体流量:乙炔

2.1 L/min,空气8.0 L/min;燃烧器高度:10.0 cm。

8.2 标准曲线的绘制

8.2.1标准溶液的配制

取7个50 ml容量瓶,按表1配制铅标准系列。用1%硝酸溶液(5.4)稀释至标线,摇匀。

表1 铅标准系列

瓶号0 1 2 3 4 5 6 铅标准使用液/ml 0 0.50 1.00 2.00 3.00 4.00 5.00 铅浓度/(μg/ml)0.00 1.00 2.00 4.00 6.00 8.00 10.0

8.2.2 绘制标准曲线

按选定的仪器工作条件,测定铅标准系列的吸光度,并计算标准曲线的线性回归方程。

HJ 538—2009

8.3 试料的制备

取适量试样溶液于50 ml 容量瓶中,用1%硝酸溶液(5.4)稀释至标线。同法制备空白试料。

8.4 试料的测定

按标准曲线绘制的仪器工作条件,测定试料和空白试料的吸光度。

9 结果计算

根据所测定的吸光度值,由线性回归方程计算出试料和空白试料中铅的浓度,并由式(1)计算固定污染源废气中的铅质量浓度。

ρ (Pb)= 10t nd a

()50

V V V ρρ?××

(1)

式中:ρ(Pb)——固定污染源废气中的铅质量浓度,mg/m 3;

ρ1——试料溶液中铅质量浓度,μg/ml ;

ρ0——空白试料中铅质量浓度的平均值,μg/ml ;

50——试料溶液体积,ml ;

V t ——试样溶液总体积,ml ;

V a ——测定时所取试样溶液体积,ml ;

V nd ——标准状态(101.325 kPa ,273 K )下干气的采样体积,L 。

10 质量保证和质量控制

按HJ/T 373的相关规定执行。

原子吸收法(石墨炉)测定铅的含量

原子吸收法(石墨炉)测定水样中铅的含量 一、实验目的 1了解石墨炉原子吸收分光光度计的基本结构; 2.初步掌握石墨炉原子吸收分光光度计的操作步骤。 二、实验原理 石墨炉原子吸收光谱法是采用石墨炉使石墨管升至2000。C以上,让管内试样中待测元素分解成气态的基态原子,由于气态的基态原子吸收其共振线,且吸收强度与含量成正比关系,故可进行定量分析。它属于非火焰原子吸收光谱法。 石墨炉原子吸收光谱法具有试样用量小的特点,方法的绝对灵敏度较火焰法高几个数量级,可达10-14g。但仪器较复杂、背景吸收干扰较大。工作步骤可分为干燥、灰化、原子化和除残四个阶段。 三、主要仪器和试剂: 石墨炉原子吸收分光光度计;石墨管;铅标准溶液(1000ppm);0.2%稀HNO3;去离子水 四、实验步骤 1. 设置仪器工作参数; 2.配制浓度为50ug/L的标样储备液(母液),利用仪器的自动配制功能配制浓度为10.00、20.00、30.00、40.00、50.00ug/L的铅标准溶液,分别测定其吸光度,扣除试剂空白后做标准曲线; 3.水样经消解后测定其吸光度。 五、结果与数据处理: 1.数据记录 2.绘制工作曲线 3.求待测水样中铅的含量。 附:原子吸收分光光度计操作流程: 1.打开冷却水系统,水温22度左右; 2.打开氩气气瓶,出口压力调节至140-200kPa; 3.打开通风系统、主机及石墨炉电源; 4.开计算机,进入操作系统; 5.SpectrAA软件,进入仪器页面,单击“工作表格”,新建工作方法; 6.按“添加方法”,选择要分析的元素; 7.按“编辑方法”,进行进样模式、测量模式、光学参数、石墨炉升温方式、进 样器等相关参数的设置; 8.按“选择”,选定要分析的样品标签; 9.按“优化”,进行元素灯的优化及进样器位置的优化; 10.按“开始”,进行标样及样品的分析。 11.实验结束后,关机顺序依次为:氩气、冷却水、退软件、主机及石墨炉电源、 计算机、通风系统。

HJ 75-2017固定污染源烟气排放连续监测技术规范与HJT 75-2007标准差异

最新版固定污染源烟气(SO2、NOx、颗粒物)排放连续监测技术规范HJ 75-2017与HJ/T 75-2007标准差异汇总: 1、标准号差异?HJ 75-2017规定较HJ/T 75-2007规定,正式作为行业标准,而不就是推荐性行业标准,效力更强。直接对运维工作具有约束力。 ?2、概念术语(系统响应时间与仪表响应时间) ?HJ 75-2017规定了概念术语:系统响应时间与仪表响应时间;增加了验收技术要求:示值误差与系统响应时间。 9、3、3、1条气态污染物与氧气CEMS验收,这两项就是前提条件。HJ/T 75-2007规定中无此项。3??、新增氮氧化物监测单元要求 HJ 75-2017规定:第4条氮氧化物监测单元要求,二氮可直接测量,亦可转化为一氮后一并测量,不允许只测量一氮。在现场与运维,就需要在产品选型时做好产品设计与转换要求。HJ/T 75-2007规定中无要求。? 4、新增监测站房要求?HJ 75-2017规定:第6条监测站房要求-监测站房建设规范化。对于现场人员来说,就需要注意后期签订运维合同、验收项目,涉及该项,注意核实就是否符合技术规范。如不符合,书面提醒业主单位该事项。HJ/T 75-2007规定中无此项。 5、采样监控平台面积与安全防护变化?HJ 75-2017规定:第7条7、1、1、7采样监控平台面积与安全防护a项。新增加采样监控平台面积与安全防护。技术验收应核实此项。HJ/T 75-2007规定中无此项。 6、安装要求变化 HJ 75-2017规定:第7条安装要求7、1、1、1 b项安装位置细化;采样平台

斜梯(高于2米)与升降梯设置高度(高于20米)细化。技术验收应核实此项。HJ/T 75-2007规定离地高度高于5米,设置Z字梯旋梯升降梯。 ?7、新增了参比方法采样孔预留要求 HJ 75-2017规定:第7条安装要求7、1、1、1 d项参比方法采样孔预留,技术验收应核实此项。HJ/T75-2007规定中无此项。 8、烟气分布均匀程度判定规则 HJ 75-2017规定:7、1、2、3烟气分布均匀程度判定。前四后二由之前得颗粒物增加为颗粒物与流速;新增了新建排放源采样平台与排气装置同步设计、建设,及烟气分布均匀程度判定。现场仪表在CEMS采样与分析探头安装,监测断面位置就是否合理做好判定。HJ/T75-2007规定中无此项。 9、旁路增加烟温与流量 HJ 75-2017规定:7、1、2、6旁路增加烟温与流量,HJ/T75-2007规定中仅需增加流量。 10、新增安装施工要求 HJ75-2017规定:新增了7、2 安装施工要求,7、2、1-7、2、10实际施工要求细化。CEMS安装施工要求细化,对工程施工及验收提高要求与考核指标细化。HJ/T 75-2007规定中无此项。 ?11、CEMS技术指标调试检测变化 HJ 75-2017规定:第8条CEMS技术指标调试检测附录A。主要变化有四

火焰原子吸收光谱法测定污水中的铜和铅

实验三十九火焰原子吸收光谱法测定污水中的铜和铅 一、实验目的 1. 掌握原子吸收分析的原理和该技术在测定环境水中重金属的分析应用 2. 进一步熟悉仪器的操作技术。 二、实验原理 原子吸收光谱分析是根据光源发射出待测元素的锐线光谱通过样品原子蒸汽时,被样品蒸汽中待测元素的基态原子所吸收。在控制合理的分析条件下,吸光度与原子浓度关系服从朗伯-比尔定律。 工业污水中铜和铅是排放标准受控的元素,测定前一般要进行消化预处理,处理方法根据水质污染情况可采用硝酸、硝酸-硫酸或硝酸-高氯酸进行消化。取样量视其含量而定,如果是天然水则需要预富集后才能测定。 三、仪器试剂 1.仪器 日立2-2000火焰/石墨炉原子吸收分光光度计、铜和铅空心阴极灯,仪器工作参数见表5.43。容量瓶:50mL2个,25mL7个;吸量管:2mL1支、1mL1支。 2.试剂 铜、铅标准贮备液:1.0mg/mL(由准备室配制);使用液:Cu50μg/mL,Pb100μg.mL-1(均加入3滴1+1HNO3酸化)。 四、实验步骤

1.制作校准曲线 在4个25mL容量瓶中,各加入2滴1+1HNO3,按表39-2的量配制混合标准系列,用去离子水稀至刻度,摇匀后按表39-1参数分别对各元素进行测定,把测量的吸光度与对应的浓度作图,绘制铜、铅的校准曲线。或者利用仪器浓度直读操作程序,自动绘制校准曲线。 2.水样预处理及测定 量取50mL已酸化(pH≤2)保存的水样于高型烧杯中,加入5mLl+1HN03在电炉上加热至微沸并蒸发到约20mL,如果溶液清亮,盖上表面皿加热回流几分钟,取出冷却至室温,转移至25mL容量瓶中,用二次水稀释至刻度,摇匀,按表39-1的条件进行测定,将测得的数据查校准曲线,计算其含量(用μg/mL表示);若用浓度直读,则读出结果转换成原样品含量,请注意水样浓缩或稀释体积。 注意,如果水样消化不清亮或有悬浮物,需要用硝酸反复消化至清亮为止,最后用砂芯过滤器过滤后再测量。 五、数据处理 1. 制作Cu、Pb的校准曲线(若自动打印出标准曲线,请记录相关系数)。 2. 利用校准曲线计算出污水中Cu、Pb的含量。 3. 若用“标准曲线”自动读出浓度,请换算回原样品的浓度。 六、思考题 1. 雾化器的提升量和雾化效率为什么会影响分析方法的灵敏度? 2. 调节燃烧器的位置应达到什么目的? 3. 富燃性火焰适合于哪些元素分析?举例说明,并解释原因。

实验4火焰原子吸收光谱法测定铁(标准曲线法)

实验四火焰原子吸收光谱法测定铁(标准曲线法) 一、目的与要求 1.加深理解火焰原子吸收光谱法的原理和仪器的构造。 2.掌握火焰原子吸收光谱仪的基本操作技术。 3.掌握标准曲线法测定元素含量的分析技术。 二、方法原理 金属铬和其他杂质元素对铁的原子吸收光谱法测定,基本上没有干扰情况,样品经盐酸分解后,即可采用标准曲线法进行测定。 标准曲线法是原子吸收光谱分析中最常用的方法之一,该法是在数个容量瓶中分别加入成一定比例的标准溶液,用适当溶剂稀释至一定体积后,在一定的仪器条件下,依次测出它们的吸光度,以加入标推溶液的质量(μg)为横坐标,相应的吸光度为纵坐标,绘出标准曲线。 试样经适当处理后,在与测定标准曲线吸光度的相同条件下测定其吸光度(一般采用插入法测定,即将试样穿插进测定标准溶液中间进行测量),根据试样溶液的吸光度,通过标准曲线即可查出试样溶液的含量,再换算成试样的含量(%)。 三、仪器与试剂 1.原子吸收分光光度计。 2.铁元素空心阴极灯。 3.空气压缩机。 4.瓶装乙炔气体。 5.(1+1)盐酸溶液。 6.浓硝酸 7.铁标推溶液(储备液),·mL-1:准确称取高纯金属铁粉1.000g,用30mL盐酸(1+1)溶解后,加2~3mL浓硝酸进行氧化,用蒸馏水稀释至1L,摇匀。 8.铁标准溶液(工作液),100μg·mL-1:取上述铁标准溶液(储备被),用盐酸溶液(ω=稀释10倍,摇匀。 四、内容与步骤 1.试样的处理(平行三份) 准确称取o.2g试样于100mL烧杯中,加入1+1盐酸5mL,微热溶解,移入50 mL容量瓶并稀释至刻度,摇匀备测。 2.标准系列溶液的配制 取6个洁净的50mL容量瓶,各加入1+1盐酸5mL,再分别加入,,,,,铁标准溶液〔工作液),用蒸馏水稀释至刻度,摇匀备测。 3.仪器准备 在教师指导下,按仪器的操作程序将仪器各个工作参数调到下列测定条件,预热20min:分析线: 271.9nm 灯电流: 8mA 狭缝宽度: 0.1mm 燃器高度: 5mm 空气压力:1.4kg/cm2乙炔流量: 1.1L/min 空气流量:5L/min 乙炔压力: 0.5kg/cm2 4.测定标准系列溶液及试样镕液的吸光度。

火焰原子吸收实验报告

实验火焰原子吸收法测定水样中铜的含量 —标准曲线法 一、实验目的 (1)学习原子吸收分光光度法的基本原理; (2)了解原子吸收分光光度计的基本结构及其使用方法 (3)学习原子吸收光谱法操作条件的选择 (4)掌握应用标准曲线法测水中铜的含量。 二、实验原理 原子吸收光谱法是一种广泛应用的测定元素的方法。它是一种基于待测元素基态原子在蒸气状态对其原子共振辐射吸收进行定量分析的方法。 铜离子溶液雾化成气溶胶后进入火焰,在火焰温度下气溶胶中的铜离子变成铜原子蒸气,由光源铜空心阴极灯辐射出波长为324.7nm的铜特征谱线,被铜原子蒸气吸收。 在恒定的实验条件下,吸光度与溶液中铜离子浓度符合比尔定律A=Kc 利用吸光度与浓度的关系,用不同浓度的铜离子标准溶液分别测定其吸光度,绘制标准曲线。 在同样条件下测定水样的吸光度,从标准曲线上即可求得说中铜的浓度,进而计算出水中铜的含量。 三、实验仪器和试剂 (1)原子吸收分光光度计M6 AA System (2)铜元素空心阴极灯 (3)空气压缩机 (4)乙炔钢瓶 (5)50ml容量瓶6支 (6)吸量管 (7)铜标准试液(0.9944mg/ml) (8)去离子水 (9)水样

(10)烧杯 四、实验步骤 (1)溶液的配制 准确移取0.25ml,0.50ml,1.00ml,2.,50ml,3.00ml铜标准溶液于50ml 容量瓶中,用去离子水稀释至刻度,使其浓度分别为0.25、0.50、 1.00、 2.50、 3.00μg/ml。 (2)样品的配制 准备水样1和水样2于烧杯中。 (3)标准曲线绘制 测定条件: 燃气流量1:1 燃烧器高度7.0nm 波长324.8nm 根据实验条件,将原子吸收分光光度计按仪器的操作步骤进行调节。切换到标准曲线窗口,在开始测定之前,用二次蒸馏水调零,待仪器电路和气路系统达到稳定,记录仪上基线平直时,按照标准溶液浓度由稀到浓的顺序逐个测量Cu2+标准溶液的吸光度,并绘制Cu的标准曲线。 (4)水样中铜含量的测定 根据实验条件,测量水样的吸光度,并从标准曲线上查得水样中Cu的含量。 五、实验数据处理

(完整版)固定源污染源废气监测技术规范试题

空气和废气监测技术规范试题考试时间:姓名:分数: 一、填空题(每空2分,共30 分) 1、总悬浮颗粒物(TSP)是指能悬浮在空气中,空气动力学当量直径() 的颗粒物。可吸入颗粒物(PM10)是指悬浮在空气中,空气动力学当量直径()的颗粒物。 2、采集环境空气中的二氧化硫样品时,小时均值采样时,U型吸收管内装10ml 吸收液,以()L/min 的流量采样;24h 连续采样时,多孔玻板吸收管内 装50ml 吸收液,以()L/min 流量采样。 3、我国规定气体的标准状态是指温度为(),压力为()时的状态。 4、环境空气中二氧化硫、氮氧化物平均浓度要求每日至少有()h 的采样时间。 5、环境空气中颗粒物的日平均浓度要求每日至少有()h的采样时间。 6、测定锅炉烟尘时,测点位应尽量选择在垂直管段,并不宜靠近管道弯头及断面形状急剧变化的部位。测点位臵应在距弯头、接头、阀门和其他变径管段的下游方向大于()倍直径处,特殊情况下,最小()倍直径处。 7、固定污染源排气中颗粒物()的原理是:将烟尘采样管由采样孔插入烟道中,采样嘴正对气流,使采样嘴的吸气速度与测点处气流速度相等,并抽取一定量的含尘气体,根据采样管上捕集到的颗粒物量和同时所取的气体量,计算排气中颗粒物浓度。 8、按等速采样原则测定锅炉烟尘浓度时,每个断面采样次数不得少于( )

次,每个测点连续采样时间不得少于()min,每台锅炉测定时所采集样 品累计的总采气量应不少于()m3, 取3 次采样的()作为管道的烟尘浓度值。 二、选择题(每题 3 分,共30分) 1、应使用经计量检定单位检定合格的大气采样器,使用前必须经过流量校准,流量误差应()。 A.大于5% B.不大于5% C.10% D.小于10% 2、当选用气泡吸收管或冲击式吸收管采集环境空气样品时,应选择吸收率为()%以上的吸收管。 A.85 B.90 C.95 D.99 3、环境空气中二氧化硫、氮氧化物的日平均浓度要求每日至少有()h 采样时间。 A.10 B.12 C.14 D.18 4、在环境空气监测点采样周围()空间,环境空气流动不受任何影响。如果采样管的一边靠近建筑物,至少要在采样口周围要有()弧形范围的自由空间。 A.90°,180° B. 180°,90° C. 270°,180° D. 180°,270° 5、在环境空气质量监测点()m 范围内不能有明显的污染源,不能靠近炉、窑和锅炉烟囱。 A.10 B.20 C.30 D.40 E.50 6、除分析有机物的滤膜外,一般情况下,滤膜采集样品后,如果不能立即称重,应在()保存。 A.常温条件下 B.冷冻条件下 C.20C D.4C条件下冷藏 7、在进行二氧化硫24h连续采样时,吸收瓶在加热槽内最佳温度为()C。

固定污染源废气颗粒物

DB13 河北省地方标准 DB13/ -2016 固定污染源废气颗粒物的测定β射线法 Stationary Source Emissions-Determination of Mass Concentration of Particulate Matter –Beta-ray Absorption Method (征求意见稿) 2016- - 发布2016- -实施河北省质量技术监督局 发布 河北省环境保护厅

目次 1. 适用范围 (3) 2. 规范性引用文件 (3) 3. 术语和定义 (3) 3.1 颗粒物 (3) 3.2 标准状态下的干排气 (3) 3.3 等速测定 (3) 4. 方法原理 (3) 5. 干扰和消除 (4) 6. 仪器和设备 (4) 6.1. β射线法颗粒物测定仪 (4) 6.2. 要求 (4) 7. 参数的测定 (4) 7.1 排气温度的测定 (4) 7.2 排气中水分含量的测定 (4) 7.3 排气中O2的测定 (4) 7.4 排气中压力的测定 (4) 7.5 排气流速、流量的测定 (4) 8. 监测位置和监测点 (4) 8.1. 测定位置 (4) 8.2. 测定孔、测定点位置和数目 (5) 9. 样品测定 (5) 9.1. 测定位置和测定点 (5) 9.2. 仪器准备 (5) 9.3. 定点测定 (5) 9.4. 多点测定 (5) 9.5. 测定结束 (5) 10. 颗粒物浓度计算和表示 (5) 10.1.颗粒物浓度 (5) 10.2.标准状态下干废气排放量 (6) 10.3.颗粒物排放速率 (6) 10.4.颗粒物排放浓度 (7) 11. 质量保证和质量控制 (7) 12. 注意事项 (7)

火焰原子吸收测定化妆品中的铅(草稿)

样品前处理对AAS测定铅的影响 摘要:用火焰原子吸收光谱测定化妆品中铅,并对样品前处理,试验条件等进行了研究。 关键词:火焰原子吸收;化妆品;前处理;铅 0前言 化妆品卫生化学标准检验方法中规定铅的检验可以用原子吸收分光光度法和双硫腙比色法,前者是首选方法。原子吸收分光光度法因原子化的技术不同而分为火焰原子吸收法和非火焰原子吸收法。本文只讨论火焰原子吸收法。 1材料和方法 1.1方法提要 样品经预处理,使铅以离子状态存在于试液中,试液铅离子被原子化后,基态原子吸收来自铅空心阴极灯光发出的共振线,其吸收量与样品含量成正比。在其他条件不变的情况下,根据测量被吸收后的谱线强度,与标准系列比较,进行定量。 1.2分析步骤 1.2.1样品预处理 1.2.1.1湿式消解法 称取约1.00~2.00g试样置于消化管中(样品为珍珠霜)。同时做试剂空白。 含有乙醇等有机溶剂的化妆品,先在水浴或电热板上将有机溶剂挥发。若有膏霜型样品,可预先在水浴中加热使瓶颈上样品熔化流入消化管底部。加入数粒玻璃珠,然后加入10ml硝酸(优级纯),由低温至高温加热消解,当消解液体积减少到2~3ml,移去热源,冷却,然后加入2~5ml高氯酸继续加热消解,不时缓缓摇动均匀,消解至冒白烟,消解液呈淡黄色或无色溶液。浓缩消解液至1ml左右。冷至室温后定量转移至10ml(如为粉类样品,则至25ml)具塞比色管中,以去离子水定容至刻度。如样液混浊,离心沉淀后,可取上清液进行测定。 1.2.1.2干湿消解法 称取约1.00~2.00g试样,置于瓷坩埚中,在小火上缓缓加热直至碳化。移入箱形电炉中, 500°C下灰化6h左右,冷却取出。向瓷坩埚加入混合酸(硝酸:高氯酸=3∶1)约2~3ml,同时作试剂空白。小心加热消解,直至冒白烟。但不得干涸。若有残存炭粒,应补加2~3ml混合酸,反复消解,直到样液为无色或微黄色。微火浓缩至近干。然后,定量转移至10ml刻度试管(如为粉类,则至25ml刻度试管)中,用水定容至刻度。必要时离心沉淀。 1.2.1.3浸提法(本方法不适用于含蜡质样品) 称取约1.00g试样,置于比色管中。同时做试剂空白。 样品中如含有乙醇等有机溶剂,先在水浴中挥发,但不得干涸。加2ml硝酸5ml过氧化氢,摇匀,于沸水浴中加热2h。冷却后加水定容至10ml(如为粉类样品,则定容至25ml)。如样品混

实验十火焰原子吸收光谱法测定自来水中钙(精)

实验十火焰原子吸收光谱法测定自来水中钙、镁的含量 化学与化学工程学院仪器分析实验教案实验名称实验十火焰原子吸收光谱法测定自来水中钙、镁的含量目的要求 1、熟悉原子吸收光谱法分析的基本原理。 2、初步掌握原子吸收光谱仪的基本结构及使用方法。 3、掌握用标准曲线法测定自来水中钙、镁含量的方法。重点 1、原子吸收光谱分析的基本原理。 2、标准曲线法。难点原子吸收光谱仪的基本结构和使用方法。仪器设备原子吸收分光光度计、容量瓶、移液管、烧杯、洗瓶、去离子水、氧化钙(GR 、氧化镁(GR 、水样等。内容提要 1、试剂的准备(配制钙、镁的标准溶液和钙、镁的标准系列溶液。 2、仪器的准备(开机、软件的操作。 3、设置参数(实验条件的设定。 4、仪器的调试。 5、标准曲线的制作。 6、试样的测定。 7、数据记录和结果处理。操作要点 1、准确配制钙、镁的标准溶液。 2、开机、正确操作软件。3、选择最佳实验条件(设定参数。 4、测定标准系列。 5、试样的测定。 6、数据记录和结果处理。 (标准曲线、回归方程、相关系数 7、关机。注意事项 1、开机前,检查各电源插头是否接触良好。仪器各部分是否归于零位。 2、使用时,注意下列情况,如废液管道的水封圈被破坏、漏气, 或燃烧器逢明显变宽, 或助燃气与燃气流量比过大, 这些情况都容易发生回火 3. 仪器点火时,要先开助燃气,然后开燃气;关气时先关燃气,然后化学与化学工程学院仪器分析实验教案关助燃气。 4. 要定期检查气路接头和封口是否有漏气现象,以便及时解决。 5、单色器中的光学元件,严禁用手触摸和擅自调节思考题 1、简述原子吸收光谱分析的基本原理。 2、原子吸收光谱分析为何要用待测元素的空心阴极灯作光源?能否用氢灯或钨灯代替?为什么? 3、如何选择最佳的实验条件? 讨论学习 1、何谓试样的原子化?试样原子化的方法有哪几种? 2、使用空心阴极邓应注意哪些问题? 3、如何维护保养原子吸收分光光度计? 拓展学习探讨原子吸收光谱法的特点和应用?

原子吸收光谱法测定饼干中铅含量的分析毕业论文

钦州学院 本科毕业论文(设计) 原子吸收光谱法测定饼干中铅含量的分析 院系 专业 学生班级 姓名 学号 指导教师单位 指导教师姓名 指导教师职称 2017 年 4 月

原子吸收光谱法测定饼干中铅含量的分析 摘要 饼干作为一种人们日常生活中最喜爱的休闲食品,其原料、加工过程、运输过程等都有可能带来重金属铅的污染。重金属铅元素对于人体的大部分器官具有严重的危害,随着人们对于食品安全问题的日益重视,对于饼干中的铅元素含量进行测定具有重要的意义。 文章采用硝酸、高氯酸电热板加热消解,石墨炉原子吸收光谱法测定饼干中铅元素含量。实验中选择用0.5%硝酸钯10μL作为基体改进剂;加热程序为:干燥温度为80℃~110℃,时间为20s;灰化温度为400℃,时间为30s;原子化温度为2000℃,时间为3s。 结果表明:在0~40μg/L的浓度范围内,校准曲线线性关系式为y=0.0098x+0.0056,相关系数为R2=0.9991;检出限为0.024mg/kg;精密度结果在1.98%~8.20%之间;准确度结果在92.6%~98.2%之间。分别对奥利奥、嘉士利、好吃点、徐福记、旺旺雪饼五个品牌的饼干中铅含量进行测定,结果分别为0.42 mg/kg、0.22 mg/kg、0.10 mg/kg、0.16 mg/kg、0.33mg/kg。 说明该方法是一种准确、快速、实验成本低、操作简单的测定饼干中铅含量的方法。 关键词原子吸收光谱法;饼干;铅;研究进展;结果与讨论

Determination of lead content in biscuits by atomic absorption spectrometry Abstract Biscuit, as one of the most popular leisure food in people's daily life, may lead to the pollution of heavy metal lead. Heavy metal lead has serious harm to most of human organs. With the increasing attention to food safety, it is important to determine the content of lead in biscuits. In this paper, the content of lead in biscuit was determined by graphite furnace atomic absorption spectrometry (AAS). In the experiment with 0.5% 10 L palladium nitrate as matrix modifier; heating procedures for drying temperature is 80 DEG to 110 DEG C, time is 20s; the ashing temperature is 400 DEG C, time is 30s; the atomization temperature is 2000 DEG C, time is 3s. The results showed that: in the 0 ~ 40 g/L in the concentration range of the calibration curve, linear equation is y=0.0098x+0.0056, correlation coefficient is R2=0.9991; the detection limit is 0.024mg/kg; the precision of the results in 1.98% ~ 8.20%; the accuracy of the results in 92.6% ~ 98.2%. Respectively lead content on Oreo, Jiashili, good point, Xu Fuji, want snow cake five brands of biscuits were determined, the results were 0.42 mg/kg, 0.22 mg/kg, 0.10 mg/kg, 0.16 mg/kg, 0.33mg/kg. It is proved that this method is accurate, rapid, low cost and easy to operate. Keywords Atomic absorption spectrometry,Biscuits,Lead,Research progress,Results and discussion

GB16297固定污染源废气环境检测限值

1997年1月1日前设立的污染源 序号污染 物 最高允许排放浓度 (mg/m3) 最高允许排放速率(kg/h) 无组织排放监控浓度 排气筒(m) 一级二级三级监控点浓度 1 二 氧 化 硫 1200 (硫、二氧化硫、硫酸和 其它含硫化合物生产) 15 20 30 40 50 60 70 80 90 100 1.6 2.6 8.8 15 23 33 47 63 82 100 3.0 5.1 17 30 45 64 91 120 160 200 4.1 7.7 26 45 69 98 140 190 240 310 无组织排放源 上风向设参照 点,下风向设监 控点 0.50 (监控点与 参照点浓度 差值) 700 (硫、二氧化硫、硫酸和 其它含硫化合物使用) 2 氮 氧 化 物 1700 (硝酸、氮肥和火炸药生 产) 15 20 30 40 50 60 70 80 90 100 0.47 0.77 2.6 4.6 7.0 9.9 14 19 24 31 0.91 1.5 5.1 8.9 14 19 27 37 47 61 1.4 2.3 7.7 14 21 29 41 56 72 92 无组织排放源 上风向设参照 点,下风向设监 控点 0.15 (监控点与 参照点浓度 差值) 420 (硝酸使用和其它) 3 颗 粒 物 22 (碳黑尘、染料尘) 15 20 30 40 禁 排 0.60 1.0 4.0 6.8 0.87 1.5 5.9 10 * 周界外浓度最 高点 肉眼不可见 80** (玻璃棉尘、石英粉尘、 矿渣棉尘) 15 20 30 40 禁 排 2.2 3.7 14 25 3.1 5.3 21 37 无组织排放源 上风向设参照 点,下风向设监 控点 2.0 (监控点与 参照点浓度 差值) 150 (其它) 15 20 30 40 50 60 2.1 3.5 14 24 36 51 4.1 6.9 27 46 70 100 5.9 10 40 69 110 150 无组织排放源 上风向设参照 点,下风向设监 控点 5.0 (监控点与 参照点浓度 差值) 4 氟150 1 5 禁0.30 0.4 6 周界外浓度最0.25

火焰原子吸收光谱法测定空气中铅的含量

火焰原子吸收光谱法测定空气中铅的含量1材料与方法 1.1 主要仪器 AA- 6601 型原子吸收分光光度仪( 日本岛津公司) , 铅空心阴极灯, 电热板。 1. 2 试剂 铅标准储备液( 110 mg/ ml) , GBW08619( 购自国家标准物质中心) , 铅标准使用液( 100 Lg/ ml, 由铅储备液逐级稀释至此浓度) , 硝酸、高氯酸、消化液( 高氯酸B硝酸= 1B9) , 硝酸溶 液( 1%) 。本实验所用试剂均优级纯, 水为去离子水, 所用玻璃器皿均用HNO3( 1+ 5) 浸泡24 h 以上, 去离子水冲洗干净。 1. 3 仪器工作条件 测试波长为**nm, 灯电流61 0 mA, 狭缝012 nm, 燃烧头高度:**mm , 空气乙炔比**, 氘灯扣背景。 1. 4 实验方法 1. 4. 1 样品处理 将采集样品的滤膜放入烧杯中, 加入510 ml 消化液, 盖上表面皿, 在电热板上缓缓加热消解, 保持温度在200 e 左右, 至溶液无色透明近干为止, 用硝酸溶液将残液定量转移入1010 ml 容量瓶中, 定容至1010 ml, 同时做空白溶液。 1. 4. 2 标准系列制备 分别吸取100 Lg / ml 铅标准使用液0100、01 25、0150、11 00、2150、51 00 ml 于10010 ml 容量瓶中, 用硝酸溶液稀释至10010 ml, 最终铅浓度分别为01 00、0125、01 50、11 00、2150、51 00 Lg / ml。 2 结果和讨论 2. 1 燃烧头高度的确定 分别调节燃烧头高度为11、12、13、14、15 mm 的高度,10 次对11 0 Lg/ ml 的铅标准溶液进 行测试, ** mm 的高度时吸光值高, 稳定性最佳。 2. 2 空气乙炔比的确定 分别选定11 9B1、210B1、211B1、212B1、213B1 空气乙炔比, 10 次对110 Lg / ml 的铅标准溶液进行测试, 空气乙炔比为**时吸光值高, 稳定性最佳。 2. 3 吸收波长的比较及选择 分别用2831 3 nm ( 国家标准中采用的波长) 和**nm 波长, 其他条件相同, 测试标准系列吸光度的均值见表1, 多次测试215 Lg / ml 铅标准溶液的吸光度值见表2。根据表1 不同波长标准系列的吸光度可知, 采用波长** nm 测定铅时吸光度比波长28313 nm 测定铅时吸光度高, 虽有干扰及背景吸收, 但通过采用氘灯扣除背景, 可以消除干扰的影响, 获得较高的灵敏度, 降低检测铅的特征浓度。根据表2 不同波长多次测试同一浓度标准溶液吸光度可知, 采用波长** nm 测定铅时吸光度比波长28313 nm测定铅的重现性好, 故本实验选择铅波长为**nm。 表1 不同波长测试标准系列的吸光度均值 0. 0 0. 25 0. 50 1. 00 2. 50 5. 00 铅标准系列 (Lg/ ml) 283. 3 nm0. 00000. 0022 0. 0069 0. 0102 0. 0275 0. 0569

原子吸收测人头发里的铅含量

实验五原子吸收分光光度法测人发中的铅含量 一. 实验的目的和要求 1、学习原子吸收分光光度计的基本原理和使用方法,掌握人发消解技术。 2、学会使用标准曲线法测定未知溶液的浓度。 二. 实践内容或原理 原子吸收光谱法是一种根据基态原子对特征波长光的吸收,测定试样中元素含量的分析方法。由空心阴极灯发出被测元素的特征波长光,待测元素通过高温原子化后对特征波长光产生吸收,在一定浓度范围内,光的强度的吸收与待测元素在火焰中的基态原子数成正比,从而可以计算出待测元素的浓度。 三、需用的仪器、试剂或材料等 仪器:原子吸收分光光度计(美国PE-900H)、电炉、烧杯、移液管、容量瓶、洗瓶等。试剂:浓硝酸、铅标准溶液 四、实践步骤或环节 1、发样采集步骤:在后脑枕部靠近头皮处用不锈钢剪刀剪取发样,量约1g左右,然后用中性洗洁精搅拌浸洗15min,再用蒸馏水冲泡清洗干净。然后用丙酮浸洗5min。用蒸馏水冲洗干净,用吹风机吹干。不锈钢剪刀剪成3mm左右长。 2、发样消化:加酸消解过程在通风橱中进行。准确称取1g左右洗净的干燥发样于50ml烧杯中,加入10ml浓硝酸和1mlH2O2,盖上表面

皿,低热保持不沸腾状态,直到发样完全消解成透明溶液。如果仍有残渣,拿下冷却后,再加入10ml浓硝酸和1mlH2O2进行热消解,直到溶液澄清。 3、消解后的溶液用蒸馏水定容到25ml容量瓶中,上机测定其吸光度。 3、铅标准使用溶液配制: 1)配制100mg/L的铅标准使用液和10mg/L的锌标准使用液:吸取1000mg/L的铅标准储备液10.00ml于100ml容量瓶中,加入2ml浓硝酸,定容到刻度线,摇匀,贴标签(已配)。 2)按照下表配制铅标准溶液:(铅标准使用液浓度:100.00 mg/L) 定容,摇匀后,贴上标签。 2)按照下表配制锌标准溶液:(锌标准使用溶液:10.00 mg/L) 五、原始数据记录和处理

火焰原子吸收光谱法测定空气中铅的含量

火焰原子吸收光谱法测定空气中铅的含量 1材料与方法 1.1 主要仪器 AA- 6601 型原子吸收分光光度仪( 日本岛津公司) , 铅空心阴极灯, 电热板。 1. 2 试剂 铅标准储备液( 110 mg/ ml) , GBW08619( 购自国家标准物质中心) , 铅标准使用液( 100 Lg/ ml, 由铅储备液逐级稀释至此浓度) , 硝酸、高氯酸、消化液( 高氯酸B硝酸= 1B9) , 硝酸溶液( 1%) 。本实验所用试剂均优级纯, 水为去离子水, 所用玻璃器皿均用HNO3( 1+ 5) 浸泡24 h 以上, 去离子水冲洗干净。 1. 3 仪器工作条件 测试波长为**nm, 灯电流61 0 mA, 狭缝012 nm, 燃烧头高度: **mm , 空气乙炔比**, 氘灯扣背景。 1. 4 实验方法 1. 4. 1 样品处理 将采集样品的滤膜放入烧杯中, 加入510 ml 消化液, 盖上表面皿, 在电热板上缓缓加热消解, 保持温度在200 e 左右, 至溶液无色透明近干为止, 用硝酸溶液将残液定量转移入1010 ml 容量瓶中, 定容至1010 ml, 同时做空白溶液。 1. 4. 2 标准系列制备 分别吸取100 Lg / ml 铅标准使用液0100、01 25、0150、11 00、2150、51 00 ml 于10010 ml 容量瓶中, 用硝酸溶液稀释至10010 ml, 最终铅浓度分别为01 00、0125、01 50、11 00、2150、51 00 Lg / ml。 2 结果和讨论 2. 1 燃烧头高度的确定 分别调节燃烧头高度为11、12、13、14、15 mm 的高度,10 次对11 0 Lg/ ml 的铅标准溶液进行测试, ** mm 的高度时吸光值高, 稳定性最佳。 2. 2 空气乙炔比的确定 分别选定11 9B1、210B1、211B1、212B1、213B1 空气乙炔比, 10 次对110 Lg / ml 的铅标准溶液进行测试, 空气乙炔比为**时吸光值高, 稳定性最佳。 2. 3 吸收波长的比较及选择 分别用2831 3 nm ( 国家标准中采用的波长) 和**nm 波长, 其他条件相同, 测试标准系列吸光度的均值见表1, 多次测试215 Lg / ml 铅标准溶液的吸光度值见表2。根据表1 不同波长标准系列的吸光度可知, 采用波长** nm 测定铅时吸光度比波长28313 nm 测定铅时吸光度高, 虽有干扰及背景吸收, 但通过采用氘灯扣除背景, 可以消除干扰的影响, 获得较高的灵敏度, 降低检测铅的特征浓度。根据表2 不同波长多次测试同一浓度标准

火焰原子吸收法测定茶叶中铅的含量

火焰原子吸收法测定茶叶中铅的含量 一、实验原理 原子吸收光谱法是基于从光源发射的被测元素的特征谱线通过样品蒸气时,被蒸气中待测元素基态原子吸收,由谱线的减弱程度求得样品中被测元素的含量。谱线的吸收与原子蒸气的浓度遵守比耳定律(A=kcL),这是本方法的定量分析基础。 测定时,首先将被测样品转变为溶液,经雾化系统导入火焰中,在火焰原子化器中,经过喷雾燃烧完成干燥、熔融、挥发、离解等一系列变化,使被测元素转化为气态基态原子。本次实验采用标准曲线法测定未知液中铜的含量。 二、仪器和试剂 PE330型原子吸收分光光度计,铅空心阴极灯 25ml容量瓶9个,5ml吸量管2支 铅标准储备溶液(1mg/mL)盐酸(优级纯),硝酸(优级纯),高氯酸(分析纯),去离子水 瓷坩埚4个 三、仪器工作条件 原子化器高度7mm 狭缝0.7mm 空气流速6L/min 乙炔流速1.2L/min 空心阴极灯工作参数:波长283.3mm 灯电流10mA 四、火焰法测定的操作 开机流程: 五、溶液制备 1、标准液制备 用盐酸(1+11)将铅标准储备液稀释至100mg/L 2、样品溶液的制备 称取5.00g粉碎的茶叶样品于50mL瓷坩埚中,小火炭化至无烟,移入马弗炉中500℃灰化6~8h,冷却。加入1mL混合酸(硝酸:高氯酸=4:1),低温加热,不使干涸,如此重复几次,直到残渣中无碳粒,放冷。用10mL盐酸(1+11)溶解残渣,将溶液过滤入50mL容量瓶中,用少量水多次洗涤坩埚,洗液并入容量瓶中并定容至刻度,混匀备用。同时做试剂空白试验。

六、实验测定 1、标准溶液的配置 吸取铅标准使用液,用盐酸(1+11)配置成浓度分别为0.00mg/L,0.25mg/L,0.50mg/L,1.00mg/L,2.00mg/L的标准工作溶液。依次导入火焰原子化器并进行吸光度值的测定,绘制工作曲线。 2样品的测定 用标准曲线法测定样品中铅的含量 七、注意事项: 1. ·表示高压值。 2. 打开燃气的操作步骤:打开空气压缩机,先开红灯,再开绿灯。使用时,燃气为乙炔气体,助燃气为空气。打开助燃气开关,调节表盘数值为0.3Mpa,打开燃气开关,调节表盘数值为0.05 Mpa~0.07 Mpa。 3. 乙炔钢瓶的使用,打开主阀,将减压阀调节至表盘数值显示为0.15左右。

石墨炉原子吸收分光光度法测定水中的铅

石墨炉原子吸收分光光度法测定水中的铅 摘要:采用石墨炉原子吸收分光光度法测定水中铅,用电加热方式使石墨炉升温,样品蒸发离解形成原子蒸气,对来自光源的特征电磁辐射产生吸收,实验结果表明,精密度较好,准确度、灵敏度较高,是测定水中铅的好方法。 关键词:铅;硝酸;石墨炉 在所有已知毒性物质中,书上记载最多的是铅。铅是一种积累性毒物,易被肠胃吸收,通过血液影响酶和细胞的新陈代谢。过量铅的摄人将严重影响人体健康,主要毒性为引起贫血、神经机能失调和肾损伤。因此,铅在环境中的含量,特别是环境水样中的含量,是环境监测控制的一个重要指标。近年来,随着科学技术的发展,出现了很多水样中铅含量的测定方法,如分光光度法、示波极谱法、电位溶出法等。但当水中铅含量较低,有些方法仍不能满足环境水样中痕量铅的测定要求。而石墨炉原子吸收分光光度法的使用浓度范围在1~5μg/L,是测定环境水样中痕量铅的可行方法之一。石墨炉原子吸收分光光度法对仪器要求较高,与火焰原子吸收分光光度法相比,具有较高的灵敏度,但是由于石墨管内部空间小,因而同时共存的基体物质在空间的密度大大增加,这就增加了它与被测元素之间的相互作用机会,产生的气相干扰要比火焰法严重得多。而且环境水样基体复杂,在水样中存在NaCI、CaCI2等碱金属、碱土金属卤化物,基体干扰特别严重。另外,有机污染物等对痕量待测金属测定也产生基体干扰。为了消除基体干扰,可在石墨炉或试液中加入基体改进剂,通过化学反应使基体的温度特性发生变化,避免与待测元素的共挥发从而消除基体干扰。近年来,快速程序升温原子化技术已广泛应用于各种样品分析,大大缩短了分析周期,提高了分析效率。 一、测定 1、仪器 TAS-990AFG原子吸收分光光度计、石墨炉装置及其他有关附件。 2、试剂 实验用水:去离子水。 硝酸:优级纯。 硝酸:0.2%。 过氧化氢溶液。

固定源废气监测技术规范关于采样口的具体要求

固定源废气监测技术规范关于采样口的具体要 求 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

固定源废气监测技术规范关于采样口的具体要求 5.1 采样位置 5.1.1 采样位置应避开对测试人员操作有危险的场所。 5.1.2 采样位置应优先选择在垂直管段,应避开烟道弯头和断面 急剧变化的部位。采样位置应设置在距弯头、阀门、变径管下游方 向不小于 6 倍直径,和距上述部件上游方向不小于 3 倍直径处。 采样断面的气流速度最好在 5m/s 以上。 5.1.3 测试现场空间位置有限,很难满足上述要求时,可选择比 较适宜的管段采样,但采样断面与弯头等的距离至少是烟道直径的 1.5 倍。 5.1.4 对于气态污染物,由于混合比较均匀,其采样位置可不受 上述规定限制,但应避开涡流区。如果同时测定排气流量,采样位 置仍按 5.1.2 选取。 5.1.5 必要时应设置采样平台,采样平台应有足够的工作面积使 工作人员安全、方便地操作。平台面积应不小于 1.5m2,并设有 1.1m 高的护栏和不低于 10cm 的脚部挡板,采样平台的承重应不 小于200kg/m2,采样孔距平台面约为 1.2m~1.3m。 5.2 采样孔 5.2.1 采样孔 单 位 为 毫 米a)带有盖板的采样孔 b)带有管堵的采样孔 c)带有 管帽的采样孔图 1 几种封闭形式的采样孔 5.2.1.1 在选定的测定位置上开设采样孔,采样孔的内径应不小 于 80mm,采样孔管长应不大于 50mm。不使用时应用盖板、管堵或 管帽封闭(图 1)。当采样孔仅用于采集气态污染物时,其内径应 不小于 40mm。 5.2.1.2 对正压下输送高温或有毒气体的烟道,应采用带有闸板 阀的密封采样孔(图 2) 图2带有闸板阀的密封采样孔

火焰原子吸收光谱法测定水中钙含量(精)

实验说明:07(3分成四组。第一组于2010年12月70日下周二上午十点正 先到C209食品分析实验室配制二个样品溶液、二个样品并加入2,5mL 准使用液 的混合溶液。然后到B102进行测定。然后,每隔三十分钟其他各组依次按照前 面的二个过程进行实验。 实验一火焰原子吸收光谱法测定水中钙含量 一、实验原理 在使用锐线光源条件下,基态原子蒸汽对共振线的吸收,符合朗伯-比尔定 律,即:A=lg(I 0/I)=KLN 0 在试样原子化时,火焰温度低于3000 K时,对大多数元素来讲,原子蒸汽 中基态原子的数目实际上十分接近原子总数。在一定实验条件下,待测元素的原 子总数目与该元素在试样中的浓度呈正比。则:A = c 用A-c 标准曲线法或标准加入法,可以求算出元素的含量。 二、仪器与试剂 1. 仪器 (1) TAS 原子吸收分光光度计;钙空心阴极灯。 (2)10mL 移液管一支 (3)100 mL容量瓶六个

(4)2mL 移液管一支 2. 试剂 (1)1.0g.L -1钙标准储备液 (2)50 mg.L-1钙标准使用液(老师完成 配制用水均为二次蒸馏水。 三、实验步骤 1. 配制钙系列标准溶液: 2.0,4.0,6.0,8.0,10.0 mg.L-1。(老师完成 2. 工作条件的设置(老师完成,具体实验过程中可能有变动,注意在实验过程中记录。 (1)吸收线波长 Ca 422.7 nm (2)空心阴极灯电流 4 mA (3)狭缝宽度 0.1 mm (4)原子化器高度 6 mm (5)空气流量 4 L.min-1,乙炔气流量1.2 L.min-1 3. 钙的测定 (1)样品(2 个/组):移10.00 mL自来水于50 mL容量瓶中,用蒸馏水稀释至刻度,摇匀。(学生在C209食品分析实验室完成) (2)加标样品(2 个/组):移10.00 mL自来水样和2.50 mL50 mg.L-1钙标

相关文档
相关文档 最新文档