文档库 最新最全的文档下载
当前位置:文档库 › 实验3弦线上驻波实验

实验3弦线上驻波实验

实验3弦线上驻波实验
实验3弦线上驻波实验

实验3弦线上驻波实验

一 实验目的

1.观察在弦上形成的驻波,并用实验确定弦线振动时驻波波长与张力的关系; 2.在弦线张力不变时,用实验确定弦线振动时驻波波长与振动频率的关系; 3.学习对数作图或最小二乘法进行数据处理。 二 实验仪器

FD-SWE-II 弦线上驻波实验仪1套 弦线 1根

砝码与砝码盘1套 三 实验原理

图1 仪器结构图

1、可调频率数显机械振动源;

2、振动簧片;

3、弦线;

4、可动支架;

5、可动刀口支架;

6、标尺;

7、

固定滑轮;8、砝码与砝码盘;9、变压器;10、实验平台;11、实验桌

如图1一根线密度为μ的拉紧的弦线,一端与振源相连,另一端跨过滑轮挂上一定质量的砝码,使其受张力为T 。这样,在振源的带动下, ④—⑤之间可观察到明显的驻波,若波源的振动频率为f ,横波波长为λ,弦线密度为μ,弦线受张力为T 则它们之间满足如下关系:

f T lo

g log 2

1

log 21log --=

μλ (1) 分析:如果固定f 、 μ,改变T ,并测出各相应波长λ,作log λ-log T 图,若得一直线,计算其

斜率值(如为

2

1

),则证明了λ∝21T 的关系成立。如果固定μ、T ,改变f ,测出各相应波长λ,作log λ-log f 图,如得一斜率为-1的直线就验证了λ∝f -1

。本实验就是验证以上两项是否成立。

弦线上的波长可利用驻波原理测量。当两个振幅和频率相同的相干波在同一直线上相向传播时,其所叠加而成的波称为驻波,一维驻波是波干涉中的一种特殊情形。在弦线上出现许多静止点,称为驻波的波节。相邻两波节间的距离为半个波长。 四 实验步骤

A 、验证横波的波长与弦线中的张力的关系

1、实验时,将变压器(黑色壳)输入插头与220V 交流电源接通,输出端(五芯航空线)与主机上的航空座相连接。打开数显振动源面板上的电源开关①(振动源面板如图2所示)。面板上数码管⑤显示振动源振动频率×××.××Hz 。根据需要按频率调节②中▲(增加频率)或▼(减小频率)键,改变振动源的振动频率,调节面板上幅度调节旋钮④,使振动源有振动输出;当不需要振动源振动时,可按面板上复位键③复位,数码管显示全部清零。

图2 振动源面板图

1、电源开关

2、频率调节

3、复位键

4、幅度调节

5、频率指示

2、在某些频率(60Hz附近),由于振动簧片共振使振幅过大,此时应逆时针旋转面板上的旋钮以减小振幅,

便于实验进行(最好避开共振点做实验)。不在共振频率点工作时,可调节面板上幅度旋钮④到输出最大。

3、固定一个波源振动的频率(一般取为100Hz,若振动振幅太小,可将频率取小些,比如90Hz),在砝码

盘上添加不同质量的砝码,以改变同一弦上的张力T。每改变一次张力(即增加一次砝码),均要左右移动可动刀口支架④(保持在第一波节点)和可动刀口⑤的位置,使弦线出现振幅较大而稳定的驻波。

用实验平台⑩上的标尺⑥测量L值,记录振动频率、砝码质量、产生整数倍半波长的弦线长度及半波波数,根据式(3)算出波长λ,作logλ-log T图,求其斜率。

B、验证横波的波长与波源振动频率的关系

在砝码盘上放上3块质量为45g的砝码,以固定弦线上所受的张力T,改变波源振动的频率f,用驻波法测量各相应的波长,作logλ-log f图,求其斜率。最后总结出弦线上波传播的规律。

【实验数据】(注:以下数据不作为仪器验收标准,仅供实验时参考)

1、验证横波的波长λ与弦线中的张力T的关系(各砝码质量不一定严格等于45g,故需分别用分析天平测量)

m为挂钩的质量42.46g,L为产生驻波的弦线长度,n为在L长度内波源振动频率f=100.00Hz;

半波的波数,实验结果如表1所示。

表1 给定频率的实验数据表

m/g 45.01 90.01 135.01 180.01 225.01

m+m0/g 87.47 132.47 177.47 222.47 267.47

L/cm 104.44 89.87 78.92 91.3 96.48

n 7 5 4 4 4

λ/cm 29.84 35.948 39.46 45.65 48.24

T/N 0.8567 1.297 1.738 2.179 2.620

logλ-0.5252 -0.4443 -0.4038 -0.3406 -0.3166

0.4182

logT -0.06718 0.1131 0.2401 0.3382

经最小二乘法拟合得logλ-log T的斜率为:0.4344,相关系数为:0.99

2、验证横波的波长λ与波源振动频率f的关系

砝码加上挂钩的总质量m=177.47×10-3Kg;上海地区的重力加速度g=9.794m/s2;张力T=177.47×10-3×9.794=1.738N,实验结果如表2所示:

表2给定张力的实验数据表

图4 波长对数-频率对数关系图

经最小二乘法拟合得logλ-log f的斜率为:-0.9948,相关系数为:0.99。

实验结果得到logλ-log T的斜率接近0.5;logλ-log f的斜率接近-1。验证了弦线上横波的传播规律,即横波的波长λ与弦线张力T的平方根成正比,与波源的振动频率f成反比。

【注意事项】

1、须在弦线上出现振幅较大而稳定的驻波时,再测量驻波波长。

2、张力包括砝码与砝码盘的质量,砝码盘的质量用分析天平称量。

3、当实验时,发现波源发生机械共振时,应减小振幅或改变波源频率,便于调节出振幅大且稳定的驻波。【思考题】

1、求λ时为何要测几个半波长的总长?

2、为了使logλ-log T直线图上的数据点分布比较均匀,砝码盘中的砝码质量应如何改变?

3、为何波源的簧片振动频率尽可能避开振动源的机械共振频率?

4、弦线的粗细和弹性对实验各有什么影响,应如何选择?

弦上驻波实验-实验报告

实验名称:弦上驻波实验 目的要求 (1)观察在两端被固定的弦线上形成的驻波现象。了解弦线达到共振和形成稳定驻波的条件。 (2)测定弦线上横波的传播速度。 (3)用实验的方法确定弦线作受迫振动时的共振频率与驻波波长,张力和弦线线密度之间的关系。 (4)对(3)中的实验结果用对数坐标纸作图,用最小二乘法作线性拟合和处理数据,并给出结论。 仪器用具 弦音计装置一套(包括驱动线圈和探测器线圈各一个,1Kg砝码和不同密 度的吉他线,信号发生器,数字示波器,千分尺,米尺)。 实验原理: 1.横波的波速 横波沿弦线传播时,在维持弦线张力不变的情况下,横波的传播速度v与张力F T及弦线的线密度(单位长度的质量)p之间的关系为: 2.两端固定弦线上形成的驻波

考虑两列振幅,频率相同,有固定相位差,传播方向相反的间谐波u i(x,t)=

A cos( kx - wt -扪和 U2 (x, t) = A cos( kx+ st)。其中k 为波数,? 为 u i 与 U2 之间的相位差叠加,其合成运动为: t t) + 就0 = 2J1 cos(fcx —-)cos(wf + )由上可知,时间和空间部分是分离的,某个x点振幅不随时间改变: 川£)= \2A cos(A-.r —< 振幅最大的点称为波腹,振幅为零的点,为波节,上述运动状态为驻波。驻波中振动的相位取决于cos(kx- ?/2)因子的正负,它每经过波节变号一次。所以,相邻波长之间各点具有相同的相位,波节两侧的振动相位相反,即相差相位n。对两端固定的弦(长为L),任何时刻都有: O J1 + T' ?._G—及则rns( —= 0 =Or 则cu^(kL—^) = 0 由上式知,? = n意味着入射波U1和反射波U2在固定端的相位差为n,即有半波损。?确定后,则有kL = n冗(n = 1 , 2, 3, 4)或入=2 +,驻波的频 率为: , a kt v f = — = — = n - J2TT刼2L fn三讪三"金=(佥)£ 式中f i为基频,f n (n>1 )为n次谐波。 3.共振条件:对于两端固定的弦线上的每一列波在到达弦的另一端时都被反射,

山西大学大学物理实验演示实验实验报告范文

实验目的: 1.在拓展知识面的同时训练学生的动手操作能力; 2.通过此类实验建立理论联系实践的能力与思维; 记忆合金水车:形状记忆合金是一种特殊的功能材料,它可以记住加工好的形状,当外力或温度改变使其形状发生改变的时候,只要适当的加热就可以恢复原来的形状。该装置让所选记忆合金周期性地与高温热源和低温热源接触,形状随之周期性地变化,从而驱动水车轮的转动,形象地展示了热变为功的过程和形状记忆合金的特性和用途。 该种形状记忆合金为镍钛合金,有双程记忆功能(即能记忆温度高低两种情况下的形状)可以有上百万次的变形和恢复。镍钛合金还有相当好的生物相容性,相变温度较低,约在40-50℃,医学上用于脊柱侧歪、骨骼畸形等的矫正。 低温差热机:可以利用比环境温度高4℃的任何热源,使一组活塞运动并推动转轮运转,是一种很好的利用低温热源的热机,可以利用不高的温度差实行热工转化。主要应用在于能利用传

统热机无法利用的能量来源。 经典置换式热气机:利用酒精灯的热量驱动一组活塞、连杆和转轮往复运动,工作物质为封闭在透明活塞筒中的空气。活塞和工作物质在往复过程中完成吸放热和能量转化,工作过程形象直观,是对热力学定律和热机原理极好的阐释。其透明活塞材料为石英玻璃,主要特点是热胀冷缩系数小,透光性好。耐腐蚀性强。 投影式伽耳顿板:可以用来验证大量随机物理事件共同遵循的统计物理规律。统计物理规律因等概率假设则其结果可靠,在应用方面很广泛,比如相对论基本假设的提出等等。 辉光盘:利用低压气体分子在在高频强电场中激发、碰撞、电离、复合的过程,外界声音影响电场分布从而影响电子运动,在盘上显示出形状变化的荧光。 昆特管(声驻波演示):利用管中泡沫小球在声驻波场中形成的“泡沫墙”将看不见的声波显示出来,实现了抽象概念的具象化。该装置的缺点是无法消除静电的影响:泡沫小球帖在管内壁上。 气柱共鸣声速测量装置:通过气柱共鸣测量

驻波实验报告

实验目的: 1、观察弦振动及驻波的形成; 3、在振动源频率不变时,用实验确定驻波波长与张力的关系; 4、在弦线张力不变时,用实验确定驻波波长与振动频率的关系; 4、定量测定某一恒定波源的振动频率; 5、学习对数作图法。 实验仪器: 弦线上驻波实验仪(FD-FEW-II型)包括:可调频率的数显机械振动源、平台、固定滑轮、可动刀口、可动卡口、米尺、弦线、砝码等;分析天平,米尺。 实验原理: 如果有两列波满足:振幅相等、振动方向相同、频率相同、有固定相位差的条件,当它们相向传播时,两列波便产生干涉。一些相隔半波长的点,振动减弱最大,振幅为零,称为波节。两相邻波节的中间一点振幅最大,称为波腹。其它各点的振幅各不相同,但振动步调却完全一致,所以波动就显得没有传播,这种波叫做驻波。驻波相邻波节间的距离等于波长λ的一半。 如果把弦线一端固定在振动簧片上,并将弦线张紧,簧片振动时带动弦线由左向右振动,形成沿弦线传播的横波。若此波前进过程中遇到阻碍,便会反射回来,当弦线两固定端间距为半波长整数倍时,反射波与前进波便形成稳定的驻波。波长λ、频率f和波速V满足关系:V = fλ (1) 又因在张紧的弦线上,波的传播速度V与弦线张力T及弦的线密度μ有如下关系:(2) 比较(1)、(2)式得:(3) 为了用实验证明公式(3)成立,将该式两边取自然对数,得: (4) 若固定频率f及线密度μ,而改变张力T,并测出各相应波长λ ,作ln T -lnλ图,若直线的斜率值近似为,则证明了的关系成立。同理,固定线密度μ及张力T,改变振动频率f,测出各相应波长λ,作ln f - lnλ图,如得一斜率为的直线就验证了。 将公式(3)变形,可得:(5) 实验中测出λ、T、μ的值,利用公式(5)可以定量计算出f的值。 实验时,测得多个(n个)半波长的距离l,可求得波长λ为:(6) 为砝码盘和盘上所挂砝码的总重量;用米尺测出弦线的长度L,用分析天平测其质量,求出弦的线密度(单位长度的质量):(7) 实验内容: 1、验证横波的波长λ与弦线中的张力T 的关系(f不变) 固定波源振动的频率,在砝码盘上添加不同质量的砝码,以改变同一弦上的张力。每改变一次张力(即增加一次砝码),均要左右移动可动卡口支架⑤的位置,使弦线出现振幅较大而稳定的驻波。将可动刀口支架④移到某一稳定波节点处,用实验平台上的标尺测出④、⑤之间的距离l,数出对应的半波数n,由式(6)算出波长λ。张力T改变6次,每一T下测2次λ,求平均值。作lnλ- ln T图,由图求其斜率。

物理演示实验报告

物理演示实验报告 学院材料科学与工程 专业材料科学与工程 年级2014级 姓名杨林 班级信箱号80 实验时间2016年5月4日星期三晚上 2016年5月10日 实验一锥体上滚 【实验目的】: 1.通过观察与思考双锥体沿斜面轨道上滚的现象,使学生加深了解在重力场中物体总是以降低重心,趋于稳定的运动规律。 2.说明物体具有从势能高的位置向势能低的位置运动的趋势,同时说明物体势能和动能的相互转换。 【实验仪器】:锥体上滚演示仪 图1 锥体上滚演示仪 【实验原理】: 能量最低原理指出:物体或系统的能量总是自然趋向最低状态。本实验中在低端的两根导轨间距小,锥体停在此处重心被抬高了;相反,在高端两根导轨较为分开,锥体在此处下陷,重心实际上降低了。实验现象仍然符合能量最低原理。 【实验步骤】: 1.将双锥体置于导轨的高端,双锥体并不下滚;

2.将双锥体置于导轨的低端,松手后双锥体向高端滚去; 3.重复第2步操作,仔细观察双锥体上滚的情况。 【注意事项】: 1.移动锥体时要轻拿轻放,切勿将锥体掉落在地上。 2.锥体启动时位置要正,防止它滚动时摔下来造成变形或损坏。 实验二陀螺进动 【实验目的】: 演示旋转刚体(车轮)在外力矩作用下的进动。 【实验仪器】:陀螺进动仪 图2陀螺进动仪 【实验原理】: 陀螺转动起来具有角动量L,当其倾斜时受到一个垂直纸面向里的重力矩(r×mg)作用,根据角动量原理, 其方向也垂直纸面向里。 下一时刻的角动量L+△L向斜后方,陀螺将不会倒下,而是作进动。 【实验步骤】: 用力使陀螺快速转动,将其倾斜放在支架上,放手后陀螺不仅绕其自转轴转动,而且自转轴还会绕支架旋转。这就是进动现象。

弦振动实验报告

弦振动的研究 一、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密ρ、弦长L和弦的张力Τ的关系, 并进行测量。 三、 波,沿X轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点“O”,且在X=0处,振动质点向上达最大位移时开始计时,则它们的波动方程

分别为: Y1=Acos2π(ft-x/ λ) Y2=Acos[2π (ft+x/λ)+ π] 式中A为简谐波的振幅,f为频率,λ为波长,X为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y1+Y2=2Acos[2π(x/ λ)+π/2]Acos2πft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2π(x/ λ)+π/2] |,与时间无关t,只与质点的位置x有关。 由于波节处振幅为零,即:|cos[2π(x/ λ)+π/2] |=0 2π(x/ λ)+π/2=(2k+1) π/ 2 ( k=0. 2. 3. … ) 可得波节的位置为: x=kλ /2 ② 而相邻两波节之间的距离为: x k+1-x k =(k+1)λ/2-kλ / 2=λ / 2 ③ 又因为波腹处的质点振幅为最大,即|cos[2π(x/ λ)+π/2] | =1 2π(x/ λ)+π/2 =kπ( k=0. 1. 2. 3. ) 可得波腹的位置为: x=(2k-1)λ/4 ④ 这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间的距离,就能确定该波的波长。 在本实验中,由于固定弦的两端是由劈尖支撑的,故两端点称为波节,所以,只有当弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,这就是均匀弦振动产生驻波的条件,其数学表达式为: L=nλ/ 2 ( n=1. 2. 3. … ) 由此可得沿弦线传播的横波波长为: λ=2L / n ⑤ 式中n为弦线上驻波的段数,即半波数。 根据波速、频率及波长的普遍关系式:V=λf,将⑤式代入可得弦线上横波的

弦振动与弦驻波实验

弦振动与弦驻波实验 波是一种重要的物理现象,我们通过前进的波和反射波叠加可以得到驻波。在和振动源连接的一根拉紧的弦线上,可以直观而清楚地了解弦振动时驻波形成的过程。用它可以研究弦振动的基频与张力、弦长的关系,从而测量在弦线上横波的传播速度,并由此求出振动源的频率,一、实验目的 1.观察弦振动时形成的驻波,学习与弦振动有关的物理知识和规律; 2.通过实验测量振动源的频率。 二、实验设备 THQZB-2型弦振动仪信号源、THQZB-2型弦振动实验仪。 图1 THQZB-2型弦振动仪信号源面板示意图 (一)THQZB-2型弦振动仪信号源 弦振动仪信号源主要由以下几部分组成,如图1所示: 频率计:用于显示信号源频率; 扬声器接口:用于连接信号源与实验仪中扬声器接口,驱动扬声器工作; 复位按键:用于当仪器出现死机或其他异常时使其恢复到初始状态; 频率调节旋钮:用于调节信号源输出信号的频率; 幅度调节旋钮:用于调节信号源输出信号的幅度。 (二)THQZB-2型弦振动实验仪 弦振动实验仪结构如图2所示: 图2 THQZB-2 型弦振动实验仪结构简图 弦振动实验仪由振子(扬声器)、滑块1(固定)、滑块2(可移动)、滑轮、弦线、砝码、标

尺、导轨等几部分组成。 三、实验原理 1. 弦线上横波的传播速度 在拉紧的弦线上,波沿某方向传播的速度(大学物理课中讲过)为 ρυF = (1) 式(1)中υ为波速, F 为弦线张力, ρ是弦线密度。 2. 振动频率与横波波长、弦线张力及线密度ρ的关系 如图2所示,将细弦线的一端固定在振动源上,另一端绕过滑轮悬挂砝码。当振子振动时,弦线也在振子的带动下振动,即振子的振动沿弦线传播,弦线振动频率和振子振动频率ν相等。选择适当的砝码重量,可在弦线上形成稳定的驻波。驻波波长为λ,则弦线上横波传播的速度为: νλυ= (2) 将式(2)代入式(1)得 ρνλF = (3) 设弦线长为L ,形成稳定驻波时,弦线上的半波(波腹)数为n ,则2 λ=n L ,即 n L 2=λ (4) 将式(4)代入式(9)得 ρ ρνmg L n F L n 22== (5) 式(5)表明线密度ρ、长度L 和张力F 与弦振动频率的关系。 3. 驻波的形成和特点 振动沿弦线的传播形成了行波,当在传播方向上遇到障碍后,波被反射并沿相反方向传播,反射波与入射波的振动频率相同,振幅相同,故它们是一对相干波,当入射波与反射波的相位差为π时,在弦线上产生了稳定的驻波,并在反射处形成波节。 设向右传播的波和向左传播的波在原点的相位相同,则它们的波动方程分别为 ?? ? ??-=λπx T t A y 2cos 1 (6) ?? ? ??+=λπx T t A y 2cos 2 (7) 两列波合成得 t T x A y y y πλπ2cos 2cos 221??? ? ?=+= (8)

弦驻波实验

弦驻波实验 一、实验目得 1、观测在弦线上形成得驻波,并用实验确定弦振动时,驻波波长与张力得关系,驻波波长与振动频率得关系,以及驻波波长与弦线密度得关系。 2、掌握驻波原理测量横波波长得方法。 二、实验内容 1、观察在弦上形成得驻波,并用实验确定弦线振动时驻波波长与张力得关系; 2、在弦线张力不变时,用实验确定弦线振动时驻波波长与振动频率得关系; 3、学习对数作图或最小二乘法进行数据处理。 三、实验原理 在一根拉紧得弦线上,其中张力为,线密度为,则沿弦线传播得横波应满足下述运动方程: (1) 式中x为波在传播方向(与弦线平行)得位置坐标,为振动位移.将(1)式与典型得波动方程 相比较,即可得到波得传播速度: 若波源得振动频率为,横波波长为,由于,故波长与张力及线密度之间得关系为: (2) 为了用实验证明公式(2)成立,将该式两边取对数,得: 若固定频率及线密度,而改变张力,并测出各相应波长,作log—log图,若得一直线,计算其斜率值(如为),则证明了∝得关系成立.同理,固定线密度μ及张力,改变振动频率,测出各相应波长,作log-log图,如得一斜率为—1得直线就验证了∝—1。 弦线上得波长可利用驻波原理测量。当两个振幅与频率相同得相干波在同一直线上相向传播时,其所叠加而成得波称为驻波,一维驻波就是波干涉中得一种特殊情形。在弦线上出现许多静止点,称为驻波得波节.相邻两波节间得距离为半个波长。见图2。 图2 四、实验仪器

图3 仪器结构图 1、机械振动器;2、振动簧片;3、弦线;4、可动刀口支架;5、标尺 6、固定滑轮;7、砝码;8、实验平台 实验装置如图3所示,弦线得一端系在能作水平方向振动得可调频率数显机械振动源得振簧片上;在振动装置(振动簧片中间得小孔)弦线一端通过定滑轮悬挂砝码;,在实验装置上还有一个可沿弦线方向左右移动并撑住弦线得可动刀口支架。可动刀口支架与滑轮固定在实验平台上,其产生得摩擦力很小,可以忽略不计。若弦线下端所悬挂得砝码(包含砝码盘)得质量为,张力.当波源振动时,即在弦线上形成向右传播得横波;当波传播到可动刀口支架与弦线相切点时,由于弦线在该点受到可动刀口支架阻挡而不能振动,当振动端簧片与可动刀口支架得弦线切点得长度等于半波长得整数倍时,即可得到振幅较大而稳定得驻波,振动簧片与弦线固定点为近似波节,弦线与动滑轮相切点为波节。它们得间距为,则 (3) 其中为任意正整数。利用式(3),即可测量弦上横波波长。实验可将振动片到可动刀口支架相切点距离。 五、实验内容 将仪器通上电,预热10分钟将信号输出与实验导轨上得振动器相连,结构按图3操作。 A、验证横波得波长与弦线中得张力得关系 固定一个波源振动得频率,添加不同质量得砝码,以改变同一弦上得张力。每改变一次张力(即增加一次砝码),均要左右移动可动刀口支架得位置,使弦线出现振幅较大而稳定得驻波。用实验平台上得标尺测量值,即可根据式(3)算出波长。作log-log T图,求其斜率.

声速的测定实验报告.doc

声速的测定实验报告 1、实验目的 (1)学会用驻波法和相位法测量声波在空气中传播速度。 (2)进一步掌握示波器、低频信号发生器的使用方法。 (3)学会用逐差法处理数据。 2、实验仪器 超声声速测定仪、低频信号发生器DF1027B 、示波器ST16B 。 3、实验原理 3.1 实验原理 声速V 、频率f 和波长λ之间的关系式为λf V =。如果能用实验方法测量声波的频率f 和波长λ,即可求得声速V 。常用的测量声速的方法有以下两种。 3.2 实验方法 3.2.1 驻波共振法(简称驻波法) S 1发出的超声波和S 2反射的超声波在它们之间的区域内相干涉而形成驻波。当波源的 频率和驻波系统的固有频率相等时,此驻波的振幅才达到最大值,此时的频率为共振频率。 驻波系统的固有频率不仅与系统的固有性质有关,还取决于边界条件,在声速实验中, S 1、S 2即为两边界,且必定是波节,其间可以有任意个波节,所以驻波的共振条件为: 3,2,1,2 ==n n L λ (1) 即当S 1和S 2之间的距离L 等于声波半波长的整数倍时,驻波系统处于共振状态,驻波振幅最大。在示波器上得到的信号幅度最大。当L 不满足(1)式时,驻波系统偏离共振状态,驻波振幅随之减小。 移动S 2,可以连续地改变L 的大小。由式(1)可知,任意两个相邻共振状态之间,即 S 2所移过的距离为: () 22 2 11λ λ λ = ? -+=-=?+n n L L L n n (2) 可见,示波器上信号幅度每一次周期性变化,相当于L 改变了2λ。此距离2λ 可由超声声速测定仪上的游标卡尺测得,频率可由低频信号发生器上的频率计读得,根据f V ?=λ,就 可求出声速。 3.2.2 两个相互垂直谐振动的合成法(简称相位法) 在示波器荧光屏上就出现两个相互垂直的同频率的谐振动的合成图形——称为李沙如图形。其轨迹方程为: ()()φφφφ122122122 12 2-=-- ???? ??+???? ??Sin Cos A A XY A Y A X (5) 在一般情况下,此李沙如图形为椭圆。当相位差 12=-=?φφφ时,由(5)式,得 x A A y 12=,即轨迹为一条处在于第一和第三象限的直线[参见图16—2(a)]。

大学物理《弦振动》实验报告

大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等) 一. 实验目的 1. 观察弦上形成的驻波 2. 学习用双踪示波器观察弦振动的波形 3. 验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系 二. 实验仪器 XY弦音计、双踪示波器、水平尺 三实验原理 当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。论和实验证明,波在弦上传播的速度可由下式表示: ρ 1 另外一方面,波的传播速度v 和波长λ及频率γ之间的关系是:

v= λ γ -- ② 将②代入①中得 γ =λ1 -- ③ρ 1 又有L=n* λ/2或λ =2*L/n 代入③得γ n=2L --- ④ρ 1 四实验内容和步骤 1. 研究γ和n 的关系 ①选择 5 根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。 ②设置两个弦码间的距离为60.00cm ,置驱动线圈距离一个弦码大约5.00cm 的位置上,将接受线圈放在两弦码中间。将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。 ③将1kg 砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必

要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g 是重力加速度;若砝码挂在第二个槽,则 T=2mg;若砝码挂在第三个槽,则T=3mg??. )④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1 时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5 时的共振频率,做γn 图线,导出γ和n 的关系。 2. 研究γ和T 的关系保持L=60.00cm,ρ 1 保持不变,将1kg 的砝码依次挂在第1、2、3、4、5 槽内,测出n=1 时的各共振频率。计算lg r 和lgT,以lg2 为纵轴,lgT 为横轴作图,由此导出r 和T 的关系。 3. 验证驻波公式 根据上述实验结果写出弦振动的共振频率γ与张力T、线密度ρ关系,验证驻波公式 1、弦长l1 、波腹数n 的 五数据记录及处理

弦驻波实验

弦驻波实验 弦驻波实验 一、实验目的 1、观测在弦线上形成的驻波,并用实验确定弦振动时,驻波波长与张力的关系,驻波波长与振动频率的关系,以及驻波波长与弦线密度的关系。 2、掌握驻波原理测量横波波长的方法。 二、实验内容 1、观察在弦上形成的驻波,并用实验确定弦线振动时驻波波长与张力的关系; 2、在弦线张力不变时,用实验确定弦线振动时驻波波长与振动频率的关系; 3、学习对数作图或最小二乘法进行数据处理。 三、实验原理 在一根拉紧的弦线上,其中张力为T ,线密度为μ,则沿弦线传播的横波应满足下述运动方程: 2 222x y T t y ??=??μ (1) 式中x为波在传播方向(与弦线平行)的位置坐标,y 为振动位移。将(1)式与典型的波动方程 2 2222x y V t y ??=?? 相比较,即可得到波的传播速度: μT V = 若波源的振动频率为f ,横波波长为λ,由于λf V =,故波长与张力及线密度之间的关系为: μλT f 1 = (2) 为了用实验证明公式(2)成立,将该式两边取对数,得: f T lo g log 2 1log 21log --=μλ

若固定频率f 及线密度μ,而改变张力T ,并测出各相应波长λ,作log λ-l og T 图,若得一直线,计算其斜率值(如为21),则证明了λ∝21T 的关系成立。同理,固定线密度μ及张力T ,改变振动频率f ,测出各相应波长λ,作log λ-l og f 图,如得一斜率为-1的直线就验证了λ∝f -1 。 弦线上的波长可利用驻波原理测量。当两个振幅与频率相同的相干波在同一直线上相向传播时,其所叠加而成的波称为驻波,一维驻波就是波干涉中的一种特殊情形。在弦线上出现许多静止点,称为驻波的波节。相邻两波节间的距离为半个波长。见图2。 ? 2 λ 图2 四、实验仪器 图3 仪器结构图 1、机械振动器; 2、振动簧片; 3、弦线;4、可动刀口支架;5、标尺 6、固定滑轮;7、砝码;8、实验平台 实验装置如图3所示,弦线的一端系在能作水平方向振动的可调频率数显机械振动源的振簧片上;在振动装置(振动簧片中间的小孔) 弦线一端通过定滑轮悬挂砝码;,在实验装置上还有一个可沿弦线方向左右移动并撑住弦线的可动刀口支架。可动刀口支架与滑轮固定在实验平台上,其产生的摩擦力很小,可以忽略不计。若弦线下端所悬挂的砝码(包含砝码盘)的质量为m ,张力mg T =。当波源振动时,即在弦线上形成向右传播的横波;当波传播到可

弦振动实验-报告

弦振动实验-报告

实验报告 班级姓名学号 日期室温气压成绩教师 实验名称弦振动研究 【实验目的】 1.了解波在弦上的传播及驻波形成的条件 2.测量不同弦长和不同张力情况下的共振频率 3.测量弦线的线密度 4.测量弦振动时波的传播速度 【实验仪器】 弦振动研究试验仪及弦振动实验信号源各一台、双综示波器一台 【实验原理】 驻波是由振幅、频率和传播速度都相同的两列相干波,在同一直线上沿相反方向传播时叠加而成的特殊干涉现象。 当入射波沿着拉紧的弦传播,波动方程为 ()λ πx =2 y- cos A ft 当波到达端点时会反射回来,波动方程为 ()λ πx cos =2 y+ A ft

式中,A 为波的振幅;f 为频率;λ为波长;x 为弦线上质点的坐标位置,两拨叠加后的波方程为 ft x A y y y πλπ2cos 2cos 22 1=+= 这就是驻波的波函数,称为驻波方程。式中,λπx A 2cos 2是各点的振幅 ,它只与x 有关,即各点 的振幅随着其与原点的距离x 的不同而异。上式表明,当形成驻波时,弦线上的各点作振幅为λ πx A 2cos 2、频率皆为f 的简谐振动。 令02cos 2=λπx A ,可得波节的位置坐标为 () 412λ +±=k x Λ2,1,0=k 令12cos 2=λπx A ,可得波腹的位置坐标为 2λ k x ±= Λ 2,1,0=k 相邻两波腹的距离为半个波长,由此可见,只要从实验中测得波节或波腹间的距离,就可以确定波长。 在本试验中,由于弦的两端是固定的,故两端 点为波节,所以,只有当均匀弦线的两个固定端之间的距离(弦长)L 等于半波长的整数倍时,才能形成驻波。 既有 2λ n L = 或 n L 2=λ Λ2,1,0=n

声速测量实验报告

声速测量实验报告 【实验目的】 1.学会测量超声波在空气中的传播速度的方法。 2.理解驻波和振动合成理论。 3.学会用逐差法进行数据处理。 4.了解压电换能器的功能和培养综合使用仪器的能力。 【实验仪器】 信号发生器、双踪示波器、声速测定仪。 【实验原理】 声波的传播速度v与声波频率f和波长的关系为: 可见,只要测出声波的频率f和波长 ,即可求出声速。f可由声源的振动频率得到,因此,实验的关键就是如何测定声波波长。 根据超声波的特点,实验中可以采用驻波法和相位法测出超声波的波长。 1. 驻波法(共振干涉法) 如右图所示,实验时将信号发生器输出的 正弦电压信号接到发射超声换能器上,超声发 射换能器通过电声转换,将电压信号变为超声 波,以超声波形式发射出去。接收换能器通过 声电转换,将声波信号变为电压信号后,送入示波器观察。 由声波传播理论可知,从发射换能器发出一定频率的平面声波,经过空气传播,到达接收换能器。如果接收面和发射面严格平行,即入射波在接收面上垂直反射,入射波与反射波相互干涉形成驻波。此时,两换能器之间的距离恰好等于其声波半波长的整数倍。在声驻波中,波腹处声压(空气中由于声扰动而引起的超出静态大气压强的那部分压强)最小,而波节处声压最大。当接收换能器的反射界面处为波节时,声压效应最大,经接收器转换成电信号后从示波器上观察到的电压信号幅值也是极大值,所以可从接收换能器端面声压的变化来判断超声波驻波是否形成。 移动卡尺游标,改变两只换能器端面的距离,在一系列特定的距离上,媒质中将出现稳定的驻波共振现象,此时,两换能器间的距离等于半波长的整数倍,只要我们监测接收换能器输出电压幅度的变化,记录下相邻两次出现最大电压数值时(即接收器位于

大学物理演示实验报告

实验一锥体上滚 【实验目的】: 1.通过观察与思考双锥体沿斜面轨道上滚的现象,使学生加深了解在重力场中物体总是以降低重心,趋于稳定的运动规律。 2.说明物体具有从势能高的位置向势能低的位置运动的趋势,同时说明物体势能和动能的相互转换。 【实验仪器】:锥体上滚演示仪 图1,锥体上滚演示仪 【实验原理】: 能量最低原理指出:物体或系统的能量总是自然趋向最低状态。本实验中在低端的两根导轨间距小,锥体停在此处重心被抬高了;相反,在高端两根导轨较为分开,锥体在此处下陷,重心实际上降低了。实验现象仍然符合能量最低原理。【实验步骤】: 1.将双锥体置于导轨的高端,双锥体并不下滚;

2.将双锥体置于导轨的低端,松手后双锥体向高端滚去; 3.重复第2步操作,仔细观察双锥体上滚的情况。 【注意事项】: 1.移动锥体时要轻拿轻放,切勿将锥体掉落在地上。 2.锥体启动时位置要正,防止它滚动时摔下来造成变形或损坏。

实验二陀螺进动 【实验目的】: 演示旋转刚体(车轮)在外力矩作用下的进动。 【实验仪器】:陀螺进动仪 图2陀螺进动仪 【实验原理】: 陀螺转动起来具有角动量L,当其倾斜时受到一个垂直纸面向里的重力矩(r ×mg)作用,根据角动量原理, 其方向也垂直纸面向里。

下一时刻的角动量L+△L向斜后方,陀螺将不会倒下,而是作进动。 【实验步骤】: 用力使陀螺快速转动,将其倾斜放在支架上,放手后陀螺不仅绕其自转轴转动,而且自转轴还会绕支架旋转。这就是进动现象。 【注意事项】: 注意保护陀螺,快要停止转动时用手接住,以免掉到地上摔坏。 实验三弹性碰撞仪 【实验目的】: 1. 演示等质量球的弹性碰撞过程,加深对动量原理的理解。 2. 演示弹性碰撞时能量的最大传递。 3. 使学生对弹性碰撞过程中的动量、能量变化过程有更清晰的理解。 【实验仪器】:弹性碰撞仪 图3,弹性碰撞仪

弦振动实验报告

实验13 弦振动得研究 任何一个物体在某个特定值附近作往复变化,都称为振动。振动就是产生波动得根源,波动就是振动得传播。均匀弦振动得传播,实际上就是两个振幅相同得相干波在同一直线上沿相反方向传播得叠加,在一定条件下可形成驻波。本实验验证了弦线上横波得传播规律:横波得波长与弦线中得张力得平方根成正比,而与其线密度(单位长度得质量)得平方根成反比、 一、 实验目得 1、 观察弦振动所形成得驻波。 2、 研究弦振动得驻波波长与张力得关系、 3. 掌握用驻波法测定音叉频率得方法。 二。 实验仪器 电动音叉、滑轮、弦线、砝码、钢卷尺等。 三。 实验原理 1、 两列波得振幅、振动方向与频率都相同,且有恒定得位相差,当它们在媒质内沿一条直线相向传播时,将产生一种特殊得干涉现象——形成驻波、如图3—13—1所示。在音叉一臂得末端系一根水平弦线,弦线得另一端通过滑轮系一砝码拉紧弦线。当接通电源,调节螺钉使音叉起振时,音叉带动弦线A端振动,由A 端振动引起得波沿弦线向右传播,称为入射波。同时波在C 点被反射并沿弦线向左传播,称为反射波。这样,一列持续得入射波与其反射波在同一弦线上沿相反方向传播,将会相互干涉、当C 点移动到适当位置时,弦线上就形成驻波。此时,弦线上有些点始终不动,称为驻波得波节;而有些点振动最强,称为驻波得波腹。 2、 图3—13-2所示为驻波形成得波形示意图。在图中画出了两 列波在T=0,T/4,T/2时刻得波形,细实线表示向右传播得波,虚线表示 向左传播得波,粗实线表示合成波。如取入射波与反射波得振动相位 始终相同得点作为坐标原点,且在X=0处,振动点向上到达最大位移时开始计时,则它们得波动方程分别为:

弦振动实验报告

实验13 弦振动的研究 任何一个物体在某个特定值附近作往复变化,都称为振动。振动是产生波动的根源,波动是振动的传播。均匀弦振动的传播,实际上是两个振幅相同的相干波在同一直线上沿相反方向传播的叠加,在一定条件下可形成驻波。本实验验证了弦线上横波的传播规律:横波的波长与弦线中的张力的平方根成正比,而与其线密度(单位长度的质量)的平方根成反比。 一. 实验目的 1. 观察弦振动所形成的驻波。 2. 研究弦振动的驻波波长与张力的关系。 3. 掌握用驻波法测定音叉频率的方法。 二. 实验仪器 电动音叉、滑轮、弦线、砝码、钢卷尺等。 三. 实验原理 1. 两列波的振幅、振动方向和频率都相同,且有恒 定的位相差,当它们在媒质内沿一条直线相向传播时,

将产生一种特殊的干涉现象——形成驻波。如图3-13-1所示。在音叉一臂的末端系一根水平弦线,弦线的另一端通过滑轮系一砝码拉紧弦线。当接通电源,调节螺钉使音叉起振时,音叉带动弦线A端振动,由A端振动引起的波沿弦线向右传播,称为入射波。同时波在C点被反射并沿弦线向左传播,称为反射波。这样,一列持续的入射波与其反射波在同一弦线上沿相反方向传播,将会相互干涉。当C点移动到适当位置时,弦线上就形成驻波。此时,弦线上有些点始终不动,称为驻波的波节;而有些点振动最强,称为驻波的波腹。 2. 图3-13-2所示为驻波形成的波形示意图。在图中画出了两列波在T=0,T/4,T/2时刻的波形,细实线表示向右传播的波,虚线表示向左传播的波,粗实线表示合成波。如取入射波和反射波的振动相位始终相同的点作为坐标原点,且在X=0处,振动点向上到达最大位移时开始计时,则它们的波动方程分别为: (3-13-1) (3-13-2)式中为波的振幅,为频率,λ为波长,为弦线上质点的坐标位置。 两波叠加后的合成波为驻波,其方程为: (3-13-3)由上式可知,入射波与反射波合成后,弦线上各点都在以同一频率作 简谐振动,它们的振幅为,即驻波的振幅与时间无关,而与质

弦振动和驻波实验

弦振动和驻波实验 【实验目的】 1、观察固定均匀弦振动传播时形成的驻波波形; 2、测量均匀弦线上横波的传播速度及均匀弦线的线密度。 【实验器材】 XZDY-B 型固定均匀弦振动仪、磁铁、钩码、滑轮、电子天平等。 【实验原理】 驻波是一种波的叠加现象,它广泛存在于各种振动现象中。本实验通过通有交流电的铜导线在磁场中的振动,观察弦振动驻波的形成,验证横波的波长与弦线中的张力平方根成正比,与线密度的平方根成反比,并利用弦线上产生的驻波,测出驻波的波长。 横波沿弦线传播时,在维持弦线张力不变的情况下,横波的传播速度v 与张力T 及弦线的线密度ρ(即单位长 度的质量) 之间的关系为:v = (1)。设弦线的振动频率为f ,横波在弦线上传播的波长为λ,则根据v f λ=, 有λ= 2)。根据式(2)可知,若弦线的振动频率f 和线密度ρ一定,则波长λ与张力T 的平方根成正比。 如图所示,弦线的一端通过劈尖A ,另一端跨过劈尖B 后通过滑轮挂钩码,当铜导线振动时,振动频率为交流电的频率。随着振动产生向右传播的横波,此波由A 点传到B 点时发生反射。由于前进波和反射波的振幅相同、频率相同、振动方向相同,但传播方向相反,所以可互相干涉形成驻波。在驻波中,弦上各点的振幅出现周期性的变化,有些点振幅最大,称为波腹;有些点振幅为零,称为波节。 两相邻波腹(或波节)之间的距离等于形成驻波的相干波波长的一半。当弦的长度L (A 、B 两劈尖之间的距离)恰为半波长( 2 λ )的整数倍时产生共振。此时驻波的振幅最大且稳定,因此均匀弦振动产生驻波的条件为:(1,2,3......)2 L n n λ == (3) ,式中n 为半波数。可见,由驻波的半波长的波段数n 和弦长L ,即可求出波长λ,则2(1,2,3......)L n n λ==(4)。由公式(2)和(4)可得弦线的线密度2 22 4Tn L f ρ=(5)。 【实验内容】 1、打开电源,启动弦振动仪,观察均匀弦振动传播时形成的驻波波形。 2、测定弦线的线密度ρ:选取频率100f Hz =,张力T 由40g 钩码挂在弦线的一端产生。调节劈尖A 、B 之间的距离,使弦线上依次出现1,2,3n =段的稳定驻波,记录相应的弦线长i L 值。 3、计算弦上横波的传播速度v :在张力T 一定的条件下40g ,改变频率f 分别为5075100125150Hz 、、、、,调节弦 λ/2

声速测量实验报告

声速测量实验报告 姓名:陈岩松 学号:5501215012 班级:本硕实验班151班实验名称声速的测量 实验目的1.用驻波法和相位法测声速。 2.学会用逐差法进行数据处理。 3.了解声波在空气中的传播速度与气体状态参量的关系。 4.了解压电换能器的功能和培养综合使用仪器的功能。 实验原理声速v、声源振动频率f和波长λ之间的关系是 λf v= 所以只要测得声波的频率f和波长λ,就可以求得声速v。其中声波频率频率计测得。本实验的主要任务是测量声波波长λ,用驻波法和相位法测量。 1.相位法 波是振动状态的传播,也可以说是相位的传播。在波的传播方向上任何两点,如果其振动状态相同或者其相位差为π2的整数倍,这两点的距离等于波长的整数倍,即λn l=(n为一整数)。 若超声波发出的声波是平面波,当接收器面垂直于波的传播

方向时,其端面上各点都具有相同的相位。沿传播方向移动接收器时,总可以找到一个位置使得接收到的信号与发射器的电信号同相。继续移动接收器,直到找到的信号再一次与发射器的激励电信号同相时,移过的这段距离就等于声波的波长。 实际操作时,我们用的是利用李萨如图形寻找同相或反相时椭圆退化成直线的点。 2.驻波法 按照驻波动理论,超声波发生器发出的平面波经介质到接收器,若接收面与发射面平行,声波在接收面就会被垂直反射,于是平面声波在两端面间来回反射并叠加。当接收端面与发射头间的距离恰好等于半波长的整数倍时,叠加后的波 λ。当就形成驻波。此时相邻两波节间的距离等于半个波长 2 发生器的激励频率等于驻波系统的固有频率(本实验中压电陶瓷的固有频率)时,会产生驻波共振波腹处的振幅达到最大值。 声波是一种纵波。由纵波的性质知,驻波波节处的声压最大。当发生共振时,接收端面处为一波节,接收到的声压最大,转换成的电信号也最强。移动接收器到某个共振位置时,示波器上又会出现最强的信号,继续移动到某个共振位置,则 λ。 两次共振位置之间的距离即为 2

研究弦线上的驻波现象

研究弦线上的驻波现象 一、实验目的 1.观察弦线上驻波的变化,了解并熟悉实验仪器的调整方法。 2.研究弦线振动时的振动频率与振幅变化对形成驻波的影响。波长与张力的关系; 3.在弦线张力不变时,研究弦线振动时驻波波长与振动频率的关系。 4.改变弦线张力后,研究弦线振动时驻波波长与振动频率的关系。 二、仪器和用具 可调频率的数显机械振动源、弦线支撑平台、固定滑轮、可调滑轮、砝码盘、米尺、弦线、砝码、频闪灯、分析天平等。见图1 图1 仪器结构图 1.可调频率数显机械振动源 2.振簧片 3.弦线 4.可动刀口支架 5.可动滑轮支架 6.标尺 7.固定滑轮 8.砝码与砝码盘 9.变压器 10.实验平台 11.实验桌 三、实验原理 在一根拉紧的弦线上,其中张力为T ,线密度为μ,则沿弦线传播的横波应满足下述运动方程: 2 2 22 x y T t y ??= ??μ (1) 式中x 为波在传播方向(与弦线平行)的位置坐标,y 为振动位移。将(1)式与典型的波动方程 2 2 2 22 x y V t y ??=?? 相比较,即可得到波的传播速度: μ T V = 若波源的振动频率为f ,横波波长为λ,由于λf V =,故波长与张力及线密度之间的

关系为: μ λT f 1= (2) 为了用实验证明公式(2)成立,将该式两边取对数,得: f T lo g log 2 1log 2 1log -- = μλ 若固定频率f 及线密度μ,而改变张力T ,并测出各相应波长λ,作log λ-log T 图,若得一直线,计算其斜率值(如为 2 1),则证明了λ∝2 1 T 的关系成立。同理,固定线密度 μ及张力T ,改变振动频率f ,测出各相应波长λ,作log λ-log f 图,如得到斜率为-1的直线则验证了λ∝f -1 。 弦线上的波长可利用驻波原理测量。当两个振幅和频率相同的相干波在同一直线上相向 传播时,其所叠加而成的波称为驻波,一维驻波是波干涉中的一种特殊情形。在弦线上出现许多静止点,称为驻波的波节,相邻两波节间的距离为半个波长。见图2。 2 λ 图2 四.实验内容 1.必做内容 (1)验证横波的波长与弦线中的张力的关系 固定一个波源振动的频率,在砝码盘上添加不同质量的砝码,以改变同一弦上的张力。 每改变一次张力(即增加一次砝码),均要左右移动可动滑轮○5的位置,使弦线出现振幅较大 而稳定的驻波。用实验平台⑩上的标尺○6测量L 值,即可根据式(3)算出波长λ。作log λ-log T 图,求其斜率。 (2)验证横波的波长与波源振动频率的关系 在砝码盘上放上一定质量的砝码,以固定弦线上所受的张力,改变波源振动的频率,用驻波法测量各相应的波长,作log λ-log f 图,求其斜率。最后得出弦线上波传播的规律结论。 2.选做内容 验证横波的波长与弦线密度的关系 在砝码盘上放固定质量的砝码,以固定弦线上所受的张力,固定波源振动频率,通过改变弦丝的粗细来改变弦线的线密度,用驻波法测量相应的波长,作log λ-log μ图,求其斜率。得出弦线上波传播规律与线密度的关系。

大学物理演示实验报告

大学物理演示实验报告 水波盘 【实验目的】利用水波的投影显示波的形成、传播、反射、干涉和衍射等的形象。 【实验器材】水波盘演示仪,如图20-1所示。有水槽、振动源、光源、各种振子(包括单振子、双振子、 平面波振子)及挡板2块 水槽及壳体水槽是用底部装有密封、透明玻璃的不锈钢盆制成。壳体用金属材料制成,上面放有水槽,正面竖直安装毛玻璃,作为水波投影的屏幕。框架内部倾斜45°装有平面镜,用来反射水面的影象到屏幕上,底部装有变压电源,后面装有一立杆。立杆上端安装光源盒,中部安装振动源盒,在立杆的中部开有长槽孔,用来调节振动源盒的高度。 振动源振动源采用电磁、激励式。它是由电磁铁、电位器、振杆、振子、主板等组成。振频调节是一个与电磁铁线圈串联的可调电阻,控制其电流以改变振动的频率。调节振幅螺丝,可使投影波形的清晰度达到最佳。振动源盒后面有一插孔,使用时与光源盒插头相接。光源 光源为盒式机械遮挡频闪光源,灯泡为12V 100W幻灯机溴钨灯,频闪器是由直流微型电动机驱动一个可旋转的遮挡叶片,使其遮光次数为50?60次/秒。盒的顶部开有散热窗,当电机旋转时,带动遮光叶片,驱动盒内热空气排除盒外,使之降温。 实验原理】 两列同频率、振动方向相同、相差恒定的波在某一区域相遇,会产生干涉现象。有的地方振动始终干涉加强,有的地方干涉减弱。理论计算表明,干涉加强与干涉减弱由下式确定:(20-1) 其中, 【实验操作与现象】 1.准备工作,为波长。 (a)在水槽内注3?8mm深的清水,充分湿润水槽四周及实验用的附件。

(b)将振荡波所需的振子固定在承接块上,调节振动源盒的高度,使振子插入水面1-2mm。(c)先把光源电源插头、直流电源插头及振源插头插入到相对应的插座中,再插上交流220伏输入电源插头。 2.实验操作 (a)圆形波将单振子固定在承接块上,打开电源开关,溴钨灯亮,遮光叶轮转动,振杆弹动,屏幕上即显示图象,为圆形波,如图20-2所示。 根据实验需要调节振频旋扭,当振动次数与光源频闪次数一致时,水波在屏幕上的图象是处在静止状态;当振动次数大于频闪次数时,水波在屏幕上的图象是扩散状态;当振动次数小于频闪次数时,水波投影图象为收缩状态。如果水波投影图象不清晰时,慢慢调节振幅螺丝,直至清晰。 图20-2(a)是一次间歇振动所形成的波纹。图20-2(b)是连续振动所形成的波纹 (b)波的衍射 按(a)上述方法调整好圆形波后,将两块挡板一字形放在离振中心约20mm处,两块挡板缝隙距离接近波长,然后调整挡板间隙距离,则可见到不同的衍射投影图象。 (c)双振子干涉波 把单振子取下,将双振子固定好,可看到明显的干涉波形投影图象,如图20-3所示。如果水波投影图象不清晰时,慢慢调节振幅螺丝,直至清晰。 (d)平面波 把双振子取下,将平面振子固定好,使振子的平面与水平面平行,相交处要充分湿润,否则投影图象将略有弯曲。波形图如图20-4所示。 (e)波的反射 在平面波前45°斜放直挡板,即可看到平面反射波的投影图象。 【注意事项】 1.因溴钨灯工作时产生大量的热能,故实验时间较长时,不要碰触光源盒以免烫伤。2.水槽加水时不要过满,以免水溢出水槽,淋湿框内的电源变压器,损坏仪器。 3.输入电源电压不稳定时,暂时不要开机。 4.实验结束后,将振杆还原在自由状态。 【实验目的】:借助视觉暂留演示声波。 【实验仪器】:声波可见演示仪。 【实验原理】:不同长度,不同张力的弦振动后形成的驻波基频、协频各不相同,即合成波形各不相同。本装置产生的是横波,可借助滚轮中黑白相间的条纹和人眼的视觉暂留作用将其显示出来。 【实验步骤】: 1、将整个装置竖直放稳,用手转动滚轮。 2、依次拨动四根琴弦,可观察到不同长度,不同张力的弦线上出现不同基频与协频的驻波。 3、重复转动滚轮,拨动琴弦,观察弦上的波形。 【注意事项】: 1、滚轮转速不必太高。 2、拨动琴弦切勿用力过猛。 【实验目的】:演示翼形升力的产生。

相关文档