文档库 最新最全的文档下载
当前位置:文档库 › 2019高考理科数学模拟试题(一)

2019高考理科数学模拟试题(一)

2019高考理科数学模拟试题(一)
2019高考理科数学模拟试题(一)

2019高考理科数学模拟试题(一)

考试时间:120分钟

注意事项:

1.答题前填写好自己的姓名、班级、考号等信息

2.请将答案正确填写在答题卡上

第Ⅰ卷(选择题)

一、选择题(本题共12小题,每小题5分,共60分,每小题只有一个选项符合题意)

1.已知集合M={x|y=x2+1},N={y|y=},则M∩N=()

A.{(0,1)}B.{x|x≥﹣1}C.{x|x≥0}D.{x|x≥1}

2.复数z=的共轭复数的虚部为()

A.﹣i B.﹣ C.i D.

3.已知命题p:存在向量,,使得?=||?||,命题q:对任意的向量,

,,若?=?,则=.则下列判断正确的是()

A.命题p∨q是假命题B.命题p∧q是真命题

C.命题p∨(¬q)是假命题D.命题p∧(¬q)是真命题

4.2017年5月30日是我们的传统节日﹣﹣”端午节”,这天小明的妈妈为小明煮了5个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事件A=“取到的两个为同一种馅”,事件B=“取到的两个都是豆沙馅”,则P(B|A)=()A.B.C.D.

5.已知锐角α的终边上一点P(sin40°,1+cos40°),则α等于()A.10°B.20°C.70°D.80°

6.已知函数,若,b=f(π),c=f(5),则()

A.c<b<a B.c<a<b C.b<c<a D.a<c<b

7.阅读程序框图,如果输出的函数值在区间内,则输入的实数x的取值范围是()

A.(﹣∞,﹣2]B.[﹣2,﹣1]C.[﹣1,2]D.[2,+∞)

8.一个几何体的三视图如图所示,则这个几何体的体积为()

A.B.C.D.

9.在约束条件下,当6≤s≤9时,目标函数z=x﹣y的最大值的变化范

围是()

A.[3,8]B.[5,8]C.[3,6]D.[4,7]

10.已知正实数a,b满足a+b=3,则的最小值为()

A.1 B.C.D.2

11.已知a∈R,若f(x)=(x+)e x在区间(0,1)上只有一个极值点,则a 的取值范围为()

A.a>0 B.a≤1 C.a>1 D.a≤0

12.设椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,其焦距为2c,

点Q(c,)在椭圆的内部,点P是椭圆C上的动点,且|PF1|+|PQ|<5|F1F2|恒成立,则椭圆离心率的取值范围是()

A.(,)B.(,)C.(,)D.(,)

第Ⅱ卷(非选择题,共90分)

二、填空题(本大题共4小题,每小题5分,共20分)

13.已知,则二项式展开式中的常数项是.

14.函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的图象关于y轴对称,该函数的部分图象如图所示,△PMN是以MN为斜边的等腰直角三角形,且

,则f(1)的值为.

15.在平面直角坐标系中,有△ABC,且A(﹣3,0),B(3,0),顶点C到点A 与点B的距离之差为4,则顶点C的轨迹方程为.

16.一个长,宽,高分别为1、2、3密封且透明的长方体容器中装有部分液体,如果任意转动该长方体,液面的形状都不可能是三角形,那么液体体积的取值范围是.

三、解答题(共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(12分)已知数列{a n}满足a1=1,a n+1=1﹣,其中n∈N*.

(Ⅰ)设b n=,求证:数列{b n}是等差数列,并求出{a n}的通项公式a n;(Ⅱ)设C n=,数列{C n C n+2}的前n项和为T n,是否存在正整数m,使得T n <对于n∈N*恒成立,若存在,求出m的最小值,若不存在,请说明理由.

18.(12分)从某校高三上学期期末数学考试成绩中,随机抽取了60名学生的成绩得到如图所示的频率分布直方图:

(1)根据频率分布直方图,估计该校高三学生本次数学考试的平均分;

(2)若用分层抽样的方法从分数在[30,50)和[130,150]的学生中共抽取6人,该6人中成绩在[130,150]的有几人?

(3)在(2)抽取的6人中,随机抽取3人,计分数在[130,150]内的人数为ξ,求期望E(ξ).

19.(12分)如图,已知平面QBC与直线PA均垂直于Rt△ABC所在平面,且PA=AB=AC.

(Ⅰ)求证:PA∥平面QBC;

(Ⅱ)PQ⊥平面QBC,求二面角Q﹣PB﹣A的余弦值.

20.(12分)已知椭圆C:+=1(a>b>0),圆Q:(x﹣2)2+(y﹣)2=2

的圆心Q在椭圆C上,点P(0,)到椭圆C的右焦点的距离为.

(1)求椭圆C的方程;

(2)过点P作互相垂直的两条直线l1,l2,且l1交椭圆C于A,B两点,直线l2交圆Q于C,D两点,且M为CD的中点,求△MAB的面积的取值范围.

21.(12分)设函数f(x)=x2+aln(x+1)(a为常数)

(Ⅰ)若函数y=f(x)在区间[1,+∞)上是单调递增函数,求实数a的取值范围;

(Ⅱ)若函数y=f(x)有两个极值点x1,x2,且x1<x2,求证:.

请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分22.(10分)直角坐标系xOy和极坐标系Ox的原点与极点重合,x轴正半轴与极

轴重合,单位长度相同,在直角坐标系下,曲线C的参数方程为

为参数).

(1)在极坐标系下,曲线C与射线和射线分别交于A,B两点,求△AOB的面积;

(2)在直角坐标系下,直线l的参数方程为(t为参数),求曲线C

与直线l的交点坐标.

23.(10分)已知函数f(x)=|2x+1|﹣|2x﹣3|,g(x)=|x+1|+|x﹣a|

(1)求f(x)≥1的解集

(2)若对任意的t∈R,都存在一个s使得g(s)≥f(t).求a的取位范围.

2018高考理科数学模拟试题(一)

参考答案与试题解析

一.选择题(共12小题)

1.已知集合M={x|y=x2+1},N={y|y=},则M∩N=()

A.{(0,1)}B.{x|x≥﹣1}C.{x|x≥0}D.{x|x≥1}

【分析】求出M中x的范围确定出M,求出N中y的范围确定出N,找出两集合的交集即可.

【解答】解:由M中y=x2+1,得到x∈R,即M=R,

由N中y=≥0,得到N={x|x≥0},

则M∩N={x|x≥0},

故选:C.

【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

2.复数z=的共轭复数的虚部为()

A.﹣i B.﹣ C.i D.

【分析】利用复数代数形式的乘除运算化简,进一步求出得答案.

【解答】解:∵z==,

∴.

∴复数z=的共轭复数的虚部为.

故选:D.

【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.3.已知命题p:存在向量,,使得?=||?||,命题q:对任意的向量,

,,若?=?,则=.则下列判断正确的是()

A.命题p∨q是假命题B.命题p∧q是真命题

C.命题p∨(¬q)是假命题D.命题p∧(¬q)是真命题

【分析】命题p:存在同方向向量,,使得?=||?||,即可判断出真假.命题q:取向量=(1,0),=(0,1),=(0,2),满足?=?,则≠,即可判断出真假.再利用复合命题真假的判定方法即可得出.

【解答】解:命题p:存在同方向向量,,使得?=||?||,真命题.

命题q:取向量=(1,0),=(0,1),=(0,2),则?=?,≠,因此是假命题.

则下列判断正确的是:p∧(¬q)是真命题.

故选:D.

【点评】本题考查了数量积运算性质、复合命题的判定方法,考查了推理能力与计算能力,属于基础题.

4.2017年5月30日是我们的传统节日﹣﹣”端午节”,这天小明的妈妈为小明煮了5个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事件A=“取到的两个为同一种馅”,事件B=“取到的两个都是豆沙馅”,则P(B|A)=()A.B.C.D.

【分析】求出P(A)==,P(AB)==,利用P(B|A)=,可得结论.

【解答】解:由题意,P(A)==,P(AB)==,

∴P(B|A)==,

故选:A.

【点评】本题考查条件概率,考查学生的计算能力,正确运用公式是关键.

5.已知锐角α的终边上一点P(sin40°,1+cos40°),则α等于()A.10°B.20°C.70°D.80°

【分析】由题意求出PO的斜率,利用二倍角公式化简,通过角为锐角求出角的

大小即可.

【解答】解:由题意可知sin40°>0,1+cos40°>0,

点P在第一象限,OP的斜率

tanα===cot20°=tan70°,

由α为锐角,可知α为70°.

故选C.

【点评】本题考查直线的斜率公式的应用,三角函数的化简求值,考查计算能力.

6.已知函数,若,b=f(π),c=f(5),则()A.c<b<a B.c<a<b C.b<c<a D.a<c<b

【分析】求出函数f(x)的导数,判断函数的单调性,从而比较函数值的大小即可.

【解答】解:f(x)的定义域是(0,+∞),

f′(x)=﹣1﹣=﹣<0,

故f(x)在(0,+∞)递减,

而5>π>,

∴f(5)<f(π)<f(),

即c<b<a,

故选:A.

【点评】本题考查了函数的单调性问题,考查导数的应用,是一道基础题.

7.阅读程序框图,如果输出的函数值在区间内,则输入的实数x的取值范围是()

A.(﹣∞,﹣2]B.[﹣2,﹣1]C.[﹣1,2]D.[2,+∞)

【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:

该程序的作用是计算分段函数f(x)=的函数值.根据函数的解析式,结合输出的函数值在区间内,即可得到答案.【解答】解:分析程序中各变量、各语句的作用

再根据流程图所示的顺序,可知:

该程序的作用是计算分段函数f(x)=的函数值.又∵输出的函数值在区间内,

∴x∈[﹣2,﹣1]

故选B

【点评】本题考查的知识点是选择结构,其中根据函数的流程图判断出程序的功能是解答本题的关键.

8.一个几何体的三视图如图所示,则这个几何体的体积为()

A.B.C.D.

【分析】这个几何体由半个圆锥与一个四棱锥组合而成,从而求两个体积之和即可.

【解答】解:这个几何体由半个圆锥与一个四棱锥组合而成,

半个圆锥的体积为××π×1×=;

四棱锥的体积为×2×2×=;

故这个几何体的体积V=;

故选D.

【点评】本题考查了学生的空间想象力与计算能力,属于基础题.

9.在约束条件下,当6≤s≤9时,目标函数z=x﹣y的最大值的变化范

围是()

A.[3,8]B.[5,8]C.[3,6]D.[4,7]

【分析】作出不等式组对应的平面区域,画出不等式组表示的平面区域,由z=x ﹣y得y=x﹣z,利用平移即可得到结论.

【解答】解:约束条件对应的平面区域如图:(阴影部

分).

由z=x﹣y得y=x﹣z,平移直线y=x﹣z,

s=6时由平移可知当直线y=x﹣z,经过点A时,

直线y=x﹣z的截距最小,此时z取得最大值,x﹣y取得最大值;

由,解得A(5,1)代入z=x﹣y得z=5﹣1=4,

即z=x﹣y的最大值是4,

s=9时由平移可知当直线y=x﹣z,经过点B时,

直线y=x﹣z的截距最小,此时z取得最大值,x﹣y取得最大值;

由解得B(8,1)代入z=x﹣y得z=8﹣1=7,

即z=x﹣y的最大值是7,

目标函数z=x﹣y的最大值的变化范围是:[4,7].

故选:D.

【点评】本题主要考查线性规划的应用,用数形结合是解决线性规划问题中的基本方法.

10.已知正实数a,b满足a+b=3,则的最小值为()

A.1 B.C.D.2

【分析】由已知可得,代入,然后利用基本不等式求最值.【解答】解:∵a+b=3,

∴==

=

=.

当且仅当,即a=,b=时等号成立.

故选:C.

【点评】本题考查利用基本不等式求最值,关键是掌握该类问题的求解方法,是中档题.

11.已知a∈R,若f(x)=(x+)e x在区间(0,1)上只有一个极值点,则a 的取值范围为()

A.a>0 B.a≤1 C.a>1 D.a≤0

【分析】求导数,分类讨论,利用极值、函数单调性,即可确定a的取值范围.【解答】解:∵f(x)=(x+)e x,

∴f′(x)=()e x,

设h(x)=x3+x2+ax﹣a,

∴h′(x)=3x2+2x+a,

a>0,h′(x)>0在(0,1)上恒成立,即函数h(x)在(0,1)上为增函数,∵h(0)=﹣a<0,h(1)=2>0,

∴h(x)在(0,1)上有且只有一个零点x0,使得f′(x0)=0,

且在(0,x0)上,f′(x)<0,在(x0,1)上,f′(x)>0,

∴x0为函数f(x)在(0,1)上唯一的极小值点;

a=0时,x∈(0,1),h′(x)=3x2+2x>0成立,函数h(x)在(0,1)上为增函数,

此时h(0)=0,∴h(x)>0在(0,1)上恒成立,

即f′(x)>0,函数f(x)在(0,1)上为单调增函数,函数f(x)在(0,1)上无极值;

a<0时,h(x)=x3+x2+a(x﹣1),

∵x∈(0,1),∴h(x)>0在(0,1)上恒成立,

即f′(x)>0,函数f(x)在(0,1)上为单调增函数,函数f(x)在(0,1)上无极值.

综上所述,a>0.

故选:A.

【点评】本题考查导数知识的综合运用,考查函数的单调性、极值,考查学生分析解决问题的能力,属于中档题.

12.设椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,其焦距为2c,

点Q(c,)在椭圆的内部,点P是椭圆C上的动点,且|PF1|+|PQ|<5|F1F2|恒成立,则椭圆离心率的取值范围是()

A.(,)B.(,)C.(,)D.(,)

【分析】点Q(c,)在椭圆的内部,,|PF1|+|PQ|=2a﹣|PF2|+|PQ|,

由﹣|QF2|+|PQ|≤|PQ|﹣|PF2|≤|QF2|,且|QF2|=,要|PF1|+|PQ|<5|F1F2|恒成立,即2a﹣|PF2|+|PQ|≤2a+<5×2c.

【解答】解:∵点Q(c,)在椭圆的内部,∴,?2b2>a2?a2>2c2.

|PF1|+|PQ|=2a﹣|PF2|+|PQ|

又因为﹣|QF2|+|PQ|≤|PQ|﹣|PF2|≤|QF2|,且|QF2|=,

要|PF1|+|PQ|<5|F1F2|恒成立,即2a﹣|PF2|+|PQ|≤2a+<5×2c

,,则椭圆离心率的取值范围是(,).

故选:B

【点评】本题考查了椭圆的方程、性质,椭圆的离心率,转化思想是解题关键,属于难题.

二.填空题(共4小题)

13.已知,则二项式展开式中的常数项是240.

【分析】利用定积分求出a,写出展开式的通项公式,令x的指数为0,即可得出结论.

【解答】解:=sinx=2,则二项式=展开

式的通项公式为,

令,求得r=4,所以二项式展开式中的常数项是×24=240.故答案为:240.

【点评】本题考查定积分知识的运用,考查二项式定理,考查学生的计算能力,属于中档题.

14.函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的图象关于y轴对称,该函数的部分图象如图所示,△PMN是以MN为斜边的等腰直角三角形,且

,则f(1)的值为0.

【分析】由题意,求出结合函数的图象,图象关于y轴对称,φ=,△PMN是以MN为斜边的等腰直角三角形,可得|PM|?sin45°=|MN|,且,求解|MN|和A,即得函数f(x)=Asin(ωx+φ)

【解答】解:由题意,图象关于y轴对称,φ=,

∵△PMN是以MN为斜边的等腰直角三角形,可得|PM|?sin45°=|MN|,且

解得:|MN|=2,|PM|=

在等腰三角形PMN中,可求的△PMN的高为1,即P点的纵坐标是1,

故得A=1,

T=2|MN|=4,

∴函数f(x)=Asin(ωx+φ)=sin()=,

当x=1时,即f(1)=cos=0.

故答案为0.

【点评】本题主要考查利用y=Asin(ωx+φ)的图象特征,由函数y=Asin(ωx+φ)的部分图象求解析式,属于中档题.

15.在平面直角坐标系中,有△ABC,且A(﹣3,0),B(3,0),顶点C到点A

与点B的距离之差为4,则顶点C的轨迹方程为=1(x≥2).

【分析】利用A(﹣3,0),B(3,0),顶点C到点A与点B的距离之差为4,由双曲线的定义可得点C的轨迹是焦点在x轴上的双曲线的右支,2a=4,c=3,求出b,即可求出点C的轨迹方程.

【解答】解:∵A(﹣3,0),B(3,0),顶点C到点A与点B的距离之差为4,

∴由双曲线的定义可得点C的轨迹是焦点在x轴上的双曲线的右支,2a=4,c=3,∴a=2,b=,

∴点P的轨迹方程为=1(x≥2),

故答案为=1(x≥2).

【点评】本题考查点C的轨迹方程,考查双曲线的定义,正确运用双曲线的定义是关键.

16.一个长,宽,高分别为1、2、3密封且透明的长方体容器中装有部分液体,如果任意转动该长方体,液面的形状都不可能是三角形,那么液体体积的取值范围是(,).

【分析】画出长方体,使其一个顶点放在桌面上,容易观察出液体体积何时取得最小值和最大值.

【解答】解:长方体ABCD﹣EFGH,若要使液面不为三角形,

则液面必须高于平面EHD,且低于平面AFC;

而当平面EHD平行水平面放置时,若满足上述条件,则任意转动该长方体,

液面的形状都不可能是三角形;

所以液体体积必须大于三棱柱G﹣EHD的体积,

并且小于长方体ABCD﹣EFGH体积﹣三棱柱B﹣AFC体积1﹣=,

故答案为:(,).

【点评】本题考查了棱柱的结构特征以及几何体的体积求法问题,也考查了空间想象能力,是难题.

三.解答题(共7小题,满分70分)

17.(12分)已知数列{a n}满足a1=1,a n+1=1﹣,其中n∈N*.

(Ⅰ)设b n=,求证:数列{b n}是等差数列,并求出{a n}的通项公式a n;(Ⅱ)设C n=,数列{C n C n+2}的前n项和为T n,是否存在正整数m,使得T n <对于n∈N*恒成立,若存在,求出m的最小值,若不存在,请说明理由.

【分析】(Ⅰ)利用递推公式即可得出b n

﹣b n为一个常数,从而证明数列{b n}

+1

是等差数列,再利用等差数列的通项公式即可得到b n,进而得到a n;

(Ⅱ)利用(Ⅰ)的结论,利用“裂项求和”即可得到T n,要使得T n<对于n∈N*恒成立,只要,即,解出即可.

﹣b n==

【解答】(Ⅰ)证明:∵b n

+1

==2,

∴数列{b n}是公差为2的等差数列,

又=2,∴b n=2+(n﹣1)×2=2n.

∴2n=,解得.

(Ⅱ)解:由(Ⅰ)可得,

∴c n c n+2==,

∴数列{C n C n+2}的前n项和为Tn=…+

=2<3.

要使得T n<对于n∈N*恒成立,只要,即,

解得m≥3或m≤﹣4,

而m>0,故最小值为3.

【点评】正确理解递推公式的含义,熟练掌握等差数列的通项公式、“裂项求和”、等价转化等方法是解题的关键.

18.(12分)从某校高三上学期期末数学考试成绩中,随机抽取了60名学生的成绩得到如图所示的频率分布直方图:

(1)根据频率分布直方图,估计该校高三学生本次数学考试的平均分;

(2)若用分层抽样的方法从分数在[30,50)和[130,150]的学生中共抽取6人,该6人中成绩在[130,150]的有几人?

(3)在(2)抽取的6人中,随机抽取3人,计分数在[130,150]内的人数为ξ,求期望E(ξ).

【分析】(1)由频率分布直方图计算数据的平均分;

(2)计算样本中分数在[30,50)和[130,150]的人数,根据分层抽样原理求出抽取的人数;

(3)计算抽取的6人中分数在[130,150]的人数,求出ξ的所有取值与概率分布,计算数学期望值.

【解答】解:(1)由频率分布直方图,得

该校高三学生本次数学考试的平均分为

0.0050×20×40+0.0075×20×60+0.0075×20×80+0.0150×20×100

+0.0125×20×120+0.0025×20×140=92;…(4分)

(2)样本中分数在[30,50)和[130,150]的人数分别为6人和3人,

所以抽取的6人中分数在[130,150]的人有(人);…(8分)

(3)由(2)知:抽取的6人中分数在[130,150]的人有2人,

依题意ξ的所有取值为0、1、2,

当ξ=0时,;

当ξ=1时,;

当ξ=2时,;

∴.…(12分)

【点评】本题主要考查了频率分布直方图以及平均数和概率的计算问题,也考查了运用统计知识解决简单实际问题的能力,是基础题.

19.(12分)如图,已知平面QBC与直线PA均垂直于Rt△ABC所在平面,且PA=AB=AC.

(Ⅰ)求证:PA∥平面QBC;

(Ⅱ)PQ⊥平面QBC,求二面角Q﹣PB﹣A的余弦值.

【分析】(Ⅰ)利用线面垂直的性质定理及线面平行的判定定理即可证明;(Ⅱ)方法一:利用三角形的中位线定理及二面角的平面角的定义即可求出.

方法二:通过建立空间直角坐标系,利用平面的法向量所成的夹角来求两平面的二面角的平面角.

【解答】解:(I)证明:过点Q作QD⊥BC于点D,

∵平面QBC⊥平面ABC,∴QD⊥平面ABC,

又∵PA⊥平面ABC,

∴QD∥PA,又∵QD?平面QBC,PA?平面QBC,

∴PA∥平面QBC.

(Ⅱ)方法一:∵PQ⊥平面QBC,

∴∠PQB=∠PQC=90°,又∵PB=PC,PQ=PQ,

∴△PQB≌△PQC,∴BQ=CQ.

∴点D是BC的中点,连接AD,则AD⊥BC,

∴AD⊥平面QBC,∴PQ∥AD,AD⊥QD,

∴四边形PADQ是矩形.

设PA=2a,

∴,PB=2a,∴.

过Q作QR⊥PB于点R,

∴QR==,

==,

取PB中点M,连接AM,取PA的中点N,连接RN,

∵PR=,,∴MA∥RN.

∵PA=AB,∴AM⊥PB,∴RN⊥PB.

∴∠QRN为二面角Q﹣PB﹣A的平面角.

(完整word版)2019年高考数学理科试卷全国一卷Word版和PDF版。

2019年高考理科数学全国一卷 一、单选题 本大题共12小题,每小题5分,共60分。在每小题给出的4个选项中,有且只有一项是符合题目要求。 1.已知集合M={x |-4<x <2},N={x | -x -6<0},则M∩U = A{x |-4<x <3} B{x |-4<x <-2} C{x |-2<x <2} D{x |2<x <3} 2.设复数z 满足|z -i|=1,z 在复平面内对应的点为(x ,y),则 A B C D 3.已知a =2.0log 2,b =2.02,c =3 .02 .0,则 A.a <b <c B.a <c <b C.c <a <b D.b <c <a 4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐到足底的长度之比是 ??? ? ??≈称之为黄金分割.618.021 -521-5,著名的“断臂维纳斯”便是如此。此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 2 1 -5 。若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是 A.165 cm B.175 cm C.185 cm D.190 cm 5.函数()][ππ,的-cos sin 2 x x x x x f ++= 图像大致为 A B C D 6.我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“—”和阴爻“- -”,右图就是一重卦。在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是 A. 165 B.3211 C.3221 D.16 11 7.已知非零向量,满足 ,且 ,则与的夹角为 A. 6π B.3π C.32π D.6 5π

2019高考(卷1)理科数学

2019年普通高等学校招生全国统一考试(卷1) 理科数学 一、选择题:本题共12小题,每小题5分,共60分 1、已知集合{}{}06,242<--=<<-=x x x N x x M ,则=N M ( ) A 、{}34<<-x x B 、{}24-<<-x x C 、{}22<<-x x D 、{}32<

2019年数学高考试题(附答案)

2019年数学高考试题(附答案) 一、选择题 1.某班上午有五节课,分別安排语文,数学,英语,物理,化学各一节课.要求语文与化学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课法的种数是 A .24 B .16 C .8 D .12 2.函数ln || ()x x f x e = 的大致图象是( ) A . B . C . D . 3.已知回归直线方程中斜率的估计值为1.23,样本点的中心()4,5,则回归直线方程为( ) A . 1.2308?.0y x =+ B .0.0813?.2y x =+ C . 1.234?y x =+ D . 1.235?y x =+ 4.已知532()231f x x x x x =++++,应用秦九韶算法计算3x =时的值时,3v 的值为( ) A .27 B .11 C .109 D .36 5.设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M ?N 中元素的个数为( ) A .2 B .3 C .5 D .7 6.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a-b|≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( ) A . 19 B . 29 C . 49 D . 718 7.若,αβ是一组基底,向量γ=x α+y β (x,y ∈R),则称(x,y)为向量γ在基底α,β下的坐标,现已知向量α在基底p =(1,-1), q =(2,1)下的坐标为(-2,2),则α在另一组基底m =(-1,1), n =(1,2)下的坐标为( ) A .(2,0) B .(0,-2) C .(-2,0) D .(0,2) 8.圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0的公共弦的长为( )

2019届高三第二次模拟考试卷 理科数学

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符 合题目要求的. 1.[2019·肇庆统测]若复数z 满足12i 1i z +=+,则z =( ) A B . 32 C D . 12 2.[2019·武汉六中]设集合{} 2540A x x x =∈+->N ,集合[]0,2B =,则A B =( ) A .{}0,1,2 B .[]0,2 C .? D .{}1,2 3.[2019·海淀八模]如图给出的是2000年至2016年我国实际利用外资情况,以下结论正确的是( ) A .2000年以来我国实际利用外资规模与年份呈负相关 B .2010年以来我国实际利用外资规模逐年增大 C .2008年以来我国实际利用外资同比增速最大 D .2010年以来我国实际利用外资同比增速最大 4.[2019·湘潭一模]已知数列{}n a 是等比数列,其前n 项和为n S ,223S a =,则3 4 12 a a a a +=+( ) A . 14 B . 12 C .2 D .4 5.[2019·河南名校联考]已知函数()32f x x ax bx c =+++的图象的对称中心为()0,1,且()f x 的图象在点()()1,1f 处的切线过点()2,7,则b =( ) A .1 B .2 C .3 D .4 6.[2019·肇庆统测]已知ABC △的边BC 上有一点D 满足3BD DC =,则AD 可表示为( ) A .13 44 AD AB AC = + B .31 44 AD AB AC = + C .21 33AD AB AC =+ D .41 55 AD AB AC =+ 7.[2019·遵义联考]如图为一个几何体的三视图,则该几何体中任意两个顶点间的距离的最大值为 ( ) A . B .4 C .D .5 8.[2019·滨州期末]已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是PF 直线与抛物线C 的一个交点,若3PF FQ =,则QF =( ) A .3 B .8 3 C .4或8 3 D .3或4 9.[2019·宁德期末]已知函数()32,0 ln ,0x x x f x x x ?-≤=?->? ,若函数()()g x f x x a =--有3个零点,则实数 a 的取值范围是( ) A .[)0,2 B .[)0,1 C .(],2-∞ D .(],1-∞ 10.[2019·衡水中学]如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( ) A . 1π B . 12π C . 112π- D .1142π - 11.[2019·湖北联考]椭圆Γ:()222210x y a b a b +=>>与双曲线Ω:()22 2210,0x y m n m n -=>>焦点相同, F 为左焦点,曲线Γ与Ω在第一象限、第三象限的交点分别为A 、B ,且2π 3 AFB ∠=,则当这两条曲线的离心率之积最小时,双曲线有一条渐近线的方程是( ) A .20x y -= B .20x y += C .0x = D 0y += 12.[2019·丰台期末]如图,在棱长为2的正方体1111ABCD A B C D -中,E ,F ,G 分别是棱AB ,BC ,1CC 的中点,P 是底面ABCD 内一动点,若直线1D P 与平面EFG 不存在公共点,则三角形1PBB 的 面积的最小值为( )

2019年高考数学理科全国三卷

2019年高考数学理科 全国三卷 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2019年普通高等学校招生全国统一考试 理科数学(全国三卷) 一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。) 1.已知集合{}1,0,1,2A =-,{} 2|1B x x =≤,则A B =() A. {1,0,1}- B.{0,1} C.{1,1}- D. {0,1,2} 2.若(1)2z i i +=,则z =() A. 1i -- B. 1i -+ C. 1i - D. 1i + 3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某中学为了解本校学生阅读四大名著的情况,随机调查了100名学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为() A. 0.5 B. 0.6 C. 0.7 D. 0.8 4.24(12)(1)x x ++的展开式中x 3的系数为() A. 12 B. 16 C. 20 D. 24 5.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=() A. 16 B. 8 C. 4 D. 2 6.已知曲线ln x y ae x x =+在(1,)ae 处的切线方程为y =2x +b ,则() A.,1a e b ==- B.,1a e b == C.1,1a e b -== D.1,1a e b -==- 7.函数3 222 x x x y -=+在[6,6]-的图像大致为() A. B. C. D.

2019年高考数学试题(及答案)

2019年高考数学试题(及答案) 一、选择题 1.下列函数图像与x 轴均有公共点,其中能用二分法求零点的是( ) A . B . C . D . 2.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所示,则该几何体的俯视图为( ) A . B . C . D . 3.设集合2{|20,}M x x x x R =+=∈,2 {|20,}N x x x x R =-=∈,则M N ?=( ) A .{}0 B .{}0,2 C .{}2,0- D . 2,0,2 4. ()()3 1i 2i i --+=( ) A .3i + B .3i -- C .3i -+ D .3i - 5.甲、乙、丙三人到三个不同的景点旅游,每人只去一个景点,设事件A 为“三个人去的景点各不相同”,事件B 为“甲独自去一个景点,乙、丙去剩下的景点”,则(A |B)P 等于( ) A . 49 B . 29 C . 12 D . 13 6.设双曲线22 22:1x y C a b -=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别 交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ?=,22MF NF =,则双曲线C 的离心率为( ). A 2 B 3 C 5 D .6 7.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙

两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( ) A . 54 钱 B . 43 钱 C . 32 钱 D . 53 钱 8.某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以上(包括50岁)的人,用分层抽样的方法从中抽取20人,各年龄段分别抽取的人数为( ) A .7,5,8 B .9,5,6 C .7,5,9 D .8,5,7 9.南北朝时代的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,如图,夹在两个平行平面之间的两个几何体的体积分别为12,V V ,被平行于这两个平面的任意平面截得的两个截面的面积分别为12,S S ,则“12,S S 总相等”是“12,V V 相等”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 10.下列说法正确的是( ) A .22a b ac bc >?> B .22a b a b >?> C .33a b a b >?> D .22a b a b >?> 11.设0<a <1,则随机变量X 的分布列是 X a 1 P 13 13 13 则当a 在(0,1)内增大时( ) A .()D X 增大 B .()D X 减小 C .()D X 先增大后减小 D .()D X 先减小后增大 12.已知抛物线2 2(0)y px p =>交双曲线22 221(0,0)x y a b a b -=>>的渐近线于A ,B 两点 (异于坐标原点O 5AOB ?的面积为32,则抛物线的焦点为( )

2019年高考全国2卷理科数学及答案

绝密★启用前 2019年普通高等学校招生全国统一考试 理科数学 本试卷共23题,共150分,共5页。考试结束后,将本试卷和答题卡一并交回。 注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B = A .(-∞,1) B .(-2,1) C .(-3,-1) D .(3,+∞) 2.设z =-3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.已知AB u u u r =(2,3),AC uuu r =(3,t ),BC uuu r =1,则AB BC ?u u u r u u u r = A .-3 B .-2 C .2 D .3 4.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程: 121 223 ()()M M M R r R r r R +=++. 设r R α=,由于α的值很小,因此在近似计算中3453 2 333(1)ααααα++≈+,则r 的近似值为 A 2 1 M R M B 2 1 2M R M C 2 3 1 3M R M D 2 3 1 3M R M 5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差 D .极差 6.若a >b ,则 A .ln(a ?b )>0 B .3a <3b C .a 3?b 3>0 D .│a │>│b │ 7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行

2019年高考理科全国1卷数学(含答案解析)

2019年普通高等学校招生全国统一考试 理科数学 本试卷共4页,23小题,满分150分,考试用时120分钟。 注意事项: 1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。 2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。答案不能答在试卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合{} }2 42{60M x x N x x x =-<<=--<,,则M N ?=( ) A. }{43x x -<< B. }{42x x -<<- C. }{22x x -<< D. }{23x x << 2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则( ) A. 2 2 +11()x y += B. 22 (1)1x y -+= C. 22 (1)1x y +-= D. 2 2(+1)1y x += 3.已知0.20.3 2log 0.2,2,0.2a b c ===,则( ) A. a b c << B. a c b << C. c a b << D. b c a << 4. ≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体 .若某人满足上述两个黄金分割

2019届高三理科数学全国大联考试卷及解析

2019届高三月考试卷答案版 数 学(理科) 时量:120分钟 满分:150分 一、选择题:本大题共12小题,每小题5分,共60分,在每小题的四个选项中,只有一项是符合题目要求的. 1.设复数z =x +y i ,其中x ,y 是实数,i 是虚数单位,若y 1-i =x +i ,则复数z 的共轭 复数在复平面内对应的点位于(D) y =138(2.5是指对该样本所得结论:4.已知????2x 2-1x n (n ∈N *)的展开式中各项的二项式系数之和为128,则其展开式中含1x 项的系数是(A) A .-84 B .84 C .-24 D .24 【解析】由已知,2n =128,得n =7,所以T r +1=C r 7(2x 2)7-r ????-1x r =(-1)r ·27-r C r 7x 14-3r . 令14-3r =-1,得r =5,所以展开式中含1x 项的系数为(-1)527- 5C 57=-84,选A. 5.已知函数f (x )是定义在R 上的奇函数,且f (x )在R 上单调递增,若a ,b ,c 成等差数列,

且b >0,则下列结论正确的是(A) A .f (b )>0,且f (a )+f (c )>0 B .f (b )>0,且f (a )+f (c )<0 C .f (b )<0,且f (a )+f (c )>0 D .f (b )<0,且f (a )+f (c )<0 【解析】由已知,f (b )>f (0)=0.因为a +c =2b >0,则a >-c ,从而f (a )>f (-c )=-f (c ), 即f (a )+f (c )>0,选A. 6.设x 为区间[-2,2]内的均匀随机数,则计算机执行下列程序后,输出的y 值落在区间????12,3内的概率为(C) ④设g (x )=2sin 2x ,则g ???x +4=2sin 2???x +4=2sin ? ??2x +2=2cos 2x ≠f (x ),结 论错误,选B. 8.已知命题p :若a >2且b >2,则a +b <ab ;命题q :x >0,使(x -1)·2x =1,则下列命题中为真命题的是(A) A .p ∧q B .(綈p )∧q C .p ∧(綈q ) D .(綈p )∧(綈q ) 【解析】若a >2且b >2,则1a <12且1b <12,得1a +1 b <1,即a +b ab <1,从而a +b <ab ,所以命

2019年高考数学试卷(含答案)

2019年高考数学试卷(含答案) 一、选择题 1.如图,点是抛物线的焦点,点,分别在抛物线和圆 的实 线部分上运动,且 总是平行于轴,则 周长的取值范围是( ) A . B . C . D . 2.定义运算()() a a b a b b a b ≤?⊕=? >?,则函数()12x f x =⊕的图象是( ). A . B . C . D . 3.某学校开展研究性学习活动,某同学获得一组实验数据如下表: x 1.99 3 4 5.1 6.12 y 1.5 4.04 7.5 12 18.01 对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是( ) A .22y x =- B .1()2 x y = C .2y log x = D .() 2 112 y x = - 4.设5sin 7a π=,2cos 7b π=,2tan 7 c π=,则( ) A .a b c << B .a c b << C .b c a << D .b a c << 5.若满足 sin cos cos A B C a b c ==,则ABC ?为( ) A .等边三角形 B .有一个内角为30的直角三角形

C .等腰直角三角形 D .有一个内角为30的等腰三角形 6.一个频率分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在 [)2060,上的频率为0.8,则估计样本在[)40,50、[)50,60内的数据个数共有( ) A .14 B .15 C .16 D .17 7.ABC ?的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =,3b = ,则 c =( ) A .23 B .2 C .2 D .1 8.在“近似替代”中,函数()f x 在区间1[,]i i x x +上的近似值( ) A .只能是左端点的函数值()i f x B .只能是右端点的函数值1()i f x + C .可以是该区间内的任一函数值()(i i f ξξ∈1[,]i i x x +) D .以上答案均正确 9.函数y =2x sin2x 的图象可能是 A . B . C . D . 10.若实数满足约束条件,则的最大值是( ) A . B .1 C .10 D .12 11.已知ABC 为等边三角形,2AB =,设P ,Q 满足AP AB λ=, ()()1AQ AC λλ=-∈R ,若3 2 BQ CP ?=-,则λ=( ) A . 12 B . 12 2 ± C . 110 2 ± D . 32 2 ±

2019年高考全国1卷理科数学及答案doc资料

2019年高考全国1卷理科数学及答案

绝密★启用前 2019年普通高等学校招生全国统一考试 理科数学 本试卷共23题,共150分,共5页。考试结束后,将本试卷和答题卡一并交回。 注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选 项中,只有一项是符合题目要求的。 1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N I = A .}{43x x -<< B .}42{x x -<<- C .}{22x x -<< D .}{23x x << 2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y += B .221(1)x y +=- C .22(1)1y x +-= D .22(+1)1y x += 3.已知0.20.32 log 0.220.2a b c ===,,,则 A .a b c << B .a c b << C .c a b << D .b c a <<

4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512 -(512 -≈0.618,称为黄金分割比 例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512 -.若某人满 足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是 A .165 cm B .175 cm C .185 cm D .190 cm 5.函数f (x )= 2 sin cos ++x x x x 在[,]-ππ的图像大致为 A . B . C . D . 6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是 A .516 B .1132 C .2132 D .1116 7.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为 A .π6 B .π3 C .2π3 D .5π6

2019高考全国卷1理科数学

2019高考全国卷1理科数学 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目 要求的。 1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N = A .}{43x x -<< B .}42{x x -<<- C .}{22x x -<< D .}{23x x << 非常常规,主要考查的是一元二次不等式的解集,集合的运算, 2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .2 2 +11()x y += B .221(1)x y +=- C .22(1)1y x +-= D .2 2(+1)1y x += 复数的考察往年一般是考复数的运算,而今年专门来考复数的几何意义,还有复数的模的几何意义, 可见平时在复习的过程中,一定得把课本的关键概念抓住。 3.已知0.20.32 log 0.220.2a b c ===,,,则 A .a b c << B .a c b << C .c a b << D .b c a << 主要考查的是指数和对数的运算,其实只要掌握了指数函数对数函数,的图像,应该就可以解决, 4.古希腊时期,≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐 的长度之比也是 1 2 .若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是 A .165 cm B .175 cm C .185 cm D .190 cm 这道题目今年争议特别大,出卷人主要想考察学生的阅读能力还有时估算能力,学生在计算的过程中应该把0.618当成3:5, 105刚好是5的倍数,而26+1刚好是3的倍数,

2019年数学高考试题(含答案)

2019年数学高考试题(含答案) 一、选择题 1.已知回归直线方程中斜率的估计值为1.23,样本点的中心()4,5,则回归直线方程为( ) A . 1.2308?.0y x =+ B .0.0813?.2y x =+ C . 1.234?y x =+ D . 1.235?y x =+ 2.已知在ABC 中,::3:2:4sinA sinB sinC =,那么cosC 的值为( ) A .14 - B . 14 C .23 - D . 23 3.123{ 3 x x >>是12126{ 9 x x x x +>>成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .即不充分也不必要条件 4.设是虚数单位,则复数(1)(12)i i -+=( ) A .3+3i B .-1+3i C .3+i D .-1+i 5.设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M ?N 中元素的个数为( ) A .2 B .3 C .5 D .7 6.已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(?q );④(?p )∨q 中,真命题是( ) A .①③ B .①④ C .②③ D .②④ 7.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a-b|≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( ) A .19 B .29 C .49 D . 718 8.若()34i x yi i +=+,,x y R ∈,则复数x yi +的模是 ( ) A .2 B .3 C .4 D .5 9.已知a 与b 均为单位向量,它们的夹角为60?,那么3a b -等于( ) A 7B 10 C 13 D .4 10.已知函数()32cos 2[0,]2 f x x x m π =+-在上有两个零点,则m 的取值范围是 A .(1,2) B .[1,2) C .(1,2] D .[l,2] 11.在ABC 中,若 13,3,120AB BC C ==∠=,则AC =( ) A .1 B .2 C .3 D .4 12.设集合(){} 2log 10M x x =-<,集合{} 2N x x =≥-,则M N ?=( )

2019年高考全国2卷理科数学及答案

绝密★启用前 2019 年普通高等学校招生全国统一考试 理科数学 本试卷共23 题,共150 分,共 5 页。考试结束后,将本试卷和答题卡一并交回。 注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5 毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效; 在草稿纸、试题卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12 小题,每小题 5 分,共60 分。在每小题给出的四个选项中,只有一 项是符合题目要求的。 2 -5x+6>0} ,B={ x|x-1<0} ,则A∩B= 1.设集合A={ x|x A.(-∞,1)B.(-2,1)C.(-3,-1)D.(3,+∞)2.设z=-3+2i,则在复平面内z 对应的点位于 A.第一象限B.第二象限C.第三象限D.第四象限 3.已知AB =(2,3), AC =(3,t),BC =1,则AB BC = A.-3 B.-2 C.2 D.3 4.2019 年1 月3 日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测 器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2 点的轨道运行.L2 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M2,地月距离为R,L2 点到月球的距离为r,根据牛顿运动定律和万有引力定律,r 满足方程: M M M 1 2 1 2 2 ( ) 3 R r (R r)r R . 设r R ,由于的值很小,因此在近似计算中 3 4 5 3 3 2 (1 ) 3 3 ,则r 的近似 值为 A.M 2 M 1 R B. M 2 1 R C. 3 3M 2 M 1 R D. 3 M 2 1 R

2019年高考真题理科数学(全国II卷)

AB=(2,3),AC=(3,t),|BC|=1,则AB?BC=( ) M233 3

7.8.9.10.11. 12.13.设α,β为两个平面,则α∥β的充要条件是( ) α内有无数条直线与β平行 α内有两条相交直线与β平行α,β平行于同一条直线α,β垂直于同一平面 若抛物线y =2px(p>0)的焦点是椭圆x 23p +y 2p =1的一个焦点,则p=( ) 2348下列函数中,以π2为周期且在区间(π4,π2 )单调递增的是( )f(x)=|cos2x| f(x)=|sin2x|f(x)=cos|x|f(x)=sin|x|已知α∈(0,π2),2sin2α=cos2α+1,则sinα=( )15553325 5设F为双曲线C:x 2a 2-y 2b 2 =1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x +y =a 交于P,Q两点.若|PQ|=|OF|,则C的离心率为( )2325 设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x(x-1).若对任意x∈(-∞,m],都有f(x)≥-89 ,则m的取值范围是( )(-∞,94](-∞,73](-∞,52](-∞,83 ]我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为 . A. B. C. D. 2A. B. C. D. A. B. C. D. A. B. C. D. 222A. B. C. D. A. B. C. D.

2019年高考理科数学考试大纲

理科数学 Ⅰ.考核目标与要求 根据普通高等学校对新生思想道德素质和科学文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列2和系列4的内容,确定理工类高考数学科考试内容. 一、知识要求 知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能. 各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明. 对知识的要求依次是了解、理解、掌握三个层次. 1.了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它. 这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等. 2.理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力. 这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等. 3.掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决. 这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等. 二、能力要求 能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识. 1.空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质. 空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志. 2.抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某种观点或某个结论. 抽象概括能力是对具体的、生动的实例,经过分析提炼,发现研究对象的本质;从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或做出新的判断.

2019年上海高考数学试卷及答案

2019年上海高考数学试卷 一、填空题(每小题4分,满分56分) 1.函数1()2 f x x = -的反函数为1 ()f x -= . 2. 若全集U R =,集合{1}{|0}A x x x x =≥≤U ,则U C A = . 3.设m 是常数,若点F (0,5)是双曲线 22 19 y x m -=的一个焦点,则m = . 4.不等式 1 3x x +≤的解为 . 5.在极坐标系中,直线(2cos sin )2ρθθ+=与直线cos 1ρθ=的夹角大小为 . (结果用反三角函数值表示) 6.在相距2千米的A 、B 两点处测量目标点C ,若75,60CAB CBA ∠=∠=o o ,则A 、C 两点之间的距离为 千米. 7.若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为 . 8.函数sin cos 26y x x ππ???? =+- ? ????? 的最大值为 . 9.马老师从课本上抄录一个随机变量ξ的概率分布律如下表: x 1 2 3 ()P x ξ= ! 请小牛同学计算ξ的数学期望.尽管“!”处完全无法看清,且两个“”处字迹模糊,但能断定这两个“”处的数值相同.据此,小牛给出了正确答案E ξ= . 10.行列式 (,,,{1,1,2})a b a b c d c d ∈-所有可能的值中,最大的是 . 11.在正三角行ABC 中,D 是BC 上的点.若AB =3,BD =1,则AB AD =u u u r u u u r g . 12.随机抽取的9位同学中,至少有2位同学在同一月份出生的概率为 (默认每个月的天数相同,结果精确到). 13. 设()g x 是定义在R 上,以1为周期的函数,若函数()()f x x g x =+在区间[3,4]上的

2019届高三理科数学

2019届高三理科数学(3)试题 一.选择题:本大题共12小题,每小题5分。在每个小题给出的四个选项中,只有一项是 符合题目要求的。 1.设集合{ }x x x M ==2 ,{ }0lg ≤=x x N ,则M N =( ) (A )[]0,1 (B )(]0,1 (C )[)0,1 (D )(],1-∞ 2.已知复数i i z 212 ++= ,则z 的共轭复数是( ) (A )1i -- (B )1i - (C )1i + (D )1i -+ 3.已知函数)(x f 是偶函数,当0>x 时,3 1 )(x x f =,则在区间)0,2(-上,下列函数中与 )(x f 的单调性相同的是( ) (A )12+-=x y (B )1+=x y (C )x e y = (D )???<+≥-=0 ,10,123 x x x x y 4.已知函数)sin()(?ω+=x A x f (2 ,0,0π ?ω<>>A ) 在一个周期内的图象如图所示,则=)4 (π f ( ) (A )1 (B ) 21 (C )1- (D )2 1 - 5.下列四个结论: ①若p q ∧是真命题,则p ?可能是真命题; ②命题“2000,10x R x x ?∈--<”的否定是“2,10x R x x ?∈--≥”; ③“5a >且5b >-”是“0a b +>”的充要条件; ④当0a <时,幂函数a y x =在区间()0+∞,上单调递减. 其中正确结论的个数是( ) (A )0个 (B ) 1个 (C )2个 (D )3个 6.过点)1,3(A 的直线l 与圆014:2 2 =--+y y x C 相切于点B ,则=?( ) (A )0 (B (C )5 (D 7.下列表格所示的五个散点,原本数据完整,且利用最小二乘法求得这五个散点的线性回归直线方程为0.8155y x =-,后因某未知原因第5组数据的y 值模糊不清,此位置数 m m 的值为( ) (A )8.3 (B )8.2 (C )8.1 (D )8

(完整版)2019年北京卷理科数学高考真题

2019年普通高等学校招生全国统一考试 数 学(理)(北京卷) 第一部分(选择题 共40分) 一、 选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目 要求的一项。 (1) (A )3 (B )5 (C )3 (D )5 (2)执行如图所示的程序框图,输出的s 值为 (A )1 (B )2 (C )3 (D )4 (3)已知直线l 的参数方程为x =1+3t y =2+4t ìí ? (t 为参数),则点(1,0) 到直线l 的距离是 (A ) 15

(B)2 5 (C)4 5 (D)6 5 (4)已知椭圆 2 x 2 a + 2 y 2 b =1(a>b>0)的离心率为 1 2 ,则 (A)a2=2b2. (B)3a2=4b2. (C)a=2b (D)3a=4b (5)若x,y满足的最大值为 (A)-7 (B)1 (C)5 (D)7 (6)在天文学中,天体的明暗程度可以用星等或亮度来描述。两颗星的星等与亮度满足 m 2-m 1 = 5 2 lg E 1 E 2 ,其中星等为m k的星的亮度为E k(k=1,2)。已知太阳的星等为-26.7, 天狼星的星等为-1.45,则太阳与天狼星的亮度的比值为 (A)1010.1(B)10.1 (C)lg10.1(D)10-10.1 (7)设点A,B,C不共线,则“与的夹角是锐角”是的(A)充分而不必要条件(B)必要而不充分条件 (C)充分必要条件(D)既不充分也不必要条件 (8)数学中有许多形状优美、寓意美好的曲线,曲线C:x2+y2=1+x y就是其中之一(如图)。给出下列三个结论:

相关文档
相关文档 最新文档