文档库 最新最全的文档下载
当前位置:文档库 › 三相交流异步电机变频调速控制器的设计

三相交流异步电机变频调速控制器的设计

三相交流异步电机变频调速控制器的设计
三相交流异步电机变频调速控制器的设计

目录

1 绪论 (4)

1.1 DSP的发展趋势 (4)

1.2变频调速技术的发展 (5)

1.3变频调速系统的方案.......................................... .................................... ........................... ..6

1.4本论文的研究内容.......................................... .................................................... (7)

2 交流调速原理................................................................... (8)

2. 1正弦脉宽调制(spwm)控制理论 (8)

2.2单极性spwm控制技术 (9)

2.3双极性spwm控制技术 (10)

2.4 spwm的调制方式 (12)

3总体方案及硬件设计 (14)

3.1 总体方案及硬件框图 (14)

3.2系统硬件电路 (14)

3.2.1变频主电路........... ............ ......................................................... (14)

3.2.2功率驱动电路....................................................................................... . (15)

3.2.3光耦隔离电路........ ............ ......................................................... (15)

3.2.4功率驱动电路....................................................................................... . (15)

3.2.5显示部分........... ............ ......................................................... .. (16)

3.2.6主电路开关器件的选择...................................................................... . (22)

4系统软件的设计 (22)

4.1正弦脉宽调制器 (22)

4.2程序 (24)

4.2.1 A/D转换初始化程序... ................................................................ (24)

4.2.2SPWM程序............................................................................................... . (27)

4.2.3主程序........ ............ ..................................................................... (30)

5实验结论 (32)

摘要:随着电力电子技术和微机控制技术的发展,交流变频调速系统的性能指标已达到了完全可以与直流调速相媲美的程度,所显现的优良性能使其应用范围越来越广。本系统采用24V直流电源,通过逆变电路,将直流电变成三相交流电,进而控制三相异步电机。运用DSP输出SPWM波形,作为变频调速系统的输入控制信号控制整个系统,实现变频和调速控制器的功能,同时采用LCD、数码管以及EEPROM显示储存数据。

关键词:变频器;调速;控制器;SPWM;DSP

The Three-phase AC Asynchronous Motor Variable

Frequency Speed Regulating Controller Design

ZHANG LEI

(Electronic Engineering and its Automation 1001)

Abstract:Along with the power electronic technology and computer control technology development. Ac variable frequency speed control

system performance index has reached can completely and dc speed regulating comparable degree, showed the good performance that the application of the more widely. This system USES 24 v dc power supply, through the inverter circuit, the dc into three phase alternating current , and then control three phase asynchronous motor Use DSP output SPWM waveform, variable frequency speed regulation system as the input of the control signal to control the entire system, realize frequency and the number of the unction of the controller.Meanwhile,using LCD,led and eeprom as a display and saving.

Key words:frequency converter; Speed control; controllerSPWM;F2407A DSP.

1.绪论

1.1DSP的发展趋势

在计算机技术日新月异的时代,嵌入式系统软件、硬件不断进行着新的突破性发展。如今DSP操作系统和DSP应用已经成为当今嵌入式系统应用领域中最热门的技术,是高校、科研院所和高新技术企业的DSP软件、硬件开发人员的新的课题。

DSP实时嵌入式操作系统是一种实时的、多任务的操作系统软件,它是DSP 系统(包括硬、软件系统)极为重要的组成部分,通常包括与硬件相关的底层驱动软件、系统内核、设备驱动接口。目前,DSP实时操作系统的品种较多,据统计,仅用于信息电器的DSP操作系统就有10种左右。与通用操作系统相比较,嵌入式操作系统在系统实时高效性、硬件的相关依赖性、软件固态化以及应用的专用性等方面具有较为突出的特点。

DSP技术应用前景将非常广阔。DSP应用产品具有巨大的市场需求前景,仅就美国市场而言,据估计,21世纪将有1亿辆汽车、几千万台个人通信装置、每个家庭中5~20个联网的家用电器以及数以百万计的工厂使用DSP系统。业界分析家认为,DSP系统在IP电话、游戏装置和手持式通信装置的推动下将会有突飞猛进的发展。DSP系统不仅在传统的工业控制、通信和图象处理领域有极其广泛的应用空间,如智能工控设备、POS/ATM机、IC卡等,而且在信息家电领域的应用更具有极为广泛的潜力,例如机顶盒、变频冰箱、变频空调等众多的消费类和医疗保健类电子设备,以及在车载盒、智能交通等领域的应用也呈现出前所未有的生机。

(1)信息家电领域机顶盒、变频冰箱、变频空调等众多的消费类和家庭医疗保健类电子设备将在未来几年取得快速发展,信息家电的个性化、区域化以及季节化的趋势,为特定应用的DSP操作系统提供了应用发展空间。信息智能家居是未来发展的方向,估计几年内将得到快速发展。

(2)医疗仪器领域大量医疗仪器的应用,如心脏起搏器、放射设备及分析监护设备,都需要RTOS的支持,像各种化验设备,如肌动电流描记器、离散光度化学分析、分光光度计等,都需要使用高性能的、专用化的DSP系统来提高其精度和速度。引入DSPRTOS后,现有的各种监护仪的功能与性能都将得到大幅度的提高。

(3)智能汽车领域随着无线通信与全球定位技术的日益成熟和广泛应用,

集通信、信息、导航、娱乐和各类汽车安全电子系统于一体的车载盒会成为下一代和未来汽车的发展方向。由于足够的市场需求,车载盒必将成为近年来发展的热点,DSPRTOS在该领域应用市场的规模未来几年里将迅速增加。

(4)智能交通领域随着人们对环境要求的不断提高,智能交通系统(ITS)必将是新世纪迅猛发展的支柱产业。特定应用的DSP操作系统将是发展智能综合路口控制机、路车交互系统、新型停车系统、高速公路的信息监控与收费综合管理系统的关键技术,其应用将确保智能交通系统的低成本与高性能,大大提高系统的可靠性和智能化程度。

(5)其它领域的应用,如视频会议系统、全数字电机控制系统(包括直流无刷伺服和交流伺服)、语音压缩、通信等。 DSP的应用离不开DSP操作系统。

1.2 变频调速技术的发展

交流变频调速技术相对于变压调速等其它方法有着明显的优点:①调速时平滑性好,效率高;②调速范围较大,精度高;③起动电流低,对系统及电网无冲击,节电效果明显;④变频器体积小,便于安装、调试、维修简便;⑤易于实现过程自动化等优异特性,在实际中得到了广泛的应用。

20世纪是电力电子变频技术由诞生到发展的一个全盛时期。最初的交流变频调速理

论诞生于20世纪20年代,直到60年代,由于电力电子器件的发展,才促进了变频调速技术向实用方向的发展。70年代,席卷工业发达国家的石油危机,促使他们投入大量的人力、物力、财力去研究高效率的变频器,使变频调速技术有了很大的发展并得到推广应用。80年代,变频调速己产品化,性能也不断提高,充分发挥了交流调速的优越性,

广泛的应用于工业各部门,并且部分取代了直流调速。进入90 年代,由于新型电力电子器件的发展及性能的提高、计算机技术的发展以及先进控制理论和技术的完善和发展等原因,极大地提高了变频调速的技术性能,促进了变频调速技术的发展,使变频调速装置在调速范围、驱动能力、调速精度、动态响应、输出性能、功率因数、运行效率及使用的方便性等方面大大超过了其他常规交流调速方式,其性能指标亦已超过了直流调速系统,达到取代直流调速系统的地步。

目前,交流变频调速技术以其卓越的调速性能、显著的节电效果以及在国

民经济各领域的广泛适用性,而被公认为是一种最有前途的交流调速方式,代表了电气传动发展的主流方向。变频调速技术为节能降耗、改善控制性能、提高产品的产量和质量提供了至关重要的手段。变频调速理论己形成较为完整的科学体系,成为一门相对独立的学科。变频装置按变换环节分有交一直一交系统和交一交系统两大类,交一直一交系统又分为电压型和电流型,其中,电压型变频器在工业中应用最为广泛;按电压的调制方式分为脉幅调制PAM(Pulse Altitude Modulation)和脉宽调制PWM(Pulse Width Modulation)两大类,前者己几近绝迹,目前普遍采用的是后者回.

1.3 变频调速系统的方案

目前典型的变频调速控制类型主要有四种:①恒压频比(v均控制,②转差频率控制,③矢量控制,④直接转矩控制。下面分别对这四种调速控制类型进行介绍。

早期的变频系统都是采用开环恒压比田/卜常数)的控制方式,U/f控制是转速开环控制,无需速度传感器,控制电路简单,负载可以是通用标准异步电动机,所以通用性强,经济性好,是目前通用变频器产品中使用较多的一种控制方式,普遍应用在风机、泵类的调速系统中。但是由于这种控制方法是开环控制,调速精度不高,低速时因定子电阻和逆变器死区效应的存在而性能下降、稳定性变差。

异步电动机转差频率控制是一种转速闭环控制。利用异步电动机的转矩与转差频率成正比的关系来控制电机的转矩,就可以达到与直流恒磁通调速系统相似的性能。它的优点在于频率控制环节的输入频率信号是由转差信号和实测转速信号相加后得到的,在转速变化过程中,实际频率随着实际转速同步上升或下降,因此加、减速更平滑,容易稳定。其缺点是由于转差频率控制规律是从异步电动机稳态等效电路和稳态转矩公式推得的,所以存在动态时磁通的变化不能得到控制、电流相位没有得到控制等差距,使其不能达到与直流恒磁通调速系统同样的性能。

本世纪70年代西德F.Blaschke等人首先提出矢量控制(FOC)理论,由此开创了交流电动机等效直流电动机控制的先河1习。矢量控制也称为磁场定向控制,它着眼于电机磁场的直接控制。其主要思想是将异步电动机模拟成直流电动机,

通过坐标变换的方法分解定子电流,使之成为转矩和磁场两个分量,实现正交或解祸控制,从而获得与直流电动机一样良好的动态调速特性。因为这种方法采用了坐标变换,所以对控制器的运算速度、处理能力等性能要求较高。但在实际上矢量控制运算及转子磁链估计中要使用电动机参数,其控制的精确性受到参数变化的影响,所以精确的矢量控制系统要对电动机的参数进行估计。这种控制方式需要解祸计算和坐标旋转变换,计算量较大,实现起来困难。在矢量控制系统中,给定量要从直流变为交流,而反馈量要从交流变为直流再加上转子磁链模型、转子参数的辨识与校正等;因此电机的速度辨识及磁链观测器的实现是矢量控制系统实现的关键所在。

1985年德国鲁尔大学DePenbrock教授首先提出直接转矩控制理论(DTC)。直接转矩控制与矢量控制不同,DTC摒弃了解祸的思想,取消了旋转坐标变换,简单的通过检测电机定子电压和电流,借助瞬时空间矢量理论计算电机的磁链和转矩,并根据与给定值比较所得的差值,实现磁链和转矩的直接控制。直接转矩控制技术是用空间矢量的分析方法,直接在定子坐标系计算与控制交流电动机的转矩,采用定子磁场定向,借助离散的两点式调节器产生脉宽调制(PWM)信号,直接对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能。这种方法的优点在于:直接在定子坐标系上分析交流电动机的数学模型、控制电动机的转矩和磁链,省掉了矢量旋转变换等复杂的变换和计算。大大减少了矢量控制技术中控制性能易受参数变化影响的问题。但是由于直接转矩控制系统是直接进行转矩的砰一砰控制,避开了旋转坐标变换,控制定子磁链而不是转子磁链,不可避免地产生转矩脉动,降低调速性能,因此只能用在对调速要求不高的场合。同时,直接转矩系统的控制也较复杂,造价较高。

1.4 本论文的研究内容

本文在掌握交流电机变频调速基本原理的基础上,采用电机控制专用DSP芯片TMS320LF2407A,运用变频调速的价厂控制方式和SPWM控制算法,提出了交流电机变频调速系统的总体设计方案,。

具体研究工作包括:交流电机变频调速原理的研究;变频调速系统硬件电路的研究和设计,包括主电路、系统保护电路和控制电路;变频调速系统控制软件的研究和设计。

2.交流调速原理

2、1正弦脉宽调制(SPWM)控制理论

我们期望变频器输出的电压波形是纯粹的正弦波形,但就目前的技术,还不能制造功率大、体积小、输出波形如同正弦波发生器那样标准的可变频变压的逆变器。目前很容易实现的一种方法是:逆变器的输出波形是一系列等幅不等宽的矩形脉冲波形,这些波形与正弦波等效,等效的原则是每一区间的面积相等。如果把一个正弦半波分作n 等分,然后把每一等分的正弦曲线与横轴所包围的面积都用一个与此面积相等的矩形脉冲来代替,矩形脉冲的幅值不变,各脉冲的中点与正弦波每一等分的中点相重合。这样,有n 个等幅不等宽的矩形脉冲所组成的波形就与正弦波的半周等效,称为SPWM 波形。SPWM 波形如图2.1所示:

产生正弦脉宽调制波SPWM 的原理是:用一组等腰三角形波与一个正弦波进行比较,如图2.2所示,其相交的时刻(即交点)作为开关管“开”或“关”的时刻。正弦波大于三角波时,使相应的开关器件导通;当正弦波小于三角载波时,使相应的开关器件截止。

ωt

ωt

u u 00(a)

(b)

图2.1与正弦波等效的等幅脉冲序列波

+1

-1

+1

-1

图2.2 SPWM控制的基本原理图

2.2单极性SPWM控制技术

采用单极性控制时在正弦波的半个周期内每相只有一个开关器件开通或关断,例

如A相的V

1

反复通断,如图2.3所示。

图2.3 单极性脉宽调制波的形成(A)调制波和载波 (B)单极性SPWM波形A B

这时的调制情况是:当正弦调制波电压高于三角载波电压时,相应比较器的输出电压为正电平,反之则为零电平。只要正弦调制波的最大值低于三角载波的幅值,由图2.3(A)的调制结果必然形成图2.3(B)所示的等幅不等宽而且两侧窄中间宽的SPWM 脉宽调制波形。负半周用同样的方法调制后再倒相而成。

121

32

3

02

1234sin d (sin )d 22

sin d (sin )d 222(12cos 2cos 2cos )d

d n d d

d

U U a n t t n t t

U U n t t n t t U n n n n αααπ

αααωωωωπωωωωαααπ

?=+-???++-??

=

-+-????

单极性调制的工作特点:每半个周期内,逆变桥同一桥臂的两个逆变器件中,只有一个器件按脉冲系列的规律时通时断的工作,另一个完全截止;而在另半个周期内,两个器件的工作情况正好相反。流经负载Z 的便是正、负交替的交变电流,如图2.4所示。

V 1

V 2

Z

图2.4单极性调制工作特点

2.3双极性SPWM 控制技术

双极性调制技术与单极性相同,只是功率开关器件通断情况不一样。图2.5绘出了三相双极式的正弦脉宽调制波形。当A 相调制波u A >u t 时,V 1导通,V 2关断,使负载上的相电压为UA=+U/2(假设交流电机定子绕组为星型联接,其中性点0与整流器输出端滤波电容器的中点0相连,那么当逆变器任一相导通时在电机绕组上所获得的相电压为U/2,见图2.5(b);当u A

替导通得到的。由U

A 和U

B

相减,可得逆变器输出线电压波形U

AB

[图2.5(e)]。U

AB

的脉冲幅值为+U和-U。尽管相电压是双极性的,但是合成后的线电压脉冲系列与单极性相电压合成的结果一样都是单极性的。

图2.5双极性SPWM逆变器三相输出波形

综上所述,双极性调制的工作特点:逆变桥在工作时,同一桥臂的两个逆变器件总是按相电压脉冲系列的规律交替地导通和关断,而流过负载Z的电流是按线电压规律变化的交变电流,如图2.6所示:

V 1

V 2

Z

图2.6双极性调制工作特点

2.4 SPWM 的调制方式

SPWM 波毕竟不是真正的正弦波,它仍然含有高次谐波的成分,因此尽量采取措施减少它。图2.7是通过电动机绕组的SPWM 电流波形。显然,它仅仅是通过电动机绕组滤波后的近似正弦波。

图中给出了载波在不同频率时的SPWM 电流波形,可见载波频率越高,谐波波幅越小,SPWM 波形越好。因此希望提高载波频率来减小谐波。另外,高的载波频率使变频器和电机的噪声进入超声范围,超出人的听觉范围之外,产生“静音”的效果。但是,提高载波的频率要受逆变开关管的最高开关频率限制,而且也形成对周围电路的干扰源。

I

I

t

t

00

(a) 调制频率较低时的电流波形

(b) 调制频率较高时的电流波形

图2.7 SPWM 电流波形

SPWM的调制方式有三种:同步调制、异步调制和分段同步调制。在一个调制信号周期内所包含的三角载波的个数称为载波频率比。在变频过程中,即调制信号周期变化过程中,载波个数不变的调制称为同步调制,载波个数相应变化的调制称为异步调制。

(1)同步调制

在改变正弦信号周期的同时成比例地改变载波周期,使载波周期与信号频率的比值保持不变。对于三相系统,为了保证三相之间对称,互差120°相位角,通常取载波频率为3的整数倍。而且,为了双极性调制时每相波形正负波形对称,上述倍数必须是奇数,这样在信号波180°处,载波的正负半周恰好分布在180°处的左右两侧。由于波形的左右对称,这就不会出现偶次谐波问题。但是这种调制,在信号频率较低时,载波的数量显得稀疏,电流波形脉动大,谐波分量剧增,电动机的谐波损耗及脉动转矩也相应增大。而且,此时载波的边频带靠近信号波,容易干扰基波频域。为了克服这个缺点,必须在低频时提高载波比,这就是异步调制方式。

(2)异步调制

异步调制方式是指在整个变频范围内,载波比都是变化的。一般在改变调制频率时保持三角载波频率不变,因此提高了低频时的载波比,在低频工作时,逆变器输出电压半波内的矩形脉冲数可以随着输出频率的降低而增加,相应的减小了负载电机的转矩与噪声,改善了低频时的工作特性。但是由于载波比随着输出频率的降低而连续变化时,逆变器输出电压的波形其相位也会发生变化,很难保持三相输出的对称关系,因此会引起电动机的工作不稳定。

(3)分段同步调制

为了克服同步调制和异步调制的缺点,可以将他们结合起来,组成分段同步调制方式。分段同步调制是指在一定的频率范围内,采用同步调制,保持输出波形对称的优点,当频率降低较多时,使载波比分段有级的增加,这样就利用了异步调制的优点。具体实现方法是把逆变器整个变频范围划分为若干个频段,在每个频段内都维持载波比恒定,对于不同频段取不同的载波比,频率较低载波比取大点,一般有经验参数可取。

3.总体方案及硬件设计

3.1总体方案及硬件框图

方案以三相交流异步电动机为被控对象,以TMS320LF2407A(16 位定点DSP 芯片)为处理器,对三相交流异步电动机采用变频调速V/F 控制算法,设计了整套系统。图1 示出系统的硬件框图。DSP 首先从键盘采集需要的频率和转向信号,接着产生相应的三相六路SPWM信号,过光耦隔离传给驱动电路,驱动电路再控制逆变桥IPM的导通与关断,同时DSP 采集IPM有无故障输出,如有故障,则关断DSP 的SPWM 输出,关断主电路。通过液晶显示相应的频率、转速、转向等信号。

图3.1系统硬件框图

3.2系统硬件电路

如图3.1所示,系统硬件电路由变频主电路、功率驱动电路、光耦隔离电路、保护电路、DSP 最小系统、键盘输入和液晶显示等电路组成。

3.2.1 变频主电路

图3.2 示出的变频主电路由整流、滤波、逆变3 部分电路组成。整流电路由单相不可控整流桥将电源的单相交流全波整流成直流。整流电路输出的整流电压是脉动的直流电压,必须加以滤波。滤波电容除了滤除整流后的电压纹波外,还在整流电路与逆变器之间起去耦作用,以消除相互干扰,给作为感性负载的电动机提供必要的无功功率。逆变电路把整流后的直流电再逆变成频率、幅值均可调节的

交流电。这是变频器实现变频的执行环节,因而是变频电路的核心部分。

图3.2变频主电路

3.2 .2功率驱动电路

智能功率模块(IPM)是将大功率开关器件和驱动电路、保护电路、检测电路等集成在同一个模块内的一种电力集成电路[2]。它采用低饱和压降,高开关速度,内设低损耗电流传感器的绝缘栅双极晶体管(IGBT)功率器件。所设计系统中的功率开关器件采用以IGBT 为核心的IPM,型号为PM10CSJ060。采用单电源逻辑电压输入优化的栅极驱动,实行实时逻辑栅区(RTC)控制模式。采用严密的时序逻辑监控保护,可防止过电流、短路、过热及欠电压等故障发生。光耦合输入,带RC 信号干扰抑制和电源干扰抑制。IPM内置各种保护功能,只要有一个保护电路起作用,IGBT 的门极驱动电路即可关闭,同时产生一个故障信号。

3.2.3 光耦隔离电路

设计时选择TLP559 光电耦合器,并使光耦与IPM控制端子间的布线最短,布线阻抗最小。TLP559为发光二极管驱动方式,du/dt 的耐量小,故采用在光耦阴极接限流电阻的驱动电路形式,图3 示出驱动电路。

图3.3光藕隔离电路

3.2.4 系统保护电路

图4 示出系统保护电路。其中逆变桥3 个上桥臂各有一个保护信号输出,3 个下

桥臂共用一个保护信号输出,共有4 路保护信号(Fo1~Fo4)输出。无故障时,Fo 输出高电平,光电耦合器(TLP521)不导通,连接到四输入与门(74LS21)的输入端为高电平,与门的输出即为高电平。当其中任一个桥臂有故障时,Fo 即输出低电平,光电耦合器导通,与门的输入信号即变低,输出亦变低,这样连接DSP 的PDPINTA 引脚就检测到一个下降沿,进入到DSP 的故障中断中,在程序中封锁6 路SPWM 的输出信号,使6 路SPWM信号无输出,起到保护作用。

图3.4系统保护电路

3.2.5 显示部分

1)LCD12864概述

带中文字库的128X64是一种具有4位/8位并行、2线或3线串行多种接口方式,内部含有国标一级、二级简体中文字库的点阵图形液晶显示模块;其显示分辨率为128×64, 内置8192个16*16点汉字,和128个16*8点ASCII字符集.利用该模块灵活的接口方式和简单、方便的操作指令,可构成全中文人机交互图形界面。可以显示8×4行16×16点阵的汉字. 也可完成图形显示.低电压低功耗是其又一显著特点。由该模块构成的液晶显示方案与同类型的图形点阵液晶显示模块相比,不论硬件电路结构或显示程序都要简洁得多,且该模块的价格也略低于相同点阵的图形液晶模块。

2)LCD12864基本特性

(1)、低电源电压(VDD:+3.0--+5.5V)(2)、显示分辨率:128×64点(3)、内置汉字字库,提供8192个16×16点阵汉字(简繁体可选) (4)、内置 128个16×8点阵字符(5)、2MHZ时钟频率(6)、显示方式:STN、半透、正显(7)、驱动方式:1/32DUTY,1/5BIAS (8)、视角方向:6点(9)、背光方式:侧部高亮白色LED,功耗仅为普通LED的1/5—1/10 (10)、通讯方式:串行、并口可选(11)、内置DC-DC转换电路,无需外加负压(12)、无需片选信号,简化软件设计(13)、工作温度: 0℃ - +55℃ ,存储温度: -20℃ - +60℃

BF标志提供内部工作情况.BF=1表示模块在进行内部操作,此时模块不接受外部指令和数据.BF=0时,模块为准备状态,随时可接受外部指令和数据.利用STATUS RD 指令,可以将BF读到DB7总线,从而检验模块之工作状态.

4)字型产生ROM(CGROM)

字型产生ROM(CGROM)提供8192个此触发器是用于模块屏幕显示开和关的控制。DFF=1为开显示(DISPLAY ON),DDRAM 的内容就显示在屏幕上,DFF=0为关显示(DISPLAY OFF)。DFF 的状态是指令DISPLAY ON/OFF和RST信号控制的。

5)显示数据RAM(DDRAM)

模块内部显示数据RAM提供64×2个位元组的空间,最多可控制4行16字(64个字)的中文字型显示,当写入显示数据RAM时,可分别显示CGROM与CGRAM 的字型;此模块可显示三种字型,分别是半角英数字型(16*8)、CGRAM字型及CGROM的中文字型,三种字型的选择,由在DDRAM中写入的编码选择,在0000H —0006H的编码中(其代码分别是0000、0002、0004、0006共4个)将选择CGRAM 的自定义字型,02H—7FH的编码中将选择半角英数字的字型,至于A1以上的编码将自动的结合下一个位元组,组成两个位元组的编码形成中文字型的编码

BIG5(A140—D75F),GB(A1A0-F7FFH)。

6)字型产生RAM(CGRAM)

字型产生RAM提供图象定义(造字)功能, 可以提供四组16×16点的自定义图象空间,使用者可以将内部字型没有提供的图象字型自行定义到CGRAM中,便可和CGROM中的定义一样地通过DDRAM显示在屏幕中。

地址计数器AC地址计数器是用来贮存DDRAM/CGRAM之一的地址,它可由设定指令暂存器来改变,之后只要读取或是写入DDRAM/CGRAM的值时,地址计数器的值就会自动加一,当RS为“0”时而R/W为“1”时,地址计数器的值会被读取到DB6——DB0中。

7)光标/闪烁控制电路

此模块提供硬体光标及闪烁控制电路,由地址计数器的值来指定DDRAM中的光标或闪烁位置。

8)指令说明

模块控制芯片提供两套控制命令,基本指令如下:

指指令码功能

令R

S

R

/

W

D

7

D

6

D

5

D

4

D

3

D

2

D

1

D

清除显示0 0 0 0 0 0 0 0 0 1 将DDRAM填满"20H",并且设定

DDRAM的地址计数器(AC)到"00

H"

地址归位0 0 0 0 0 0 0 0 1 X 设定DDRAM的地址计数器(AC)

到"00H",并且将游标移到开头

原点位置;这个指令不改变DDR

AM 的内容

显示状态开/0 0 0 0 0 0 1 D C B

D=1: 整体显示 ONC=1: 游标O

N B=1:游标位置反白允许

进入点设定0 0 0 0 0 0 0 1 I

/

D

S 指定在数据的读取与写入时,

设定游标的移动方向及指定显

示的移位

游标或显示移位控制0 0 0 0 0 1 S

/

C

R

/

L

X X

设定游标的移动与显示的移位

控制位;这个指令不改变DDRAM

的内容

功能设定0 0 0 0 1 D

L

X R

E

X X DL=0/1:4/8位数据RE=1: 扩

充指令操作RE=0: 基本指令操

设定CGRA M地址0 0 0 1 A

C

5

A

C

4

A

C

3

A

C

2

A

C

1

A

C

设定CGRAM 地址

设定DDRA M地址0 0 1 0 A

C

5

A

C

4

A

C

3

A

C

2

A

C

1

A

C

设定DDRAM 地址(显示位址)

第一行:80H-87H第二行:90

H-97H

读取忙标志和地址0 1 B

F

A

C

6

A

C

5

A

C

4

A

C

3

A

C

2

A

C

1

A

C

读取忙标志(BF)可以确认内部

动作是否完成,同时可以读出

地址计数器(AC)的值

写数据到RAM 1 0 数据将数据D7——D0写入到内部

的RAM (DDRAM/CGRAM/IRAM/GR

AM)

读出RAM 的值1 1 数据

从内部RAM读取数据D7——D0

(DDRAM/CGRAM/IRAM/GRAM)

扩充指令略

备注:当IC1在接受指令前,微处理器必须先确认其内部处于非忙碌状态,即读取BF标志时,BF需为零,方可接受新的指令;如果在送出一个指令前并不检查BF标志,那么在前一个指令和这个指令中间必须延长一段较长的时间,即是等待前一个指令确实执行完成。

3.2.6 主电路开关器件选择

IRFZ44N:它是用于开关电源,且具有很低的使用状态阻力。具体参数如下:晶体管极性:N沟道

晶体管类型:MOSFET

漏极电流Id最大值:49A

电压Vds最大:55V

功耗:83W

4.系统软件设计

4.1正弦脉宽调制法

系统采用正弦脉宽调制(SPWM)法,其基本思想是使输出的脉冲宽度按正弦规律变化,因此能有效抑制输出电压中的低次谐波分量,使电机工作在近似正弦的交变电压下,且转矩脉动小,大大扩展了交流电机的调速范围。这里采用规则采样法生成SPWM脉冲序列。

图4.1规则采样法

图4.1 示出规则采样法。其方法是把1 个三角载波uc 周期内的正弦调制波ur 看成不变,在一个三角波周期只需在B点取样一次,这样可使生成的SPWM脉冲的中点与对应三角波的中点,即负峰点A 重合,从而使SPWM脉冲的计算大为简化。下面介绍有关算法。设uc 幅值Uc=1,正弦调制信号ur=Msinωrt,其中调制度0≤M<1。由图5可见,△ABC∽△EDA,故有:

1+Msinωr t/(t2 /2)= 2/(Tc /2) (1)

由式(1)可得取样时刻SPWM脉冲的频宽:

t2= (2/Tc)(1+Msinωr t)(2)

脉冲两边的间隙宽度为:

t1=t3= (1/2)(Tc- t2)= (Tc/4)(1-Msinωr t)(3)

由同步调制原理可知,载波比N=fc /f1 为常数,由此可得:

Tc= 1/fc= 1/Nf1 (4)

对于正弦函数,可预先计算出对应于各点的值,制成表格,存于EPROM中,以备查用。同步调制方式中,N 为常数且为3 的倍数。考虑到固定的载波比,在正弦调制频率的高频段,fc 可能过高,以至于超过主电路功率开关器件的最高频率,以及Tc 过短,以至小于定时器控制所允许的时间;而在低频段,fc 过低可能使

电机拖动课程设计——三相异步电动机启动系统设计

1. 绪论 目前,工业中原动力主要由电动机提供,电动机可分为直流和交流电机。由于直流电机和交流电机的特点又决定了机械设备的动力大多由交流异步电机提供,尤其以鼠笼式电机居多。根据统计,在电网的总负载中,动力负载约占59%,而异步电机则占总动力负载中的85%,由此可见异步电动机在工农业中的重要性,异步电机的应用范围是非常广的,容量从几十瓦一直到几千瓦,应用在各种行业,例如,在工业方面,中小型的轧钢设备都采用异步电机,它也被广泛地用在各种机床上和在各种轻工业中作为一般的动力装备。在矿山上,它常用来拖动卷扬机和鼓风机等。在农业方面,它被用来拖动水泵和其它副产品加工机械。此外,它在人民日常生活中也越来越占重要地位,例如电扇,冷冻机,和各种医疗机械钟也都采用异步电机。总之,异步电动机应用范围广,需要量大,而且随着电气化自动化的发展,它在工农业生产和人民生活中的重要性也将逐步增大。与直流电机相比,交流电机有结构简单、成本低、可靠性高等一系列优点,但是相对欠缺的是其启动性能和调速性能。作为调速性能,随着变频技术的发展,已经得到了很好的解决,所以一直处于弱势的是其启动性能。因为在该阶段,由于启动过程中措施不到位导致电流过大有可能会出现烧毁电机和引发电网故障的现象,所以在工程界比较重视电机的启动问题。 随着我国现代化工业进程不断加快,能源消耗越来越大,能源紧张问题日益突出,作为能源消耗大户之一的电机在节能方面大有潜力可挖。对于带周期性负载和长期轻载运行的电机,在不采取节能措施情况下用电效率低,功率因数低。通过对电动机进行节能控制,可明显提高用电效率和提高功率因数,达到节能降耗的目的。因此,电动机经济运行的理论研究和节能技术研究近年来备受关注。 三相异步电机主要用作电动机,拖动各种生产机械。例如,在工业应用中,它可以拖动风机,泵,压缩机,中小型轧钢设备,各种金属切削机床,轻工机械,矿山机械等。在农业中,可以拖动水泵,脱粒机,粉碎机以及其他农副产品的加工机械等。在民用电器中,电扇,洗衣机,电冰箱,空调机等都有单相异步电动机拖动。总之,异步电动机应用范围广,需要量大,是实现电气化不可缺少的动力设备。 异步电动机运行时,定子绕组接到交流电源上,转子绕组自身短路,由于电磁感应的关系,在转子绕组中产生电动势,电流,从而产生电磁转矩。

三相异步电动机变频调速课程设计

目录 1三相异步电动机基本原理 (1) 1.1电动机的结构及原理 (1) 1.1.1 电动机的结构 (1) 1.1.2工作原理 (3) 2异步电动机的机械特性 (4) 2.1 固有机械特性 (4) 2.2 人为机械特性 (5) 2.2.1降低定子电压的人为特性 (5) 2.2.2增加转子电阻时的人为特性 (5) 2.2.3改变定子频率时的人为特性 (5) 3电动机的调速指标 (7) 4 异步电机的变频调速 (8) 5具体调速的设计 (10) 6结论 (11) 7设计体会 (12) 参考文献 (13)

摘要 原理是当定子三绕组通三相对称电流后,定转子产生旋转磁场,根据右手定则,转子绕组产生感应电动势,由于绕组是闭合的,所以产生感应电流,根据左手定则,转子绕组相当于空间绕组,进而产生电磁转距,合成磁转距大于阻转距时,电机起动 重点是三相异步电动机变频调速,一方面当f1<fN时,为恒转矩调速,转矩不变,额定转速降低,增大起动转矩Tst,另一方面当f1>fN时,为恒功率调速,调速前后功率不变,额定转速升高,减小启动转矩Tst。变频调速可以实现宽范围内的平滑调速,变频调速电机以简单的结构、优良的调速性能、较高的调速比,应用越来越广泛 关键字:恒转矩调速;恒功率调速;三相异步电动机。

1.三相异步电动机的基本原理 当定子三绕组通三相对称电流后,定转子产生旋转磁场,根据右手定则,转子绕组产生感应电动势,由于绕组是闭合的,所以产生感应电流,根据左手定则,转子绕组相当于空间绕组,进而产生电磁转距,合成磁转距大于阻转距时,电机起动。 1.1电动机的结构及原理 1.1.1结构 三相异步电动机的种类很多,可是三相异步电动机结构基本是相同的,它们都由定子和转子这两大基本部分组成,在定子和转子之间具有一定的气隙。此外,还有端盖、轴承、接线盒、吊环等其他附件 结构如下图: 图1-1-1-1 封闭式三相笼型异步电动机结构图 1—轴承;2—前端盖;3—转轴;4—接线盒;5—吊环;6—定子铁心; 7—转子;8—定子绕组;9—机座;10—后端盖;11—风罩;12—风扇 (1)、定子 定子铁芯:导磁和嵌放定子三相绕组:0.5mm硅钢片冲制涂漆叠压而成;内圆均匀开槽;槽形有半闭口、半开口和开口槽三种:适用于不同电机。 定子绕组:定子绕组是三相电动机的电路部分,三相电动机有三相绕组,通入三相

三相异步交流电机的设计_毕业设计

学生毕业设计(毕业论文) 系别:机电工程 专业:数控技术 设计(论文)题目:三相异步交流电机

毕业设计(论文)任务书 一、课题名称:三相异步电机的设计 二、主要技术指标: 1.内部由定子和转子构成。 2. 外壳有机座、端盖、轴承盖、接线盒、吊环等组成。 3. 技术要求:采用电压AC380,可以实现正反转。 三、工作内容和要求: 1.设计磁路部分:定子铁心和转子铁心。 2 设计电路部分:定子绕组和转子绕组以及电路图。 3 设计机械部分:机座、端子、轴和轴承等。 4.设计电路的正反转和安全控制部分。 5.按照“毕业设计规格”设计毕业报告。 四、主要参考文献: 1.[1]王世琨.《图解电工入门》[M].中国电力出版社.2008.

2.[2]满永奎.《电工学》[M].清华大学出版社.2008. 3.[3]乔长君.《电机绕组接线图册》[M].化学工业出版社.2012. 4.百度文库 学生(签名)年月日 指导教师(签名)年月日 教研室主任(签名)年月日 系主任(签名)年月日

毕业设计(论文)开题报告

摘要

在费拉里斯和特斯拉发明多相交流系统后,19世纪80年代中期,多沃罗沃尔斯基发明了三相异步电机,异步电机无需电刷和换向器三相异步电机(Triple-phase asynchronous motor)是靠同时接入380V三相交流电源(相位差120度)供电的一类电动机,由于三相异步电机的转子与定子旋转磁场以相同的方向、不同的转速成旋转,存在转差率,所以叫三相异步电机。 作电动机运行的三相异步电机。三相异步电动机转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而感生电动势和电流,并与磁场相互作用产生电磁转矩,实现能量变换。与单相异步电动机相比,三相异步电动机运行性能好,并可节省各种材料。按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用。 Reese and Tesla invented in AC system. At the mid of 1880s, 多沃罗沃尔Chomsky invented the three-phase asynchronous motors, asynchronous motors without brushes and commutate. Three-phase asynchronous motors (Triple-phase asynchronous motor) is by simultaneously accessing 380V three-phase AC power supply of a class of motors, three-phase asynchronous motor as the rotor and the stator rotating in the same direction, to rotate at different speeds, there turn slip, so called three-phase asynchronous motors. For three-phase asynchronous motors motor is running. Three-phase asynchronous motor rotor speed is lower than the speed of the rotating magnetic field, the magnetic field due to the rotor windings relative motion exists between the induced electromotive force and current, and the magnetic field generated by the interaction with the electromagnetic torque and achieve energy conversion. Compared with single-phase induction motor, Three- phase asynchronous motor running properties, and save a variety of materials. According to the different structure of the rotor, three-phase cage induction motor and the winding can be divided into two kinds. Cage rotor induction motor, simple structure, reliable operation, light weight, cheap, has been widely used

三相异步电动机长动控制课程设计

电工基本技能培训设计报告 题目:电动机长动控制 院系:电气信息工程系专业: 11电气自动化技术 组长:焦立春学号: 20110605040 组员 1 :马硕学号: 20110605037 组员 2 :姜志娟学号: 20110605038 组员 3 :薛玉娜学号: 20110605039 组员 4 :刘倩倩学号: 20110605041 指导教师:赵翠俭 2013年12月31日

电工基本技能培训设计报告 一、选题目的和意义: 近年来,我国低压电器行业出现了巨大变化,低压电器产品已经发展到了一个崭新的阶段。 我国低压电器行业主要生产各种框架断路器、塑壳断路器、接触器、继电器、热继电器、小型断路器、熔断器、熔断组合电器、隔离开关、按钮、信号灯、转换开电磁铁等电器产品,其主要特点是量大面广。经过50多年的发展和几代人的不懈努低压电器产品从解放前的一穷二白,到目前已经形成较完整的生产体系,不管从品种、规格、还是产品的技术指标、生产的规模,都已能满足我国各行业对低压电器产品的需要。由干企业不断引进国外先进技术,再加上我国电力装备的发展带动了低压电器技术和产量的不断提高,整个行业的发展情况比较乐观。 低压电器的发展主要取决于的发展需要和新工艺、新材料、新技术的研究与应用。20世纪70、80年代研发的新型电器主要是限流电器、真空电器、漏电电器和电子电器。从80年代以后开始,对传统新一代低压电器产品普遍提出了高性能、高可靠、小型化、多功能、组合化、模块化、电子化、智能化的要求。其后,随着计算机网络的发展与应用,采用计算机网络控制的低压电器均要求能与中央控制计算机进行通信,为此各种可通信的智能化低压电器应运而生,它可能成为今后一段时间低压电器重要发展的方向之一。 工业生产中的电力拖动控制系统,主要有三相异步电动机来拖动生产机械运行,而电动机的控制则有继电器、接触器、按钮等电气完成,从而实现电动机的各种运动。 电动机的运行形式主要有启动、制动、正转、反转、调速等,我们这次实践的主要目的是利用接触器、按钮等来实现电动机的长动控制。 学生姓名任务分工学生姓名任务分工学生姓名任务分工焦立春调试薛玉娜检查 马硕连线刘倩倩检查 姜志娟写报告

交流异步电动机变频调速系统设计样本

中南大学 《工程训练》 ——设计报告 设计题目:异步电机变频调速 指引教师:黎群辉 设计人:冯露 学号: 专业班级:自动化0906班 设计日期:9月

交流异步电动机变频调速系统设计 摘要 近年来,交流电机变频调速及其有关技术研究己成为当代电气传动领域一种重要课题,并且随着新电力电子器件和微解决器推出以及交流电机控制理论发展,交流变频调速技术还将会获得巨大进步。 本文对变频调速理论,逆变技术,SPWM产生原理进行了研究,在此基本上设计了一种新型数字化三相SPWM变频调速系统,以8051控制专用集成芯片 SA4828为控制核心,采用IGBT作为主功率器件,同步采用EXB840构成IGBT驱动电路,整流电路采用二极管,可使功率因数接近1,并且只用一级可控功率环节,电路构造比较简朴。 V控制,同步,软件程序使得参数输入和变频器运营方式变本文在控制上采用恒 f 化极为以便,新型集成元件采用也使得它开发周期短。 此外,本文对SA4828三相SPWM波发生器使用和编程进行了详细简介,完毕了整个系统控制某些软硬件设计。 V控制,SA4828波形发生器 核心字:变频调速,正弦脉宽调制, f

目录 摘要................................................ 错误!未定义书签。 1.1 研究目与意义 (1) 1.2本次设计方案简介 (2) 1.2.1 变频器主电路方案选定 (2) 1.2.2 系统原理框图及各某些简介 (3) 1.2.3 选用电动机原始参数 (4) 2交流异步电动机变频调速原理及办法 (5) 2.1 异步电机变频调速原理 (5) 2.2 变频调速控制方式及选定 (6) V比恒定控制 (6) 2.2.1 f 2.2.2 其他控制方式................................ 错误!未定义书签。3变频器主电路设计. (13) 3.1 主电路工作原理 (13) 3.2 主电路各某些设计 (13) 3.3. 采用EXB840IGBT驱动电路 (15) 4控制回路设计 (16) 4.1 驱动电路设计 (16) 4.2 保护电路......................................... 错误!未定义书签。 4.2.1 过、欠压保护电路设计........................ 错误!未定义书签。 4.2.2 过流保护设计................................ 错误!未定义书签。 4.3 控制系统实现 (19) 5变频器软件设计....................................... 错误!未定义书签。 5.1 流程图 (22)

普通三相异步电动机与变频电动机的区别

普通三相异步电动机与变频电动机的区别 普通的三相异步电动机可以用变频器驱动吗? 普通的三相异步电动机与变频调速的三相异电动机有何区别? 普通异步电机与变频电机的区别——普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。 以下为变频器对电机的影响: 1、电动机的效率和温升的问题 不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。据资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。 高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%~20%。 2、电动机绝缘强度问题 目前中小型变频器,不少是采用PWM的控制方式。他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。 3、谐波电磁噪声与震动 普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。 4、电动机对频繁启动、制动的适应能力 由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。 5、低转速时的冷却问题 首先,异步电动机的阻抗不尽理想,当电源频率较底时,电源中高次谐波所引起的损耗

变频调速异步电动机的设计要点

变频调速异步电动机的设计要点 一、变频器运行时对变频电机工作的影响 在变频电机调速控制系统中,采用电力电子变压变频器作为供电电源,供电系统中电压除基波外不可避免含有高次谐波分量,对外表现为非正弦性,谐波对电机的影响主要体现在磁路中的谐波磁势和电路中的谐波电流上,不同振幅和频率的电流和磁通谐波将引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。这些损耗都会使电动机效率和功率因数降低。同时,这些损耗绝大部分转变成热能,引起电机附加发热,导致变频电机温升的增加。如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%~20%。同时这些谐波磁动势与转子谐波电流合成又产生恒定的谐波电磁转矩和振动的谐波电磁转矩,恒定谐波电磁转矩的影响可以忽略,振动谐波电磁转矩会使电动机发出的转矩产生脉动,从而造成电机转速(主要是低速时)的振荡,甚至引起系统的不稳定。谐波电流还增加了电机峰值电流,在一定的换流能力下,谐波电流降低了逆变器的负载能力。对于变频电机,如何在设计过程中采取合理措施避免或减小应用变频器所带来的影响,以求得系统最佳经济技术效果,是本文讨论的重点。 二、变频电机设计特点 对于变频电机,其设计必须与逆变器、机械传动装置相匹配共同满足传动系统的机械特性,如何从调速系统的总体性能指标出发,求得电机与逆变器的最佳配合,是变频电机设计的特点。设计理论依据交流电机设计理论,供电电源的非正弦以及全调速频域内达到满意的综合品质因数是变频电机设计中需要着重注意的两个问题,设计中参数的选取应做特别的考虑。与传统异步电机相比,一般变频电机设计有如下一些特点: 1.用于变频调速的异步电动机要求其工作频率在一定范围内可调,所以设计电机时不能仅仅考虑某单一频率下的运行特性,而要求电机在较宽的频率范围内工作时均有较好的运行性能。如目前大多调速异步电动机的工作频率在5Hz~100Hz内可调,设计时要全面考虑。 2.变频电机在低速时降低供电频率,可以把最大转矩调到起动点,获得很好的起动特性,因而在设计变频电机时不需要对起动性能作特别的考虑,转子槽不必设计为深槽,从而可以重点进行其它方面的优化设计。 3.变频电机通过调节电压和频率,在每一个运行点都可以有多种运行方式,对应多种不同的转差频率,因而总能找到最佳的转差频率,使电机的效率或功率因数在很宽的调速范围内都很高。因而,变频电机的功率因数和效率可以设计得更高,功率密度得以进一步提高。现有数据表明:在额定工作点,逆变器供电下的异步电机效率比普通电机高2%~3%,功率因数高10%~20%。 4.变频电机采用变频装置供电,输入电流中含有较多的高次谐波,产生电机局部放电和空间电荷,增大了介质损耗发热和电磁振动力,加速了绝缘材料的老化,所以应加强电机绝缘和提高整体机械强度,变频电机的绝缘强度一般要达到F级以上。 5.变频供电时产生的轴电压和轴电流会使电机轴承失效,缩短轴承使用寿命,必须在设计上要加以考虑。对较小的轴电流,可以适当增大电机气隙和选用专用润滑脂;另外,增加轴承的电气绝缘或者将电机轴通过电刷接地,可以有效解决轴承损坏问题;对过高轴电压,应设法隔断轴电流的回路,如采用陶瓷滚子轴承或实现轴承室绝缘。同时,在逆变器输出端增加滤波环节,降低脉冲电压dU/dt也是一种有效的方法。 三、电磁设计

关于电机的毕业设计

关于电机的毕业设计 【篇一:电机设计毕业论文】 目录 摘 要 ....................................................................................................... .. (1) abstract ............................................................................................. . (1) 第一章中小型电机设计概 述 ....................................................................................................... . (2) 1.1设计技术要 求 ....................................................................................................... .. (2) 1.2电机主要尺 寸 ....................................................................................................... .. (2) 1.3 绕组构及成原 理 ....................................................................................................... (4) 1.4主磁 路 ....................................................................................................... .. (4) 1.5电 抗 ....................................................................................................... (6) 1.6损耗与效 率 ....................................................................................................... (7) 1.7通风散 热 ....................................................................................................... . (7) 第二章三相异步电动机设计(y180l- 6/15kw) (9)

三相异步电动机变频调速

一、三相异步电动机变频调速原理 由于电机转速n 与旋转磁场转速1n 接近,磁场转速1n 改变后,电机转速n 也 就随之变化,由公式1 160f n p =可知,改变电源频率1f ,可以调节磁场旋转,从 而改变电机转速,这种方法称为变频调速。 根据三相异步电动机的转速公式为 ()()1 16011f n s n s p = -=- 式中1f 为异步电动机的定子电压供电频率;p 为异步电动机的极对数;s 为异步电动机的转差率。 所以调节三相异步电动机的转速有三种方案。异步电动机的变压变频调速系统一般简称变频调速系统,由于调速时转差功率不变,在各种异步电动机调速系统中效率最高,同时性能最好,是交流调速系统的主要研究和发展方向。 改变异步电动机定子绕组供电电源的频率1f ,可以改变同步转速n ,从而改变转速。如果频率1f 连续可调,则可平滑的调节转速,此为变频调速原理。 三相异步电动机运行时,忽略定子阻抗压降时,定子每相电压为 1111m 4.44m U E f N k φ≈= 式中1E 为气隙磁通在定子每相中的感应电动势;1f 为定子电源频率;1N 为定子每相绕组匝数;m k 为基波绕组系数,m φ为每极气隙磁通量。 如果改变频率1f ,且保持定子电源电压1U 不变,则气隙每极磁通m φ将增大,会引起电动机铁芯磁路饱和,从而导致过大的励磁电流,严重时会因绕组过热而损坏电机,这是不允许的。因此,降低电源频率1f 时,必须同时降低电源电压,已达到控制磁通m φ的目的。 .1、基频以下变频调速 为了防止磁路的饱和,当降低定子电源频率1f 时,保持 1 1 U f 为常数,使气每极磁通m φ为常数,应使电压和频率按比例的配合调节。这时,电动机的电磁转 矩为()()222 2111 111 212222*********p r r m pU f m U s s T f r r f r x x r x x s s ππ?? ???? ? ?? ??? ????? ''??== ?''????'+++'+++ ??? [1][8]

交流异步电动机变频调速系统设计

湖南工程学院应用技术学院毕业设计说明书 目:题 专业班级:号:学学生姓名: 完成日期: 指导教师: 评阅教师:

2011 年 6 月

院术学学院应用技湖南工程务任书(论文)毕业设计 设计(论文)题目:交流异步电机的调速控制系统设计 姓名专业班级学号 指导老师职称教研室主任 一、基本任务及要求: 主要设计完成可控硅交流调压调速系统的设计,主要完成: (1)交流调压调速的原理和调压调速的静、动态性能分析; (2)系统组成与工作原理; (3)主电路与控制电路设计; (4)元器件选型及参数计算; (5)软件设计; (6)系统应用与调试说明。 二、进度安排及完成时间: (1)第一至第三周:查阅资料,撰写文献综述和开题报告。 (2)第四周至第五周:毕业实习。 (3)第六周至第七周:交流调压调速的原理和调压调速的静、动态性能分析。 (4)第八周至第九周:系统组成与工作原理;主电路与控制电路设计。

(5)第十周至第十二周:元器件选型及参数计算;软件设计;系统应用与调试说明。 (6)第十三周至第十五周:撰写毕业设计论文。 (7)第十六周:毕业设计答辩 目录 摘 要 .................................................................. .... I ABSTRACT ............................................................ ..... II 第1章绪 论 (1) 1.1 变频调速技术简介 ................................................. 1 1.2 变频器的发展现状和趋 势 (2) 1.2.1 变频器的发展现状 ............................................. 2 1.2.2 变频器技术的发展趋势 ......................................... 2 1.2 研究的目的与意义 ................................................. 3 1.3 本次设计方案简 介 (4) 1.3.1 变频器主电路方案的选定 ....................................... 4 1.3.2 系统原理框图及各部分简介 ..................................... 5 1.3.3 选用电动机原始参数 ........................................... 6 第2章交流异步电动机变频调速原理及方 法 (7)

PLC控制三相异步电动机正反转设计毕业设计论文

PLC控制三相异步电动机正反转设计 Plc control with a three wire asynchronous motor is inverting design 摘要本论文文设计了三相异步电动机的PLC控制电路,就是三相异步电动机的正反转控制,与传统的继电器控制相比,具有控制速度快、可靠性高、灵活性强等优点。非常实用。三相异步电动机的应用非常广泛,具有机构简单,效率高,控制方便,运行可靠,易于维修成本低的有点,几乎涵盖了工农业生产和人类生活的各个领域,在这些应用领域中,三相异步电动机运行的环境不同,所以造成其故障的发生也很频繁,所以要正确合理的利用它。本文研究的这个系统的控制是采用PLC的编程语言----梯形图,梯形语言是在可编程控制器中的应用最广的语言,因为它在继电器的基础上加进了许多功能,使用灵活的指令,使逻辑关系清晰直观,编程容易,可读性强,所实现的功能也大大超过传统的继电器控制电路,可编程控制器是一种数字运算操作的电子系统,它是专为在恶劣工业环境下应用而设计,它采用可编程序的存储器,用来在内部存储执行逻辑运算,顺序控制,定时,计数和算术等操作的指令,并采用数字式,模拟式的输入和输出,控制各种的机械或生产过程。 关键词:PLC 三相异步电动机可编程控制梯形图

Plc control with a three wire asynchronous motor is inverting design Abstract This paper designed the three-phase asynchronous motor PLC control circuit, is a three-phase asynchronous motor positive inversion control, compared with the traditional relay control, with high speed, high reliability, flexibility and other advantages. Very practical. The three-phase asynchronous motor is widely used, has the advantages of simple mechanism, high efficiency, easy control, reliable operation, easy to repair and low cost a little, almost covers the industrial and agricultural production and all aspects of human life, in these applications, three-phase asynchronous motor running in different environments, so the fault occurrence is also very frequently, so a correct and reasonable use of it. This paper studies the system control is the use of PLC programming language - ladder, ladder language is in the programmable controller in the most widely used language, because it is in the relay is added on the basis of the many functions, the use of flexible instruction, so that the logic relationship of a clear and intuitive, easy programming, readability is strong, the realization of the functions it considerably exceeds the traditional relay control circuit, the programmable controller is a digital electronic computing operating system, it is designed for use in harsh industrial application environment and design, it uses a programmable memory, used in the internal memory to perform logic operations, sequence control, timing, counting and arithmetic operations such as instruction, and the use of digital, analog input and output, the

(完整版)异步电动机变频调速系统..

《自动控制元件及线路》 课程实习报告 异步电动机变频调速系统 1.4.1 系统原理框图及各部分简介 本文设计的交直交变频器由以下几部分组成,如图1.1所示。

图1.1 系统原理框图 系统各组成部分简介: 供电电源:电源部分因变频器输出功率的大小不同而异,小功率的多用单相220V,中大功率的采用三相380V电源。因为本设计中采用中等容量的电动机,所以采用三相380V电源。 整流电路:整流部分将交流电变为脉动的直流电,必须加以滤波。在本设计中采用三相不可控整流。它可以使电网的功率因数接近1。 滤波电路:因在本设计中采用电压型变频器,所以采用电容滤波,中间的电容除了起滤波作用外,还在整流电路与逆变电路间起到去耦作用,消除干扰。 逆变电路:逆变部分将直流电逆变成我们需要的交流电。在设计中采用三相桥逆变,开关器件选用全控型开关管IGBT。 电流电压检测:一般在中间直流端采集信号,作为过压,欠压,过流保护信号。控制电路:采用8051单片机和SPWM波生成芯片SA4828,控制电路的主要功能是接受各种设定信息和指令,根据这些指令和设定信息形成驱动逆变器工作的信号。这些信号经过光电隔离后去驱动开关管的关断。 1.4.2 变频器主电路方案的选定 变频器最早的形式是用旋转发电机组作为可变频率电源,供给交流电动机。随着电力半导体器件的发展,静止式的变频电源成为了变频器的主要形式。静止式变频器从变换环节分为两大类:交-直-交变频器和交-交变频器。 1.交-交型变频器:它的功能是把一种频率的交流电直接变换成另一种频率可调电压的交流电(转换前后的相数相同),又称直接式变频器。由于中间不经过直流环节,不需换流,故效率很高。因而多用于低速大功率系统中,如回转窑、轧钢机等。但这种控制方式决定了最高输出频率只能达到电源频率的1/3~1/2,所以不能高速运行。 2.交-直-交型变频器:交-直-交变频器是先把工频交流通过整流器变成直流,然后再直流变换成频率电压可调的交流,又称间接变频器,交-直-交变频器是目前广泛应用的通用变频器。它根据直流部分电流、电压的不同形式,又可分为电压型和电流型两种:(1)电流型变频器 电流型变频器的特点是中间直流环节采用大电感器作为储能环节来缓冲无功功率,即扼制电流的变化,使电压波形接近正弦波,由于该直流环节内阻较大,故称电流源型变频器。 (2)电压型变频器 电压型变频器的特点是中间直流环节的储能元件采用大电容器作为储能环节来缓冲无功功率,直流环节电压比较平稳,直流环节内阻较小,相当于电压源,故称电压型变频器。 由于电压型变频器是作为电压源向交流电动机提供交流电功率,所以其主要优点是

三相笼型感应电动机系列电磁设计(课程设计)

一、设计任务的依据 《电机设计》的课程设计是电气工程及其自动化专业电机电器及其控制方向(本科)、电机制造(专科)专业的一个重要实践性教学环节,通过电机设计的学习及课程设计的训练,为今后从事电机设计工作、维护的人才打下良好的基础。电机设计课程设计的目的:一是让学生在学完该课程后,对电机设计工作过程有一个全面的、系统的了解。另一个是在设计过程培养学生分析问题、解决问题的能力,培养学生查阅表格、资料的能力,训练学生的绘图阅图能力,为今后从事电机设计技术工作打下坚实的基础。 根据用户对产品提出的技术要求及使用特点,结合设计和制造的可能性而编制。 1设计的指导思想 设计一般用途的全封闭自扇冷、笼型三相异步电动机,应具有高效节能、起动转矩大、性能好、噪声低、振动小、可靠性高,功率等级和安装尺寸符合IEC标准及使用维护方便等优点。 2产品的用途 环境条件:海拔不超过1000米,环境空气温度随季节而变化,但不超过400C。 适用于不含易燃、易爆或腐蚀性气体的一般场所和无特殊要求的机械上。 3.额定数据 型号Y100L1 额定容量 1.5KW 额定电压220V 额定电流 5.03A 额定转速1430r/m 4.主要性能指标 效率0.81 功率因数0.82 起动电流倍数7 起动转矩倍数 2 最大转矩倍数 2.3 4.工作方式连续(SI)制 5.结构与安装尺寸 外壳防护等级IP44 安装结构B3 绝缘等级B级外型L1*b/h 转子结构铸铝热套安装A*B/ 6.主要标准 (1)Y系列三相电动机产品目录

(2)Y系列三相异步电动机技术条件 二、设计内容: 1.在查阅有关资料的基础上,确定电机主要尺寸、槽配合,定、转子槽形及槽形尺寸。 2.确定定、转子绕组方案。 3.完成电机电磁设计计算方案。 4.用计算机(手画也可以)画出定、转子冲片图,电机结构图。 三、课程设计的基本要求 1.求每位同学独立完成一种型号规格电机的全部电磁方案计算过程,并根据所算结果绘出定、转子冲片图、电机总装图。 2.要求计算准确,绘出图形正确、整洁。 3.要求学生在设计过程中能正确查阅有关资料、图表及公式。 四、指导书、参考资料 指导书:《电机设计》陈世坤主编,机械工业出版社,2002年出版 参考资料:Y系列三相异步电动机技术设计 小型三相异步电动机技术手册 五、说明书格式 1.课程设计封面; 2.课程设计任务书; 3.说明书目录 4.前言 5.三相感应电动机电磁设计特点及设计思想(重点写)。 6.三相感应电动机定、转子绕组方案。 7.电磁设计设计单。 8.定、转子冲片图。 9.总结与体会 10.参考资料。

三相异步电动机变频调速系统设计及仿真

天津职业技术师范大学 课程设计说明书题目:三相异步电动机变频调速系统设计及仿真 指导老师: 班级:机检1112班 组员

天津工程师范学院 课程设计任务书 机械工程学院机检1112 班学生 课程设计课题: 三相异步电动机变频调速系统设计及仿真 一、课程设计工作日自 2015 年 1 月 12 日至 2015 年 1 月 23 日 二、同组学生: 三、课程设计任务要求(包括课题来源、类型、目的和意义、基本要求、完成时 间、主要参考资料等): 1、目的和意义 交流调速是一门重要的专业必修课,它具有很强的实践性。为了加深对所学课程(模拟电子技术、数字电子技术、电机与拖动、电力电子变流技术等)的理解以及灵活应用所学知识去解决实际问题,培养学生设计实际系统的能力,特开设为期一周的课程设计。 2、具体内容 写出设计说明书,内容包括: (1)各主要环节的工作原理; (2)整个系统的工作原理(包括启动、制动以及逻辑切换过程); (3)调节器参数的计算过程。 2.画出一张详细的电气原理图; 3.采用Matlab中的Simulink软件对整个调速系统进行仿真研究,对计算得到的调节 器参数进行校正,验证设计结果的正确性。将Simulink仿真模型,以及启动过程中的电流、转速波形图附在设计说明书中。 4、考核方式 1.周五采用口试方式进行考核(以小组为单位),成绩按百分制评定。其中小组分数占60%,个人成绩占40%(包括口试情况和上交材料内容); 2.每天上午8:30--11:30在综合楼226房间答疑。 五、参考文献 1、陈伯时.电力拖动自动控制系统----运动控制系统(第3版).机械工业出版社,2003 指导教师签字:教研室主任签字:

(完整版)三相异步电机的远程控制完整版毕业设计

以下文档格式全部为word格式,下载后您可以任意修改编辑。 西安邮电大学 毕业设计(论文) 题目:三相异步电机调速闭环控制系统设计 系别:自动化学院 专业:自动化专业 班级:自动0703班 学生姓名: 导师姓名:职称:讲师 起止时间:2006年01月10日至2006年06月17日毕业设计(论文)诚信声明书本人声明:本人所提交的毕业论文《三相异步电机调速闭环控制系统设计》是本人在指导教师指导下独立研究、写作的成果,论文中所引用他人的文献、数据、图件、资料均已明确标注;对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式

注明并表示感谢。 本人完全清楚本声明的法律后果,申请学位论文和资料若有不实之处,本人愿承担相应的法律责任。 论文作者签名:时间:年月日指导教师签名:时间:年月日 西安邮电学院 毕业设计(论文)任务书 学生姓名指导教 师职称讲师 院(系)自动化学院专业自动化 题目 三相异步电动机调速闭环控制系统设计 任务与要求

1、了解电动机调速的基本原理。 2、熟练掌握组态王6.52软件。 3、会使用组态王6.52软件画组态界面。 4、绘制电气原理图、装配图、接线图。 5、熟练掌握S7-300软件,具有一定的编程能力 开始日期1月10日完成日6月17日 院长(签字) 2011 年 1 月 10 日 西安邮电学院 毕业设计 (论文) 工作计划 学生姓名_苗晓强__指导教师___沈建冬______职称____讲师____ 院(系)______自动化学院_________专业________自动化

________ 题目_三相异步电动机调速闭环控制系统设计 ____________________________________________________ ___ 工作进程 1月10日~4月5日了解电动机调速的基本原理 4月6日~4月20日熟悉S7-300软件编程环境及组态王软件 4月21日~5月4日画出组态王监控画面 5月5日~5月20日编写并调试电动机调速控制程序 5月21日~6月17日撰写毕业论文

电机课程设计

课程设计任务书 课程名称:三相异步电机启动方案选择 姓名:梁笑 专业:09电气工程及其自动化 班级: 1 班 学号: 090320113 指导老师:袁晓玲、马宏忠

目录 1,三相交流异步电动机的起动特性 (3) 2,影响三相交流异步电动机的起动特性的因素 (4) 3,三相异步电机主要起动方式比较 (4) 3.1直接启动 (4) 3.2、用自偶变压器降压启动 (4) 3.3、Y-△降压启动 (4) 3.4、转子串电阻启动 (5) 3.5、转子串频敏变阻器启动 (5) 3.6、软件启动 (5) 3.7、变频器 (5) 4,Y-△起动的原理 (6) 5,Y—Δ起动时的系统性能研究 (7) 5.1Y—Δ起动自动控制 (7) 5.2Y—Δ起动手动控制 (8) 6,三相异步交流电机的Y—Δ起动 (9)

一,三相交流异步电动机的起动特性 电动机的启动特性中最主要的是它的启动转矩。设启动转矩为T st,为了机组能转动起来,必须大于拖动机械在n=0时的静负载力矩T L加上静摩擦阻力。 图1:电动机负载特性曲线 上图中曲线1表示异步机的T-s曲线,曲线2和3表示两种不同的负载特性曲线,为了能转动起来,必须要求a点在b点或c点的上面,否则机组将转动不起来。根据力矩平衡关系可以得出,为了保证能顺利加速到额定转速,在整个启动过程中,必须保持正的加速度,也就要求电动机的电磁力矩T在整个启动过程中大于负载的制动力矩T L。在相同的惯量下,力矩的差额越大,加速越快。惯量大得机械,起动就较慢。对于重复起动的生产机械来说,加速过程的时间长短对劳动生产率的影响是很大的。 电动机起动特性的另一个问题是起动电流,在起动时电流的大小可以用等值电路来求得。异步机在额定电压下的起动电流常大于额定电流好几倍。起动电流太大的影响是:一方面将影响电源的电压,太大的起动电流将产生较大的线路压降,使得电源电压在起动时下降,特别当电源容量较小时电压降更多,可能影响电源上其它电机的运行。另一个方面,大的起动电流将在线路及电机中产生损耗引起发热,特别是当加速力矩较小,机组的转动惯量J 较大,起动很慢的情况下,损耗将很多而发热也更严重。由上面可以看出,对电动机起动的要求是不同的,须看负载的特性,电网的情况等因素而定。有时要求有大的起动力矩,有时要求限制启动电流的大小,有时两个要求须同时满足。总的来说,要考虑下列各问题: a.应该有足够大的启动转矩,适当的机械特性曲线; b.尽可能小的启动电流; c.启动的操作应该很方便;所用的启动设备应该尽可能简单、经济;启动过程中的功率损耗应尽可能的少。

相关文档
相关文档 最新文档