文档库 最新最全的文档下载
当前位置:文档库 › 多元函数最值问题的解题策略_戚有建

多元函数最值问题的解题策略_戚有建

多元函数最值问题的解题策略_戚有建
多元函数最值问题的解题策略_戚有建

知识讲解对数函数及其性质提高

对数函数及其性质 【学习目标】 1.理解对数函数的概念,体会对数函数是一类很重要的函数模型; 2.探索对数函数的单调性与特殊点,掌握对数函数的性质,会进行同底对数和不同底对数大小的比较; 3.了解反函数的概念,知道指数函数x y a =与对数函数log a y x =互为反函数()0,1a a >≠. 【要点梳理】 要点一、对数函数的概念 1.函数y=log a x(a>0,a≠1)叫做对数函数.其中x 是自变量,函数的定义域是()0,+∞,值域为R . 2.判断一个函数是对数函数是形如log (0,1)a y x a a =>≠且的形式,即必须满足以下条件: (1)系数为1; (2)底数为大于0且不等于1的常数; (3)对数的真数仅有自变量x . 要点诠释: (1)只有形如y=log a x(a>0,a≠1)的函数才叫做对数函数,像log (1),2log ,log 3a a a y x y x y x =+==+等函数,它们是由对数函数变化得到的,都不是对数函数. (2)求对数函数的定义域时应注意:①对数函数的真数要求大于零,底数大于零且不等于1;②对含有字母的式子要注意分类讨论. 要点二、对数函数的图象与性质 a >1 0<a <1 图象

性 质 定义域:(0,+∞) 值域:R 过定点(1,0),即x=1时,y=0 在(0,+∞)上增函 数 在(0,+∞)上是减函数 当0<x<1时,y<0, 当x≥1时,y≥0 当0<x<1时,y>0, 当x≥1时,y≤0 要点诠释: 关于对数式log a N的符号问题,既受a的制约又受N的制约,两种因素交织在一起,应用时经常出错.下面介绍一种简单记忆方法,供同学们学习时参考. 以1为分界点,当a,N同侧时,log a N>0;当a,N异侧时,log a N<0. 要点三、底数对对数函数图象的影响 1.底数制约着图象的升降. 如图 要点诠释: 由于底数的取值范围制约着对数函数图象的升降(即函数的单调性),因此在解与对数函数单调性有关的问题时,必须考虑底数是大于1还是小于1,不要忽略. 2.底数变化与图象变化的规律

2016年高中数学多元函数求最值问题专题

多元函数求最值问题 一.【问题背景】 多元函数是高等数学中的重要概念之一,但随着新课程的改革,高中数学与大学数学知识的衔接,多元函数的值域与最值及其衍生问题在高考试题中频频出现,因其技巧性强、难度大、方法多、灵活多变而具有挑战性,成为最值求解中的难点和热点。同时,多元函数最值问题中蕴含着丰富的数学思想和方法,而且有利于培养学生联想、化归的解题能力。因此,怎样求多元函数的最值,是师生们非常关注和必须解决的问题,也是高考考生们必须具备的解题技能。 二.【常见的方法】 导数法、消元法、均值不等式法(“1”代换)、换元法(整体换元 三角换元)、数形结合法、柯西不等式法、向量法等 主要思想方法:数形结合、化归思想等 三.【范例】 例1:已知实数,x y 满足0x y >>,且2x y +≤,则21 3x y x y ++-的最小值为 。 方法一 因为422x y +≥,所以 ( )2121 4( )()[(3)()]3323333x y x y x y x y x y x y x y x y x y x y ++++-+-+--+=+ + +-+≥≥ 当且仅当1,3x y ==-取等号,故 213x y x y ++- 的最小值34 + 【评注】这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数, 再用单调性或基本不等式求解,二是直接用基本不等式,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过不等式的途径进行。 方法二 利用不等式()2 22a b a b p q p q +++≥ ,引证: 记向量x y == ,因为() 222x y x y ?? ≤ 所以 ()2 2 2 a b a b p q p q +++≥ ,则 ) () 2 12132x y x y x y ++-+ ≥ 【评注】在求有些多元函数的最值时,恰当构造向量模型,利用向量数量积的性质,常可使 复杂问题变得简单明了,使繁琐的解题显得巧妙自然。 方法三 因为 0,2x y x y >>+≤,所以 01y << 又因为 ()() 2121332222211y x y x y y y y y -++=+-+-+-≥

数学竞赛中代数式最值问题的解题策略

数学竞赛中代数式最值问题的解题策略 邮编:422200 作者:湖南隆回一中 邹启文 数学竞赛中最值问题,有一定难度,但只要我们去认真的分析,仔细地思考,不管问题再难,其实万变不离其宗,总离不开所学过的知识点和基本方法。如不等式法(包含非负数性质a ≥0,2a ≥0, a ≥0,一元二次方程判别式△≥0,整体大于部分等等),公式法(包括二次函数顶点坐标公式、三角函数公式、完全平方公式等等),区间取值法(包括一次函数线段端点取值与曲线在某区间内的最值求取等等),在求解方法上也有其规律性,如夹逼法、递推法、枚举法、放缩法、排序法,还有转化为几何图形法等等。近两年来的各级各类初中数学竞赛中的最值问题,在题型上已呈现出一个崭新的形势,其变化之多、涉及面之广、形式之灵活可谓达到了空前的程度,同时最值的求法也有了较大的拓展,打破了原有的思维定势,但仍然是有章可循的。 例1:已知设1x 、2x 、3x 、……n x 均为连续正整数,且1x <2x <3x <……<n x , 1x +2x +, 3x +……+n x =2005,则n x 的最大值是____最小值____(2005年 自编题) 分析:这是一道须利用不等式求解的试题,由于有1x +2x +3x +……+n x =2005,所以应当想到这些数的平均数必与中位数接近,于是可由此确定3x 的数值或范围。然后再求n x 的最大与最小数值。 解:由题意可设1x +2x +3x +……+n x =1+2+3+……+n =2005,由高斯求和公式可 得 ()200521=+n n ,解得63≈n ,但当63=n 时()()201632632 1636321=?=+=+n n 当62=n 时()()195363312 1626221=?=+=+n n ,∵1953≤2005≤2016,且n 是整数,∴n ≠62或63,我们又观察到平均值()?=++++n n n x x x x 13211ΛΛ40152005?=,

初中数学最值问题解题技巧,初中几何最值问题方法归纳总结

几何最值问题大一统 追本溯源化繁为简 目有千万而纲为一,枝叶繁多而本为一。纲举则目张,执本而末从。如果只在细枝末节上下功夫,费了力气却讨不了好。学习就是不断地归一,最终以一心一理贯通万事万物,则达自由无碍之化境矣(呵呵,这境界有点高,慢慢来)。 关于几何最值问题研究的老师很多,本人以前也有文章论述,本文在此基础上再次进行归纳总结,把各种知识、方法、思想、策略进行融合提炼、追本溯源、认祖归宗,以使解决此类问题时更加简单明晰。 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。 证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。

二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 AD一定,所以D是定点,C是直线 的最短路径,求得当CD⊥AC时最短为 是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

抽象函数解题方法与技巧

抽象函数解题方法与技巧 函数的周期性: 1、定义在x ∈R 上的函数y=f(x),满足f(x+a)=f(x-a)(或f(x-2a)=f(x))(a >0)恒成立,则y=f(x)是周期为2a 的周期函数; 2、若y=f(x)的图像关于直线x=a 和x=b 对称,则函数y=f(x)是周期为2|a-b|的周期函数; 3、若y=f(x) 的图像关于点(a,0)和(b,0)对称,则函数y=f(x)是周期为2|a-b|的周期函数; 4、若y=f(x) 的图像有一个对称中心A(a,0)和一条对称轴x=b (a ≠b ),则函数y=f(x)是周期为4|a-b|的周期函数; 5、若函数y=f(x)满足f(a+x)=f(a-x),其中a>0,且如果y=f(x)为奇函数,则其周期为4a ;如果y=f(x)为偶函数,则其周期为2a ; 6、定义在x ∈R 上的函数y=f(x),满足f(x+a)=-f(x)()1()f x a f x ??+= ???或()1()f x a f x ??+=- ???或,则y=f(x)是周期为2|a|的周期函数; 7、若()()()1 1 f x f x a f x -+= +在x ∈R 恒成立,其中a>0,则y=f(x)是周期为4a 的周期函数; 8、若()() ()11 f x f x a f x -+= +在x ∈R 恒成立,其中a>0,则y=f(x)是周期为2a 的周期函数。 (7、8应掌握具体推导方法,如7) 函数图像的对称性: 1、若函数y=f(x)满足f(a+x)=f(b-x),则函数y=f(x)的图像关于直线2 a b x +=对称; 2、若函数y=f(x)满足f(x)=f(2a-x)或f(x+a)=f(a-x),则函数y=f(x)的图像关于直线x=a 对称; 3、若函数y=f(x)满足f(a+x)+f(b-x)=c ,则y=f(x)的图像关于点,2 2a b c +?? ??? 成中心对称图形; 4、曲线f(x,y)=0关于点(a,b )的对称曲线的方程为f(2a-x,2b-y)=0; 5、形如()0,ax b y c ad bc cx d += ≠≠+的图像是双曲线,由常数分离法 d ad ad a x b b a c c c y d d c c x c x c c ??+-+-+ ???==+????++ ? ???? ?知:对称中心是点,d a c c ??- ???; 6、设函数y=f(x)定义在实数集上,则y=f(x+a)与y=f(b-x)的图像关于直线2b a x -=对称; 7、若函数y=f(x)有反函数,则y=f(a+x)和y=f -1(x+a)的图像关于直线y=x+a 对称。 一、换元法 换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法. 例1. 已知f(1+sinx)=2+sinx+cos 2x , 求f(x) ()()()()()()()1 1 11212112()() 11 f x f x a f x f x a f x f x a f x f x f x --+-+-+====--++++

二元函数的极值与最值

二元函数的极值与最值 二元函数的极值与最值问题已成为近年考研的重点,现对二元函数的极值与最值的求法总结如下: 1.二元函数的无条件极值 (1) 二元函数的极值一定在驻点和不可导点取得。对于不可导点,难以判断是否是极值点;对于驻点可用极值的充分条件判定。 (2)二元函数取得极值的必要条件: 设),(y x f z =在点),(00y x 处可微分且在点),(00y x 处有极值,则0),('00=y x f x ,0),('00=y x f y ,即),(00y x 是驻点。 (3) 二元函数取得极值的充分条件:设),(y x f z =在),(00y x 的某个领域内有连续上二阶偏导数,且=),('00y x f x 0),('00=y x f y ,令A y x f xx =),('00, B y x f xy =),('00,C y x f yy =),('00,则 当02<-AC B 且 A<0时,f ),(00y x 为极大值; 当02<-AC B 且A>0,f ),(00y x 为极小值; 02 >-AC B 时,),(00y x 不是极值点。 注意: 当B 2-AC = 0时,函数z = f (x , y )在点),(00y x 可能有极值,也可能没有极值,需另行讨论 例1 求函数z = x 3 + y 2 -2xy 的极值. 【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值. 【解】先求函数的一、二阶偏导数: y x x z 232 -=??, x y y z 22-=??. x x z 62 2 =??, 22 -=???y x z , 2 2 2 =??y z . 再求函数的驻点.令x z ??= 0,y z ??= 0,得方程组???=-=-. 022,0232x y y x 求得驻点(0,0)、),(3 2 32. 利用定理2对驻点进行讨论:

对数知识点整理

1对数的概念 如果a(a>0,且a ≠1)的b 次幂等于N ,即N a b =,那么数b 叫做以a 为底N 的对数,记作:b N a =log ,其中a 叫做对数的底数,N 叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a ≠1,N>0; ③01log =a , 1log =a a , b a b a =log ,b a b a =log 特别地,以10为底的对数叫常用对数,记作N 10log ,简记为lgN ;以无理数e(e=2.718 28…) 为底的对数叫做自然对数,记作N e log ,简记为N ln 2对数式与指数式的互化 式子名称指数式N a b =(底数)(指数)(幂值)对数式b N a =log (底数)(对数)(真数) 3对数的运算性质 如果a>0,a ≠1,M>0,N>0,那么 (1)N M MN a a a log log )(log +=(2N M a a log log N)(M log a -=÷(3)M b M a b a log log = 问:①公式中为什么要加条件a>0,a ≠1,M>0,N>0? ②=n a a log ______ (n ∈R) ③对数式与指数式的比较.(学生填表) 运算性质 n m n m a a a +=?,n m n m a a a -=÷ mn n m a a =)((a>0且a ≠1,n ∈R) N M MN a a a log log )(log +=, N M a a log log N)(M log a -=÷(a>0,a ≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a >0,,且a ≠1? 理由如下: ①若a <0,则N 的某些值不存在,例如log-28 ②若a=0,则N ≠0时b 不存在;N=0时b 不惟一,可以为任何正数 ③若a=1时,则N ≠1时b 不存在;N=1时b 也不惟一,可以为任何正数 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数

走进2018年中考数学专题复习几何最值问题解题策略

走进2018年中考数学专题复习第七讲几何最值问题解题策略【专题分析】 最值问题是初中数学的重要内容,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)以及用一次函数和二次函数的性质来求最值问题. 【知识归纳】 1.在求几何图形中的周长或线段长度最值时,解决此类问题的方法一般是先将要求线段(要求的量)用未知数x表示出来,建立函数模型(一般所表示的式子为一次函数解析式或二次函数解析式),常用勾股定理或三角形相似求得函数关系式,再用函数的增减性或最值来求解即可. 2.利用对称的性质求两条线段之和最小值的问题,解决此类问题的方法为:如图,要求直线l上一动点P到点A,B距离之和的最小值,先作点A关于直线l的对称点A',连接A'B,则A'B与直线l的交点即为P点,根据对称性可知此时A'B的长即为PA+PB的最小值,求出A'B的值即可. 【题型解析】 题型1: 三角形中最值问题 例题:(2017山东枣庄)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P 的坐标为()

A.(﹣3,0)B.(﹣6,0)C.(﹣,0) D.(﹣,0) 【考点】F8:一次函数图象上点的坐标特征;PA:轴对称﹣最短路线问题.【分析】(方法一)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标. (方法二)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,根据三角形中位线定理即可得出点P为线段CD′的中点,由此即可得出点P的坐标. 【解答】解:(方法一)作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示. 令y=x+4中x=0,则y=4, ∴点B的坐标为(0,4); 令y=x+4中y=0,则x+4=0,解得:x=﹣6,

抽 象 函 数 的 解 题 方 法

解 抽 象 函 数 的 常 用 方 法 抽象函数是指没有给出具体解析式的函数。此类函数试题既能全面地考查学生对函数概念的理解及性质的代数推理和论证能力,又能综合考查学生对数学符号语言的理解和转化能力,以及对一般和特殊关系的认识,因此备受命题者的青睐,成为高考热点。然而,由于抽象函数本身的抽象性、隐蔽性,大多数学生在解决这类问题时,感到束手无策。 我在多年的教学中,积累了一些解题方法,供大家参考. 一、 利用线性函数模型 在中学数学教材中,大部分抽象函数是以具体函数为背景构造出来的,解题时最根本点是将抽象函数具体化,这种方法虽不能代替具体证明,但却能找到这些抽象函数的解题途径,特别是填空题、选择题,直接用满足条件的特殊函数求解,得出答案即可。常见的抽象函数模型有: 例1、函数f (x )对任意实数x ,y ,均有f (x +y )=f (x )+f (y ),且f (1)=2, f (x )在区间[-4,2]上的值域为 。 0a a ≠且

解析:由题设可知,函数f (x )是正比例()y kx k =为常数的抽象函数,由f (1)=2可求得 k=2,∴ f (x )的值域为[-8,4]。 例2、已知函数f (x )对任意,x y R ∈,满足条件()()()2f x y f x f y +=+-,且当x >0时, f (x )>2,f (3)=5,求不等式2(22)3f a a --的解。 分析:由题设条件可猜测:f (x )是y =x +2的抽象函数,且f (x )为单调增函数,如果 这一猜想正确,也就可以脱去不等式中的函数符号,从而可求得不等式的解。 解:设1221,0x x x x -则,∵当x >0时,f (x )>2,∴21()2f x x -,则 , 即,∴f (x )为单调增函数。 ∵, 又∵f (3)=5,∴f (1)=3。∴2(22) (1)f a a f --,∴2221a a --, 解得不等式的解为-1 < a < 3。 例3、定义在R上的函数()y f x =,对任意的12,x x 满足12x x ≠时都有12()()f x f x ≠,且有 ()()()f x y f x f y +=成立。求: (1)f (0); (2)对任意值x ,判断f (x )值的正负。 分析:由题设可猜测f (x )是指数函数()(01)x f x a a a =≠且的抽象函数, 从而猜想f (0)=1且f (x )>0。 解:(1)令y =0代入()()()f x y f x f y +=,则()()(0)f x f x f =, ∴[]()1(0)0f x f -=。若f (x )=0,则对任意12x x ≠,有12()()0f x f x ==,

“图解法解二元函数的最值问题”

“图解法解二元函数的最值问题” 教学课例 昌平区第一中学 回春荣

“图解法解二元函数的最值问题”教学课例 一、设计意图: 在新课程背景下的教学中,课堂上我们应是以“问”的方式来启发学生深思,以“变”的方式诱导学生灵活善变,使整堂课有张有弛,真正突出了学生是教学活动的主体的原则。本节内容是在学习了不等式、直线的方程的基础上,利用不等式和直线的方程有关知识展开的,它是对二元函数的深化和再认识、再理解,是直线、圆和不等式的综合运用,同时它又对理解下一章“圆锥曲线”的相关内容有着很好的帮助作用,所以这一部分内容起到了一个巩固旧知识,熟练方法,理解新知识的承上启下的作用。图解法在解决函数求最值的问题上有着广泛的应用,这节课为学生提供了广阔的思维空间,对培养学生自主探索、合作研究、主动发现问题、分析问题,创造性地解决问题的能力有着丰富的素材。教学上通过设置问题情境、多媒体展示,学生动手操作,使学生在“做中学”,学生在实际操作中,既发展了学生的个性潜能,又培养了他们的合作精神。 二、本课教学目标 1、知识与技能:通过识图、画图,学会解决有约束条件的二元函数最值问题的处理方法——图解法。 2、过程与方法:经历约束条件为二元一次不等式组,目标函数为具有截距、斜率、距离等几何意义的二元函数的最值问题的探究过程,提炼出解决这类问题的方法——以图定位,以算定量。 3、情感态度与价值观:通过对有约束条件的二元函数的最值问题的探究,培养学生科学严谨的治学态度,勇于探索、敢于创新的学习精神,同时感受合作交流的快乐。 三、教学过程与教学资源设计 (一)、教学内容:图解法解二元函数的最值问题 (二)、教学设计流程图:

初中数学专题04几何最值存在性问题(解析版)

专题四几何最值的存在性问题 【考题研究】 在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。 从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。 【解题攻略】 最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型. 两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2). 两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题. 【解题类型及其思路】 解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。 【典例指引】 类型一【确定线段(或线段的和,差)的最值或确定点的坐标】

抽象函数的解题方法与技巧窍门

抽象函数的解题方法与技巧 摘要:抽象函数是没有具体的解析式,只给出它的一些特征、性质或一些特殊关系式的函数。因而显得特别抽象。所以解决抽象函数问题需要从函数的本质出发,考虑其定义,性质,加之解决抽象函数问题时常用的技巧——赋值法,换元法等。尽可能使抽象函数变得不再抽象。 关键词:抽象函数;性质;求值;解析式;解题方法;技巧 Problem-solving methods and skills of abstract functions Xue Jie School of Mathematics and Statistics, Southwest University, Chongqing 400715, China Abstract:: abstract function is not analytic type specific, given only the function characteristics, its nature or some special relationship. So it is especially abstract. So to solve the abstract function problems need from the view of function essence, considering its definition, nature, and solve the abstract function problems commonly used techniques -- assignment method, substitution method etc.. As far as possible to make the abstract function is no longer abstract. Keywords: abstract function; property; evaluation; analytic method; problem solving skills; 1.提出问题的背景 抽象函数问题是函数中的一类综合性较强的问题,这类问题通过对函数性质结构的

公开课:几何“最值问题”常见解题思路

《专题:几何“最值问题”常见解决思路》公开课 蓝溪中学林子旭2016.04.20 一、教学目标:让学生通过复习、练习、比较熟悉地掌握解决几何最值问题的通常思路和常见模型 二、教学重点:掌握解决最值问题的理论依据与常用模型,能根据不同特征转化成相应的模型是解决最值问题的关键. 三、主要理论依据及模型 1、两点之间线段最短; 2、直线外一点与直线上所有点的连线段中,垂线段最短; 3、三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 4、构造函数,利用函数的性质解决 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向1、2、3依据靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 几何最值问题中的基本模型举例 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直线, P为直线l上的一个动点, 求AP+BP的最小值 A,B为定点,l为定直线,MN 为直线l上的一条动线段,求 AM+BN的最小值 A,B为定点,l为定直线,P 为直线l上的一个动点,求 |AP-BP|的最大值转化 作其中一个定点关于定直 线l的对称点 先平移AM或BN使M,N重 合,然后作其中一个定点关于 定直线l的对称点 作其中一个定点关于定直线 l的对称点 四、模型应用与练习: (一)线段和(PA+PB)最小: 1、正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一点,则PE+PB的最小值为. 2、⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,则PA+PC 的最小值是; 3、如图1,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,则△PQR 周长的最小值是. 4、如图2,点A(a,1)、B(-1,b)都在双曲线y= 3 x -(x<0)上,点P、Q分别是x轴、y轴上 的动点,当四边形PABQ的周长取最小值时,PQ在直线的解析式是(). A、y=x B、y=x+1 C、y=x+2 D、y=x+3 图3 5、如图5,当四边形P ABN的周长最小时,a=. (二)线段差(PA-PB)最大 1、如图6,一次函数y=-2x+4的图象与x、y轴分别交于点A,B, D为AB的中点,C、A关于原点对称.P为OB上一动点,请直接写出︱ PC-PD︱的范围:___________________. A A C D O P x y 图6

抽象函数常见解法及意义总结

含有函数记号“ ()f x ”有关问题解法 由于函数概念比较抽象,学生对解有关函数记号 ()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地 掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出 ()f x ,这也是证某些公式或等式常用的方法,此法解培养学生 的灵活性及变形能力。 例1:已知 ( )211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴ 2()1x f x x -= - 2.凑合法:在已知 (())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁, 还能进一步复习代换法。 例2:已知 33 11()f x x x x +=+,求 ()f x 解:∵ 22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11 ||||1|| x x x x +=+≥ ∴ 23()(3)3f x x x x x =-=-,(|x |≥1) 3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。 例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解:设 ()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+ =22 222()24ax bx a c x x +++=++比较系数得2()4 1321 ,1,2222 a c a a b c b +=??=?===??=? ∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x 解:∵ ()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-, ∵ ()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴lg(1),0()lg(1),0 x x f x x x +≥?=?--

抽象函数的解题方法与技巧

抽象函数的解题方法与技巧 摘要:抽象函数是没有具体的解析式,只给出它的一些特征、性质或一些特殊关系式的函数。因而显得特别抽象。所以解决抽象函数问题需要从函数的本质出发,考虑其定义,性质,加之解决抽象函数问题时常用的技巧——赋值法,换元法等。尽可能使抽象函数变得不再抽象。 关键词:抽象函数;性质;求值;解析式 ;解题方法;技巧 Problem-solving methods and skills of abstract functions Xue Jie School of Mathematics and Statistics, Southwest University, Chongqing 400715, China Abstract :: abstract function is not analytic type specific, given only the function characteristics, its nature or some special relationship. So it is especially abstract. So to solve the abstract function problems need from the view of function essence, considering its definition, nature, and solve the abstract function problems commonly used techniques -- assignment method, substitution method etc.. As far as possible to make the abstract function is no longer abstract. Keywords : abstract function; property; evaluation; analytic method; problem solving skills; 1. 提出问题的背景 抽象函数问题是函数中的一类综合性较强的问题,这类问题通过对函数性质结构的代数表述,能够综合考查学生对于数学符号语言的理解和接受能力,考查对函数性质的代数推理和论证能力,考查学生的抽象思维和对知识的灵活运用能力,考查学生对于一般和特殊关系的认识,因而成为近几年高考命题的热点。由于抽象函数问题只给出函数所满足的一般性质或运算法则,没有明确的表示形式,因其抽象性和综合型,对学生而言有较大的难度。因此有必要对抽象函数的解题方法和技巧进行归纳总结。 2. 抽象函数的知识点 (1)定义域:函数的定义域指自变量x 的取值范围。所以对抽象函数()x f ,()[]x g f 而言,其定义域均指的是x 的取值范围。对于()[]x g f 和()[]x h f ,其中()x g 和()x h 的地位是等价的,故取值范围是一样的。 (2)值域:函数的值域指函数值的取值范围。那么具有相同对应关系的两个抽象函数 ()[]x g f 和()[]x h f ,它们的值域是相同的。

关于多元函数的极值和最值计算

关于多元函数的极值和最值计算 (一) 可微函数的无条件极值 如果(,)z f x y =在区域D 上存在二阶连续偏导数,我们可以用下面的方法求出极值。 首先,通过解方程''00 x y f f ?=??=?? 得到驻点。其次,对每个驻点求出二阶偏导数: '''''',,xx xy yy A f B f C f === 最后利用课本定理7.8进行判断。 20,0,AC B A ->> 函数在此点取极小值; 20,0,AC B A ->< 函数在此点取极大值; 20,AC B -< 函数在此点不取极值; 20,AC B -= 不能确定。 (二) 如何求多元函数的最值 如果函数(,)z f x y =在有界闭域D 上连续,那么函数(,)z f x y =在有界闭域D 上一定存在最大值和最小值。下面介绍如何求出(,)z f x y =在有界闭域D 上的最值。 首先, 在D 的内部求出函数(,)z f x y =的驻点 及 偏导数不存在的点。 其次,求出函数(,)z f x y =在D 的边界上的最大值点和最小值点。这里分两种情况处理: 第一种情况:D 的边界是由显函数来表示 的(包括边界是分段用显函数表示的情形),可以用消元法转化为一元函数在闭区间上的最值问题 来解决。 第二种情况:D 的边界是由 隐函数(,)0x y ?=来表示 的,而且函数(,)z f x y =,(,)x y ?在包含D 的区域上存在二阶连续偏导数,此时可以用拉格朗日乘数法求出驻点。 最后, 通过比较函数(,)z f x y =在我们得到的点上的函数值,就可得到(,)z f x y =在有界闭域D 上的最值。 (三) 如何求条件极值 下面介绍求函数(,)z f x y =在约束条件(,)0x y ?=下的条件极值。 第一种情况:如果(,)0x y ?=确定了显函数)(y g x =或者)(x h y =,可以用消元法转化为一元函数在闭区间上的极值问题 来解决。 第二种情况:如果函数(,)z f x y =,(,)0x y ?=在区域D 上存在二阶连续偏导数,而且(,)0x y ?=确定了隐函数,此时可以用拉格朗日乘数法。首先,求出拉格朗日函数),,(λy x L 在区域D 内的驻点。

高一数学常见的对数函数解题方法教案

常见的对数函数解题策略 一、分类讨论 例1 若实数a 满足2log 13 a <,求a 的取值范围。 分析:需对a 进行分类讨论。 当1a >时,∵log 1a a =,∴2log log 3a a a <,∴23 a >; 当01a <<时,∵2log log 3a a a <,∴23a <,即203a <<。 故20,(1,)3a ??∈+∞ ??? 。 评注:解含有对数符号的不等式时,必须注意对数的底数是大于1还是小于1,然后再利用相应的对数函数的单调性进行解答。理解会用以下几个结论很有必要:①当1a >时,若log 0a x >,则1x >,若l o g 0a x <,则01x <<;②当01a <<时,若log 0a x >,则01x <<,若log 0a x <,则1x >。 二、数形结合 例2 若x 满足2log 3x x =-,则x 满足区间( ) A .(0,1) B .(1,2) C .(1,3) D .(3,4) 分析:本题左边是一个对数函数,右边是一个一次函数,可通过作图象求解。 解析:在同一直角坐标系中画出2log y x =,3y x =-的图象,如图所示,可观察两图象交点的横坐标满足13x <<,答案选C 。 评注:解决该类问题的关键是正确作出函数2log y x =,3y x =-的图象,从而观察交点的横坐标的取值范围。 三、特殊值法 2x x -x

例3 已知log (2)a y ax =-在[0,1]上为x 的减函数,则a 的取值范围为( ) A .(0,1) B .(1,2) C .(0,2) D .[2,)+∞ 分析:由函数的单调性求底数a 的取值范围,逆向考查,难度较大,可采用特殊值法进行判断。 解析:取特殊值0.5a =,10x =,21x =,则有10.5 l o g (2)l o g 2a ax - =,20.53log (2)log 2a ax -=,与y 是x 的减函数矛盾,排除A 和C ; 取特殊值3a =,11x =,则2230ax -=-<,所以3a ≠,排除D 。 答案选B 。 评注:本题由常规的具体函数判断其单调性,变换为已知函数的单调性反过来确定函数中底数a 的范围,提高了思维层次。 四、合理换元 例4 若28x ≤≤,求函数2 21144log log 5y x x ??=++ ???的值域。 分析:通过对函数式进行变形,此题是一个二次函数求值域问题,可换元进行求解。 解析:设14log t x =,∵28x ≤≤,∴114 4log 8log 2t ≤≤,即3122t - ≤≤-。 又2 21144log log 5y x x ??=++ ???21144 log 2log 5x x ??++ ???, ∴2225(1)4y t t t =++=++,∵3122 t -≤≤-, ∴当1t =-时,y 最小值为4;当32t =-或12 t =-时,y 值相等且最大,y 最大为174。 故函数y 的值域为174,4?????? 。 评注:换元法是一种常见的数学思想,也是一种常用的解题技巧,希望同学们在今后的学习中合理转化,灵活运用。

多元函数最值问题(1)

多元函数最值问题 一.方法综述 多元函数的最值问题就是在多个约束条件下,某一个问题的最大和最小值.在所列的式子之中,有多个未知数.求解多元函数的最值问题技巧性强、难度大、方法多,灵活多变,多元函数的最值问题蕴含着丰富的数学思想和方法.解题办法常有:导数法、消元法、基本不等式法、换元法、数形结合法、向量法等. 二.解题策略 类型一 导数法 例1.【2018上海市长宁、嘉定区一模】若不等式()2 2 2x y cx y x -≤-对任意满足0x y >>的实数x , y 恒成立,则实数c 的最大值为__________. 【答案】4 【举一反三】【2018江西省临川二中、新余四中联考】已知函数()f x 的定义域是R , ()()()2 10 811(0) x a x x f x ln x x ?-++≤?=?++>??(a 为小于0的常数)设12x x <且()()12 ''f x f x =,若2 1 x x -的最小值 大于5,则a 的范围是__________. 【答案】(),4-∞-

类型二 消元法 例2.【2018河北省廊坊市第八高级中学模拟】若对任意的实数x ,都存在实数y 与之对应,则当 ()220x y y x e y x a e ----=时,实数a 的取值范围为( ) A. 1, 2e ? ? -∞ ?? ? B. (),0-∞ C. 10,3e ?? ??? D. 1,3e ??-∞ ?? ? 【答案】D 【解析】由题设有()33x y a y x e -=-,令x y t -=,则3,t a t e t R =-∈,所以()3'13,t a t e t R =-+∈,当 1,3t ??∈-∞- ???时, '0a >, 3t a te =在1,3??-∞- ???为增函数;当1,3t ??∈-+∞ ???时, '0a <, 3t a te =在 1,3? ?-∞- ? ?? 为减函数,所以m a x 13a e =,注意到当0t >时, 0a <,故选D. 【解题秘籍】题设条件中变量较多,但可以把x y -看成整体,从而把问题转化为一元函数的值域来讨论. 类型三.基本不等式法 例 3.【2018湖南省长沙市第一中学模拟】设二次函数()2 f x ax bx c =++(,,a b c 为常数)的导函数为

相关文档
相关文档 最新文档