文档库 最新最全的文档下载
当前位置:文档库 › 水污染控制工程10活性污泥运行方式、膨胀问题

水污染控制工程10活性污泥运行方式、膨胀问题

水污染控制工程10活性污泥运行方式、膨胀问题
水污染控制工程10活性污泥运行方式、膨胀问题

第五节活性污泥法系统的运行方式

随着活性污泥法实际运行经验的积累,其具体运行方式也在不断革新,从创始的传统活性污泥法起,到现在已经发展有多种的运行方式。

在本节内容中所列举的种种运行方式,均是自活性污泥法创始以来,随着科技的进步,针对运行中的某些薄弱环节、实际中存在的多种有机型废水的水质特征以及废水处理要求等因素,经过不断地实践而发展起来的。活性污泥法工艺在今后的主要发展方向一是提高回流污泥浓度,二是提高曝气的动力效率。

一、传统活性污泥法

传统活性污泥法是活性污泥法最早的运行方式;

废水和回流污泥在曝气池首端一并进入,水流呈推流型;

有机物被活性污泥微生物吸附、降解、沉降等过程,BOD5的去除率一般可达90%及以上。

传统活性污泥法运行中所存在的问题是:

(1)曝气池中,负荷分布不同,进口端最高,沿池长逐渐降低,至池的出口端最低。

(2)由于沿曝气池长负荷分布不同,因此需氧速率由大变小变化,而沿池长的供氧速率是不变的,供、需不平衡,能耗大。

(3)废水进入曝气池后仅与活性污泥混合问题,活性污泥耐冲击负荷差。

二、渐减曝气

为改善传统活性污泥法系统沿曝气池长供、需氧速率不平衡的矛盾,尽可能减少能量的消耗,提出了一种使供氧与需氧速率尽量吻合的渐减曝气活性污泥法,即供氧速率沿曝气池的长度方向逐步递减,使其尽可能接近需氧速率。

三、分段曝气(多点进水)

为改善曝气池入口处有机物浓度高,供氧量不能满足需氧量的矛盾,可采取多点进水的方式,使原由池首承担的较高有机物负荷沿曝气池池长均匀承担。

它的主要优点是:

(1)废水沿曝气池长分成几点进入,底物浓度沿池长较均匀地分布,改变了传统活性污泥系统有机物浓度池首高、池尾低沿池长分布不均的状况,使曝气池供氧速率和需氧速率之间的相互吻合状况得到改善。

(2)由于废水中的有机污染物是分成几个小股进人曝气池的,这就使得可能遇到的突增负荷被分散并减轻冲击程度,与单点进水相比,多点进水提高了耐冲击负荷的能力。

(3)由于池首端只有部分的污水进入和回流污泥混合,曝气池中的活性污泥浓度在池首端明显较高,池末端的污泥浓度和传统活性污泥法中相同。所以在同样条件(同样的回流污泥浓度及同样的污泥回流比)下,曝气池中污泥平均浓度明显高于推流式活性污泥法的污泥浓度,因此体积负荷较高,适应于较高有机物浓度的废水处理。

四、完全混合

完全混合活性污泥法是为适应生产中存在的废水水质波动大的实际情况,为使波动的水质在尽可能短的时间内得到均化,尽快消除生物降解过程的不利因素而研制开发的曝气池运行方式。以这种方式运行的曝气池池型分矩形池和圆形池两种形式。其中圆形池在工程上应用较多。

1.以矩形曝气池为核心的完全混合活性污泥法

以矩形曝气池为核心的完全混合活性污泥法是在多点进水法运行方式的基础上,进一步增多进水点,与此同时,将回流污泥亦相应以多点入流的方式回流,形成的完全混和运行方式,从而使曝气池中混合液不均匀的状况得到更为显著的改变。

2.以圆形曝气池为核心的完全混合活性污泥法

在实际应用中,完全混合式活性污泥法除采用沿整个池长多点均匀进水和回流污泥的方法之外,更多的是采用中心进水周边出水、与表面曝气机相组合的完全混合沉淀池形式,通常简称之为全混曝气池。

全混曝气池的特点是回流比很大,可达3~5,曝气器内混合液与进水高度混合,无论原水怎样波动,全池各个部位的有机物、污泥浓度基本均匀一致,因此是一种较为典型完全混合式活性污泥法工艺。

完全混合活性污泥法的主要特点在于:

(1)池液里各个部分微生物的种类和数量基本相同、生活环境也基本相同、需氧速率基本相同;

(2)当入流出现冲击负荷时,大量的池液迅速与进水完全混合,混合后池液的组成与混合前池液的组成相比变化较小,故耐冲击负荷能力较大。

五、浅层曝气

为了增大氧的传递率,扩散器放置深度0.6-0.8m,节省动力。

六、深层曝气

所谓深水曝气活性污泥法是指曝气池水深在7米以上(常规者一般为4~5米)的活性污泥工艺系统。由于曝气池水深的增加,曝气池混合液的饱和溶解氧浓度得以提高,从而增强了曝气过程氧氧的传质推动力,加快了氧向液相转移的速度;并且由于池容朝竖向深度发展,曝气池的占地面积大大减少。

1.深水中层曝气法

深水中层曝气法的主要特点是池深加大,但曝气装置仍放在水下4米左右处(靠近池深的中部),因而仍可采用风压在5米水柱以内的一般规格鼓风机。为在池中形成横向环流,池中设导流隔墙或导流筒。

2.深水底层曝气法

深水底层曝气法,有时也称为深层曝气法。它与中层曝气法的主要区别是曝气装置设在池底),其在应用中的主要问题是需要设置高风压的鼓风机。

3.深井曝气法

深井曝气法又称超水深曝气,它的曝气池是一座深井,直径一般为1~6m,深度为50~150m 或更深,由于井深较大,氧利用率高,故生化反应速度快,水力停留时间一般只需1~2h。

据有关资料报道,深井曝气法的氧利用率可比常规曝气法高十倍。此外,在当今建筑用地越来越紧张的情况下,深井曝气法占地特别少的优点愈来愈受到关注,并在国内外已有成功的实际应用。

七、高负荷曝气

又称短时曝气法。其特点主要是污泥负荷高、曝气时间短,处理效率较低(仅65%左右),剩余污泥量大,同时运行费用较少。适用于出水水质要求较低或者前一级处理的场合。短时曝气法的工艺流程与普通活性污泥法相同,但为区别见,常称之为变型活性污泥法。

八、克劳斯法

当废水中碳水化合物的比例过高,氮源不足时,常常会出现污泥膨胀,影响活性污泥法处理厂的正常运行。为解决这个问题,1955年美国的克劳斯(L.S.Kraus)把厌氧消化池上清液一起先进入预曝气池,予以混和、预曝气,然后再和废水一起进入曝气池,由此形成克劳斯活性污泥法工艺系统,由于消化池上清液富含氨氮,可向微生物提供氮营养源;而含有较重固体颗粒的消化污泥的加入,则可改善混合液的沉降性能;此外,通过预曝气,活性污泥微生物的活性大大提高,其吸附、氧化降解有机物的性能也得到改善。采用克劳斯活性污泥法运行方式,可有效解决高碳废水生化处理运行中经常出现的污泥膨胀问题,改善了出水水质。

九、延时曝气

延时曝气活性污泥法,又称完全氧化活性污泥法。其特点是污泥负荷特别低,曝气时间一般达为24小时,因而会有硝化作用发生;剩余污泥量少而且性质稳定,无需消化,易于处置。其缺点是占地面积大、曝气量大,且池内活性污泥易产生部分老化现象,可能会影响二沉池出水水质。

延时曝气法一般常采用完全混和型曝气池(如采用推流型曝气池、则池首、池尾环境情况将有较大差异),而且在其流程中一般不设初沉池;其曝气池部分则与完全混和活性污泥法的相同。延时曝气法主要适用于规模小于4000m3/d的溶解态有机废水处理的场合。

十、接稳定化法

十一、氧化沟

其实质亦是活性污泥法的一种改型,属于低负荷延时曝气的一种特殊形式。

氧化沟的生物反应池的平面布置有如环形跑道,污泥混合液在曝气沟槽中进行连续循环,氧化沟槽深一般为1~1.5m,槽中流速为0.3~0.6m/s;氧化沟的直段上设置有转刷,在向氧化沟内供氧的同时,使废水、回流污泥和沟中原有混合液较好地混合,并推动水流向前运动。

氧化沟法具有运行负荷低,处理深度大;污泥产量较少,且沉降性能好,无臭味,易于处置;耐冲击负荷,布局紧凑,运行管理方便和能耗低的优点。此外,由于曝气转刷只布置在氧化沟的局部区位,距转刷不同距离处自然形成好氧、缺氧及厌氧区段,即在连续循环过程中可交替出现缺氧-好氧条件,因此具有反硝化脱氮的功能,常被用作生物脱氮工艺。

在废水处理量较小时,氧化沟法可采用间歇运行的方式,这样,可省去二沉池,氧化沟本身可在停止曝气运行后,兼作沉淀池用;当废水处理量较大时,需另设二次沉淀池和污泥回流系统。

十二、纯氧曝气

纯氧曝气活性污泥法的思路是通过提高废水中氧的溶解推动力,提高氧的转移速率。常温20℃下,鼓风(空气)曝气的液体中的饱和溶解氧浓度约9mg/L;而若采用纯氧曝气时,液体中饱和溶氧浓度可提高到43mg/L,氧的转移速率可得到数倍的提高。纯氧曝气系统的充氧设备改用内置搅拌器的密闭形式,并且由于混合液溶解氧含量充足,能够以较高的污泥负荷实现对废水的有效处理。目前,世界各国建成运行的纯氧曝气污水处理厂已有多座,其中规模较大的如日本东京吉祥院的400,000m3/d、美国底特律的2,280,000m3/d。

纯氧曝气法在具体应用中存在的主要问题是纯氧(纯度98%)的供应问题。除小规模时可用商品液氧外,一般均需自备制氧装置。制氧装置实际运行管理的专业性较强,操作复杂,对废水处理厂来说,可能存在较大困难。中、小型污水厂,自备分子筛法制氧站时,情况可能会好些;而在大型污水厂,采用自备深冷法制氧站时,则问题就更为复杂。故在具体应用时应结合实际情况予以认真考虑。

十三、ABF法

,在活性污泥过程之前设置一个塔式滤池,可与曝气池串联或并联,又称复合式的活性污泥法,塔不同于普通的生物滤塔,是一个强烈的充氧器,污水在塔中的时间不到1min,但实际停留时间要长得多。

十四、AB法

AB法也称作生物吸附氧化法,是2 0世纪70年代为解决传统活性污泥系统存在的基建运行费用高、对难降解有机物的去除效果差、不具备脱磷除氮功能等问题而开发出的。

AB法工艺是将活性污泥法设计成两段,或者说是由两个活性污泥法工艺串联组成。A段主要用于吸附废水中的有机物,其水力停留时间仅0.5h左右,污泥负荷率一般大于2.0kgBOD5/kgMLSS.d,并可根据进水水质的不同,以好氧或缺氧方式运行A段;B段主要用于氧化降解有机物,其停留时间较长,且处于低负荷运行状态,污泥负荷率一般小于0.3kgBOD5/kgMLSS.d。

由于A、B两段的回流污泥各自回到原所在段位,因而形成具有不同功能的微生物种群,高负荷A段中的活性污泥微生物多呈游离状态,代谢活性强且具有一定的吸附能力;低负荷B段中的微生物则主要承担氧化降解有机物的作用,总体活性污泥的性能得到显著的改善。

AB法具有反应池容积小、造价低、耐冲击负荷、出水水质稳定可靠的优点,可广泛用于老污水厂改造,扩大处理能力,提高处理效果。此外,在有毒有害废水及工业废水比例较高的城市污水的生物处理中,AB法有较大的优势。

十五、SBR法

所谓SBR法是指近年来开发的序批式反应器(Sequencing Batch Reactor,简称SBR)为核心的间歇式活性污泥法。SBR法去除有机污染物的机理与连续式活性污泥法基本相同,但在工艺上将曝气池和沉淀池合为一体,在运行模式上是由进水、反应、沉淀、排水和闲置等五个基本过程组成一个周期,即在单一反应器内的不同时段进行不同目的的操作。

进水期指反应器接纳原水,池内水位由最低达到最高,且使进水与池内原有活性污泥混合的过程;反应期指进水结束后对池内混合液进行曝气或搅拌,以达到预期处理效果的过程,如需达到脱磷除氮的目的还可对此过程进行间歇曝气或搅拌,形成好氧/缺氧条件;反应期结束后,停止曝气和搅拌,即进入具有较高沉淀效率的静置沉淀期;在随后的排水期中,上清液作为处理出水外排,并排出多余的剩余污泥,沉降的大部分活性污泥作为下一批次处理的回流污泥使用;自排水期结束到下一批废水进入之前即为闲置期,池内活性污泥在此阶段进行内源呼吸,并可在反硝化细菌的作用下进行反硝化脱氮。

与其他活性污泥法比较,SBR法具有工艺流程简单,基建及运行费用低;污泥的活性高、产率低、且易沉降;可通过适度的充气、停气为硝化细菌和反硝化细菌创造适宜的反脱氮条件,获得较好的脱氮效果;可采用自动化控制工序操作等诸多的优点。

十六、射流曝气

采用射流曝气充氧时,射流器喉管处产生的高速湍动水流,可以强化气相组分向液相的传递,显著提高氧的传递速率。射流曝气活性污泥法就是利用这一特点而创新的一种运行方式。

以射流器用做废水生物处理的曝气充氧设备,早在50年代初就已问世。由于射流曝气具有高效充氧的优点,现已引起国内外废水处理领域的普遍重视,并在小型的废水生物处理工程中得到应用。

十七、粉末活性炭-活性污泥法

粉末活性炭-活性污泥法是在活性污泥法的工艺操作上增加了向曝气池投加粉末活性炭的

环节。其实质是将活性污泥法与生物膜法相组合而形成的一种新型的活性污泥法工艺。

粉末活性炭在系统中的作用包括:(1)吸附废水中的有机物,并通过活性炭在系统中反复循环形式,增加了有机物(特别是难降解有机物)在系统中的相对停留时间,增强了氧化降解的效果;(2)活性炭表面所附着的微生物膜可提高曝气池的污泥微生物总量,有利于高有机物负荷的工艺处理;(3)活性炭的粉末可以作为凝结核,改善二沉池污泥的凝聚沉降性能,提高回流污泥浓度,进而可提高曝气池的污泥浓度。粉末活性炭所具有的这些功效均有利于提高活性污泥系统的净化效率,改善出水水质。

粉末活性炭-活性污泥法工艺除具有较好的脱色、除臭、消减泡沫以及避免产生污泥膨胀现象等的功效,还可提高系统抵抗毒有物质和重金属离子冲击负荷能力。目前已在国外的合成纤维、化工、印染、炼油、炼焦等行业的工业废水处理实践中得到应用。

在进行活性污泥具体运行方式的选择时,必须和实际情况相结合,综合考虑处理效果、运转的稳定可靠性、能耗、剩余污泥、占地等因素的影响,从技术上、经济上进行全面的综合分析论证,只有这样,才有可能确定一个比较合理、满意的运行方式。

表15-4和表15-5归纳给出上述运行方式各自的特点和基本参数,可供运行方式选择时参考。

表15-4 活性污泥法主要运行方式的特点

表15-5 活性污泥法主要运行方式的基本参数

第六节活性污泥系统的运行管理

为使活性污泥系统正常稳定运行,保证系统的净化效率和处理出水的水质,应当特别加强废水处理站的管理工作。下面介绍活性污泥法系统运行管理的主要工作和运行中可能发生的问题及其防范措施。

一、活性污泥的培养与驯化

(一)活性污泥的培养

活性污泥系统投产运行前必须备好足够数量的活性污泥。活性污泥可用粪便水经曝气培养而得。具体步骤是:将过滤后的浓粪便水投入曝气池,再用生活污水或自来水稀释至BOD5约

200~300mg/L后,进行连续曝气。在水温15~20℃条件下,通常一周左右就会出现活性污泥的绒絮,镜检可找到一些菌胶团,而钟虫、轮虫等还不易找到。此后,需进行换水操作,以补充营养、排泄代谢产物。

活性污泥的进一步培养分间断操作和连续操作两种方式:

1.间断操作

间断操作是当首次加料曝气进行到出现活性污泥绒絮后,就停止曝气操作,使混合液静止沉淀,1~2小时后排放澄清液,其量约占总体积的60~70%,然后补充生活污水或粪便水,并接着进行曝气。当混合液沉降比大于30%时,如投加生活污水,就不需添加粪便水;如果投加自来水,则可加入少量粪便水,以增加营养。若混合液沉降比低于30%,则仍须投加较多的粪便水。从停止曝气、沉淀,到换水后重新曝气的总时间间隔以不超过2h为宜。

将上述换水操作每天进行一次,并随培养时间的延长,逐渐增加换水量。水温在15~20℃时,经两周左右,污泥即可培养成熟。成熟的活性污泥应具有良好的凝聚、沉降性能,污泥内含有大量菌胶团和纤毛类原生动物,如钟虫、等枝虫、盖纤虫等,并可使污水的BOD去除率达到90%左右。2.连续操作

当曝气池池容较大大,澄清水不容易在短时间内排出而难于进行间断操作时,则可进行连续操作。即在首次加料出现污泥绒絮后,连续不断地向池内投料(投配原则与间断操作相同),并连续排放曝气池混合液和回流污泥。所投加的水量应能保证池内的水每天更新一次,并随培养的进展逐渐加大水量,使在后期达到每天更新二次。污泥回流量可采用曝气池进水量的50%。在

15~20℃水温时,污泥的成熟仍约需两周。

如果条件允许,能够直接从附近运行当中的污水处理厂取活性污泥作为种源,适当地加入一些粪便水或氮、磷化合物作为微生物的养料,进行曝气培养,并可大大缩短培养时间。

(二)活性污泥的驯化

为了使已培养成熟的粪便污水活性污泥具有处理特定工业废水的能力,污泥还必须经过一个驯化的过程。

具体驯化方法是在进水中逐浙增加工业废水的比例,使微生物逐渐适应新的生活条件。开始时,工业废水的加入量可以用曝气池设计负荷的20~40%,达到较好的处理效果后,再按设计负荷的10~20%递增。两次增加负荷的操作之间,应留有微生物的适应期,直至满负荷为止。

当工业废水中缺乏氮和磷以及其他一些微生物生长所需的养料时,则应想曝气池人工补充加入这些物质。驯化过程中,具有代谢该工业废水的酶系统的微生物菌种得到繁衍,不能适应的

微生物菌种则被逐渐淘汰,因而,驯化培养后的活性污泥具有处理特定工业废水的能力。

为缩短培养和驯化的时间,也可以把培养、驯化这两个阶段合并起来进行。即在污泥培养的过程中,不断地加入少量的工业废水,使活性污泥在增长过程中,逐渐适应处理工业废水的能力。有时还可从工业废水下水道中捞取含有大量细菌的污泥投入曝气池以提高驯化效果。

二、工艺运行中可能发生的问题及其防范措施

(一)污泥上浮

所谓污泥上浮是指在二沉池中的污泥随出水流失,或污泥凝聚成块浮起随水漂走,影响出水水质的现象。从操作管理方面考虑,导致二沉池污泥上浮的原因主要有三种:污泥膨胀、污泥脱氮和污泥腐化。

1.污泥膨胀

污泥膨胀是指活性污泥的凝聚、沉降性能恶化,导致处理系统出水水质浑浊的现象。

正常活性污泥的含水率一般在99%左右,具有良好的沉降性能。而当活性污泥因某种原因发生变质时,其含水率上升,体积膨胀,澄清液减少,难于沉淀分离,发生所谓污泥膨胀的现象。

污泥膨胀的主要原因有:

①DO下降;②pH值下降;③温度升高;④营养源比例失调,含溶解性的碳水化合物高;最终导致丝状菌或非丝状菌性膨胀。

可采取以下的抑制措施:

①加强曝气,使混合液中的溶解氧不少于1~2g/L最少>0.5g/L;

②对于以碳水化合物成分为主的工业废水,通过人工补充适量的氮源或磷源,控制曝气池中碳-氮或碳-磷的比例,BOD5:N:P=100:5:1;

③氯处理,即向回流污泥中投加漂白粉或液氯以消除丝状细菌。加氯量可按干污泥量的

0.3~0.6%估计;

④调整pH值。

⑤投加惰性物质,如石棉粉末、硅藻土,黄泥等也有一定效果;

⑥改变工艺方法,研究表明,完全混合的比传统的推流式易发生膨胀;设初沉池,SVI高,易膨胀;叶轮曝气比鼓风曝气易膨胀;射流曝气可克服浮游球衣细菌引起的膨胀等等。

污泥膨胀是活性污泥处理厂的一个较难解决的问题,应根据具体情况进行处置,必要时须更换新泥。如果在曝气池后用气浮池代替沉淀池,则可消除由于污泥上浮而影响出水水质的情况。2.污泥的脱氮

当进水中含有较多的氮化合物,系统运行的曝气时间较长、曝气量充分时,在曝气池中所发生的高度硝化作用会使混合液中含有较多的硝酸盐。当后续进行泥-水分离操作的沉淀池当中出现溶解氧低于0.5mg/L的条件时,就会在污泥区中发生反硝化细菌将硝酸盐还原成氮气的反硝化作用过程,这样,逸出的氮气就会携带污泥一起浮升,导致污泥的上浮。因此,应对二沉池中所发生的反硝化作用予以关注。

防止由于脱氮而引起污泥上升的办法包括:

①增加污泥的回流量或及时排放污泥,以减少沉淀池中的污泥量及停留时间;

②减少系统的曝气量或缩短曝气时间,以减弱曝气池的硝化作用。

3.污泥腐化

如果操作不当,系统曝气量过小,则二沉池的污泥可能由于缺氧而腐化,即造成厌氧分解,

产生大量气体,携带污泥上升。此时,应加大曝气量,以保证系统正常运行。

(二)活性污泥不增长或减少的现象

在活性污泥培养和运转过程中,有时会产生污泥不增长或减少的现象。

产生这种现象的原因主要有:

①污泥由于上浮而流失;②污泥所需要的养料不足,包括废水中有机物含量少。

其解决的办法是:①提高沉淀效率,防止污泥流失;②投入足够的养料,包括进水水量;③调整系统的曝气量,使之与进入系统有机物量相对应,以使活性污泥获得迅速增长。

(三)泡沫问题

当废水中含有大量合成洗涤剂或其他起泡物质时,就会在曝气池中产生大量的泡沫,进而带来影响操作环境,造成曝气池污泥流失的负面作用,特别是在采用机械曝气的场合,泡沫还将严重影响叶轮的充氧能力。控制泡沫的办法有:

①用自来水或处理出水喷洒;

②投加除沫剂,如机油,煤油等。一些废水处理站曾用废机油作为除沫剂,也收到较好的

除沫效果。据一些城市废水处理厂的报道,消除曝气池泡沫的用油量约为0.5~1.5mg/L。

但应注意过多的油类物质随出水出流,造成水体污染的问题。

对于混合液中的活性污泥随泡沫飞溅粘附在池壁上不能发挥其功效,甚至被风吹离曝气池而流失的问题,可通过适度加大回流污泥量,提高曝气池的污泥浓度,加以弥补。

三、日常检测项目

具体检测的项目及要求如下:

(一)反映污泥情况的项目:(1)SV(最好每2小时或4小时测一次,至少每班测一次);(2)MLSS和MLVSS;(3)SVI;(4)微生物观察。

(二)反映混合液营养的项目:(1)氮;(2)磷;(3)溶解氧。

通常,混合液溶解氧不应低于1~2mg/L,而二次沉淀池出流堰附近表层的水中的溶解氧含量应至少有0.5mg/L左右。一般情况下,曝气池混合液中的溶解氧量也不宜高于4~5mg/L,以免氧化程度过深,产生细小污泥,影响后续沉淀效果。

(三)反映混合液环境条件的项目:(1) 水温;(2) pH值。

(四)反映废水处理效果的项目:(1) BOD5;(2) COD;(3)有毒物质。

以上三项目,可取进水和沉淀池出水的各自混合水样进行测定,每天各测一次。此外,氨氮和磷也采用混合水样测定。

所谓24小时混合水样是指在24小时时间内,每隔1或2小时取样一次,然后将所取水样全部加以混合后所形成的水样。混合水样也有取16小时或8小时的。

思考题:

1.活性污泥法的基本概念?

2.活性污泥法基本流程是什么?污泥回流的目的。

3.什么是活性污泥?组成?

4.活性污泥的指标?

5.曝气的作用及其设备的分类、主要性能指标?测试过程?

6.什么是动力效率?

7.曝气池类型?

8.活性污泥法的主要运行方式及其各自的特点是什么?

9.什么是污泥的重量负荷(F/M)?容积(体积)负荷?

10.影响活性污泥法运行的主要因素有那些?(活性污泥生长影响因素)

11.污泥的培养和驯化过程怎样?

12.什么是污泥膨胀?主要原因?解决措施?

作业:2、4、6、9、12

水污染控制工程作业标准答案 (2)

水污染控制工程(下)课后作业标准答案 水污染控制工程作业标准答案1 1、试说明沉淀有哪些类型?各有何特点?讨论各类型的联系和区别。 答:自由沉淀:悬浮颗粒浓度不高;沉淀过程中悬浮固体之间互不干扰,颗粒各自单独进行沉淀, 颗粒沉淀轨迹呈直线。沉淀过程中,颗粒的物理性质不变。发生在沉砂池中。 絮凝沉淀:悬浮颗粒浓度不高;沉淀过程中悬浮颗粒之间有互相絮凝作用,颗粒因相互聚集增大而加快沉降,沉淀轨迹呈曲线。沉淀过程中,颗粒的质量、形状、沉速是变化的。化学絮凝沉淀属于这种类型。 区域沉淀或成层沉淀:悬浮颗粒浓度较高(5000mg/L以上);颗粒的沉降受到周围其他颗粒的影响,颗粒间相对位置保持不变,形成一个整体共同下沉,与澄清水之间有清晰的泥水界面。二次沉淀池与污泥浓缩池中发生。 压缩沉淀:悬浮颗粒浓度很高;颗粒相互之间已挤压成团状结构,互相接触,互相支撑,下层颗粒间的水在上层颗粒的重力作用下被挤出,使污泥得到浓缩。二沉池污泥斗中及浓缩池中污泥的浓缩过程存在压缩沉淀。 联系和区别:自由沉淀,絮凝沉淀,区域沉淀或成层沉淀,压缩沉淀悬浮颗粒的浓度依次增大,颗粒间的相互影响也依次加强。 2、设置沉砂池的目的和作用是什么?曝气沉砂池的工作原理和平流式沉砂池有何区别? 答:设置沉砂池的目的和作用:以重力或离心力分离为基础,即将进入沉砂池的污水流速控制在只能使相对密度大的无机颗粒下沉,而有机悬浮颗粒则随水流带走,从而能从污水中去除砂子、煤渣等密度较大的无机颗粒,以免这些杂质影响后续处理构筑物的正常运行。 平流式沉砂池是一种最传统的沉砂池,它构造简单,工作稳定,将进入沉砂池的污水流速控制在只能使相对密度大的无机颗粒下沉,而有机悬浮颗粒则随水流带走,从而能从污水中去除砂子、煤渣等密度较大的无机颗粒。曝气沉砂池的工作原理:由曝气以及水流的螺旋旋转作用,污水中悬浮颗粒相互碰撞、摩擦,并受到气泡上升时的冲刷作用,使粘附在砂粒上的有机污染物得以去除。曝气沉砂池沉砂中含有机物的量低于5%;由于池中设有曝气设备,它还具有预曝气、脱臭、防止污水厌氧分解、除泡以及加速污水中油类的分离等作用。 3、水的沉淀法处理的基本原理是什么?试分析球形颗粒的静水自由沉降(或上浮)的基本规律,影响沉降或上浮的因素是什么?

污水处理活性污泥运行的异常情况及其对策

污水处理活性污泥运行的异常情况及其对策 生物处理系统在运行时,常常会因进水水质、水量或运行参数的变化而出现异常情况,导致处理效率的降低,甚至损坏处理设备。了解常见的异常现在及其常用对策,有助于及时地发现问题和解决问题,使废水处理厂(站)长期稳定运行。 (1)污泥膨胀正常的活性污泥沉降性能良好,含水率一般在99%左右。当污泥变质时,污泥就不易沉降,含水率上升,体积膨胀,澄清液减少,这种现象叫污泥膨胀。污泥膨胀主要是大量丝状菌(特别是球衣菌)在污泥内的繁殖,使污泥松散、密度降低所致。其次,真菌的繁殖也会一起污泥膨胀,也有可能由于污泥中结合水异常增多导致污泥膨胀。 活性污泥的主体是菌胶团。与菌胶团比较,丝状菌和真菌生长时需较多的碳素,对氮、磷的要求则较低。它们对氧的要求也和菌胶团不同,菌胶团要求较多的氧(至少0.5mg/L)才能很好的生长,真菌和丝状菌(如球衣菌)在低于0.1mg/L 的微氧环境中,才能较好地生长。所以在供氧不足的时,菌胶团将减少,丝状菌、真菌则大量繁殖。对于毒物的抵抗力,丝状细菌和菌胶团也有差别,如对氯的抵抗力,丝状菌不及菌胶团。菌胶团生长适宜的pH值范围在6~8,而真菌则在pH 值等于4.5~6.5之间生长良好,所以pH值稍低时,菌胶团生长受到抑制,而真菌的数量则可能大大增加。根据上海城市污水厂经验,水温也是影响污泥膨胀的重要因素。丝状菌在高温季节(水温在25℃以上)宜于生长繁殖,可引起污泥膨胀。因此,污水如碳水化合物较多,溶解氧不足,缺乏氮、磷等养料,水温高或pH值较低的情况下,均因引起污泥膨胀。此外,超负荷、污泥龄过长或有机物浓度梯度小等,也会引起污泥膨胀。排泥不畅则引起结合水性污泥膨胀。 由此可见,为防止污泥膨胀,可针对一起膨胀的原因采取相应的措施。如缺氧、水温高等可加大曝气量,或降低水温,减轻负荷,或适当降低MLSS值,使需氧量减少等;如污泥负荷过高,可适当提高MLSS值,以调整负荷,必要时好要停止进水,“闷曝”一段时间;如缺氮、磷等养料,可投加硝化污泥或氮、磷等

活性污泥膨胀的防治1、2

活性污泥膨胀的防治1 定义:所谓活性污泥膨胀是指活性污泥质量变轻,体积膨大,沉降性能恶化,在二沉池内不能正常沉池下来,污泥指数异常增高达400以上。 分类:活性污泥膨胀,根据诱因可分为:因丝状菌异常增殖所导致的丝状菌性膨胀和因粘性物质大量产生积累的非丝状菌膨胀。前者为易发与多发性膨胀,导致产生丝状菌性污泥膨胀的细菌主要有:球衣菌属,假单胞菌属,黄杆菌属,酶菌属。 对策:当在活性污泥系统产生污泥膨胀现象时,可按下图所列程序对污泥膨胀的类型,诱因与性质进行调查,并采取相应的措施加以消除。 具体措施说明如下: 措施A,投药处理,能够杀灭丝状菌的药剂有氯,臭氧,过氧化氢等,有效氯为10—20mg/l时,就能够有效杀灭球衣菌,贝代硫菌:高于20mg/l时,可能对絮凝体形成菌产生危害,因此,在使用氯时一定要按投加量的允许范围合理投加。而臭氧,过氧化氢等氧化剂只有在较高的计量条件下才对球衣菌有杀灭效果。 措施B,改善,提高活性污泥的絮凝性,在曝气池的入口处投加硫酸铝,三氯化铁,高分子混凝剂等絮凝剂。 措施C,改善,提高活性污泥的沉降性,密实性。在曝气池的入口处投加粘土,消石灰,生污泥或消化污泥。

措施D,加大回流污泥量,通过这一措施,高粘性膨胀的致因物质,即多糖类物降低了,在多数情况下,能够解脱高粘性膨胀。有条件的地方还可在回流污泥前进行内源呼吸期,提高了絮凝体形成细菌群摄取有机物的能力和与丝状菌竞争的能力,丝状菌性膨胀也能够得到抑制。在曝气过程中,可以考虑加入氯,磷等营养物质,这样可以强化污泥活性。 措施E,使废水经常处于新鲜状态,防止形成厌氧状态,如有条件采取预曝气措施,使废水经常处于预曝气状态,吹脱硫化氢等有害气体,并避免贝代硫菌加以利用增殖。 措施F,加强曝气,提高混和液DO浓度,防止混和液缺氧或厌氧状态,即或是局部的或是一时的呈厌氧状态,也不利于絮体形成菌的生理活动,而有利于丝状菌的增殖。 措施G,在有利条件下,可以考虑改变水温,水温在15摄氏度以下易于发生高粘性膨胀,而丝状菌性膨胀则多发生在20摄氏度以上。 措施H,降低污泥在二沉池内停留时间,防止形成厌氧状态。 措施I,调整污泥负荷,运行经验表明,如果污泥负荷超过0.35kgBOD/kgMLSS.d易于发生丝状菌性污泥膨胀。 措施J,调整混合液中的营养物质平衡,即保证BOD:N:P=100:5:1的要求,当混和液失去营养平衡时,往往会发生高粘性污泥膨胀。 措施K,控制丝状菌的增殖,对已产生大量球衣菌属的活性污泥,

(完整版)水污染控制工程期末复习试题及答案

水污染控制工程期末复习试题及答案(一) 一、名词解释 1、COD:用化学氧化剂氧化水中有机污染物时所消耗的氧化剂的量。 2、BOD:水中有机污染物被好氧微生物分解时所需的氧量。 3、污水的物理处理:通过物理方面的重力或机械力作用使城镇污水水质发生变化的处理过程。 4、沉淀法:利用水中悬浮颗粒和水的密度差,在重力的作用下产生下沉作用,已达到固液分离的一种过程。 5、气浮法:气浮法是一种有效的固——液和液——液分离方法,常用于对那些颗粒密度接近或小于水的细小颗粒的分离。 6、污水生物处理:污水生物处理是微生物在酶的催化作用下,利用微生物的新陈代谢功能,对污水中的污染物质进行分解和转化。 7、发酵:指的是微生物将有机物氧化释放的电子直接交给底物本身未完全氧化的某种中间产物,同时释放能量并产生不同的代谢产物。 8、MLSS:(混合液悬浮固体浓度)指曝气池中单位体积混合液中活性污泥悬浮固体的质量,也称之为污泥浓度。 9、MLVSS(混合液挥发性悬浮固体浓度):指混合液悬浮固体中有机物的含量,它包括Ma、Me、及Mi三者,不包括污泥中无机物质。P-102 10、污泥沉降比:指曝气池混合液静止30min后沉淀污泥的体积分数,通常采用1L的量筒测定污泥沉降比。P-103 11、污泥体积指数:指曝气池混合液静止30min后,每单位质量干泥形成的湿污泥的体积,常用单位为mL/g。P-103 12、污泥泥龄:是指曝气池中微生物细胞的平均停留时间。对于有回流的活性污泥法,污泥泥龄就是曝气池全池污泥平均更新一次所需的时间(以天计)。(网上搜索的) 13、吸附:当气体或液体与固体接触时,在固体表面上某些成分被富集的过程成为吸附。 14、好氧呼吸:以分子氧作为最终电子受体的呼吸作用称为好氧呼吸。 15、缺氧呼吸:以氧化型化合物作为最终电子受体的呼吸作用称为缺氧呼吸。 16、同化作用:生物处理过程中,污水中的一部分氮(氨氮或有机氮)被同化成微生物细胞的组成成分,并以剩余活性污泥的形式得以从污水中去除的过程,称为同化作用。 17、生物膜法(P190):生物膜法是一大类生物处理法的统称,包括生物滤池、生物转盘、生物接触氧化池、曝气生物滤池及生物流化床等工艺形式,其共同的特点是微生物附着生长在滤料或填料表面上,形成生物膜。污水与生物膜接触后,污染物被微生物吸附转化,污水得到净化。18、物理净化(P7):物理净化是指污染物质由于稀释、扩散、沉淀或挥发等作用而使河水污染物质浓度降低的过程。 19、化学净化(P-7):是指污染物质由于氧化、还原、分解等作用使河水污染物质浓度降低的过程。 20、生物净化(P-7):是指由于水中生物活动,尤其是水中微生物对有机物的氧化分解作用而引起的污染物质浓度降低的过程。 二、填空 1、污水类型:生活污水、工业废水、初期雨水、城镇污水 2、表示污水化学性质的污染指标:可分为有机指标(生化需氧量(BOD) 、化学需氧量(COD)、总有机碳(TOC)、总需氧量(TOC)、油类污染物、酚类污染物、表面活性剂、有机碱、有机农药、苯类化合物)和无机指标( PH、植物营养元素、重金属、无机性非金属有害有毒物(总砷、含硫化合物、氰化物) 3、水体自净分类:物理净化化学净化生物净化。 4、根据地域,污水排放标准分为哪些? 根据地域管理权限分为国家排放标准、行业排放标准、地方排放标准 5、沉淀类型 6-404

《环境工程学》选择题及答案.docx

《环境工程学》选择题题目及答案详解 1、下列说法不正确的是( C ) A.水形成自然循环的外因是太阳辐射和地球引力 B.水在社会循环中取用的是径流水源和渗流水源 C.生活污染源对环境污染最为严重 D.工业污染源属于点源而非面源 2、下列说法不正确的是(超编题目) A. 调节池可以调节废水的流量、浓度、pH值和温度 B对角线出水调节池有自动均和的作用 3、 TOD是指(A) A. 总需氧量B生化需氧量C化学需氧量D 总有机碳含量 4、下列说法不正确的是(D) A.可降解的有机物一部分被微生物氧化,一部分被微生物合成细胞 B.BOD是微生物氧化有机物所消耗的氧量与微生物内源呼吸所消耗的氧量之和 C.可降解的有机物分解过程分碳化阶段和硝化阶段 D.BOD是碳化所需氧量和硝化所需氧量之和 5、下列说法不正确的是(A、C ) A.COD测定通常采用K2Cr 2O7和 KMnO7为氧化剂( KMnO4才对,属于书写错误) B.COD测定不仅氧化有机物,还氧化无机性还原物质 C.COD测定包括了碳化和硝化所需的氧量(描述的是BOD) D.COD测定可用于存在有毒物质的水 6、下列不属于水中杂质存在状态的是( A. 悬浮物B胶体D) C溶解物D 沉淀物 7、下列说法不正确的是(B) A.格栅用以阻截水中粗大的漂浮物和悬浮物 B.格栅的水头损失主要在于自身阻力大 ( 水头损失很小,阻力主要是截留物堵塞造成的 ) C.格栅后的渠底应比格栅前的渠底低10- 15 cm D.格栅倾斜 50- 60o,可增加格栅面积 8、颗粒在沉砂池中的沉淀属于(A)8-11题参见课本 76、77 页 A 自由沉淀B絮凝沉淀C拥挤沉淀D 压缩沉淀 9、颗粒在初沉池初期( A ),在初沉池后期( B ) A 自由沉淀B絮凝沉淀C拥挤沉淀D

水污染控制工程课后习题答案高廷耀版

污染控制工程作业标准答案 第一章 1.简述水质指标在水体污染控制、污水处理工程设计中的作用。 答:水质污染指标是评价水质污染程度、进行污水处理工程设计、反映污水处理厂处理效果、开展水污染控制的基本依据。 2.分析总固体、溶解性固体、悬浮性固体及挥发性固体指标之间的相互联系 答:水中所有残渣的总和称为总固体(TS),总固体包括溶解性固体(DS)和悬浮性固体(SS)。水样经过滤后,滤液蒸干所得的固体即为溶解性固体(DS),滤渣脱水烘干后即是悬浮固体(SS)。固体残渣根据挥发性能可分为挥发性固体(VS)和固定性固体(FS)。将固体在600℃的温度下灼烧,挥发掉的即市是挥发性固体(VS),灼烧残渣则是固定性固体(FS)。溶解性固体一般表示盐类的含量,悬浮固体表示水中不溶解的固态物质含量,挥发性固体反映固体的有机成分含量。 3.生化需氧量、化学需氧量、总有机碳和总需氧量指标的含义是什么?分析这些指标之间的联系与区别。 答:生化需氧量(BOD):水中有机污染物被好氧微生物分解时所需的氧量称为生化需氧量。 学需氧量(COD):在酸性条件下,用强氧化剂将有机物氧化为CO2、H2O所消耗的氧量。 有机碳(TOC):水样中所有有机污染物的含碳量。 需氧量(TOD):有机物除碳外,还含有氢、氮、硫等元素,当有机物全都被氧化时,碳被氧化为二氧化碳,氢、氮及硫则被氧化为水、一氧化氮、二氧化硫等,此时需氧量称为总需氧量。

些指标都是用来评价水样中有机污染物的参数。生化需氧量间接反映了水中可生物降解的有机物量。化学需氧量不能表示可被微生物氧化的有机物量,此外废水中的还原性无机物也能消耗部分氧。总有机碳和总需氧量的测定都是燃烧化学法,前者测定以碳表示,后者以氧表示。TOC、TOD的耗氧过程与BOD 的耗氧过程有本质不同,而且由于各种水样中有机物质的成分不同,生化过程差别也大。各种水质之间

活性污泥指标及污泥膨胀处理

活性污泥法 处理的关键在于具有足够数量和性能良好的污泥。它是大量微生物聚集的地方,即微生物高度活动的中心,在处理废水过程中,活性污泥对废水中的有机物具有很强的吸附和氧化分解能力,故活性污泥中还含有分解的有机物和无机物等。污泥中的微生物,在废水中起主要作用的是细菌和原生动物。 微生物的指示作用 (1)着生的缘毛目多时,处理效果良好,出水BOD5和浊度低。(如小口钟虫、八钟虫、沟钟虫、褶钟虫、瓶累枝虫、微盘盖虫、独缩虫)这些缘毛目的种类都固定在絮状物上,并随窗之而翻动,其中还夹杂一些爬行的栖纤虫、游仆虫、尖毛虫、卑气管叶虫等,这说明优质而成熟的活性污泥。 (2)小口钟虫在生活污水和工业废水处理很好时往往就是优势菌种。 (3)如果大量鞭毛虫出现,而着生的缘毛目很少时,表明净化作用较差。 (4)大量的自由游泳的纤毛虫出现,指示净化作用不太好,出水浊度上升。 (5)如出现主要有柄纤毛虫,如钟虫、累枝虫、盖虫、轮虫、寡毛类时,则水质澄清良好,出水清澈透明,酚类去除率在90%以上。 (6)根足虫的大量出现,往往是污泥中毒的表现。

(7)如在生活污水处理中,累枝虫的大量出现,则是污泥膨胀、解絮的征兆。 (8)而在印染废水中,累枝虫则作为污泥正常或改善的指示生物。 (9)在石油废水处理中钟虫出现是理想的效果。 (10)过量的轮虫出现,则是污泥要膨胀的预兆。 另在一些对原生动物不宜生长的污泥中,主要看菌胶团的大小用数量来判断处理效果。 活性污泥中的微生物 活性污泥是微生物群体及它们所吸附的有机物质和无机物质的总称。微生物群体主要包括细菌、原生动物和藻类等。其中,细菌和原生动物是主要的两大类。 (一)细菌 细菌是单细胞生物,如球菌、杆菌和螺旋菌等。它们在活性污泥中种类多、数量大、体积微小,具有强的吸附和分解有机物的能力,在污水处理中起着关键作用。 在活性污泥培养的初期,细菌大量游离在污水中,但随着污泥的逐步形成,逐渐集合成较大的群体,如菌胶团、丝状菌等。 1.菌胶团 菌胶团是细菌及其分泌的胶质物质组成的细小颗粒,是活性污泥的主体,污泥的吸附性能、氧化分解能力及凝聚沉降等性能均与菌胶团有关。菌胶团有球形、分枝状、蘑菇形、垂丝形等

水污染控制工程期末考试试题附答案(DOC)

《水污染控制工程》期末考试试题 一、填空(每空1分,共20分) 1、一般规律,对于性颗粒易与气泡粘附。 2、在常温、稀溶液中,离子交换树脂对Ca2+、Cr3+、Ba2+、Na+的离子交换势高低顺序依次为> > > 。在离子交换过程中,上述离子最先泄露的是。 3、反渗透膜是膜,反渗透的推动力是___,反渗透膜透过的物质是。 4、根据废水中可沉物的浓度和特性不同,沉淀可分为、、、四种基本类型。 5、过滤机理主要包括、、三种形式。 6、加Cl2消毒时,在水中起消毒作用的物质是。 7、测定废水的BOD时,有机污染物被好氧微生物氧化分解的过程,一般可分为两个阶段,第一阶段是,第二阶段是。 8、稳定塘按塘内微生物类型、供氧方式和功能来分类,主要类型有、、 和。 二、简答题(每小题6分,共30分) 1、为什么竖流式沉淀池常作为二沉池? 2、如何提高滤池的含污能力? 3、简述影响混凝效果的主要因素。 4、简述SBR工艺的工作原理,并说明该工艺具有哪些特点。 5、简述UASB反应器中颗粒污泥的形成条件。 三、论述题(共36分) 1、在20℃时,亚硝化细菌的世代时间是多少天?为什么污泥龄太短的曝气池氨的硝化作用不完全。(8分) 2、如何通过废水的BOD5和COD判断废水的可生化性?某工业废水水质为COD 650mg/L,BOD552mg/L,问该工业废水是否适宜采用生化处理。(8分) 3、在电渗析操作过程中,工作电流密度超过极限电流密度会出现什么现象,如何消除?(8分) 4、某企业以废箱板为主要原料生产箱板纸,其生产过程中排放大量的废水,主要污染物为SS和COD,其水质为pH 7~8、COD900~1100mg/L、SS800~1100mg/L。请制定一废水处理工艺,使处理后出水水质达到pH 6.0~9.0;COD ≤100mg/L;SS ≤100mg/L,画出工艺流程简图,并说明各处理单元功能。(12分) 四、计算题(共14分) 1、某种生产废水中Fe3+浓度为2.0mg/L,要使Fe3+从水中沉淀析出,废水应维持多高的pH值?(K spFe(OH)3= 3.2×10-38) (4分) 2、有一工业废水,废水排放量为180m3/h,废水中悬浮物浓度较高,拟设计一座平流式沉淀池对其进行处理。沉淀池的设计参

活性污泥膨胀的原因及控制方法

活性污泥膨胀的原因及控制方法 邹源 摘要:控制活性污泥膨胀是活性污泥法工艺良好运行的关键技术之一。本文从进水水质和反应器环境两方面分析了可能诱发活性污泥膨胀的多种因素,着重介绍了由丝状菌引起污泥膨胀的控制方法,供相关工程技术人员参考。 关键词:活性污泥;膨胀;原因;控制方法 活性污泥法自1914年提出以来,已广泛应用于生活污水和工业废水的处理中。其反应器的形式也不断发展,是一个仍处于不断变革中的水处理工艺装备。活性污泥法的关键技术是活性污泥沉降性能的好坏,它直接影响了出水水质,而污泥膨胀是恶化处理水质的重要原因。污泥膨胀的发生具有普遍性,据报道美国60%、德国约50%的污水处理厂存在着污泥膨胀现象,Madoni[1]等人调查了意大利167家活性污泥法水处理厂,其中的81家存在着污泥膨胀问题。我国绝大部分的活性污泥法水处理厂,也不同程度地存在着污泥膨胀问题。 1 污泥膨胀的概念及测定指标 1.1 污泥膨胀的概念 活性污泥是活性污泥处理系统在运行过程中出现的异常情况之一,其表观现象是活性污泥絮凝体的结构与正常絮凝体相比要松散一些,体积膨胀,含水率上升,不利于污泥底物对污水中营养物质的吸收降解,并且影响后续工序的沉淀效果。 一般从以下三个方面定义污泥膨胀:沉降性能差,区域沉降速

度小;污泥松散,不密实,污泥指数较大;由丝状菌引起的污泥膨胀中,丝状菌总长度大于1×104m/g。 1.2 污泥膨胀的理论 Chudoba在1973年提出了选择性理论,该理论以微生物生长动力学为基础,根据不同种类微生物的最大生长速率μmax及其饱和常数Ks值的不同,分析丝状菌与菌胶团细菌的竞争情况。该理论认为活性污泥中存在A、B两种类型微生物种群,丝状菌属于A型;具有低的Ks和μmax值,在低基质浓度时具有高的生长速率并占优势;而菌胶团细菌属于B 型,具有较高的Ks和μmax值,在高的基质浓度条件下生长速率大并占优势。1980年Plam又对理论加以扩展,认为该理论对溶解氧也成立,即DO与碳源基质一样,其浓度的高低影响着两种类型细菌的生长速率及其优势地位。 选择性理论能从微生物生长动力学基础上对污泥膨胀现象给予了合理的解释,已被人们广泛接受并成为污泥膨胀研究领域中主要理论。在该理论的指导下,已成功地开发出了选择性反应器工艺来控制污泥膨胀。另外,关于污泥膨胀理论还有A/V假说、饥饿假说和积累-再生假说等。 1.3 测定指标 在污泥膨胀问题的早期研究中[2],常用的指标有塞里奥尔特(Theriault)指标、唐纳森(Donaldson)指标、哈兹尔廷(Haseltine)指标和莫尔曼(83*0-9.4)指标。其中,由德国人莫尔曼于1914年提出的污泥容积指数,至今仍是常用的测定指标。目前,

高廷耀水污染控制工程(下册)习题讲解.

高廷耀,顾国维,周琪.水污染控制工程(下册).高等教育出版社.2007 一、污水水质和污水出路(总论) 1.简述水质指标在水体污染控制、污水处理工程设计中的作用。 答:水质污染指标是评价水质污染程度、进行污水处理工程设计、反映污水处理厂处理效果、开展水污染控制的基本依据。 2.分析总固体、溶解性固体、悬浮性固体及挥发性固体指标之间的相互联系,画出这些指标的关系图。 答:水中所有残渣的总和称为总固体(TS),总固体包括溶解性固体(DS)和悬浮性固体(SS)。水样经过滤后,滤液蒸干所得的固体即为溶解性固体(DS),滤渣脱水烘干后即是悬浮固体(SS)。固体残渣根据挥发性能可分为挥发性固体(VS)和固定性固体(FS)。将固体在600℃的温度下灼烧,挥发掉的即市是挥发性固体(VS),灼烧残渣则是固定性固体(FS)。溶解性固体一般表示盐类的含量,悬浮固体表示水中不溶解的固态物质含量,挥发性固体反映固体的有机成分含量。 关系图 3.生化需氧量、化学需氧量、总有机碳和总需氧量指标的含义是什么?分析这些指标之间 的联系与区别。 答:生化需氧量(BOD):水中有机污染物被好氧微生物分解时所需的氧量称为生化需氧量。化学需氧量(COD):在酸性条件下,用强氧化剂将有机物氧化为CO2、H2O所消耗的氧量。 总有机碳(TOC):水样中所有有机污染物的含碳量。 总需氧量(TOD):有机物除碳外,还含有氢、氮、硫等元素,当有机物全都被氧化时,碳被氧化为二氧化碳,氢、氮及硫则被氧化为水、一氧化氮、二氧化硫等,此时需氧量称为总需氧量。 这些指标都是用来评价水样中有机污染物的参数。生化需氧量间接反映了水中可生物降解的有机物量。化学需氧量不能表示可被微生物氧化的有机物量,此外废水中的还原性无机物也能消耗部分氧。总有机碳和总需氧量的测定都是燃烧化学法,前者测定以碳表示,后者以氧表示。TOC、TOD的耗氧过程与BOD 的耗氧过程有本质不同,而且由于各种水样中有机物质的成分不同,生化过程差别也大。各种水质之间TOC或TOD与BOD不存在固定关系。在水质条件基本相同的条件下,BOD与TOD或TOC之间存在一定的相关关系。 4.水体自净有哪几种类型?氧垂曲线的特点和使用范围是什么?

活性污泥膨胀的防治措施

活性污泥膨胀的防治措施 活性污泥膨胀是指活性污泥质量变轻,体积膨大,沉降性能恶化,在二沉池内不能正常沉池下来,污泥指数异常增高达400以上。 活性污泥膨胀,根据诱因可分为:因丝状菌异常增殖所导致的丝状菌性膨胀和因粘性物质大量产生积累的非丝状菌膨胀。前者为易发与多发性膨胀,导致产生丝状菌性污泥膨胀的细菌主要有:球衣菌属,假单胞菌属,黄杆菌属,酶菌属。污泥膨胀的对策,当在活性污泥系统产生污泥膨胀现象时,可按下图所列程序对污泥膨胀的类型,诱因与性质进行调查,并采取相应的措施加以消除。 具体措施: (1)投药处理,能够杀灭丝状菌的药剂有氯,臭氧,过氧化氢等,有效氯为10—20mg/l时,就能够有效杀灭球衣菌,贝代硫菌:高于20mg/l时,可能对絮凝体形成菌产生危害,因此,在使用氯时一定要按投加量的允许范围合理投加。而臭氧,过氧化氢等氧化剂只有在较高的计量条件下才对球衣菌有杀灭效果。 (2)改善,提高活性污泥的絮凝性,在曝气池的入口处投加硫酸铝,三氯化铁,高分子混凝剂等絮凝剂。 (3)改善,提高活性污泥的沉降性,密实性。在曝气池的入口处投加粘土,消石灰,生污泥或消化污泥。 (4)加大回流污泥量,通过这一措施,高粘性膨胀的致因物质,即多糖类物降低了,在多数情况下,能够解脱高粘性膨胀。有条件的地方还可在回流污泥前进行内源呼吸期,提高了絮凝体形成细菌群摄

取有机物的能力和与丝状菌竞争的能力,丝状菌性膨胀也能够得到抑制。在曝气过程中,可以考虑加入氯,磷等营养物质,这样可以强化污泥活性。 (5)使废水经常处于新鲜状态,防止形成厌氧状态,如有条件采取预曝气措施,使废水经常处于预曝气状态,吹脱硫化氢等有害气体,并避免贝代硫菌加以利用增殖。 (6)加强曝气,提高混和液DO浓度,防止混和液缺氧或厌氧状态,即或是局部的或是一时的呈厌氧状态,也不利于絮体形成菌的生理活动,而有利于丝状菌的增殖。 (7)在有利条件下,可以考虑改变水温,水温在15摄氏度以下易于发生高粘性膨胀,而丝状菌性膨胀则多发生在20摄氏度以上。 (8)降低污泥在二沉池内停留时间,防止形成厌氧状态。措施I,调整污泥负荷,运行经验表明,如果污泥负荷超过0.35kgBOD/kgMLSS.d易于发生丝状菌性污泥膨胀。 (9)调整混合液中的营养物质平衡,即保证BOD:N:P=10:5:1的要求,当混和液失去营养平衡时,往往会发生高粘性污泥膨胀。 (10)控制丝状菌的增殖,对已产生大量球衣菌属的活性污泥,用浓度为50mg/l的硫酸铜,保持5mg/l的残留浓度,能够抑制球衣菌属的增殖。

水污染控制工程试题库

一、名词解释题(每题3分): 1.生化需氧量:表示在有氧的情况下,由于微生物的活动,可降解的有机物稳定化所需的氧量 2.化学需氧量:表示利用化学氧化剂氧化有机物所需的氧量。 3.沉淀:是固液分离或液液分离的过程,在重力作用下,依靠悬浮颗粒或液滴与水的密度差进行分离。 4.化学沉淀法:是往水中投加某种化学药剂,使与水中的溶解物质发生互换反应,生成难溶于水的盐类, 形成沉渣,从而降低水中溶解物质的含量。 5.电解法:是应用电解的基本原理,使废水中有害物质,通过电解过程,在阳、阴极上分别发生氧化和 还原反应转化成为无害物质以实现废水净化的方法。 6.吸附:是一种物质附着在另一种物质表面上的过程,它可发生在气-液、气-固、液-固两相之间。 7.物理吸附:是吸附质与吸附剂之间的分子引力产生的吸附。 8.化学吸附:是吸附质与吸附剂之间由于化学键力发生了化学作用,使得化学性质改变。 9.膜分离法:是把一种特殊的半透膜将溶液隔开,使溶液中的某种溶质或者溶剂渗透出来,从而达到分 离溶质的目的。 10.污泥龄:是指每日新增的污泥平均停留在曝气池中的天数,也就是曝气池全部活性污泥平均更新一次 所需的时间,或工作着的活性污泥总量同每日排放的剩余污泥量的比值。 11.氧化沟:是一个具有封闭沟渠的活性污泥曝气池。 12.总充氧量:稳定条件下,单位时间内转移到曝气池的总氧量。 13.悬浮生长:在活性污泥法中,微生物形成絮状,悬浮在混合液中不停地与废水混合和接触。 14.生物膜反应器:利用生物膜净化废水的装置。 15.面积负荷率法:即单位面积每日能去除废水中的有机物等量。 16.活性污泥法:是以活性污泥来净化废水的生物处理方法。 17.活性污泥:充满微生物的絮状泥粒。 18.污泥负荷率:指的是单位活性污泥(微生物)量在单位时间内所能承受的有机物量。 19.污泥浓度:指曝气池中单位体积混合液所含悬浮固体的重量,常用表示。 20.污泥沉降比:指曝气池中混合液沉淀30后,沉淀污泥体积占混合液总体积的百分数。 21.污泥体积指数:简称污泥指数,是曝气池混合液经30沉淀后1g干污泥所占的湿污泥体积(以计)。 22.生物接触氧化法:是一个介于活性污泥法和生物滤池之间的处理方法,它兼具有这两种方法的优点。 23.厌氧流化床:当床内载体的膨胀率达到40~50%以上,载体处于流化状态。 24.厌氧生物法:在无分子氧条件下,通过兼性菌和厌氧菌的代谢作用降解污泥和废水中的有机污染物, 分解的最终产物主要是沼气,可作为能源。 25.重力浓缩法:利用重力将污泥中的固体与水分离而使污泥的含水率降低的方法。 26.扩散:污染物由高浓度处向低浓度处转移,称为扩散。 二、水污染控制工程选择题(每题2分): 2、下列不属于水中杂质存在状态的是( D ) A.悬浮物B胶体C溶解物D沉淀物 3、是指( A ) A.总需氧量 4、下列说法不正确的是( D ) A.可降解的有机物一部分被微生物氧化,一部分被微生物合成细胞 是微生物氧化有机物所消耗的氧量与微生物内源呼吸所消耗的氧量之和 C.可降解的有机物分解过程分碳化阶段和硝化阶段 是碳化所需氧量和硝化所需氧量之和 5、下列说法不正确的是( C ) 测定通常采用K22O7和7为氧化剂

污泥膨胀常见解决方案和思路

摘要:从污泥膨胀产生的内在因素着手,分析丝状菌过量繁殖的原因,针对几种常见的活性污泥工艺提出解决方案和思路。 关键词:丝状菌污泥膨胀选择池活性污泥工艺 污泥膨胀问题是活性污泥自产生以来一直伴随并常常发生的一个棘手的问题。其主要特征是:污泥结构松散,质量变轻,沉淀压缩性能差;SV值增大,有时达到90%,SVI达到300以上;大量污泥流失,出水浑浊;二次沉淀难以固液分离,回流污泥浓度低,有时还伴随大量的泡沫的产生,无法维持生化处理的正常工作。污泥膨胀是生化处理系统较为严重的异常现象之一,它直接影响出水水质,并危害整个生化系统的运作。 污泥膨胀的发生率是相当高的,在欧洲近50%的城市污水厂每年都会有不同程度的污泥膨胀发生,在我国的发生率也非常高。基本上目前各种类型的活性污泥工艺都会发生污泥膨胀。污泥膨胀不但发生率高,发生普遍,而且一旦发生难以控制,通常都需要很长的时间来调整。针对污泥膨胀,各方面的理论很多,但并不完全一致,甚至有很多相互矛盾,这给水处理工作者造成很大的麻烦。本文将从污泥膨胀的内在因素着手,整理出几种较为成熟且有普遍意义的观点,并归纳一下污泥膨胀控制的一般方法。 1、污泥膨胀的原因 污泥膨胀分为丝状菌膨胀和非丝状菌膨胀。非丝状菌膨胀主要发生在废水水温较低而污泥负荷太高的时候,此时细菌吸附了大量有机物,来不及代谢,在胞外积贮大量高粘性的多糖物质,使得表面附着物大量增加,很难沉淀压缩。而当氮严重缺乏时,也有可产生膨胀现象。因为若缺氮,微生物便于工作不能充分利用碳源合成细胞物质,过量的碳源将被转弯为多糖类胞外贮存物,这种贮存物是高度亲水型化合物,易形成结合水,从而影响污泥的沉降性能,产生高粘性的污泥膨胀。非丝状菌污泥膨胀发生时其生化处理效能仍较高,出水也还比较清澈,污泥镜检也看不到丝状菌。非丝状菌膨胀发生情况较少,且危害并不十分严重,在这里就不着重研究。 丝状菌膨胀在日常实际工作中较为常见,成因也十分复杂。影响丝状菌污泥膨胀的因素有很多,但我们首先应该认识到的是活性污泥是一个混合培养系统,其中至少存在着30种可能引起污泥膨胀的丝状菌。而丝状菌在与活性胶团系统共生的关系中是不可缺少的一类重要微生物。它的存在对净化污水起着很好的作用。它对保持污泥的絮体结构,保持生化处理的净化效率,及在沉淀中起着对悬浮物的过滤作用等都有很重要的意义。事实也证明在丝状菌与菌胶团细菌平衡时是不会产生污泥膨胀,只有当丝状菌生长超过菌胶团细菌时,才会出现污泥膨胀现象。 1、污泥负荷对污泥膨胀的影响 一般认为活性污泥中的微生物的增长都是符合Monod方程的: 式中X----生物体浓度,mg/L; S----生长限制性基质浓度,mg/L; μ----生长限制性基质浓度,mg/L; KS-----饱和常数,其值为μ=μmax/2时的基质浓度,mg/L; μmax-----在饱和浓度中微生物的最大比增长速率,d-1 研究证明大多数的丝状菌的KS和μmax值比菌胶团的低,所以,按照以上Monond方程,具有低KS和μm ax值的丝状菌在低基质浓度条件下具有高的增长速率,而具有较高KS和μmax值的菌胶团在高基质浓度条件下才占优势。同样认为低负荷对于丝状菌生长有利的理论还有表面积/容积比(A/V)假说。这里的表面积和容积,是指活性污泥中微生物的表面积与体积。该假说认为伸展于絮凝体之外的丝状菌的比表面积(A/V)要大大超过菌胶团细菌的比表面积。当微生物处于受基质限制和控制的状态时,比表面积大的丝状菌在取得底物方面要比菌胶团有利,结果在曝气池内丝状菌就变成了优势菌。

(完整版)水污染控制工程试题与答案

《水污染控制工程》试题库

一、名词解释题(每题3分): 1.生化需氧量:表示在有氧的情况下,由于微生物的活动,可降解的有机物稳定化所需的氧量 2.化学需氧量:表示利用化学氧化剂氧化有机物所需的氧量。 3.滤速调节器:是在过滤周期内维持滤速不变的装置。 4.沉淀::是固液分离或液液分离的过程,在重力作用下,依靠悬浮颗粒或液滴与水的密度差进 行分离。 5.沉降比:用量筒从接触凝聚区取100mL水样,静置5min,沉下的矾花所占mL数用百分比表 示,称为沉降比。 6.水的社会循环:人类社会从各种天然水体中取用大量水,使用后成为生活污水和工业废水,它 们最终流入天然水体,这样,水在人类社会中构成了一个循环体系,称为~。 7.接触凝聚区:在澄清池中,将沉到池底的污泥提升起来,并使这处于均匀分布的悬浮状态,在 池中形成稳定的泥渣悬浮层,此层中所含悬浮物的浓度约在3~10g/L,称为~。 8.总硬度:水中Ca2+、Mg2+含量的总和,称为总硬度。 9.分级沉淀:若溶液中有数种离子能与同一种离子生成沉淀,则可通过溶度积原理来判断生成沉 淀的顺序,这叫做分级沉淀。 10.化学沉淀法:是往水中投加某种化学药剂,使与水中的溶解物质发生互换反应,生成难溶于水 的盐类,形成沉渣,从而降低水中溶解物质的含量。 11.电解法:是应用电解的基本原理,使废水中有害物质,通过电解过程,在阳、阴极上分别发生 氧化和还原反应转化成为无害物质以实现废水净化的方法。 12.电渗析:是在直流电场的作用下,利用阴。阳离子交换膜对溶液中阴阳离子的选择透过性,而 使溶液中的溶质与水分离的一种物理化学过程。 13.滑动面:胶粒在运动时,扩散层中的反离子会脱开胶粒,这个脱开的界面称为滑动面,一般 指吸附层边界。 14.吸附:是一种物质附着在另一种物质表面上的过程,它可发生在气-液、气-固、液-固两相 之间。 15.物理吸附:是吸附质与吸附剂之间的分子引力产生的吸附。 16.化学吸附:是吸附质与吸附剂之间由于化学键力发生了化学作用,使得化学性质改变。 17.平衡浓度:当吸附质在吸附剂表面达到动态平衡时,即吸附速度与解吸速度相同,吸附质在吸 附剂及溶液中的浓度都不再改变,此时吸附质在溶液中的浓度就称为~。 18.半透膜:在溶液中凡是一种或几种成分不能透过,而其它成分能透过的膜,都叫做半透膜。 19.膜分离法:是把一种特殊的半透膜将溶液隔开,使溶液中的某种溶质或者溶剂渗透出来,从而 达到分离溶质的目的。 20.氧化还原能力:指某种物质失去或取得电子的难易程度,可以统一用氧化还原电位作为指标。 21.生物处理:是主利用微生物能很强的分解氧化有机物的功能,并采取一定的人工措施,创造一 种可控制的环境,使微生物大量生长、繁殖,以提高其分解有机物效率的一种废水处理方法。 22.生物呼吸线:表示耗氧随时间累积的曲线。 23.污泥龄:是指每日新增的污泥平均停留在曝气池中的天数,也就是曝气池全部活性污泥平均更 新一次所需的时间,或工作着的活性污泥总量同每日排放的剩余污泥量的比值。 24.氧化沟:是一个具有封闭沟渠的活性污泥曝气池。 25.总充氧量:稳定条件下,单位时间内转移到曝气池的总氧量。 26.活性污泥:充满微生物的絮状泥粒。 27.生物膜反应器:利用生物膜净化废水的装置。 28.面积负荷率法:即单位面积每日能去除废水中的有机物等量。 29.自然生物处理法:是利用天然的水体和土壤中的微生物来净化废水的方法。

水污染控制工程习题与答案

《水污染控制工程》试题库 环境与生物工程学院 2011年3月 水污染控制工程试题类型 1. 名词解释 2. 选择题 3. 填空题 4. 简答题 5. 计算题

一、名词解释题(每题 3分): 1.生化需氧量:表示在有氧的情况下,由于微生物的活动,可降 解的有机物稳定化所需的氧量 2.化学需氧量:表示利用化学氧化剂氧化有机物所需的氧量。 3.滤速调节器:是在过滤周期内维持滤速不变的装置。 4.沉淀::是固液分离或液液分离的过程,在重力作用下,依靠 悬浮颗粒或液滴与水的密度差进行分离。 5.沉降比:用量筒从接触凝聚区取100mL水样,静置5min,沉下 的矾花所占mL数用百分比表示,称为沉降比。 6.水的社会循环:人类社会从各种天然水体中取用大量水,使用 后成为生活污水和工业废水,它们最终流入天然水体,这样,水在人类社会中构成了一个循环体系,称为~。 7.接触凝聚区:在澄清池中,将沉到池底的污泥提升起来,并使 这处于均匀分布的悬浮状态,在池中形成稳定的泥渣悬浮层,此层中所含悬浮物的浓度约在3~10g/L,称为~。 8.总硬度:水中Ca2+、Mg2+含量的总和,称为总硬度。 9.分级沉淀:若溶液中有数种离子能与同一种离子生成沉淀,则 可通过溶度积原理来判断生成沉淀的顺序,这叫做分级沉淀。 10.化学沉淀法:是往水中投加某种化学药剂,使与水中的溶解物 质发生互换反应,生成难溶于水的盐类,形成沉渣,从而降低水中溶解物质的含量。 11.电解法:是应用电解的基本原理,使废水中有害物质,通过电 解过程,在阳、阴极上分别发生氧化和还原反应转化成为无害物质以实现废水净化的方法。 12.电渗析:是在直流电场的作用下,利用阴。阳离子交换膜对溶 液中阴阳离子的选择透过性,而使溶液中的溶质与水分离的一种物理化学过程。 13.滑动面:胶粒在运动时,扩散层中的反离子会脱开胶粒,这个 脱开的界面称为滑动面,一般指吸附层边界。

活性污泥运行管理

技术次资料 活性污泥系统的运行管理 (参考) 第一节活性污泥的培养与驯化 根据废水水量、水质和废水处理厂的条件、可采用的活性污泥培养法有下列几种: 一. 全流量边续直接培养法 全部流量通过活性污泥系统按设计水量边续进水和出水。不排放剩余污泥,全部保留在曝气池,直到MLSS和SV达到适宜数值为止。 为了加快培养速度,减少培养时间,可以大量供气,以保证向混合液提供足够的溶解氧,并使其充分混合外,也可以从同类的正在运行的废水处理厂提取一定数量的污泥进行接种。 在活性污泥的培养驯化期间,必须考虑满足微生物的营养物质保持平衡,即BOD:N:P=100:5:1,对城市废水和生活污水来说,这个条件具备的,但是对某些工业废水,就要考虑投加某些营养物质了,此外,在这个期间还要进行废水、混合液、处理水以及活性污泥的分析测定,项目有:SV、MLSS、SVI,溶解氧含量,处理水的透明度,原废水及处理水的BOD、COD以及SS等。 二. 流量分段直接培养法 方法与前同,不同的地方是废水投配流量随形成的污泥量的增加而增加。即将培养期分为几个阶段、最后达到设计流量和MLSS达到适宜浓度。

三.间歇培养法 本法适用于生活污水所占比例较小的城市水厂,将废水引入曝气池,水量约为曝气池容积50~70%,曝气一段时间(约4~6小时),再静置1~1.5h。排放上清液,排放量约占总水量的50%左右,此后再注入废水,重复上述操作,每天1~3次,直到混合液中的污泥量达到15~20%进为止。 水温在15℃以上的条件下,使用一般营养比较平衡的城市废水,经7~15日的培养即可以达到上述情况,为了缩短培养时间,可以考虑用同类废水处理厂的剩余污泥进行接种向混合液中投加适量的粪便稀释液,也能够加快培养过程. 四.活性污泥的驯化 对工业废水,除培养外,还应对活性污泥加以驯化,使其适应于所处理的废水,驯化方法可分为异步驯化法和同步驯化法二种.异步驯化法是先培养后驯化,即先用生活污水或粪便稀释水将活性污泥培养成熟,此后再逐步增加工业废水在混合中的比例,以逐步驯化污泥,同步驯化法则是在用生活污水掊养活性污泥的开始,就投加少量的工业废水,以后则逐步提高工业废水在混合液中的比例,逐步使污泥适应工业废水的特性,二者的驯化阶段都是以全部使用工业废水而告终. 第二節对活性污泥系统重要运行参数的调节与观测 一.对活性污泥状况的镜检观察 正常发育的活性污泥,呈茶褐色,个体大小适宜,菌胶絮体发育讔好,稍具泥土气味. 二对曝气时间(活性污泥反应时间)的调节 曝气时间主要以处理水达标为准,根据原废水水量、水质及曝气池容积等因

活性污泥膨胀的5种处理方法

活性污泥膨胀的5种处理方法 当确认活性污泥系统发生丝状菌膨胀后,首先可以通过镜检和污泥沉降比观察来判断污泥膨胀的程度;随后,通过对系统的食微比、溶解氧、进水营养盐浓度,混合液pH值、水温等运行参数的分析,判断丝状菌发生膨胀的成因,最后,采取有针对性的解决措施。 1.对于因为食微比长期偏低并由营养盐不足诱发的污泥膨胀 如果膨胀程度尚未达到高度膨胀,调整食微比和补充足量的营养盐可逐步使污泥恢复正常状态。 其中食微比的调整,应以加大排泥量为主,以增加进水负荷为辅,使污泥负荷达到0.2kgBOD/kgMLSS.d以上。在满足微生物对N、P等营养盐的需求前提下,负荷增加并达到合理的区间内,可以促进菌胶团细菌的繁殖,使其生长的速度大于丝状菌繁殖的速度,从而抑制污泥膨胀;同时,加大剩余污泥的排放,不仅能改善系统的食微比,而且可以排出大量的丝状菌,有利于在优化调整过程中,使菌胶团细菌在活性污泥的生长中占优势地位。 2.对于因为食微比长期偏低并由水温高、溶解氧偏低诱发的污泥膨胀 如果膨胀程度尚未达到高度膨胀,通过调整食微比同时加大曝气量可逐步使污泥恢复正常状态。 有时由于设备的原因或水温的原因,供氧量难以大幅增加,那么食微比的调整可以采用加大排泥,从而减低曝气池污泥浓度的方式来实现。由

于污泥浓度的下降有利于降低氧的需求量,而食微比的提升则有利于氧的利用效率提高。 3.对于由于pH值偏低诱发的污泥膨胀 这种情况下,往往其食微比也是不足的,如果膨胀程度尚未达到高度膨胀,除了调整进水的pH值,向曝气池投加液碱外,加大排泥,提高食微比仍然是一个必要的调整手段。 4.对于污泥膨胀程度达到高度膨胀的情况 上述的手段依然是有效的,但是调整周期会大幅延长,有时会长达1个月以上才会有明显效果。 5.对于污泥膨胀的程度达到极度膨胀的情况 仅通过上述的工艺调整,不仅时间周期更长,还要长期忍受恶化的出水水质。这种情况下,将系统中的膨胀污泥排空,接种新的活性污泥进行重新培菌是较为合理的选择。 注意事项: ?水中的氨态氮对丝状菌具有一定的抑制作用,有意提高进水中氨态氮的浓度(超过微生物对N需求的1倍以上),则有利于缩短调整周期。 ?其他应对高度或极度膨胀的措施还有:例如向系统中投加惰性物质、投加杀菌剂和将pH值提高至10以上来压断丝状菌菌丝、杀灭丝状菌等比较激进的措施。本文不推荐轻易使用,因为这些措施的实施不仅成本较高,而且把握不慎会导致系统的出水进一步恶化,最终不得不选择重新培养活性污泥,延长了处理的周期。

相关文档
相关文档 最新文档