文档库 最新最全的文档下载
当前位置:文档库 › 最新二项分布高考试题资料

最新二项分布高考试题资料

最新二项分布高考试题资料
最新二项分布高考试题资料

二项分布练习题目:

1.某人射击一次击中目标的概率为0.6,经过3次射击,此人恰有两次击中目标的概率为

2.加工某种零件需经过三道工序。设第一、二、三道工序的合格率分别为10

9、9

8、8

7,且各道工序互不影响。

(1) 求该种零件的合格率;

(2) 从该种零件中任取3件,求恰好取到一件合格品的概率和至少取到一件合格品的概率。 (Ⅰ)解:9877

109810

P =

??=; (Ⅱ)解法一: 该种零件的合格品率为10

7,由独立重复试验的概率公式得:

恰好取到一件合格品的概率为 12

373()0.1891010C ?

?=,

至少取到一件合格品的概率为 .973.0)10

3

(13=- 解法二:

恰好取到一件合格品的概率为12373()0.1891010

C ??=,

至少取到一件合格品的概率为

1

22233

33373737()()()0.973.1010101010

C C C ?

?+?+=

3. 9粒种子分种在甲、乙、丙3个坑内,每坑3粒,每粒种

子发芽的概率为5.0,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种。

(Ⅰ)求甲坑不需要补种的概率;

(Ⅱ)求3个坑中恰有1个坑不需要补种的概率; (Ⅲ)求有坑需要补种的概率。

(Ⅰ)解:因为甲坑内的3粒种子都不发芽的概率为

8

1)5.01(3=-,所以甲坑不需要补种的概率为 .875.08

7

8

11==-

(Ⅱ)解:3个坑恰有一个坑不需要补种的概率为

.041.0)8

1(8

721

3=??C

(Ⅲ)解法一:因为3个坑都不需要补种的概率为3)8

7(,

所以有坑需要补种的概率为 .330.0)8

7(13=-

解法二:3个坑中恰有1个坑需要补种的概率为

,287.0)8

7(8

121

3=??C

恰有2个坑需要补种的概率为 ,041.087

)81(223=??C

3个坑都需要补种的概率为 .002.0)8

7()81(033

3=??C

4.某学生在上学路上要经过4个路口,假设在各路口是

否遇到红灯是相互独立的,遇到红灯的概率都是13

,遇到红

灯时停留的时间都是2min.

(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;

(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间x 的分布列.

(Ⅰ)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A ,因为事件A 等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事

件A 的概率为()111

4

11333

27

P A ????=-?-?=

? ??

??

?. (Ⅱ)由题意,可得ξ可能取的值为0,2,4,6,8(单位:min ).

事件“2k ξ=”等价于事件“该学生在路上遇到k 次红灯”(k =0,1,2,3,4),

∴()()441220,1,2,3,433k

k

k P k C k ξ-????

=== ? ?

????

∴即ξ的分布列是

5.某单位为绿化环境,移栽了甲、乙两种大树各2株.设

甲、乙两种大树移栽的成活率分别为2

3和1

2

,且各株大树是

否成活互不影响.求移栽的4株大树中:

(Ⅰ)两种大树各成活1株的概率;

(Ⅱ)成活的株数 的分布列及期望值。

解:设

k

A表示甲种大树成活k株,k=0,1,2

l

B表示乙种大树成活l株,l=0,1,2

k

A,l B独立. 由独立重复试验中事件发生的概率公式有

2221

()()()33

k k k k P A C -=

,

2211

()()()22

l l l l P B C -=

.

据此算得 01()9P A =

, 14()9P A =

, 24()9P A =

.

01

()4P B =

,

11

()2P B =

,

21

()4P B =

.

(Ⅰ) 所求概率为

2111412

()()()929

P A B P A P B ?=?=?=

.

(Ⅱ) 解法一:

ξ的所有可能值为

0,1,2,3,4,且

0000111

(0)()()()9436P P A B P A P B ξ==?=?=?= ,

011011411

(1)()()92946

P P A B P A B ξ==?+?=?+?= ,

021*********(2)()()()949294P P A B P A B P A B ξ==?+?+?=?+?+?=13

36

,

122141411

(3)()()94923

P P A B P A B ξ==?+?=?+?= .

22411

(4)()949

P P A B ξ==?=?= .

综上知ξ有分布列

ξ

0 1 2 3 4 P 1/36

1/6

13/36

1/3

1/9

从而,ξ的期望为

111311012343663639

E ξ=?

+?+?+?+? 7

3

=

(株)

解法二:分布列的求法同上

令12ξξ,分别表示甲乙两种树成活的株数,则

1

2ξξ21B(2,),B(2,)32

故有121E E ξξ?=?=241=2=,2332

从而知1273

E E E ξξξ=+=

动词第三人称单数的变化规则及练习

一.写出下列动词的第三人称单数。

drink ________ go _______ stay ________ make ________ look______ have_______

pass_______

carry_______ come______

watch______ plant_______ fly________ study_______ brush________ teach_______ 二.用括号内动词的适当形式填空。

1. He often ________(have) dinner at home.

2. Daniel and Tommy _______(be) in Class One.

3. We _______(not watch) TV on Monday.

4. Nick _______(not go) to the zoo on Sunday.

5. ______ they ________(like) the World Cup?

6. What _______they often _______(do) on Saturdays?

7. _______ your parents _______(read) newspapers every day?

8. The girl _______(teach) us English on Sundays.

9. She and I ________(take) a walk together every evening. 10. There ________(be) some water in the bottle.

11. Mike _______(like) cooking.

12. They _______(have) the same hobby.

13. My aunt _______(look) after her baby carefully.

14. You always _______(do) your homework well.

15. I _______(be) ill. I’m staying in bed.

16. She _______(go) to school from Monday to Friday.

17. Liu Tao _______(do) not like PE.

高考真题突破:二项分布及其应用、正态分布

专题十一 概率与统计 第三十六讲二项分布及其应用、正态分布 一、选择题 1.(2015湖北)设211(,)X N μσ:,222(,)Y N μσ:,这两个正态分布密度曲线如图所 示.下列结论中正确的是 A .21()()P Y P Y μμ≥≥≥ B .21()()P X P X σσ≤≤≤ C .对任意正数t ,()()P X t P Y t ≤≥≤ D .对任意正数t ,()()P X t P Y t ≥≥≥ 2.(2015山东)已知某批零件的长度误差(单位:毫米)服从正态分布2 (0,3)N ,从中随 机取一件,其长度误差落在区间(3,6)内的概率为 (附:若随机变量ξ服从正态分布2(,)N μσ,则()68.26%P μσξμσ-<<+=,(22)95.44%P μσξμσ-<<+=) A .4.56% B .13.59% C .27.18% D .31.74% 3.(2014新课标2)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75, 连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为 优良的概率是 A .0.8 B .0.75 C .0.6 D .0.45

4.(2011湖北)已知随机变量ξ服从正态分布()2,2σN ,且()8.04=<ξP ,则 ()=<<20ξP A .6.0 B .4.0 C .3.0 D .2.0 二、填空题 5.(2017新课标Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放 回地抽取100次,表示抽到的二等品件数,则DX = . 6.(2016四川)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次 试验成功,则在2次试验中成功次数X 的均值是 . 7.(2015广东)已知随机变量X 服从二项分布(),n p B ,若()30E X =,()20D X =, 则p = . 8.(2012新课标)某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工 作,且元件3正常工作,则部件正常工作。设三个电子元件的使用寿命(单位:小时)均服从正态分布)50,1000(2N ,且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为 . 三、解答题 9.(2017新课标Ⅰ)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线 上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条 生产线正常状态下生产的零件的尺寸服从正态分布2 (,)N μσ. (1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3) μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望; (2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生 1 元件2元件3元件

数学高考复习点拨:二项分布与超几何分布辨析

二项分布与超几何分布辨析 二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析. 例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到 黑球的概率均为,3次取球可以看成3次独立重复试验,则1~35X B ?? ???,. 3 03 1464(0)55125P X C ????==?= ? ?????∴;1 2 131448(1)55125 P X C ????==?= ? ? ????; 2123 1412(2)55125P X C ????==?= ? ?????;30 33141(3)55125 P X C ????==?= ? ? ????. 因此,X 的分布列为 2.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有: 03283107 (0)15 C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C P Y C ===. 因此,Y 的分布列为 辨析:通过此例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样. 超几何分布和二项分布都是离散型分布,超几何分布和二项分布的区别: 超几何分布需要知道总体的容量,而二项分布不需要; 超几何分布是不放回抽取,而二项分布是放回抽取(独立重复) 当总体的容量非常大时,超几何分布近似于二项分布........

超几何分布与项分布

10 超几何分布与二项分布 ?选择题(共9小题) 则p (!< i 今)的值为( 则 P ( 1^X €013)等于( A .—〔丄)2012 6. (2010?江西)一位国王的铸币大臣在每箱 100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方 法来检测.方法一:在 10箱中各任意抽查一枚;方法二:在 5箱中各任意抽查两枚.国王用方法一、二能发现至 少一枚劣币的概率分别记为 P 1和P 2.则( ) A . P 1=P 2 B . P 1V P 2 C . P 1> P 2 D .以上三种情况都有可能 1. (2004?辽宁)已知随机变量 E 的概率分布如下,则 P ( e =io )=( E 1 2 3 4 5 6 7 8 9 P 2 2 |2 2 2 2 2 _2_ 1 ¥ 33 34 35 3 3s 2 B . 2 C . 1 310 39 m D.- 310 2. (2011?黄冈模拟)随机变量 2、3、4、 …),其中a 是常数, r=2 +1,贝y n 的期望值是( -1 L P 1 2 1 6 1 3 29 3& 4.设随机变量X 的概率分布为 (k=1 , 2, 3, 4, 5),则P 绪g) A .亠 Io 5.电子手表厂生产某批电子手表正品率为 上,次品率为「现对该批电子手表进行测试,设第 X 次首次测到正品, E 的概率分布规律为 (n=1、 A . 1 B . 3. (2008?石景山区一模)已知随机变量 E 的分布列为且设

A ■ J B ? _ C ? _ D ?; [16 24^ 243 245 8 (2012?衡阳模拟)已知随机变量严N (0, a2),且p (4 1)=p (M a-3)的值为() A . 2 B . - 2 C. 0 D . 1 9. 设随机变量匕N (0, 1),若P (E翱=p,则P (- 1 v M 0)=() A . 1- P B. P C. D ?丄—p 二?填空题(共5小题) 10. ________________________________________________________________________________________________ (2010?上海模拟)在10件产品中有2件次品,任意抽取3件,则抽到次品个数的数学期望的值是 _____________________________________ . 11?有一批产品,其中有6件正品和4件次品,从中任取3件,至少有2件次品的概率为___________________________________ . 12. ____________________________________________________________________________________ (2010?枣庄模拟)设随机变量X?B (n,0.5),且DX=2,则事件X=1 ”的概率为_______________________________________________ (作数字作答.) 13. 若随机变量X服从二项分布,且X?B (10,0.8 ),贝U EX、DX分别是___________________________,____________ . 14. (2011?浙江)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公 司面试的概率为丄,得到乙、丙公司面试的概率均为P,且三个公司是否让其面试是相互独立的.记X为该毕业生3 得到面试的公司个数.若P (X=0 )=—,则随机变量X的数学期望E (X)= . 12 -------------------------------------------------------- 三.解答题(共3小题) 15. (2009?朝阳区二模)在袋子中装有10个大小相同的小球,其中黑球有3个,白球有n ( 2《韦,且n希)个, 其余的球为红球. (I )若n=5,从袋中任取1个球,记下颜色后放回,连续取三次,求三次取出的球中恰有2个红球的概率; (H )从袋里任意取出2个球,如果这两个球的颜色相同的概率是,求红球的个数; |15| (川)在(n)的条件下,从袋里任意取出2个球.若取出1个白球记1分,取出1个黑球记2分,取出1个红球 记3分.用E表示取出的2个球所得分数的和,写出E的分布列,并求E的数学期望E E

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法 Poisson分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德 目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质

命名原因 泊松分布实例 泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。应用场景

在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例 泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。 观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示: 例如采用0.05J/㎡紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式: …… 是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/㎡照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此就意味着全部死亡的概率。 推导 泊松分布是最重要的离散分布之一,它多出现在当X表示在一定的时间或空间内出现的事件个数这种场合。在一定时间内某交通路口所发生的事故个数,是一个典型的例子。泊松分布的产生机制可以通过如下例子来解释。

负二项分布(研究生)

负二项分布(Negative Binomial Regression)福建医科大学流行病与统计教研室

负二项分布(Negative Binomial Regression)Introduction Scott Long notes that the Poisson regression model rarely fits in practice since in most applications the variance of the count data is greater than the mean

NB Distribution One, the variance of the NB distribution exceeds the variance of the Poisson distribution for a given mean Two, the increased variance of the NB regression model results in substantially larger probabilities for small counts Finally, in the NB distribution there are slightly larger probabilities for larger counts .

负二项分布的概念 常用于描述生物的群聚性,如钉螺在土壤的 分布、昆虫的空间分布等。医学上可用于描述传染性疾病的分布和致病生物的分布,在毒理学上 显性致死试验或致癌试验。 独立重复试验次数n 不固定,n=X+k ,k 为大于0的常数。 若要求X+K 次试验,出现“阳性”的次数恰为X 次的概率分布为负二项分布:k -? ?? ?? ???? ??-+ππ111

二项分布经典例题+测验题

二项分布 1.n 次独立重复实验 一般地,由n 次实验构成,且每次实验相互独立完成,每次实验的结果仅有两种对立的状态,即A 与A ,每次实验中()0P A p =>。我们将这样的实验称为n 次独立重复实验,也称为伯努利实验。 (1)独立重复实验满足的条件第一:每次实验是在同样条件下进行的;第二:各次实验中的事件是互相独立的;第三:每次实验都只有两种结果。 (2)n 次独立重复实验中事件A 恰好发生k 次的概率 ()P X k ==(1)k k n k n C p p --。 2.二项分布 若随机变量X 的分布列为()P X k == k k n k n C p q -,其中 0 1.1,0,1,2,,,p p q k n <<+==则称X 服从参数为,n p 的二项分布,记作(,)X B n p 。 1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 3.甲乙两人各进行3次射击,甲每次击中目标的概率为2 1,乙每次击中目标的概率为3 2 . (1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】 1.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球,且

规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和. (Ⅰ)求X的分布列。 (Ⅱ)求X的数学期望E(X). 2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投 篮投中的概率为1 3,乙每次投篮投中的概率为1 2 ,且各次投篮互不 影响. (Ⅰ) 求甲获胜的概率。 (Ⅱ) 求投篮结束时甲的投篮次数 的分布列与期望 3.设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜 4场则比赛宣告结束,假定,A B在每场比赛中获胜的概率都是1 2 , 试求需要比赛场数的期望. 3.(2012年高考(辽宁理))电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查. 下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图。

【数学】高考复习点拨:二项分布与超几何分布辨析

二项分布与超几何分布辨析 山东 韩文文 二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析. 例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到 黑球的概率均为,3次取球可以看成3次独立重复试验,则1~35X B ?? ??? ,. 03 31464(0)55125P X C ????==?= ? ?????∴; 12 1 31448(1)55125P X C ????==?= ? ?????; 21 2 31412(2)55125P X C ????==?= ? ?????; 30 33141(3)55125P X C ????==?= ? ?????. 因此,X 的分布列为 X 0 1 2 3 P 64125 48125 12125 1125 2.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有: 03283107(0)15 C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C P Y C ===. 因此,Y 的分布列为 Y 0 1 2 P 715 715 115 辨析:通过此例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的.

超几何分布与二项分布

超几何分布与二项分布 一.选择题(共9小题) 1.(2004?辽宁)已知随机变量ξ的概率分布如下,则P(ξ=10)=() ξ 1 2 3 4 5 6 7 8 9 10 P m A.B.C.D. 2.(2011?黄冈模拟)随机变量ξ的概率分布规律为(n=1、2、3、4、…),其中a是常数,则的值为() A.B.C.D. 3.(2008?石景山区一模)已知随机变量ξ的分布列为且设η=2ξ+1,则η的期望值是() A.1B.C.D. 4.设随机变量X的概率分布为P(X=k)=(k=1,2,3,4,5),则=()A.B.C.D. 5.电子手表厂生产某批电子手表正品率为,次品率为,现对该批电子手表进行测试,设第X次首次测到正品, 则P(1≤X≤2013)等于() A.B.C.D. 6.(2010?江西)一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为P1和P2.则() A.P1=P2B.P1<P2 C.P1>P2D.以上三种情况都有可能 7.(2011?潍坊二模)设X为随机变量,X~B,若随机变量X的数学期望EX=2,则P(X=2)等于()

A.B.C.D. 8.(2012?衡阳模拟)已知随机变量ξ~N(0,a2),且p(ξ>1)=p(ξ<a﹣3)的值为()A.2B.﹣2 C.0D.1 9.设随机变量ξ~N(0,1),若P(ξ≥1)=p,则P(﹣1<ξ<0)=() A.1﹣p B.p C. +p D. ﹣P 二.填空题(共5小题) 10.(2010?上海模拟)在10件产品中有2件次品,任意抽取3件,则抽到次品个数的数学期望的值是_________.11.有一批产品,其中有6件正品和4件次品,从中任取3件,至少有2件次品的概率为_________.12.(2010?枣庄模拟)设随机变量X~B(n,0.5),且DX=2,则事件“X=1”的概率为_________(作数字作答.)13.若随机变量X服从二项分布,且X~B(10,0.8),则EX、DX分别是_________,_________.14.(2011?浙江)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙、丙公司面试的概率均为P,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=,则随机变量X的数学期望E(X)=_________. 三.解答题(共3小题) 15.(2009?朝阳区二模)在袋子中装有10个大小相同的小球,其中黑球有3个,白球有n(2≤n≤5,且n≠3)个,其余的球为红球. (Ⅰ)若n=5,从袋中任取1个球,记下颜色后放回,连续取三次,求三次取出的球中恰有2个红球的概率;(Ⅱ)从袋里任意取出2个球,如果这两个球的颜色相同的概率是,求红球的个数; (Ⅲ)在(Ⅱ)的条件下,从袋里任意取出2个球.若取出1个白球记1分,取出1个黑球记2分,取出1个红球记3分.用ξ表示取出的2个球所得分数的和,写出ξ的分布列,并求ξ的数学期望Eξ.

二项分布经典例题练习题

二项分 布 1.n 次独立重复试验 一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 与A ,每次试验中()0P A p =>。我们将这样的试验称为n 次独立重复试验,也称为伯努利试验。 (1)独立重复试验满足的条件第一:每次试验是在同样条件下进行的;第二:各次试验中的事件是互相独立的;第三:每次试验都只有两种结果。 (2)n 次独立重复试验中事件A 恰好发生k 次的概率()P X k ==(1)k k n k n C p p --。 2.二项分布 若随机变量X 的分布列为()P X k ==k k n k n C p q -,其中0 1.1,0,1,2,,,p p q k n <<+==L 则称X 服从参数为,n p 的二项分布,记作(,)X B n p :。 1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 2.一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到 红灯的事件是相互独立的,并且概率都是31 . (1)设ξ为这名学生在途中遇到红灯的次数,求ξ的分布列; (2)设η为这名学生在首次停车前经过的路口数,求η的分布列;

(3)求这名学生在途中至少遇到一次红灯的概率. 3.甲乙两人各进行3次射击,甲每次击中目标的概率为 21,乙每次击中目标的概率为3 2. (1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】 1.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球,且规定:取出一个白球的 2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出3球所得分数之和. (Ⅰ)求X 的分布列; (Ⅱ)求X 的数学期望E (X ). 2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜 或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为1 3 ,乙每次投篮投中的概 率为1 2 ,且各次投篮互不影响. (Ⅰ)求甲获胜的概率; (Ⅱ)求投篮结束时甲的投篮次数ξ的分布列与期望

高考复习点拨:二项分布与超几何分布辨析

二项分布与超几何分布辨析 二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析. 例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到 黑球的概率均为,3次取球可以看成3次独立重复试验,则1~35X B ?? ??? ,. 03 31464(0)55125P X C ????==?= ? ?????∴; 12 131448(1)55125 P X C ????==?= ? ?????; 212 31412(2)55125P X C ????==?= ? ?????; 30 3 3141(3)55125P X C ????==?= ? ?????. 因此,X 的分布列为 2.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有: 03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15 C C P Y C ===. 因此,Y 的分布列为 到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的.

超几何分布和二项分布的联系和区别精编版

超几何分布和二项分布的联系和区别 开滦一中 张智民 在最近的几次考试中,总有半数的的学生搞不清二项分布和超几何分布,二者到底该如何区分呢?什么时候利用二项分布的公式解决这道概率问题?什么时候用超几何分布的公式去解决呢? 好多学生查阅各种资料甚至于上网寻找答案,其实这个问题的回答就出现在教材上,人教版新课标选修2-3从两个方面给出了很好的解释. 诚可谓:众里寻他千百度,蓦然回首,那人却在灯火阑珊处! 一、两者的定义是不同的 教材中的定义: (一)超几何分布的定义 在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P(X=k) =n N k -n M -N k M C C C , ,2,1,0k =, m,其中m=min{M,n},且n ≤N,M ≤N,n,M,N ∈N,称随机变量X 服从超几何分布 (二)独立重复试验和二项分布的定义 1)独立重复试验:在相同条件下重复做的n 次试验,且各次试验试验的结果相互独立,称为n 次独立重复试验,其中A(i=1,2,…,n)是第ⅰ次试验结果,则 P(A1A2A3…An)=P(A 1)P(A2)P(A3)…P(An) 2)二项分布 在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率 为P,则P(X=k)=k n k p p --)1(C k n (k=0,1,2,…,n),此时称随机变量X 服从二项分布,记作X~B(n,p),并称P 为成功概率。 1.本质区别 (1)超几何分布描述的是不放回抽样问题,二项分布描述的是放回抽样问题; (2)超几何分布中的概率计算实质上是古典概型问题;二项分布中的概率计算实质上是相互独立事件的概率问题 2.计算公式 超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P(X=k)

数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布) 生存分析 贝叶斯概率公式 全概率公式讲解

数学期望:随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。它是简单算术平均的一种推广。例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11。 也就是说,我们用数学的方法分析了这个概率性的问题,对于每一个家庭,最有可能它家的孩子为1.11个。 可以简单的理解为求一个概率性事件的平均状况。 各种数学分布的方差是: 1、一个完全符合分布的样本 2、这个样本的方差 概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。比如某地某次考试的成绩近似服从均值为80的正态分布,即平均分是80分,由正态分布的图形知x=80时的函数值最大,即随机变量在80附近取值最密集,也即考试成绩在80分左右的人最多。 下图为概率密度函数图(F(x)应为f(x),表示概率密度):

离散型分布:二项分布、泊松分布 连续型分布:指数分布、正态分布、X 2分布、t 分布、F 分布 抽样分布只与自由度,即样本含量(抽样样本含量)有关 二项分布(binomial distribution ):例子抛硬币 1、 重复试验(n 个相同试验,每次试验两种结果,每种结果概率恒定————伯努利试验) 2、 抽样分布

二项分布高考试题.

二项分布练习题目: 1.某人射击一次击中目标的概率为0.6,经过3次射击,此人恰有两次击中目标的概率为 2.加工某种零件需经过三道工序。设第一、二、三道工序的合格率分别为10 9、9 8、8 7,且各道工序互不影响。 (1) 求该种零件的合格率; (2) 从该种零件中任取3件,求恰好取到一件合格品的概率和至少取到一件合格品的概率。 (Ⅰ)解:9877 109810 P = ??=; (Ⅱ)解法一: 该种零件的合格品率为10 7,由独立重复试验的概率公式得: 恰好取到一件合格品的概率为 12 373()0.1891010C ? ?=, 至少取到一件合格品的概率为 .973.0)10 3 (13=- 解法二: 恰好取到一件合格品的概率为1237 3 ()0.1891010 C ??=, 至少取到一件合格品的概率为 1 22233 33373737()()()0.973.1010101010 C C C ? ?+?+= 3. 9粒种子分种在甲、乙、丙3个坑内,每坑3粒,每粒种

子发芽的概率为5.0,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种。 (Ⅰ)求甲坑不需要补种的概率; (Ⅱ)求3个坑中恰有1个坑不需要补种的概率; (Ⅲ)求有坑需要补种的概率。 (Ⅰ)解:因为甲坑内的3粒种子都不发芽的概率为 8 1)5.01(3=-,所以甲坑不需要补种的概率为 .875.08 7 8 11==- (Ⅱ)解:3个坑恰有一个坑不需要补种的概率为 .041.0)8 1(8 721 3=??C (Ⅲ)解法一:因为3个坑都不需要补种的概率为3)8 7(, 所以有坑需要补种的概率为 .330.0)8 7(13=- 解法二:3个坑中恰有1个坑需要补种的概率为 ,287.0)8 7(8 121 3=??C 恰有2个坑需要补种的概率为 ,041.087 )81(223=??C 3个坑都需要补种的概率为 .002.0)8 7()81(033 3=??C 4.某学生在上学路上要经过4个路口,假设在各路口是

二项分布和超几何分布(含答案)

超几何分布和二项分布 一、两者的定义是不同的 1超几何分布的定义 2独立重复试验与二项分布的定义 (1)独立重复试验. (2)二项分布. 本质区别 (1)超几何分布描述的是不放回抽样问题,而二项分布描述的是放回抽样问题. (2)超几何分布中的概率计算实质上是古典概型问题;二项分布中的概率计算实质上是相互独立事件的概率问题. 二、两者之间是有联系的 人教版新课标选修2-3第59页习题2.2B组第3题:

例1某批n件产品的次品率为2%,现从中任意地依次抽出3件进行检验,问: (1)当n=500,5000,500000时,分别以放回和不放回的方式抽取,恰好抽到1件产品的概率各是多少?(2)根据(1)你对超几何分布与二项分布的关系有何认识?

【说明】由于数字比较大,可以利用计算机或计算器进行数值计算.另外,本题目也可以帮助学生了解超几何分布和二项分布之间的关系: 第一,n次试验中,某一事件A出现的次数X可能服从超几何分布或二项分布.当这n次试验是独立重复试验时,X服从二项分布;当这n次试验是不放回摸球问题,事件A为摸到某种特性(如某种颜色)的球时,X服从超几何分布 第二,在不放回n次摸球试验中,摸到某种颜色的次数X服从超几何分布,但是当袋子中的球的数目N 很大时,X的分布列近似于二项分布,并且随着N的增加,这种近似的精度也增加. 从以上分析可以看出两者之间的联系: 当调查研究的样本容量非常大时,在有放回地抽取与无放回地抽取条件下,计算得到的概率非常接近,可以近似把超几何分布认为是二项分布. 例2袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取一个球,求(1)又放回抽样时,取到黑球的个数X的分布列;(2)无放回地抽样时,取到黑球的个数Y的分布列.

超几何分布与二项分布的区别与联系

二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决。在实际应用中,如何理解它们的关联性同时又能区分两个概率模型呢?本文笔者就此问题予以阐述。 一、超几何分布与二项分布的定义 1.一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{X=k}发生的概率为 P (X=k)= C M k C n-m n-k C N ,k=0,1,2,…,m 其中m=min {M,n},且n ≤N ,M ≤N ,n ,M ,N ∈N*。其分布列为超几何分布列。如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布。 2.一般地,在相同条件下重复做的n 次试验称为n 次 独立重复试验。在n 次独立重复试验中,设事件A 发生的次数X ,在每次试验事件A 发生的概率为p,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为 P (X=k)=C n k P k (1-p ) n-k ,k=0,1,2,…,n 。此时 称随机变量X 服从二项分布,记作X ~B (n ,p),并称p 为成功概率。 二、超几何分布与二项分布的区别 从它们的定义不难看出超几何分布研究的是试验后的结果(不研究试验中先后取的顺序),并且是无放回的抽取;二项分布研究的是既有研究先后发生的顺序又有试验结果,并且是有放回的抽取。超几何分布是无放回的抽取,即每做一次试验,下一次再发生同一事件A 的概率已经发生了变化,即每次发生的概率都不相等。实质上,超几何分布是古典概型的一种特例。二项分布是有放回的抽取,每做一次试验,发生同一事件A 的概率都相同。这就是二者之间的区别。本文笔者举例说明: 例1:在装有4个黑球6个白球的袋子中,任取2个,试求:(1)不放回地抽取,取到黑球数X 的分布列;(2)有放回地抽取,取到黑球数的分布列。 解:(1)是不放回地抽取,X 服从超几何分布。从10个球中任取2球的结果数为C 102 ,从10个球中任取2 个,其中恰有k 个黑球的结果数为C 4k C 62-k ,那么从10个球中任取2个,其中恰有k 个黑球的概率为 P (X=k )= C 4k C 62-k C 10 2 ,k=0,1,2。 所以随机变量X 的分布列是 (2)是有放回地抽取,每次抽到黑球的概率相同,X ~B (2,0.4)。那么从10个球中任取2个,其中恰有k 个黑球的概率为 P (X=k )=C 2K ·0.4K ·0.62-K ,k=0,1,2。所以随机变量X 的分布列是 三、超几何分布与二项分布的联系 例2某批n 件产品的次品率为2%,现从中任意地抽出3件进行检验。问:当n=500,5000,50000时,分别以放回和不放回的方式抽取,恰好抽到1件次品的概率各是多少? 解:(1)当有放回地抽取时,次品数X ~B (3,0.02) P (X=1)=C 3 1 ·0.02·(1-0.02)2≈0.057624(2)无放回地抽取时,X 服从超几何分布 n=500时,P (X=1)= C 101C 4902 C 500 3 ≈0.057853n=5000时,P (X=1)= C 1001 C 49002C 5000 3≈0.057647n=50000时,P (X=1)= C 10001 C 49000 2 C 50000 3 ≈0.057626 说明:当产品总数很大而抽出的产品较少时,每次抽出产品后,次品率近似不变,这样就可以近似看成每次抽样的结果是相互独立的,抽出产品中的次品件数近似服从二项分布。 总之,在教学过程中,教师要让学生深刻体会超几何分布与二项分布的区别与联系,引导学生发掘题中所给的隐含条件,抓住实质,从而能够正确解题,并能利用所学知识解决一些实际问题。 超几何分布与二项分布的区别与联系 X 012P 0.36 0.48 0.16

广义负二项分布

两参数广义负二项分布的参数估计 摘 要:讨论了在两参数场合下广义负二项分布的矩估计和极大似然估计问题,构造了矩方程和极大似然方程,得出了矩估计和极大似然估计。 关键词:广义负二项分布;矩估计;极大似然估计; 1.引言 文献[1]求出了单参数广义负二项分布的最小方差无偏估计并对其做出了区间估计。本文在此文的基础上结合构造样本矩的方法对广义负二项分布做出了矩估计和极大似然估计。 2.基本知识 设离散型随机变量X 的分布函数为 0000(,)(1)m x x x x m x m P m x x ββθβθθβ+-+??=- ?+?? (1.1.1) 0,1,2,3,x = ,其中,θβ为参数且01,0θβ<<=或11βθ-≤≤,0m 为常数且00m >。当0β=时,概率模型(1.1.1)即为二项分布; 当1β=时,概率模型(1.1.1)即为负二项分布。 由概率的正则性公理可得: (,)1x x P θβ∞==∑ 即00000(1)1m x x x x m x m m x x ββθθβ∞+-=+??-= ?+??∑ 00(1)10000[(1)](1)(1)m x x m x xm EX m m x x ββθθθθθββ∞--=+??∴=--=- ?+? ?∑ (1.1.2) 同理可求得:222232 00003(1)m m m m EX θθθθβθβ-+-=- 2230()(1)(1)VarX EX EX m θθθβ-∴=-=-- (1.1.3) 3.构造矩方程 设随机变量X 服从(1.1.1)定义的广义负二项分布,12,,,n x x x 是取自于总体X 的一 个容量大小为n 的样本,1n i i x x =∴=∑为样本均值,样本方差为:2 211()1n i i S x x n ==--∑ 2,EX x VarX S == 10(1)m x θθβ-∴-= (1.1.4) 320(1)(1)m S θθθβ---= (1.1.5)

二项分布与正态分布的特点及联系

二项分布与正态分布的特点及他们的联系 2008-05-23 09:22:10| 分类:数学|举报|字号订阅 正态分布的特点如下: 1.正态分布的形式是对称的,它的对称轴是过平均数点的垂直线,即关于x=u对称。 2.曲线在Z=0处为最高点,向左右延伸时,在正负1个标准差之内,既向下又向内弯。从正负1个标准差开始,既向下又向外弯。拐点位于正负一个标准差处,曲线两端向靠近基线处无限延伸和接近,但不相交。 3.正态分布下的面积为1,过平均数的垂直线将面积分为左右各0.50的部分。正态曲线下的每一面积都可以被看成是概率,即对应着横坐标值的随机变量出现的概率。 4.正态分布是一族分布,它随着随机变量的平均数、标准差的大小与单位不同而有不同的分布形态。但是所有的正态分布都可以通过公式Z=(Xl—M)/S,转换成标准正态分布,即平均数为0,标准差为1的正态分布。 5.在正态分布曲线中,标准差与概率(面积)有一定的关系。 二项分布的特点如下: 1、二项分布的均值为np,方差为npq。 2、以事件A出现的次数为横坐标,以概率为纵坐标,画出二项分布的图象,可以看出: (1)、二项分布是一种离散性分布 (2)、当p=q=0.5时,图象对称;当p不等于q时,图形是偏斜的。p>q 时,呈负偏态; 3、n->∞时,趋近于正态分布N(np,npq)

一般1/2np>=5且nq>=5时,二项分布就非常接近正态分布。 二项分布函数在教育中主要用来判断试验结果的机遇性与真实性的界限,例如,求测验猜测行为的判断标准:在选择题测验中,通过二项分布计算得出被试凭猜测答对N道以上的概率。 阅读(744)|评论(0)

《二项分布与超几何分布》复习课程

二项分布与超几何分布 ★ 知 识 梳理 ★ 1.条件概率:称)()()|(A P AB P A B P = 为在事件A 发生的条件下,事件B 发生的概率。 特别提醒: ①0≤P (B|A )≤1; ②P(B ∪C|A)=P(B|A)+P(C|A)。 2. 相互独立事件:如果事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件。 特别提醒: ①如果事件A 、B 是相互独立事件,那么,A 与_B 、_A 与B 、_A 与_ B 都是相互独立事件 ②两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。我们把两个事件A 、B 同时发生记作A ·B ,则有P (A ·B )= P (A )·P (B ) 推广:如果事件A 1,A 2,…A n 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积。即:P (A 1·A 2·…·A n )= P (A 1)·P (A 2)·…·P(A n ) 3.独立重复试验: 在同样的条件下,重复地、各次之间相互独立地进行的一种试验.在这种试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的. 4.如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率计算公式: P n (k )=C k n P k (1-P ) n -k ,其中,k =0,1,2,…,n 5.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ 0 1 … k … n P n n q p C 00 111-n n q p C … k n k k n q p C - … 0q p C n n n 由于k n k k n q p C -恰好是二项展开式 011100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--ΛΛ 中的各项的值,所以称这样的随机变量ξ服从二项分布, 记作ξ~B (n ,p ),其中n ,p 为参数,并记k n k k n q p C -=b (k ;n ,p ). 6. 两点分布: X 0 1 P 1-p p 特别提醒: 若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1)为成功率. 7. 超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则

相关文档
相关文档 最新文档