文档库 最新最全的文档下载
当前位置:文档库 › 磁控约束直流电弧设备的研制及放电特性

磁控约束直流电弧设备的研制及放电特性

磁控约束直流电弧设备的研制及放电特性
磁控约束直流电弧设备的研制及放电特性

磁控约束直流电弧设备的研制及放电特性王守国 邬钦崇 于书永 沈克明

(中国科学院等离子体物理研究所,合肥 230031)

(收稿日期1997-03-11)

D EVELOP M ENT OF M AGNET I C SUPERS ON I C DC ARC AND STUDY ON

ITS D ISCHARGE CHARACTER IZAT I ONS

W ang Shouguo W u Qi nchong Y u Shuyong Shen Ke m i ng

(I n stitute of Pla s ma Physics ,Ch i nese Acade m y of Sc iences ,Hefe i 230031)

Abstract :A m agnetic superson ic DC p las m a jet has been developed .T he h igh ly stab le non 2tran sfer m agnetic arc is p roduced .Its length is 400mm and its diam eter is abou t 60mm .P las m a

param eters of the arc w ere m easu red u sing L angm u ir p robes

.Keywords :DC arc equ i pm en t ,P las m a .

摘 要:研制出磁控超声速非转移直流等离子体电弧设备。获得电弧长度为400mm 最大直径约为60mm 十分稳定的等离子体电弧。并用朗缪尔静电探针测量了电弧等离子体参数。

关键词:直流电弧设备、等离子体。

分类号:O 461.22、TL 62。

等离子体电弧所具有的高温和高热焓,已被广泛应用于材料的加工处理、冶金和化学等领域。例如,在等离子体喷涂、薄膜的沉积、金属的冶炼和切割、有毒废料的处理等等。近几年来,特别是在化学气相沉积制备金刚石薄膜中,直流等离子体电弧的方法,被证实为是一种可以实现大面积和高速率沉积的有效手段[1~4],已越来越受到人们的重视。1991年8月,在美国A ubu rn 大学召开的第一届金刚石膜应用会议上,美国马塞诸塞州的N o rten 公司利用外加磁场和恰当的喷口设计,研制的磁动态等离子体电弧(M PD .arc )可制备直径为150mm 的高质量金刚石薄膜和半球形金刚石膜。但至今N o rten 公司的技术既不转让也不出售,用该方法制备金刚石薄膜,已引起各国科学家的普遍关注。

我所研制的等离子体电弧设备,利用螺线管外磁场,磁场强度最大为0.2T 获得电弧长度为400mm ,最大直径约为60mm 的十分稳定的超声速流等离子体电弧,并用该设备制备出了金刚石薄膜。

1 实验装置

磁控超声直流电弧装置是由等离子体发生器、电源系统、真空系统、磁场系统及水冷系统组成。如图1所示,等离子体发生器是安装在直径300mm 、高为450mm 不锈钢真空内。真空室与抽速分别为150L s 的机械增压泵和抽速为30L s 的机械泵相连。等离子体发生器阴极是用直径为5mm 的铈钨杆制成。阳极是由高热导率的紫铜制成。阴极和阳极都采用强迫水冷。电源是用普通的弧电源,其额定功率为160k W 。采用高频电离器与弧电源串联起弧。典1

411997年9月 V acuum & C ryogen ics

型工作气体是A r、H2和CH4。磁场线圈由水冷紫铜线绕成,线圈内外直径分别是320mm和680mm,高是170mm。真空室内磁场强度大小可以通过调节磁场线圈的电源来实现。按照电

动力学模型,在不同的电流时磁场强度沿中心轴向分量的分布如图2所示,

坐标原点取上磁场

图1 磁约束电弧设备简图

1-阴极;2-绝缘材料;3-压缩喷口;4-阳极;5 -水冷靶;6-探针线圈端面的中心位置。

典型的实验条件是:弧压V arc=50~150V,弧流I arc=80~200A,真空室工作气压P=13~1 330Pa,气体总流量Q=100~400L h。

2 电弧的放电特性

2.1 电弧电流-电压特性测量

在A r+H2放电体系中(A r占70%,总进气量为300L h),工作气压控制在665Pa时,电弧电流-电压特性由图3给出。可以看出,外磁场B 的存在,使电弧弧压提高,弧电流相对降低,相当于使电弧等效电阻增大。这样不但提高了放电功率,同时电流减少会延长电极的使用寿命。

2.2 热效率的测量

等离子枪热效率计算公式

Γ=(W-Q) W

式中,W为输入功率,其值为W=V arc I arc;Q为等

离子枪消耗功率,Q为GC(T V_T0)。式中,G为单位时间内等离子枪冷水流量;C为水的比热容;T V为等离子体枪冷却系统出口水温;T0为等离子体冷却系统入口水温。由图4看出在一定放电功率下,随着磁场的增强,等离子体喷枪的放电效率也在提高。磁场强度超过0.15T

时,热效率值趋于饱和。由于外磁场的作用,改变了电弧中电子运动的特征,

处于低压下的电子

图2 轴向磁场分布

1-I=300A;2-I=250A;3-I=200A;4-I=150A;5 -I=100A;6_I=50A 开始围绕磁场的磁力线旋转。当电子旋转频率大于它在等离子体中的碰撞频率时,磁场阻碍电子的径向扩散,从而减少了电弧能量与水冷壁的热交换使等离子喷枪热效率提高。

3 静电探针诊断

等离子体参数,例如电子温度、密度和等离子体速度,可由静电双探针及平行马赫探针来测量。测量位置离阳极喷口的距离是80mm,探针由直径0.7mm的钨丝制成。忽略磁场修正,则等离子体电子温度、密度及等离子体速度的计算公式为[5,6]

d I e

d V

=-e

kT e

241

真空与低温 第3卷第3期

图3 电弧的电压-电流特性曲线1-B =0.2T ;2-B =0I is =ke N e S p kT e m i U p =T e m i 4ln I i 1

I i 2

式中,T e 为电子温度;V 为悬浮电势;I is 为

离子饱和流;k 为玻尔兹曼常数;I e 为电子

电流;e 为电子电荷;N e 为电子密度;S p 为

探针表面积;m i 为离子质量;U p 为等离子

体速度。

在放电功率为7k W ,等离子体电子温

度和密度及等离子体速度沿径向的分布由

图5给出。可以看出,随着外磁场的加强,

等离子体电子温度和速度都要相应提高,离轴心越远等离子体电子温度和密度越低。其原因是外加磁场对电弧等离子体产生轴向力F z (B r J Η)、径向力F r (B z J Η)和切向力F Η(B r J z +B z J r )作用的结果。切向力F Η感应H all 电流,轴向力

F z 来自B r 与H all 电流的相互作用,使等离子体加速,从而提高了等离子体电子温度。外磁场所产生的径向力F r 约束等离子体束流,使得弧心

图4 电弧热效率曲线

处等离子体密度增加,这样也使电子温度提高。

由图5(a )看出,轴心处的电子温度随着磁场强

度的增加而相应的增加。在磁场强度达0.2T

时,其轴心处梯度变化较大。磁场强度在0.1T

时,电子温度分布比较均匀。这一特点同样在图

5(b )和5(c )中表现出来。由此可见为了获得大

面积,且较均匀的等离子体,选择弧心磁场强度

为0.1T 较为理想。

在该装置中,真空泵组抽速很大,等离子体

电弧环境压力(背压)远低于临界压力。阳极喷

口采用拉瓦尔喷嘴,使得等离子体进一步膨胀

加速。这种几何结构在一定程度上也决定了等离子体束流的速度和直径。

4 结 论

1.外加磁场对等离子体电弧的作用,使电弧放电调节范围增大,放电效率提高。

2.外加磁场使弧电压提高,弧电流减少,同时使弧根旋转,延长了电极的使用寿命,并使电弧温度分布更均匀,有利于提高成膜的质量。

3.电弧等离子体能量密度较高,可实现高速率大面积的气相沉积。

4.探针诊断实验表明:磁场使等离子体电子温度、密度和速度都有相应的提高,并提供了获得大面积均匀等离子体的外磁场约为0.1T 。

5.使用该装置已沉积出电镜照片为球形状的金刚石薄膜,工艺过程还在进一步优化中。

3

41王守国等 磁控约束直流电弧设备的研制及放电特性

图5(a ) 径向电子温度分布

1-B =0.2T ;2-B =0.1T ;3-B =0图5(b ) 径向电子密度分布1-B =0.2T ;2-B =0.1T ;3-B =0

图5(c ) 径向等离子体速率分布1-B =0.2T ;2-B =0.1T ;3-B =0参 考 文 献

1 Kazuk i K ,Ken ich i S ,M o tonobu K .H igh rate

syn thesis of diamond by dc p las m a jet chem ical

vapo r depo siti on .A pp l

.Phys .L ett .,1988,52(6):437

2 O h take N ,Yo sh ikaw a M .N ucleati on effects

and characteristics of diamond fil m grow by

arc discharge p las m a jet chem ical vapo r depo 2

siti on .T h in So lid F il m s ,1992,212:112

3 T sai C ,Gerberich W .Characterizati on of ther 2

m al p las m a CVD diamond coatings and the in 2

term ediate Si C phase .J .M eter .R es

.,1991,6(10):2127

4 R eeve S W ,W ei m er W A ,Ceri o F M .Gas phase chem istry in a direct cu rren t p las m a jet diamond re 2

acto r .J .A pp l

.Phys .,1993,74(12):75215 项志遴,俞昌旋编著.高温等离子体诊断技术(上册),上海:上海科学技术出版社,19826 李辉.低压磁化电弧等离子体诊断及等离子切割炬性质的讨论(中国科学院等离子体研究所硕士论文).1996

作者简介:王守国,博士研究生,参加过中性注入实验的理论和实验模拟工作。现从事低温等离子体应用工作,承担磁动力学直流等离子炬的研制及其在沉积金刚石薄膜中的工艺研究工作。4

41 真空与低温 第3卷第3期

焊接电弧的构造及静特性

§6—2焊接电弧的构造及静特性 一焊接电弧的构造及温度 焊接电弧的构造可划分三个区域:阴极区,阳极区,弧株。 电弧焊是利电弧的热能来达到连接金属的目的,电弧的热能是由上述各个区域的电过程作用下产生的,由于各个区域的电过程特点不同,因此各区域所放出的能量及温度的分布也是不相同的。 1阴极区 电弧紧靠负电极的区域称为阴极区。 阴极区很窄,约为10~10cm。在阴极区的阴极表面有一个明显的光的斑点,它是电弧放电时,负电极表面上集中发射的微小区域,称为阴极斑点。 阴极区的温度一般达到2130~3230℃,放出的热量占36%左右》阴极温度的高低主要取决于阴极的电极材料而且阴极的温度一般都低于阴极金属材料的沸点。(见图表) 此外,如果增加电极中的电流密度,那么阴极区的温度也可相应提高。

阴极区和阳极去的温度 注(1)电弧中气体介质为空气。(2)阴极和阳极为同种材料 2阳极区 电弧紧靠正极的区域称为阳极区。阳极区较阴极区宽,越为10~10cm在阳极区的阳极表面也有光亮的斑点,它是电弧放电时,正电极表面上集中的接收电子的位区域,称为阳极斑点。 阳极不发射电子,消耗能量少,因此在阴极材料相同时,阳极去的温度略高于阴极。阳极区的温度一般达2330~3930℃放出热量占43%左右,一般手工电弧焊时,阳极的温度比阴极的温度高些。 3弧柱 电弧阴极区和阳极区的部分称为弧柱。由于阴极区和阳极区都很窄,因此弧柱的长度基本上等于电弧长度。弧柱中所进行的电过程较复杂,而且它的温度不受材料沸点的限制,因此弧柱中心温度可达到5730~7730℃放出的热量占21%左右(手工电弧焊)。弧柱的温度与弧柱中气体介质和焊接电流大小等因素有关;焊接电流越大,弧柱中电离程度也越大,弧柱温度也越高。(图1)

蓄电池的基本知识大全范文

铅酸蓄电池基本常识 1、什么是放电效率? 放电效率是指在一定的放电条件下放电至终点电压所放出的实际电量与额定容量之比,主要受放电倍率,环境温度,内阻等到因素影响,一般情况下,放电倍率越高,则放电效率越低。温度越低,放电效率越低。 2、何为电池的倍率放电? 指放电时,放电电流(A)与额定容量(A?h)的倍率关系表示。 3、何为电池的小时率放电? 按一定输出电流放完额定容量所需的小时数数,称为放电时率。 4、何为电池的能量密度? 指电池的单位体积所含的电能。 5、铅酸电池使用什么标准? 电池标准分国家标准、行业标准、企业标准三个级别。目前车用电池执行的是编号为JB/T 10262——2001的行业标准。 6、电动车铅酸电池是如何命名的? 车用铅酸电池名称叫做6-DZM-X,其中的X为后缀,X可以是8、10、12,代表电池的容量。6DZM代表6组单格电池组合成一块12V电压的电动车专用阀控密封免维护电池,如果是胶体电池,其标示方法为6-DJM-X。 7、铅酸蓄电池容量标示方法是什么? 应当以C2为准,即以0.5C2电流放电,当电压达到该电池的放电终止电压时的放电时间和电流的乘积应等于或接近额定容量值。比如:一块12V、12Ah 的电池,以5A电流放电,放电终止电压达到10.5V时,时间不能少于140min;

同样,一块12V、10Ah的电池,以5A电流放电到电压达到终止电压10.5V时,时间不能少于120min。其误差为0.1Ah 实际上行业标准规定:10Ah的电池,以5A电流放电到终止电压时间不得小于120min。企业产品实际达到的为130~137min。 8、什么是电池的过充电能力? 行业标准规定,铅酸蓄电池以1.2A电流连续充电48h,实际容量不得低于额定容量的95%。 9、什么是电池的过放电能力? 行业标准规定,铅酸蓄电池开始放电电流为12A±1.2A、以定阻抗方式连续放电2.0h,实际容量不得低于75% 10、什么是电池的低温保存特性? 行业标准规定,铅酸蓄电池在-10℃±0.1℃的环境条件下存放10h,实际容量不能低于70%。 11、如何评价铅酸蓄电池的寿命? 以容量75%的深度放电,寿命不应低于350次。 12、铅酸电池有那些优缺点? (1)优点——价格低廉:铅酸电池的价格为其余类型电池价格的1/4~1/6。一次投资比较低,大多数用户能够承受。 (2)缺点——重量大、体积大、能量质量比低,娇气,对充放电要求严格。 13、为什么电池要储存一段时间后才能包装出货? 电池的储存性能是衡量电池综合性能稳定程度的一个重要参数。电池经过一定时间储存后,允许电池的容量及内阻有一定程度的变化。经过了一段时间的

第4章-电弧的基本理论

第4章电弧的基本理论 电弧的实质是高温等离子体。 等离子体:由部分电子被剥夺后的原子及原子被电离后产生的正负电子组成的离子化气体状物质,它是除去固、液、气外,物质存在的第四态。 等离子体分为:高温等离子体和低温等离子体。电弧是高温等离子体。 电弧的特点:导电性能强、能量集中、温度高、亮度大、质量轻、易变形等。 4.1电弧的形成与去游离 放电的形式:非自持式放电和自持式放电。 非自持式放电:需要外部游离因素来维持的放电形式,主要指在气体环境下,放电持续需要依靠外界游离因素所造成的原始游离才能实现。 它的特点: 1.外因影响放电,外界游离因素消失,放电也会衰减直至停止; 2.具有饱和性,稳定的外部因素单位时间里游离出的带电粒子数目是稳定的,于是形成饱和形式的放电现象。 自持式放电:指当电场强度(场强)达到或超过一定值时,出现的电子崩可仅由电场的作用而自行维持和发展,不必再依赖外界游离因素的放电现象。 电弧是一种自持式放电现象,即电极间的带电质点不断产生和消失,处于一种动态平衡状态。 自持式放电: 1.放电不再依赖外界游离因素; 2.自持放电的条件是:电源的能量足以维持电弧的燃烧; 3.放电电流迅速增加,放电间隙电压迅速降低; 4.伴随有强光和高温。 4.1.1介质中电弧形成的机理 电弧的形成过程:介质向等离子体态的转化过程; 电弧的产生和维持:弧隙里中性质点(分子和原子)被游离的结果,游离就是中性质点转化为带电质点的过程。 从电弧的形成过程来看,游离过程分三种形式: 1.强电场发射:是在弧隙间最初产生电子的原因; 2.碰撞游离》:由英国物理学家汤森德在1903年提出(汤森德机理) 3.热游离:电弧产生之后,弧隙的温度很高,在高温作用下,气体的不规则热运动速度增加;具有足够动能的中性质点互相碰撞,又可能游离出电子和离子。 还有光游离、热电子发射、金属气化等。 4.1.2电弧的去游离过程 去游离的主要形式:复合和扩散。 1.复合去游离 复合:指正离子和负离子互相吸引,结合在一起,电荷互相中和的过程。 2.扩散去游离 扩散:指带电质点从电弧内部逸出而进入周围介质的现象。 弧隙内的扩散去游离的形式: 浓度扩散和温度扩散。 游离和去游离是电弧燃烧中两个相反的过程。 游离过程使弧道中的带电离子增加,有助于电弧的燃烧; 去游离过程使弧道中的带电离子减少,有利于电弧的熄灭。 由焊接电源供给的,在两极间产生强烈而持久的气体放电现象—叫电弧。电弧是由于电场过强,气体发生电崩溃而持续形成等离子体,使得电流通过了通常状态下的绝缘介质(例如空气)所产生的瞬间火花现象。1808年汉弗里·;戴维(Humphry Davy)利用此一现象发明第一盏“电灯”—电弧灯(voltaic

铅蓄电池放电特性(精)

第八节铅蓄电池放电特性 一定放电电流,首先,物质的消耗,密度减少,电动势降低,引起输出端电压减少;另外,放电生成物增多,内电阻上升,引起内压降增多,也引致输出端电压进一步下降。 总之,放电过程中,除了内电阻是增大以外,其他的参数都将减少。 铅蓄电池的放电曲线不同放电电流时的放电曲线 图3-6铅蓄电池的放电曲线 (1)刚放电时, (消耗>补充) (电极上反应物之间接触面多,使反应过程充分进行,而且生成物不足阻碍反应进行,内阻压降基本不变。而进行反应的电极材料孔隙内、外的电解液密度差不多,硫酸分子扩散运动很慢,) 使之消耗量和扩散补充量不平衡,使进行反应的硫酸密度下降较快,故电动势和端电压都有较快的下降。 (2)随着反应深入到中期过程, (消耗=补充) 在反应的孔隙内、外的电解液密度的差值较大,促进补充硫酸的扩散运动速度加快,消耗的硫酸分子得以相应补充。密度减少变缓慢,电动势减少缓慢,内电阻变化也不明显,因此,端电压仍随电动势下降较慢。 (2)反应加深,进入放电后期时, (消耗>补充) 化学反应在孔隙内深处进行,硫酸扩散路径变长,生成物使硫酸扩散通道变窄,甚至被堵塞,处于硫酸消耗多于补充的不平衡状态,电动势下降较快,内阻及降不断增大,造成端电压下降加快,曲线变陡。 单体电池当放电电压达到D点时,就是放电的终止电压值。如果在低于终止放电电压值下继续放电的话,电池电压将迅速变为零。这种超量放电是不允许的,实践中,在终止放电电压值达到后的放电,蓄电池已经失去了保证向负载供电能力。一般D点电压值定为1.7伏,也就是额定负载下端电压下降到20伏,就应该给电池充电。 停止放电后,硫酸分子经一段时间扩散到电极孔隙内,会使该处电解液的密度回升,而且均匀分布,所以电动势值可回到1.99伏左右。 影响放电电压的放电条件: 第一,放电电流影响放电电压。 放电电流大小的改变,化学反应进行的程度不同。增大负载时,能量转换量大,化学反应要求更多、更快,硫酸消耗多,密度下降快,生成物多,内阻增大,影响扩散速度。因此,电动势和端电压下降就快了,达到终止放电的时间会缩短,所以放电电流越大,放电电压下降越快。可放电的时间越短。 (注意,放电电流较大状态下的放电终止电压值允许低一些。)

电弧产生现象原因及特点

电弧产生现象原因及特点 电弧产生现象原因及特点 在有触点电器中,触头接通和分断电流的过程中往往伴随着气体放电现象---电弧的产生及熄灭,电弧对电器具有一定的危害。 电弧属于气体放电的一种形式。气体放电分为自持放电与非自持放电两类,电弧属于气体自持放电中的弧光放电。试验证明,当在大气中开断或闭合电压超过10V、电流超过100MA的电路时,在触头间隙(或称弧隙)中会产生一团温度极高、亮度极强并能导电的气体,称为电弧。由于电弧的高温及强光,它可以广泛应用于焊接、熔炼、化学合成、强光源及空间技术等方面。对于有触点电器而言,由于电弧主要产生于触头断开电路时,高温将烧损触头及绝缘,严重情况下甚至引起相间短路、电器爆炸,酿成火灾,危及人员及设备的安全。所以从电器的角度来研究电弧,目的在于了解它的基本规律,找出相应的办法,让电弧在电器中尽快熄灭。 我们借助一定的仪器仔细观察电弧,可以发现,除两个极(触头)外,明显的分为3个区域,即近阴极区、近阳极区及弧柱区。

近阴极区的长度约等于电子的平均自由行程。在电场力的作用下正离子向阴极运动,造成此区域内聚集着大量的正离子而形成正的空间电荷层,使阴极附近形成高电场强度。正的空间电荷层形成阴极压降,其数值随阴极材料和气体介质的不同而有所变化,但变化不大,约在10-20V之间。 近阳极区的长度约等于近阴极区的几倍。在电场力的作用下自由电子向阳极运动,它们聚集在阳极附近而且不断被阳极吸收而形成电流。在此区域内聚集着大量的电子形成负的空间电荷层,产生阳极压降,其值也随阳极材料而异、但变化不大,稍小于阴极压降。由于近阳极区的长度比近阴极区的长,故其电场强度较小。 阴极压降与阳极压降的数值几乎与电流大小无关,在材料及介质确定后可以认为是常数。 弧柱区的长度几乎与电极间的距离相同。是电弧中温度最高、亮度最强的区域。因在自由状态下近似圆柱形,故称弧柱区。在此区中正、负电粒子数相同,称等离子区。由于不存在空间电荷,整个弧区的特性类似于一金属导体。每单位弧柱长度电压降相等。其电位梯度E。也为一常数,电位梯度与电极材料、电流大小、气体介质种类和气压等因素有关。 电弧按其外形分为长弧与短弧。长短之别一般取决于弧长与弧径之比。把弧长大大超过弧径的称为长弧。长弧的电压是近极压降(阴极压降与阳极压降)与弧柱压降之和。若弧长小于弧径,两极距离极短(如几毫米)的电弧称为短弧。此时两极的热作用强烈,近极区的过程起主要作用。电弧的压降以近极压降为主,几乎不随电流变化。 电弧还可按其电流的性质分为直流电弧和交流电弧。

电弧的静特性和电源的外特性

电弧的静特性: 在电极材料、气体介质和弧长一定的情况下,电弧稳定燃烧时焊接电流和电弧电压变化的关系称为电弧的静特性。电弧静特性曲线呈U形,它有三个不同的区域(I、II、III)。当电流在I区较小时,电弧静特性属于下降特性区,随着电流的增加,电弧电压减小;当电流在II时,电弧特性属于水平特性区,当电流变化是而电弧电压几乎不变;当电流在III区内增大时,电弧特性属于上升特性区,电弧电压随电流的增大而升高。 不同的电弧焊接方法,其电弧在正常的使用范围内只工作于静特性曲线中的某一段或两段上。如焊条电弧焊的电弧主要工作于I和II区,当弧长变化时静特性曲线上下平移,弧长越长静特性曲线向上移动量越大,弧长过长时断弧。工作在II区的有埋弧焊、不熔化极气体保护焊和微束等离子弧焊等弧焊方法。工作在III区的有细丝熔化极气体保护焊、等离子弧焊和水下焊等弧焊方法。 焊条电弧焊的电弧对电源的要求: 电弧焊机是为电话提供电能的装置,为了保证电弧稳定工作的要求,弧焊电源在工艺性能和结构方面应该达到引弧容易;保证电弧稳定燃烧;保证焊接电流、电弧电压等工艺参数稳定;可以方便调节焊接工艺参数,以适应焊接不同性质和厚度不同的钢板;电源节能环保、质量轻、结构简单、制造成本低;安全可靠、工作性能良好、维修简单方便等。 为了达到以上要求弧焊电源应该具备以下性能。 弧焊电源具有下降的外特性曲线:在电弧稳定燃烧时,焊接电源输出稳定电流和电源输出稳定电压间的关系称为电源的外特性。电弧焊时,弧焊电源供电,电弧是电源用电的负载,电源与电弧构成完整的供电系统,为保证该系统的稳定性电源外特性曲线的形状和电弧静特性曲线的形状必须适当配合。 弧焊电源的外特性包括下降特性、平特性和上升特性。下降的外特性曲线是随着弧焊电源输出电流的增大,电源的输出电压下降。对于焊条电弧焊电源一般要求为陡降的外特性曲线。 电弧的静特性曲线与电源的外特性曲线的交点就是电弧燃烧的工作点,焊条电弧焊采用的下降特性曲线与电弧的静特性曲线交点有两点。 电弧电源具有适当的空载电压:外特性曲线上,焊接电流为0时的输出电压称为空载电压,它与电弧的引弧性能、电弧的稳定性有关。空载电压太低使引弧困难,电弧燃烧不稳定。过高则生产成本高,焊工的安全性差。 适当的短路电流:焊条电弧焊电弧的产生是通过电极与焊件进行短路后,提起焊条产生的,短路时电弧电压为0,如果短路电流过大,不但会因过载引起焊机过热以致烧坏,同时还会使焊条过热引起药皮脱落,液态金属飞溅增多;相反,短路电流太小,会使引弧和熔滴过渡发生困难。 弧焊电源能方便的调节焊接电流。焊条电弧焊接不同厚度的焊件,不同位置的焊缝,采用不同的焊条直径和适应不同的接头形式都是通过调节焊接电流来实现的。为此要求弧焊电源应该能在一定的范围内,对焊接电流灵活、均匀地进行调整。电流的调节是通过改变电源外特性来实现的。 弧焊电源具有良好的动态特性。为了适应电弧长短变化和经常短路的需要,要求弧焊电源供给的电压和电流能够随着负载的改变而迅速改变。所以动态品质是用来表示弧焊电源对负载瞬时变化的反应能力。它对电弧的燃烧稳定性、熔滴过渡、金属飞溅、焊缝成形等有

蓄电池的主要性能指标

蓄电池的主要性能指标 The Standardization Office was revised on the afternoon of December 13, 2020

1. 铅酸蓄电池的主要性能指标 (1)安全性能安全性能指标不合格的蓄电池是不可接受的,其中影响最大的是爆炸和漏液。爆炸和漏液的发生主要与蓄电池的内压、结构、工艺设计(比如安全阀失效)及应当禁止的不正确操作有关。 (2)额定容量为了蓄电池的容量,定义了蓄电池的额定容量。额定容量是蓄电池制造的时候,规定蓄电池在一定的放电条件下应该放出的最低限度的电量,其单位为Ah。使用条件不同,蓄电池能够放出的容量也不同。规定的蓄电池放电条件为:①蓄电池放电电流。一般所说的就是放电率,针对蓄电池放电电流的大小分别有时间率和电流率。放电时间率是指在一定的放电条件下放电到终止电压的时间长短。依据IEC标准,放电率分别为20小时率、10小时率、5小时率、3小时率、2小时率、1小时率、小时率等。蓄电池的额定容量用C来表示,以不同的放电率得到的蓄电池的容量会不同。 ②放电终止电压。放电电流不同,终止放电电压也不相同。随着放电的进行,蓄电池的端电压会逐步下降。在25℃条件下放电到能够再次反复充电使用的最低电压称为放电终止电压。放电率不同,放电终止电压也不相同。一般为10小时率放电的终止电压多数为单格,以2小时率方电的终止电压一般为单格。低于这个电压时,虽然可以放出稍微多一点的电量,但是容易形成再次充电的容量下降,所以除非特殊情况,不要放电到终止电压。 ③放电温度。需电池在低温时的放电容量小,高温时的容量大,为了统一放电容量就规定了放电温度。④蓄电池的实际容量。蓄电池的实际容量反应蓄电池实际存储电量的多少,单位用安时表示(Ah)表示。同样安时数越大,则蓄电池的容量就越大,电动自行车的续行里程就越远。在使

蓄电池充电曲线的研究

引言 铅酸蓄电池由于其制造成本低,容量大,价格低廉而得到了广泛的使用。但是,若使用不当,其寿命将大大缩短。影响铅酸蓄电池寿命的因素很多,而采用正确的充电方式,能有效延长蓄电池的使用寿命。 研究发现:电池充电过程对电池寿命影响最大,放电过程的影响较少。也就是说,绝大多数的蓄电池不是用坏的,而是“充坏”的。由此可见,一个好的充电器对蓄电池的使用寿命具有举足轻重的作用。 1蓄电池充电理论基础 上世纪60年代中期,美国科学家马斯对开口蓄电池的充电过程作了大量的试验研究,并提出了以最低出气率为前提的,蓄电池可接受的充电曲线,如图1所示。实验表明,如果充电电流按这条曲线变化,就可以大大缩短充电时间,并且对电池的容量和寿命也没有影响。原则上把这条曲线称为最佳充电曲线,从而奠定了快速充电方法的研究方向[1,2]。 图1最佳充电曲线 由图1可以看出:初始充电电流很大,但是衰减很快。主要原因是充电过程中产生了极化现象。在密封式蓄电池充电过程中,内部产生氧气和氢气,当氧气不能被及时吸收时,便堆积在正极板(正极板产生氧气),使电池内部压力加大,电池温度上升,同时缩小了正极板的面积,表现为内阻上升,出现所谓的极化现象。 蓄电池是可逆的。其放电及充电的化学反应式如下:

很显然,充电过程和放电过程互为逆反应。可逆过程就是热力学的平衡过程,为保障电池能够始终维持在平衡状态之下充电,必须尽量使通过电池的电流小一些。理想条件是外加电压等于电池本身的电动势。但是,实践表明,蓄电池充电时,外加电压必须增大到一定数值才行,而这个数值又因为电极材料,溶液浓度等各种因素的差别而在不同程度上超过了蓄电池的平衡电动势值。在化学反应中,这种电动势超过热力学平衡值的现象,就是极化现象。 一般来说,产生极化现象有3个方面的原因。 1)欧姆极化充电过程中,正负离子向两极迁移。在离子迁移过程中不可避免地受到一定的阻力,称为欧姆内阻。为了克服这个内阻,外加电压就必须额外施加一定的电压,以克服阻力推动离子迁移。该电压以热的方式转化给环境,出现所谓的欧姆极化。随着充电电流急剧加大,欧姆极化将造成蓄电池在充电过程中的高温。 2)浓度极化电流流过蓄电池时,为维持正常的反应,最理想的情况是电极表面的反应物能及时得到补充,生成物能及时离去。实际上,生成物和反应物的扩散速度远远比不上化学反应速度,从而造成极板附近电解质溶液浓度发生变化。也就是说,从电极表面到中部溶液,电解液浓度分布不均匀。这种现象称为浓度极化。 3)电化学极化这种极化是由于电极上进行的电化学反应的速度,落后于电极上电子运动的速度造成的。例如:电池的负极放电前,电极表面带有负电荷,其附近溶液带有正电荷,两者处于平衡状态。放电时,立即有电子释放给外电路。电极表面负电荷减少,而金属溶解的氧化反应进行缓慢Me-e→Me+,不能及时补充电极表面电子的减少,电极表面带电状态发生变化。这种表面负电荷减少的状态促进金属中电子离开电极,金属离子Me+转入溶液,加速Me-e→Me+反应进行。总有一个时刻,达到新的动态平衡。但与放电前相比,电极表面所带负电荷数目减少了,与此对应的电极电势变正。也就是电化学极化电压变高,从而严重阻碍了正常的充电电流。同理,电池正极放电时,电极表面所带正电荷数目减少,电极电势变负。 这3种极化现象都是随着充电电流的增大而严重。 2充电方法的研究 常规充电法

气体保护焊电弧特性一

气体保护焊电弧特性 (一) 1.1 什么是焊接电弧? 电弧是一种气体放电现象,它能把电能有效而简便地转化为热能、机械能和光能。 定义:有焊接电源供给的,具有一定电压的两电极间或电极与母材间,在气体介质中产生的强烈而持久的放电现象称为焊接电弧。 1.2 焊接电弧的基本特点是什么? 焊接电弧的基本特点为: 1)维持电弧稳定燃烧的电弧电压很低,只有10~50V。 2)在电弧中能通过很大电流,可从几安~几千安。 3)电弧具有很高的温度,弧柱温度是不均匀的,中心温度最高,可达到5000~30000K,而远离中心则温度降低。 4)电弧能发出很强的光。电弧的光辐射波长为(1.7~50)×10-7m。它包括红外线,可见光和紫外线3个部分。 1.3 电弧由哪几部分组成?其特点是什么? 电弧是由3部分组成,即弧柱区、阴极区和阳极区,如图1所示。 1、弧柱区 弧柱区呈电中性,它是由分子、原子、受激的原子、正离子、负离子及电子所组成,其中带正电荷的离子与带负电荷的离子几乎相等,所以又称为等离子体。带电的粒子在等离子体定向移动,基本上不消耗能量,所以才能够在低电压条件下,传输大电流。传输电流的主要带电粒子是电子,大约占带电粒子总数的99.9%,其余为正离子。 因为阴极区和阳极区的长度极短,所以可以认为弧柱区长度为电弧长度。弧柱区的电场强度较低,通常只有5~10V/cm。

2、阴极区 阴极被认为是电子之源。它向弧柱提供99.9%的带电粒子(电子)。阴极发射电子的能力,对电弧稳定性影响极大。阴极区的长度为10-5~10-6cm,如果阴极压降为10V,则阴极区的电场强度为106~107V/cm。 3、阳极区 阳极区主要是接受电子,但还应向弧柱提供0.1%的带电粒子(正离子)。通常阳极区的长度为10-2~10-3cm,则阳极区的电场强度为103~104V/cm。由于阳极材料和焊接电流对阳极区压降影响很大,它可以在0~10V之间变化。例如当电流密度较大,阳极温度很高,使阳极材料发生蒸发时,阳极压降将降低,甚至到0V。 1.4 试述短路引弧法的原理及提高引弧成功率的方法。 熔化极气体保护电弧焊都是利用短路引弧法进行引弧,钨极氩弧焊大都采用非接触引弧法,但也有采用短路引弧法。下面以熔化极气体保护焊为例说明短路引弧法的原理。 熔化极气体保护电弧焊引弧时首先送进焊丝,并逐渐接近母材,如图2所示。一旦与母材接触,电源将提供较大的短路电流,利用在A点附近的焊丝爆断,进行引弧。如果在B点爆断,则引弧失败。所以在A点爆断是引弧成功的必要条件。 在A点还是在B点爆断主要是由于焊丝在该点附近产生电阻热的大小,也就是其接触电阻的大小。A、B两点的接触电阻如图3所示。B点为焊丝与导电嘴的接触处,其接触电阻R B 随时间变化很小,基本上不变。在A点却不同,A点为焊丝端头与母材的接触点。R A为接触电阻,在焊丝与母材接触瞬间R A为无穷大;随着短路电流的增加,A点迅速软化,使接触面积增加,于是R A急剧减小。可见,为确保引弧成功,希望短路电流增长速度di S/dt越大越好,R A衰减速度越慢越好。也就是在R A很大时,短路电流i S增加到较高的值,使得在A点发生爆断。

蓄电池名词解释和特性说明

铅酸蓄电池特性说明&&名词解释(本文内容为普通蓄能类铅蓄电池)一.STANDBY USE/CYCLING USE 浮充使用/循环使用 I nitial current :less than 1.75A:初始电流不超过1.75A。 一般充电时,电池在未接入回路时内阻可能很小,为保护电池充电电流不能太大。Standby use :浮充使用:表示长时间持续充电,只有需要时才放电。如UPS。Cycling use :循环使用:表示快速的充放电使用。如电动车,需要经常性充电。 以上仅为某一品牌电池铭字简解,不同品牌略有差异。二.放电电流/终止电压 放电是蓄电池的最基本功能。但过放电却能导致蓄电池性能急剧下降甚至永久性损坏。在寿命功效最大化的情况下,蓄电池放电应在0.05C—3C之间。汽车蓄电池等某些特殊用途的蓄电池,瞬间放电10倍C(C为25℃下标称容量)甚至以上,也只是瞬间而已。一般铅蓄电池的放电电流和终止电压具有“类负相关”关系。不同品牌的铅蓄电池,放电电流/终止电压略有不同,其极板材质、化学成分和制作工艺导致差异的存在。 超过某一放电电流下终止电压的下限额度就会发生过放电。若难免而发生了反复过放电情况,应及时充电甚至维护。 以下为某一品牌铅蓄电池放电电流/终止电压数据: 正常工作温度25℃下,

三.放电容量 不同放电率下蓄电池容量不同。 以下为某一品牌铅蓄电池不同放电电流下的放电容量。

结论得出:放电电流Ix越大,电池所能放出的容量Cx越小。 铅蓄电池标称容量一般是:20—25℃左右的时候,10小时的放电量,就是标称容量。进而可以得出,0.1C的放电量,可以放电10个小时。 四.其他注意事项 ①.温度. 铅蓄电池正常温度范围为15℃—50℃。温度过高过低,都会影响性能。建议长期使用温度20℃—40℃。对于60V以下蓄电池,温度补偿不明显,可以不予考虑。 ②.充电电流/功率. 铅蓄电池正常充电电流应小于0.25C。充电电压应小于14.5(快速循环充放电时,充电电压要小于15V)。充电电流=充电功率÷充电电压,欧姆定律成立。 ③.用电/存储/充电. 铅蓄电池不宜长期放置。不可避免的长期存放之前,应充电至满电荷。 置于25℃—35℃环境中朝上静放。 ④.浮管式水力发电机/风力发电/太阳能发电 浮管式水力发电机是重庆同利实业有限公司研发的绿色环保水力发电系统。 它直接通过流水发电,无需筑坝,无需巨大落差,无需强力冲击,流水即可发电,水流速度要求0.6m/s—3.5m/s。它适用于小溪流、水沟渠、江河、洋流和人工循环水系统等各种流水环境。它可用来建设水力发电站;也可以单台分布式发电。它用于景观、广告、应急、救援等可循环绿色用电;也可以给一个国家,一个地区,一个省份,一个城市,一个乡镇,一个村或单家独户提供用电。有关浮管式水力发电机请参阅重庆同利实业有限公司官方网站。 与风力发电和太阳能发电一样,浮管式水力发电机(系统)也可以配备蓄电池。这三种发电系统建议使用普通蓄能类蓄电池。

蓄电池充放电状态

蓄电池特点 (1)使用寿命长 高强度紧装配工艺,提高电池装配紧度,防止活物质脱落,提高电池使用寿命。 低酸比重电液,提高电池充电接受能力,增强电池深放电循环能力。 增多酸量设计,确保电池不会因电解液枯竭缩短电池使用寿命。 因此GFM系列蓄电池的正常浮充设计寿命可达15年以上(25℃) (2)高倍率放电性能优良 高强度紧装配工艺,电池内阻极小,大电流放电特性优良,比一般电池提高20[%]以上。 (3)自放电低 高纯度原料和特殊造工艺,自放电很小,室温储存半年以上也可无需补电。 (4)维护简单 特殊氧气吸收循环设计,克服了电池在充电过程中电解失水的现象,在使用过程中电解液水份含量几乎没有变化,因此电池在使用过程中完全无需补水,维护简单。 (5)安全性高 电池内部装有特制安全阀,能有效隔离外部火花,不会引起电池内部发生爆炸。 (6)安装简捷 电池立式、侧卧、叠层安装均可,安装时占地面积小,灵活方便。 (7)洁净环保 电池使用时不会产生酸雾,对周围环境和配套设计无腐蚀,可直接将电池安装在办公室或配套设备房内,无需作防腐处理。 蓄电池的充放电特性 蓄电池具有自放电效应。从生产制造车间到用户使用,大约要延误数月的时间。以PA-NASONIC蓄电池为例,在30℃的环境温度下贮藏8个月,蓄

电池的残存容量仅为出厂时的一半,因此对于新购买的与配套的蓄电池,一般要进行一次较长时间的充电,这叫做初充电。蓄电池的初充电电流大小应按0.1C来充电,蓄电池在放电终了后可进行再充电,这叫正常充电。目前在UPS中普遍采用两种充电方式:浮充和脉充。所谓浮充电是指整流器的输出与蓄电池并联工作,并同时向负载供电,实际上此时整流器提供的电流分两路,一路送给负载,另一路送给蓄电池,以补充蓄电池自身内部损耗,浮充充电工作方式接线简单,对改善UPS输出瞬态响应特性有好处。脉冲充电的特点是充电电流随蓄电池容量而变化,用这种方式充电,可以缩短充电时间。 1.充电电压 由于UPS蓄电池属于备用工作方式,市电正常情况下处于充电状态,只有停电时才会放电。为延长蓄电池的使用寿命,UPS的充电器一般采用恒压限流的方式控制,蓄电池充满后即转为浮充状态。 对于端电压为12V的蓄电池,正常的浮充电压在13.5~13.8V之间。 浮充电压过低,蓄电池充不满,浮充电压过高,会造成过电压充电。当浮充电压超过14V时,即认为是过电压充电。严禁对蓄电池组过电压充电,因为过电压充电会造成蓄电池中的电解液所含的水被电解成氢和氧而逸出,使电解液浓度增大,导致蓄电池寿命缩短,甚至损坏。 2.充电电流 蓄电池充电电流一般以C来表示,C的实际值与蓄电池容量有关。举例来讲,如果是100Ah的蓄电池:C为100A。松下铅酸免维护蓄电池的最佳充电电流为0.1C左右,充电电流决不能大于0.3C。充电电流过大或过小都会影响蓄电池的使用寿命。 理想的充电电流应采用分阶段定流充电方式,即在充电初期采用较大的电流,充电一定时间后,改为较小的电流,至充电末期改用更小的电流。充电电流的设计一般为0.1C,当充电电流超过0.3C时可认为是过电流充电。避免用快速充电器充电,否则会使蓄电池处于“瞬时过电流充电”和“瞬时过电压充电”状态,造成蓄电池可供使用电量下降甚至损坏蓄电池。过电流充电会导致蓄电池极板弯曲,活性物质脱落,造成蓄电池供电容量下降,严重时会损坏蓄电池。 3.充电方式 铅酸蓄电池放电产物是硫酸铅,若不及时转化掉,会使蓄电池处于充电不足状态,从而降低蓄电池放电容量和缩短蓄电池使用寿命。因此,必须使蓄电池组处于充足电状态。对不同情况,可分浮充和均充。 (1)浮充充电。在线式蓄电池组是长期并联在充电器和负载线路上,作为 后备电源的工作方式。一般情况下,都采用浮充充电,单体蓄电池电压控

蓄电池充放电试验步骤

蓄电池充放电试验步骤 直流系统蓄电池充放电试验 MK-11-65AH/220V 型直流电源 一、 1、断开直流系统蓄电池充电开关。 2、拆除蓄电池充电开关接线,并用绝缘胶带做好标记。 3、将放电试验仪器与蓄电池出充电关连接。 4、合上蓄电池充电开关,调节放电试验仪器将电流控制在10A以内 5、每隔半小时记录电流、每块电池的电压及温度。 6、当电池电压降到10、5V时停止放电试验。 7、试验过程中随时检查电池,若温度或电压出现明显变化将其隔离后再进行试验。 8、当故障蓄电池达到整组蓄电池的20%时,更换整组蓄电池。 记录各只蓄电池的端电压、温度,进行下面步骤: (1)选择放电电流为10小时放电率的电流,在直流屏上合上放电柜的小开关,观察放电柜电流表显示值应小于10小时率放电电流,然后调节放电电阻,使放电电流为10小时放电率电流为止。此时,观察毫伏表所反映的电流与放电柜的电流一致,当明显不一致时,应检查接线是否有误,如果只存在一定误差,应以毫伏表的读数为准; (2)维持该放电电流,初始阶段每两小时记录一次每只电池的端电压、温度,观察电池是否出现酸液外溢、外壳裂损等异常现象。———————————————————————————————————————————————

但当放电至电池电压普遍降至10.9V左右时,应每小时记录一次。在放电末期,当电池电压普遍降至10.87V左右时,电池电压下降很快,应密切注意电池的端电压,防止过放电; (3) 在放电过程中,如果有个别电池过早降至终止电压10.8V或其它异常现象要对其进行隔离,方法是先断开放电小开关,中止放电,再将异常电池与前后电池的连接板断开,使异常电池与蓄电池组隔离,然后用已准备好的长2m、截面积为50mm2的短接线将异常电池前后的电池连接,使蓄电池组重新构成回路,这样就将异常电池隔离。之后在直流屏上合上接放电柜的放电小开关3QF,继续放电。注意应该先断开异常电池与前后电池间的连接板,再将其前后电池连接,否则将使电池正负极直接短路,造成损坏电池、伤害人身的事故; (4)蓄电池的放电终止电压为10.8V,当电池电压普遍降为10.8V时,并使电压不合标准的电池数控制在3% 以内,断开直流屏上放电柜小开关3QF,停止放电,观察各电池是否有异常,如果有,应该分析原因并解决问题。 (5) 放电完毕,检查各只蓄电池电压、温度、电池绝缘等是否正常,并计算出放电容量; 1) 电池容量的计算方法为: C25=Ct/[1+0.008(t-25?)] 式中:C25——换算为25?时的容量,Ah Ct——电解液平均温度为t?时的容量,Ah T——电解液的平均温度,? ——————————————————————————————————————————————— 上式只适用于电解液温度在10-40?范围内;

蓄电池的放电特性和放电要求

蓄电池的放电特性和放电要求 发布者:dcxfy发布时间:2008-3-22 12:46:26 阅读:195次 1.放电特性 蓄电池在出厂前都会进行容量试验。依据YD/T799-1996标准,容量试验的步骤如下: ①将被试验蓄电池完全充电。 ②将被试验蓄电池静置1~24h,使蓄电池表明温度达到25℃±5℃。 ③固定型蓄电池采用0.1C10连续对负载恒流放电,在放电过程中定期测试 蓄电池的端电压。蓄电池电压达到1.80V/单格时为放电终止。最后累积放电量达到100%即为合格。 对于蓄电池来说,放电终止的依据是蓄电池的端电压,即单体蓄电池的终止电压约为1.80V。但是蓄电池的端电压与正、负极的3种极化密切相关,终止电压1.80V/单格是针对0.1C10左右的放电速率而设置的。由于极化的存在,放电速率减小时,放电终止电压也应该越来越高,否则极有可能导致蓄电池过放电,出现不可逆硫酸盐化、寿命提前终止。 2.放电终止电压 在蓄电池放电时需要注意的是放电速率和放电终止电压,尤其是不同环境温度下放电速率和放电终止电压的设定。由于不同的环境温度会极大的影响蓄电池中电解液的冰点和活性物质的活性,为保证化学反应的充分进行,蓄电池最低温度最好控制在25℃左右。 而蓄电池放电时终止电压的设定是为了防止在放电过程中蓄电池组内出现各单体蓄电池的电压和容量不平衡的现象。通常过放电越严重,下次充电时落后的蓄电池越不容易恢复,这就将严重影响蓄电池组的寿命。通常蓄电池放电速率为0.02C10、0.1C10、0.2C10或0.3C10。为了防止过充电,不仅要尽可能的避免放电速率过小,而且还必须根据放电速率,同时结合环境温度,精确地设计放电的终止电压。在一般情况下,如果放电速率为(0.01~0.025)C,终止电压可设定为2.00V;放电速率为(0.5~0.25)C时,终止电压可

电弧调节

一.分析电弧调节系统静特性、调节原理、调节精度、调节灵敏度(调节效应)和使用范围。 答:熔化极自动电弧焊的自动调节系统分为两种:等速送丝电弧自身调节系统和电弧电压反馈调节系统。 1)、等速送丝自身调节系统 ①静特性 焊丝以设定速度v f恒速送入电弧,当弧长稳定燃烧时必有:v f = v m, v m—焊丝熔化速度,与焊接电流I a、电弧电压U a关系为: v m=k i I a – k u U a ,式中k i为熔化速度随电流变化的系数,k u为熔化速度随电压变化的系数。由上两式解得:I a = v f/ k i + (k u/ k i)U a。此式称为等速送丝熔化极电弧等熔化曲线或自身调节系统静特性方程。 ②调节原理 如果电弧变短,弧压降低,所需电流减小,但是实际电流并没有减小,所以熔化速度必然加快,电弧必然变长,弧压增大,电弧恢复原始状态。 ③调节精度 调节精度是指系统调节过程结束后,静特性误差的大小。 电弧受三种因素影响:送丝速度的瞬时波动(弧长变化)、焊枪与工件的相对高度变化(弧长变化)、电网电压波动。 送丝速度变化时,电弧靠自身熔化化速度可以调节,且调节后回到工作点。 焊枪与工件高度变化, 焊枪高度变化引起弧长变化调整结束后,焊丝伸出长度将发生变化,系统将有静态误差。误差的大小与电源外特性有关。如电弧突然遇到一个坑,焊枪相对高度变大时:焊丝伸出长度必然变长。 网络电压波动长弧焊将产生明显的电弧电压静态误差,短弧焊则产生明显电流静态误差。如果长弧焊采用缓降外特性电源,短弧焊采用陡降外特性电源,上诉误差都将减小。 ④灵敏度 调节灵敏度是指调节过程的速度,速度愈快。所需调节时间愈短,系统的调节效果愈好。 Δv m = k iΔI a - k uΔU a(短弧焊时)或Δv m = k iΔI a 可见k i 和ΔI a 是影响调节灵敏度的主要因素。 ⑤使用范围: 平电弧静特性配缓降外特性电源,然而平电弧静特性一半是埋弧焊和粗丝MIG 焊,实际上这些焊接方法中焊丝的直径大,电流密度比较低,电弧自身调节作用较弱,一般需采用电弧反馈调节。 上升静特性配微升外特性电源。虽然微升外特性电源的自身调节作用较强,但是会引起较大飞溅,一般不采用,所以上升静特性电弧一般配平特性电源,而且一般平特性电源都略有下降,约5-7V/100V。 2)、弧压反馈调节系统 ①静特性 该系统稳定工作时可得:U a = k U c′/(k+ k u)+ k i I a/( k+ k u), U c′为给定弧压,此式称为熔化极电弧焊电压反馈调节静特性方程。焊接条件一定时k、k i、k u为常数。

蓄电池的特性

? (1)使用寿命长 高强度紧装配工艺,提高电池装配紧度,防止活物质脱落,提高电池使用寿命。 低酸比重电液,提高电池充电接受能力,增强电池深放电循环能力。 增多酸量设计,确保电池不会因电解液枯竭缩短电池使用寿命。 因此GFM系列蓄电池的正常浮充设计寿命可达15年以上(25℃) (2)高倍率放电性能优良 高强度紧装配工艺,电池内阻极小,大电流放电特性优良,比一般电池提高20[%]以上。 (3)自放电低 高纯度原料和特殊造工艺,自放电很小,室温储存半年以上也可无需补电。 (4)维护简单 特殊氧气吸收循环设计,克服了电池在充电过程中电解失水的现象,在使用过程中电解液水份含量几乎没有变化,因此电池在使用过程中完全无需补水,维护简单。 (5)安全性高 电池内部装有特制安全阀,能有效隔离外部火花,不会引起电池内部发生爆炸。 (6)安装简捷 电池立式、侧卧、叠层安装均可,安装时占地面积小,灵活方便。 (7)洁净环保 电池使用时不会产生酸雾,对周围环境和配套设计无腐蚀,可直接将电池安装在办公室或配套设备房内,无需作防腐处理。 蓄电池的充放电特性 ?蓄电池具有自放电效应。从生产制造车间到用户使用,大约要延误数月的时间。 以PA-NASONIC蓄电池为例,在30℃的环境温度下贮藏8个月,蓄电池的残存容量仅为出厂时的一半,因此对于新购买的与UPS配套的蓄电池,一般要进行一次较长时间的充电,这叫做初充电。蓄电池的初充电电流大小应按0.1C来充电,蓄电池在放电终了后可进行再充电,这叫正常充电。目前在UPS中普遍采用两种充电方式:浮充和脉充。所谓浮充电是指整流器的输出与蓄电池并联工作,并同时向负载供电,实际上此时整流器提供的电流分两路,一路送给负载,另一路送给蓄电池,以补充蓄电池自身内部损耗,浮充充电工作方式接线简单,对改善UPS输出瞬态响应特性有好处。脉冲充电的特点是充电电流随蓄电池容量而变化,用这种方式充电,可以缩短充电时间。 1.充电电压 由于UPS蓄电池属于备用工作方式,市电正常情况下处于充电状态,只有停电时才会放电。为延长蓄电池的使用寿命,UPS的充电器一般采用恒压限流的方式控制,蓄电池充满后即转为浮充状态。

焊接电弧特性

§1.2 焊接电弧特性 电弧特性是指电弧在导电行为方面表现出的一些特征,其中的电弧电特性与电弧热平衡、电弧稳定性等有很深的联系,是很重要的事项。 焊接电弧静特性 焊接电弧动特性 阴极斑点和阳极斑点 电弧的阴极清理作用 最小电压原理 电弧的挺直性与磁偏吹

1. 焊接电弧静特性 1)电弧静特性曲线变化特征(与金属电阻对应理解) 电弧的电流·电压特性 左图概念性示出稳定状态下焊接电弧的电流·电压特性,称作电弧静特性曲线。静特性曲线是在①某一电弧长度数值下,在②稳定的保护气流量和③电极条件下(还应包括其他稳定条件),改变电弧电流数值,在电弧达到稳定燃烧状态时所对应的电弧电压曲线。 呈现3个区段的变化特点下降特性区(负阻特性区)平特性区上升特性区

3个特性区域的特点是由于电弧自身性质所确定的,主要和电弧自身形态、所处环境、电弧产热与散热平衡等有关 在小电流区:电弧电压随电流的增大而减小,呈现负阻特性。原因如下: 电流小时,电弧热量低,导电性差,需要较高的电场推导电荷运动; 电弧极区(特别是阴极区),温度低,提供电子能力差,会形成较强的极区电场; 电流增大:电弧中产生和运动等量的电荷不再需要更高的电场; 电弧自身性质具有保持热量动态平衡的能力 当电流稍大时:焊条金属将产生金属蒸气的发射和粒子流。 消耗能量,故E不用降低 当电流进一步增大时,金属蒸气的发射和等离子流的冷却作用进一步增强,同时由于电磁收缩力的作用,电弧断面不能随电流的增加而成比例的增加,电弧电压降升高,电弧静特性呈正特性。

埋弧焊电弧静特性曲线埋弧焊电弧的散热损失小,且电弧中基本没有GTA、GMA那样的等离子流存在,采用粗焊丝大电流,电弧特性呈下降趋势。 电弧特性反应了电弧的导电性能和变化特征,电弧种发生的许多现象都与静特性有关,也可以用于对比解释各种电弧焊方法的差别

电弧产生的原因及特点

电弧产生现象原因及特点 在有触点电器中,触头接通和分断电流的过程中往往伴随着气体放电现象---电弧的产生及熄灭,电弧对电器具有一定的危害。 电弧属于气体放电的一种形式。气体放电分为自持放电与非自持放电两类,电弧属于气体自持放电中的弧光放电。试验证明,当在大气中开断或闭合电压超过10V、电流超过100MA的电路时,在触头间隙(或称弧隙)中会产生一团温度极高、亮度极强并能导电的气体,称为电弧。由于电弧的高温及强光,它可以广泛应用于焊接、熔炼、化学合成、强光源及空间技术等方面。对于有触点电器而言,由于电弧主要产生于触头断开电路时,高温将烧损触头及绝缘,严重情况下甚至引起相间短路、电器爆炸,酿成火灾,危及人员及设备的安全。所以从电器的角度来研究电弧,目的在于了解它的基本规律,找出相应的办法,让电弧在电器中尽快熄灭。 我们借助一定的仪器仔细观察电弧,可以发现,除两个极(触头)外,明显的分为3个区域,即近阴极区、近阳极区及弧柱区。 近阴极区的长度约等于电子的平均自由行程。在电场力的作用下正离子向阴极运动,造成此区域内聚集着大量的正离子而形成正的空间电荷层,使阴极附近

形成高电场强度。正的空间电荷层形成阴极压降,其数值随阴极材料和气体介质的不同而有所变化,但变化不大,约在10-20V之间。 近阳极区的长度约等于近阴极区的几倍。在电场力的作用下自由电子向阳极运动,它们聚集在阳极附近而且不断被阳极吸收而形成电流。在此区域内聚集着大量的电子形成负的空间电荷层,产生阳极压降,其值也随阳极材料而异、但变化不大,稍小于阴极压降。由于近阳极区的长度比近阴极区的长,故其电场强度较小。 阴极压降与阳极压降的数值几乎与电流大小无关,在材料及介质确定后可以认为是常数。 弧柱区的长度几乎与电极间的距离相同。是电弧中温度最高、亮度最强的区域。因在自由状态下近似圆柱形,故称弧柱区。在此区中正、负电粒子数相同,称等离子区。由于不存在空间电荷,整个弧区的特性类似于一金属导体。每单位弧柱长度电压降相等。其电位梯度E。也为一常数,电位梯度与电极材料、电流大小、气体介质种类和气压等因素有关。 电弧按其外形分为长弧与短弧。长短之别一般取决于弧长与弧径之比。把弧长大大超过弧径的称为长弧。长弧的电压是近极压降(阴极压降与阳极压降)与弧柱压降之和。若弧长小于弧径,两极距离极短(如几毫米)的电弧称为短弧。此时两极的热作用强烈,近极区的过程起主要作用。电弧的压降以近极压降为主,几乎不随电流变化。 电弧还可按其电流的性质分为直流电弧和交流电弧。

相关文档
相关文档 最新文档