文档库 最新最全的文档下载
当前位置:文档库 › 拟牛顿法求解优化问题

拟牛顿法求解优化问题

拟牛顿法求解优化问题
拟牛顿法求解优化问题

机械设计优化大作业

摘要:拟牛顿法是求解优化问题的一种重要方法,本文在Matlab平台上,运用拟牛顿法对最小值问题进行了无约束优化求解。计算结果表明,拟牛顿法能够比较精确地计算函数的极小值。

关键词:拟牛顿法,最小值

1 概述

随着计算机技术的飞速发展和数值计算方法的广泛应用,工程设计领域在设计方法和技术创新方面有了巨大发展和进步,这也大大推动了现代工程领域的技术进步和创新。优化设计就是其中发展最快的设计方法之一。

优化设计是20世纪60年代初发展起来的一门新兴学科,他将数学中的最优化理论与工程设计领域相结合,使人们在解决工程设计问题时,可以从无数设计方案中找到最优或尽可能完善的设计方案,大大提高了工程的设计效率和设计质量。目前,优化设计是工程设计中的一种重要方法,已经广泛应用于各个工程领域——航空航天、机械、船舶、交通、电子、通讯、建筑、纺织、冶金、是有、管理等,并产生了巨大的经济效益和社会效益。特别是由于现代国家、地区和企业之间的激烈竞争,各种原材料、能源的短缺,优化设计越来越受到人们广泛的重视,并成为21世纪工程设计人员必须掌握的的一种设计方法。

优化设计工作中,针对具体设计问题是否选择了合适的优化方法,相应的计算程序是否有效.数学模型构造是否合理,能否充分反映实际问题且尽量简化,这些都直接关系到优化设计进程和机械设计结果。目前,常用的机械优化设计过程:①分析设计变量,提出目标函数,确定约束条件,建立优化设计的数学模型;

②选择适当的优化方法,编写优化程序;③准备必须的初始数据并上机计算,对计算机求得的结果进行必要的分析。

2 拟牛顿法简介

拟牛顿法(Quasi-Newton Methods)是求解非线性优化问题最有效的方法之一,于20世纪50年代由美国Argonne国家实验室的物理学家W. C. Davidon 所提出来。Davidon设计的这种算法在当时看来是非线性优化领域最具创造性的发明之一。不久R. Fletcher和M. J. D. Powell证实了这种新的算法远比其他方法快速和可靠,使得非线性优化这门学科在一夜之间突飞猛进。在之后的20年里,拟牛顿方法得到了蓬勃发展,出现了大量的变形公式以及数以百计的相关论文。

拟牛顿法和最速下降法(Steepest Descent Methods)一样只要求每一步迭代时知道目标函数的梯度。通过测量梯度的变化,构造一个目标函数的模型使之足以产生超线性收敛性。这类方法大大优于最速下降法,尤其对于困难的问题。另外,因为拟牛顿法不需要二阶导数的信息,所以有时比牛顿法(Newton's Method)更为有效。如今,优化软件中包含了大量的拟牛顿算法用来解决无约束,约束,和大规模的优化问题。

拟牛顿法的基本思想如下。首先构造目标函数在当前迭代$x_k$的二次模型:m_k(p)=f_k+g_k^T p+p^T B_k p/2,这里f_k=f(x_k),g_k=▽f(x_k),B_k 是一个对称正定矩阵。于是我们取这个二次模型的最优解p_k=-B_k^{-1} g_k 作为搜索方向,并且得到新的迭代点x_{k+1}=x_k+a_k p_k ,其中我们要求步长a_k 满足Wolfe 条件。这样的迭代类似与牛顿法,区别就在于用近似的Hesse 矩阵B_k 代替真实的Hesse 矩阵。所以拟牛顿法最关键的地方就是每一步迭代中矩阵B_k 的更新。现在假设得到一个新的迭代x_{k+1},并得到一个新的二次模型:m_{k+1}(p)=f_{k+1}+g_{k+1}^T p + p^T B_{k+1} p/2。我们尽可能地利用上一步的信息来选取B_{k+1}。具体地,我们要求g_{k+1}-g_k=a_k B_{k+1} p_k ,从而得到B_{k+1}s_k=y_k ,其中s_k=x_{k+1}-x_k ,y_k=g_{k+1}-g_k 。这个公式被称为割线方程。

3.1 具体算例提出

224412342314min ()(10)5()(2)10()f x x x x x x x x x =++-+-+-

初始点:

00[3101],()215T x f x =-=

3.2 拟牛顿法优化流程图

3.3 编程

借助MATLAB软件进行了相关求解,其M文件程序如下:function f = objfun(x)

f = (x(1)+10*x(2))^2 +5*(x(3)-x(4))^2+(x(2)-2*x(3))^4+10*(x(1)-x(4))^4; x0 = [3,-1,0,1]; % Startin

g guess

options = optimset('Display','iter','TolFun',1e-8);

[x,fval,exitflag,output] = fminunc(@objfun,x0,options);

3.4 结果分析

MATLAB软件计算结果和处理分析结果分别如表1和图2所示:

表1 计算结果

Iteration Func-count f(x) Step-size infinity-norm

0 5 215 310

1 10 31.1301 0.00322581 67.5

2 15 19.1597 1 21.8

3 20 14.7875 1 17

4 2

5 11.9038 1 17.2

5 30 8.31909 1 16.5

6 35 7.50576 1 7.12

7 40 6.87303 1 5.15

8 45 6.41907 1 8.89

9 50 4.79648 1 16.6

10 55 3.10014 1 16.7

11 60 1.33439 1 9.13

12 65 0.49174 1 3.83

13 70 0.229551 1 2.46

14 75 0.101587 1 2.42

15 80 0.0519105 1 1.26

16 85 0.0431419 1 0.519

17 90 0.0389647 1 0.549

18 95 0.0316019 1 0.869

19 100 0.0203066 1 1.26

20 105 0.00792415 1 1

21 110 0.00162445 1 0.315

22 115 0.000517765 1 0.0419

23 120 0.00029596 1 0.117

24 125 0.000125548 1 0.106

25 130 3.33499e-005 1 0.0414

26 135 9.91503e-006 1 0.00112

27 140 4.44101e-006 1 0.0113

28 145 1.69096e-006 1 0.00963

29 150 4.73249e-007 1 0.00324

30 155 1.53806e-007 1 0.000446

31 160 6.23743e-008 1 0.00129

32 165 2.15312e-008 1 0.000878

33 170 6.38904e-009 1 0.000217

34 175 2.23596e-009 1 9.78e-005

35 180 8.47869e-010 1 0.000146

36 185 2.64596e-010 1 7.94e-005

37 190 6.59852e-011 1 8.21e-006

38 195 1.16442e-011 1 2.58e-005

图2 处理结果分析

根据MATLAB 软件计算结果得到最优解为

最优解:**[0.0013,0.0001,0.0003,0.0003],() 1.1644e-011T x f x =-=

在Matlab 的计算中,通过38次的计算,最终计算所得的最小值是

1.16442e-11。这也就是软件计算所得的最优解。而实际最优解为

**[0000],()0T x f x ==

两结果相差不大,所以此种优化方法可以较准确地得到最优解。

最优化课程设计

《最优化》课程设计 题目:牛顿法与阻尼牛顿法算法分析 学院: 数学与计算科学学院 专业:数学与应用数学 姓名学号:廖丽红 1000730105 欧艳 1000730107 骆宗元 1000730122 沈琼赞 1000730127 指导教师:李向利 日期:2012年11月08日

摘要 本文基于阻尼牛顿法在解决无约束最优化问题中的重要性,对其原理与算法予以讨论。论文主要是参阅大量数学分析和最优化理论方法,还有最优化方法课程以及一些学术资料,结合自己在平时学习中掌握的知识,并在指导老师的建议下,拓展叙述牛顿法和其改进方法——阻尼牛顿法的优缺点,同时针对阻尼牛顿法的基本思路和原理进行研究,其搜索方向为负梯度方向,改善了牛顿法的缺点,保证了下降方向。 关键词:无约束牛顿法下降方向阻尼牛顿法最优解

Abstract This thesis is based on the importance of the damping Newton's method to solve unconstrained optimization problems, we give the discussion about its principles and algorithms. We search a large number of mathematical analysis and optimization theory methods, optimization methods courses, as well as some academic information ,and at the same time combined with knowledge we have learning in peacetime and thanks to the instructor's advice, we also give an expanding narrative for the Newton's method and the improved method -- damping Newton method's advantages and disadvantages, and make a study of the basic ideas and principles for damping Newton method at the same time , we find that a negative gradient direction is for the search direction of the damping Newton method, this method improves the shortcomings of the Newton method which can ensure the descent direction. Keywords: unconstrained , Newton's method , descent direction , damping Newton's method ,optimal solution

牛顿迭代法文献综述

“牛顿迭代法”最新进展文献综述牛顿法是一种重要的迭代法,它是逐步线性化的方法的典型代表。牛顿迭代法又称为牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。另外该方法广泛用于计算机编程中。 介绍一下牛顿迭代法研究的前沿进展,1992年南京邮电学院基础课部的夏又生写的一篇题名一类代数方程组反问题的牛顿迭代法,对一类代数方程组反问题提出了一个可行的迭代解法。从算法上看,它是一种解正问题—迭代—解正问题迭代改善的求解过程。湖南师范大学的吴专保;徐大发表的题名堆浸工艺中浸润面的非线性问题牛顿迭代方法,为了研究堆浸工艺的机理,用牛顿迭代公式寻求浸润面的非线性方程的数值解,经过14次迭代的误差达到了,说明此算法收敛有效。浙江大学电机系的林友仰发表的牛顿迭代法在非线性电磁场解算中的限制对非线性电磁场解算中的限制做了分析,求解非线性方程组时迭代法是不可避免的。牛顿—拉斐森迭代法由于它的收敛速度快常被优先考虑。应用这个方法的主要问题是求雅可比矩阵。因为雅可比矩阵元素的计算非常费时。然而,本文要说明的是当利用以三角形为单元的有限元法求解非线性方程组时,应用牛顿法其雅可比矩阵容易求得,并且它保持了原系数的对称性和稀疏性,因而节省了时间。与此相反,若在差分法中应用牛顿迭代,并且按习惯用矩形网格进行剖分,则雅可比阵的计算很费时,而且不再保持原有对称性,这就使得存贮量和计算时间大为增加。南株洲工学院信息与计算科学系的吕勇;刘兴国发表的题名为牛顿迭代法加速收敛的一种修正格式,主要内容牛顿迭代法是求解非线性方程的一种重要的数值计算方法,在通常情况下,它具有至少平方收敛。本文利用文献[4]所建立的迭代格式xn+1=xn-αf(xfn)(x+n)f′(xn),对迭代格式中的参数α的讨论,实现了牛顿迭代法加速收敛的一种修正格式。

ICA使用牛顿迭代法对FastICA算法经行改进

ICA用牛顿迭代法改进的FastICA算法 ICA算法原理: 独立分量分析(ICA)的过程如下图所示:在信源()st中各分量相互独立的假设下,由观察xt通过结婚系统B把他们分离开来,使输出yt逼近st。 图1-ICA的一般过程 ICA算法的研究可分为基于信息论准则的迭代估计方法和基于统计学的代数方法两大类,从原理上来说,它们都是利用了源信号的独立性和非高斯性。基于信息论的方法研究中,各国学者从最大熵、最小互信息、最大似然和负熵最大化等角度提出了一系列估计算法。如FastICA算法, Infomax算法,最大似然估计算法等。基于统计学的方法主要有二阶累积量、四阶累积量等高阶累积量方法。本实验主要讨论FastICA算法。 1. 数据的预处理 一般情况下,所获得的数据都具有相关性,所以通常都要求对数据进行初步的白化或球化处理,因为白化处理可去除各观测信号之间的相关性,从而简化了后续独立分量的提取过程,而且,通常情况下,数据进行白化处理与不对数据进行白化处理相比,算法的收敛性较好。 若一零均值的随机向量 满足 , 其中:I为单位矩阵,我们称这个向量为白化向量。白化的本质在于去相关,这同主分量分析的目标是一样的。在ICA中,对于为零均值的独立源信号 , 有: , 且协方差矩阵是单位阵cov( S ) = I,因此,源信号 S( t )是白色的。对观测信号X( t ),我们应该寻找一个线性变换,使X( t )投影到新的子空间后变成白化向量,即:

其中,W0为白化矩阵,Z为白化向量。 利用主分量分析,我们通过计算样本向量得到一个变换 其中U和 分别代表协方差矩阵XC的特征向量矩阵和特征值矩阵。可以证明,线性变换W0满足白化变换的要求。通过正交变换,可以保证 因此,协方差矩阵: 再将 代入 且令 有 由于线性变换A~连接的是两个白色随机矢量Z( t )和S( t ),可以得出A~ 一定是一个正交变换。如果把上式中的Z( t )看作新的观测信号,那么可以说,白化使原来的混合矩阵A简化成一个新的正交矩阵A~。证明也是简单的: 其实正交变换相当于对多维矢量所在的坐标系进行一个旋转。 在多维情况下,混合矩阵A是N*N 的,白化后新的混合矩阵A~ 由于是正交矩阵,其自由度降为N*(N-1)/2,所以说白化使得ICA问题的工作量几乎减少了一半。 白化这种常规的方法作为ICA的预处理可以有效地降低问题的复杂度,而且算法简单,用传统的PCA就可完成。用PCA对观测信号进行白化的预处理使得原来所求的解混合矩阵退化成一个正交阵,减少了ICA的工作量。此外,PCA本身具有降维功能,当观测信号的个数大于源信号个数时,经过白化可以自动将观测信号数目降到与源信号维数相同。

牛顿迭代法.

牛顿迭代法 李保洋 数学科学学院信息与计算科学学号:060424067 指导老师:苏孟龙 摘要:牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法,即牛顿迭代法.迭代法是一种不断用变量的旧值递推新值的过程?跟迭代法相对应的是 直接法或者称为一次解法,即一次性解决问题?迭代法又分为精确迭代和近似迭代 “牛顿迭代法”属于近似迭代法,本文主要讨论的是牛顿迭代法,方法本身的发现和演变和修正过程,避免二阶导数计算的Newton迭代法的一个改进,并与中国古代的算法,即盈不足术,与牛顿迭代算法的比较? 关键词:Newton迭代算法;近似求解;收敛阶;数值试验;中国古代数学; 九章算术;Duffing方程;非线性方程;收敛速度;渐进性 0引言: 迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法或者称为一次解法,即一次性解决问题?迭代法又分为精确迭代和近似迭代?“二分法”和“牛顿迭代法”属于近似迭代法? 迭代算法是用计算机解决问题的一种基本方法?它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值?具体使用迭代法求根时应注意以下两种可能发生的情况: (1)如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制? (2)方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败? 所以利用迭代算法解决问题,需要做好以下三个方面的工作: 1、确定迭代变量?在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量 2、建立迭代关系式.所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系).迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成. 3、对迭代过程进行控制,在什么时候结束迭代过程?这是编写迭代程序必须 考虑的问题.不能让迭代过程无休止地重复执行下去.迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定.对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件.

最优化方法,汇总

最优化方法结课作业 年级数学121班 学号201200144209 姓名李强

1、几种方法比较 无约束优化:不对定义域或值域做任何限制的情况下,求解目标函数的最小值。这是因为实际应用中,许多情形被抽象为函数形式后均为凸函数,对于凸函数来说局部最小值点即为全局最小值点,因此只要能求得这类函数的一个最小值点,该点一定为全局最小值。(直接法:又称数值方法,它只需计算目标函数驻点的函数数值,而不是求其倒数,如坐标轮换法,单纯型法等。间接法:又称解析法,是应用数学极值理论的解析方法。首先计算出目标函数的一阶或一阶、二阶导数,然后根据梯度及海赛矩阵提供的信息,构造何种算法,从而间接地求出目标函数的最优解,如牛顿法、最速下降法共轭梯度法及变尺度法。)在优化算法中保证整体收敛的重要方法就是线搜索法与信赖域法,这两种算法既相似又有所不同。根据不同的线搜索准则就延伸出不同的线搜索算法,譬如比较常见和经典的最速下降法,牛顿法,拟牛顿法以及共辄梯度法等。 一维搜索又称线性搜索(Line Search),就是指单变量函数的最优化,它是多变量函数最优化的基础,是求解无约束非线性规划问题的基本方法之一。 一维搜索技术既可独立的用于求解单变量最优化问题,同时又是求解多变量最优化问题常用的手段,虽然求解单变量最优化问题相对比较简单,但其中也贯穿了求解最优化问题的基本思想。由于一维搜索的使用频率较高,因此努力提高求解单变量问题算法的计算效率具有重要的实际意义。 在多变量函数的最优化中,迭代格式Xk+1=Xk+akdk其关键就是构造搜索方向dk和步长因子ak 设Φ(a)=f(xk+adk) 这样从凡出发,沿搜索方向dk,确定步长因子ak,使Φ(a)<Φ(0)的问题就是关于步长因子a 的一维搜索问题。其主要结构可作如下概括:首先确定包含问题最优解的搜索区间,然后采用某种分割技术或插值方法缩小这个区间,进行搜索求解。 一维搜索通常分为精确的和不精确的两类。如果求得ak使目标函数沿方向dk达到极小,即使得f (xk+akdk)=min f (xk+ adk) ( a>0)则称这样的一维搜索为最优一维搜索,或精确一维搜索,ak叫最优步长因子;如果选取ak使目标函数f得到可接受的下降量,即使得下降量f (xk)一f (xk+akdk)>0是用户可接受的,则称这样的一维搜索为近似一维搜索,或不精确一维搜索,或可接受一维搜索。由于在实际计算中,一般做不到精确的一维搜索,实际上也没有必要做到这一点,因为精确的一维搜索需要付出较高的代价,而对加速收敛作用不大,因此花费计算量

关于拟牛顿法的综述

几种拟牛顿算法综述 摘要: 拟牛顿方法是求解无约束优化问题有效而著名的算法。在拟牛顿法中,有根据矫正公式的不同分为几类方法。本文主要针对SR1、SR1的一种修改、BFGS、MBFGS、非单调的CBFGS、LBFGS这几种矫正公式产生方法进行理论阐述,包括其收敛性,收敛速度的证明并检验其在正定二次问题上的等价性。最后通过C#编程语言检验上述方法在收敛速度上的差异性。 关键字:拟牛顿法、矫正公式、收敛性、非线性方程 引言: 考虑无约束问优化题minf(x)(0.1)f是连续可微的函数。牛顿法利用 Newton方法最突出的优点是其收敛速度快,凡是目标函数的Hessian矩阵 较简单的问题都可以采用Newton方法,1- 。对于那些Hessian矩阵复杂的问题而 言,求解Hessian矩阵无疑是一项艰巨的工程,这是很多学者选择采用拟牛顿的方法来解决现实中较复杂的问题的原因所在。拟牛顿法和Newton法的主要区别于求解迭代方向。拟牛顿法的主要思路是通过构造一个矩阵序列*H(k)+去逼近 原问题迭代方向中的Hessian矩阵*G(k)?1+,这很好的避免了复杂矩阵求逆的问题。在算法上很好的降低了计算量,从而提高计算速度。为了寻找与G有某种近似的,我们需要来考察的各种相关关系。为此目的,我们将f(x)的梯度在处作Taylor 展开, (δ)()δ(x) f(x) 当δ充分小时,可得到近似关 δ()δ(δ)() 或δγ,γ 1 1(δ)(0.2) 关系式(1)对二次函数f(x)恒成立,但对于不一定成立。现在我们研究与寻找,使它满足关系式(1)。为讨论与计算上的方便,当得到 1 δ时,δ,γ已知,我们求得 1,它满足关系: 1 δγ (0.3)为了叙述方便,我们引入=?1那么有以下式子成立

改进的牛顿迭代法

改进的牛顿迭代法求解非线性方程 摘要:牛顿法思想是将非线性方程线性化,以线性方程的解逐步逼近非线性方程的解,但是其对初值、波动和可能出现的不收敛等缺点,而牛顿下山法克服了可能出现的发散的缺点。 关键词:牛顿法、牛顿下山法、非线性方程 一、牛顿法的迭代公式 设)(x f 在其零点*x 附近一阶连续可微,且0)(≠'x f ,当*0x x →时,由Taylor 公式有: ))(()()(000x x x f x f x f -'+≈ 以方程 0))(()(000=-'+x x x f x f 近似方程0)(=x f ,其解 ) ()(0001x f x f x x '-= 可作为方程的近似解,重复上述过程,得迭代公式 ),1,0(,) ()(1 ='-=+n x f x f x x n n n n 该方法称为牛顿迭代法。 二、牛顿法的改进 由于牛顿法缺点对牛顿法进行改进,使其计算简单,无需每次迭代都去计算)(x f ',且能够更好的收敛。 2.1简化的牛顿法 牛顿法的缺点之一是每次迭代都得去计算)(k x f '。为回避该问题,常用一个固定 )(k x f '迭代若干步后再求)(k x f '。这就是简化牛顿法的基本思想。 简化牛顿法的公式为: )(1k k k x cf x x -=+

迭代函数 )()(x cf x x -=? 若 2)(0,1)(1)(<'<<'-='x f c x f c x 即?,在根*x 附近成立,则迭代法局部收敛。 显然此法简化了计算量,却降低了收敛速度。 2.2牛顿下山法 牛顿法的缺点二是其收敛依赖与初值0x 的选取,若0x 偏离所求根*x 较远,则牛顿法可能发散。为防止迭代发散,我们对迭代过程再附加一项条件,即具有单调性: )()(1k k x f x f <+ 保证函数值稳定下降,然后结合牛顿法加快收敛速度,即可达目的。将牛顿法的计算结果 ) ()(1k k k k x f x f x x '-=+ 与前一步的近似值k x 适当加权平均作为新的改进值 k k k x x x )1(11λλ-+=++ 其中,称 )10(≤<λλ为下山因子,即为: ) ()(1k k k k x f x f x x '-=+λ 称为牛顿下山法。选择下山因子λ时,从 1=λ开始逐次将λ减半进行试算,直到条件成立为止。 三 举例说明 例1 求方程013=--x x 的根 (1)取5.10=x ,用牛顿法公式: 1 32131---=-+k k k k x x x x x 计算得:32472.1,32520.1,34783.1321===x x x

最优化方法之修正牛顿法matlab源码(含黄金分割法寻找步长)

revisenewton.m syms x1 x2 x3 xx; % f = x1*x1 +x2*x2 -x1*x2 -10*x1 -4*x2 + 60 ; % f = x1^2 + 2*x2^2 - 2*x1 *x2 -4*x1 ; f = 100 * (x1^2 - x2^2) + (x1 -1 )^2 ; hessen = jacobian(jacobian(f , [x1,x2]),[x1,x2]) ; gradd = jacobian(f , [x1,x2]) ; X0 = [0,0]' ; B = gradd' ; x1 = X0(1); x2 = X0(2); A = eval(gradd) ; % while sqrt( A(1)^2 + A(2)^2) >0.1 i=0; while norm(A) >0.1 i = i+1 ; fprintf('the number of iterations is: %d\n', i) if i>10 break; end B1 = inv(hessen)* B ; B2= eval(B1); % X1 = X0 - B2 % X0 = X1 ; f1= x1 + xx * B2(1); f2= x2 + xx* B2(2); % ff = norm(BB) ? syms x1 x2 ; fT=[subs(gradd(1),x1,f1),subs(gradd(2),x2,f2)]; ff = sqrt((fT(1))^2+(fT(2))^2); MinData = GoldData(ff,0,1,0.01); x1 = X0(1); x2 = X0(2); x1 = x1 + MinData * B2(1) x2 = x2 + MinData * B2(2) A = eval(gradd) End GoldData.m function MiniData = GoldData( f,x0,h0,eps) syms xx;

Newton迭代法求解非线性方程

Newton迭代法求解非 线性方程

一、 Newton 迭代法概述 构造迭代函数的一条重要途径是用近似方程来代替原方程去求根。因此,如果能将非线性方程f (x )=0用线性方程去代替,那么,求近似根问题就很容易解决,而且十分方便。牛顿(Newton)法就是一种将非线性方程线化的一种方法。 设k x 是方程f (x )=0的一个近似根,把如果)(x f 在k x 处作一阶Taylor 展开,即: )x x )(x ('f )x (f )x (f k k k -+≈ (1-1) 于是我们得到如下近似方程: 0)x x )(x ('f )x (f k k k =-+ (1-2) 设0)('≠k x f ,则方程的解为: x ?=x k +f (x k ) f (x k )? (1-3) 取x ~作为原方程的新近似根1+k x ,即令: ) x ('f ) x (f x x k k k 1k -=+, k=0,1,2,… (1-4) 上式称为牛顿迭代格式。用牛顿迭代格式求方程的根的方法就称为牛顿迭代法,简称牛顿法。 牛顿法具有明显的几何意义。方程: )x x )(x ('f )x (f y k k k -+= (1-5) 是曲线)x (f y =上点))x (f ,x (k k 处的切线方程。迭代格式(1-4)就是用切线式(1-5)的零点来代替曲线的零点。正因为如此,牛顿法也称为切线法。 牛顿迭代法对单根至少是二阶局部收敛的,而对于重根是一阶局部收敛的。一般来说,牛顿法对初值0x 的要求较高,初值足够靠近*x 时才能保证收敛。若

要保证初值在较大范围内收敛,则需对)x (f 加一些条件。如果所加的条件不满足,而导致牛顿法不收敛时,则需对牛顿法作一些改时,即可以采用下面的迭代格式: ) x ('f ) x (f x x k k k 1k λ -=+, ?=,2,1,0k (1-6) 上式中,10<λ<,称为下山因子。因此,用这种方法求方程的根,也称为牛顿下山法。 牛顿法对单根收敛速度快,但每迭代一次,除需计算)x (f k 之外,还要计算 )x ('f k 的值。如果)x (f 比较复杂,计算)x ('f k 的工作量就可能比较大。为了避免计算导数值,我们可用差商来代替导数。通常用如下几种方法: 1. 割线法 如果用 1 k k 1k k x x ) x (f )x (f ----代替)x ('f k ,则得到割线法的迭代格式为: )x (f ) x (f )x (f x x x x k 1k k 1 k k k 1k --+---= (1-7) 2. 拟牛顿法 如果用 ) x (f )) x (f x (f )x (f k 1k k k ---代替)x ('f k ,则得到拟牛顿法的迭代格式为: )) x (f x (f )x (f ) x (f x x 1k k k k 2k 1k -+--- = (1-8) 3. Steffenson 法 如果用 ) x (f ) x (f ))x (f x (f k k k k -+代替)x ('f k ,则得到拟牛顿法的迭代格式为: ) x (f ))x (f x (f ) x (f x x k k k k 2k 1 k -+- =+

线性方程组的迭代法应用及牛顿迭代法的改进

线性方程组的迭代法应用及牛顿迭代法的改进 摘要: 迭代解法就是通过逐次迭代逼近来得到近似解的方法。由于从不同 的问题而导出的线性代数方程组的系数矩阵不同,因此对于大型稀疏矩阵所对应线性代数方程组,用迭代法求解。本文论述了Jacobi 法,Gauss-Seidel 法,逐次超松弛法这三种迭代法,并在此基础上对牛顿型的方法进行了改进,从而使算法更为精确方便。 关键词:线性方程组,牛顿迭代法,Jacobi 法,Gauss-Seidel 法,逐次超松弛 法 1.线性方程组迭代法 1.1线性方程组的迭代解法的基本思想 迭代法求解基本思想:从某一初始向量X (0)=[x 1(0) ,x 2(0) ,……………x n (0) ]出发,按某种迭代规则,不断地对前一次近似值进行修改,形成近似解的向量{X (k)}。当近似解X (k) =[x 1(k) ,x 2(k) ,……………x n (k) ]收敛于方程组的精确解向量X* =[x 1*,x 2*,……………x n *]时,满足给定精度要求的近似解向量X (k)可作为X*的数值解。 1.2 线性方程组的迭代法主要研究的三个问题 (1) 如何构造迭代公式 (2) 向量数列{X (k)}的收敛条件 (3) 迭代的结束和误差估计 解线性方程组的迭代解法主要有简单迭代法、 Gauss-Seidel 法和SOR 法。简单迭代法又称同时代换法或Jacobi 法,是最简单的解线性方程组的迭代解法也是其他解法的基础。 1.3Jacobi 迭代法 设方程组点系数矩阵n n j A ai R ???=∈??满足条件0ii a ≠,i=0,1,2, …n 。把A 分解为 A=D+L+U

牛顿迭代法实验报告

用牛顿迭代法求非线性方程的根 一、 实验题目 求方程()013=--=x x x f 在5.1附近的根。 二、 实验引言 (1)实验目的 1. 用牛顿迭代法求解方程的根 2. 了解迭代法的原理 3. 改进和修缮迭代法 (2)实验意义 牛顿迭代法就是众多解非线性方程迭代法中比较普遍的一种,求解方便实用。 三、 算法设计 (1)基本原理 给定初始值0x ,ε为根的容许误差,η为()x f 的容许误差,N 为迭代次数的容许值。 1.如果()0='x f 或迭带次数大于N ,则算法失败,结束;否则执行2. 2.计算()() 0001x f x f x x '-=. 3.若ε<-21x x 或()η<1x f ,则输出1x ,程序结束;否则执行4. 4.令10x x =,转向1. (2)流程图

四、程序设计program nndd01 implicit none real,parameter::e=0.005 real,parameter::n=9 real::x1 real::x0=1.5 integer::k real,external::f,y do k=1,9 if (y(x0)==0) then write(*,*)"失败" else x1=x0-f(x0)/y(x0) if (abs(x1-x0)

else x0=x1 end if end if end do end function f(x) implicit none real::f real::x f=x*x*x-x-1 return end function function y(x) implicit none real::y real::x y=3*x*x-1 return end function 五、求解结果 3 1.324718 4 1.324718 5 1.324718 6 1.324718 7 1.324718 8 1.324718 9 1.324718 六、算法评价及讨论 1.在求解在1.5处附近的根,不难发现在输入区间左端值为1时 需要迭代6次,而输入区间左端值为1.5时,却只要4次。初

matlab最优化-牛顿法

实验报告日期:2013年6月2日 一、实验概述 【实验名称】:牛顿法 【实验性质】:验证性 【实验目的及要求】:配合课堂教学,培养学生动手能力,根据牛顿法求极小值的思想设计程序。 【基本原理】:牛顿法的迭代公式:)()(12)()1(k k k k x f x f x x ??-=-+,其中)(2k x f k ?是f(x)在k x 处的Hesse 矩阵。【实施环境】: MATLAB 7.0 二、实验内容 【项目内容及要求】 用牛顿法求解以下问题: min z=(x1-1)4+x22 三、实验过程 【实验操作步骤】 function [x1k]=newton(x1,j) %x1为初始点x1=[8,8]';j=1e-10; hs=inline('(x-1)^4+y^2');

ezcontour(hs,[-1010-1010]);hold on; syms x y f=(x-1)^4+y^2; grad1=jacobian(f,[x,y]);%求梯度 grad2=jacobian(grad1,[x,y]);%求Hesse矩阵 k=0; while1 grad1z=subs(subs(grad1,x,x1(1)),y,x1(2));%求梯度值 grad2z=subs(subs(grad2,x,x1(1)),y,x1(2));%求Hesse矩阵x2=x1-inv(grad2z)*(grad1z');%牛顿迭代公式 if norm(x1-x2)

最优化牛顿法最速下降法共轭梯度法matlab代码

牛顿法 迭代公式:(1)2()1()[()]()k k k k x x f x f x +-=-?? Matlab 代码: function [x1,k] =newton(x1,eps) hs=inline('(x-1)^4+y^2'); 写入函数 ezcontour(hs,[-10 10 -10 10]); 建立坐标系 hold on; 显示图像 syms x y 定义变量 f=(x-1)^4+y^2; 定义函数 grad1=jacobian(f,[x,y]); 求f 的一阶梯度 grad2=jacobian(grad1,[x,y]); 求f 的二阶梯度 k=0; 迭代初始值 while 1 循环 grad1z=subs(subs(grad1,x,x1(1)),y,x1(2)); 给f 一阶梯度赋初值 grad2z=subs(subs(grad2,x,x1(1)),y,x1(2)); 给f 二阶梯度赋初值 x2=x1-inv(grad2z)*(grad1z)'; 核心迭代公式 if norm(x1-x2)

end end end 优点:在极小点附近收敛快 缺点:但是要计算目标函数的hesse 矩阵 最速下降法 1. :选取初始点xo ,给定误差 2. 计算一阶梯度。若一阶梯度小于误差,停止迭代,输出 3. 取()()()k k p f x =? 4. 10 t ()(), 1.min k k k k k k k k k k t f x t p f x tp x x t p k k +≥+=+=+=+进行一维搜索,求,使得令转第二步 例题: 求min (x-2)^4+(x-2*y)^2.初始值(0,3)误差为0.1 (1)编写一个目标函数,存为f.m function z = f( x,y ) z=(x-2.0)^4+(x-2.0*y)^2; end (2)分别关于x 和y 求出一阶梯度,分别存为fx.m 和fy.m function z = fx( x,y ) z=2.0*x-4.0*y+4.0*(x-2.0)^3; end 和 function z = fy( x,y )

拟牛顿法

拟牛顿法 牛顿法的收敛速度虽然较快,但要求海森矩阵要可逆,要计算二阶导数和逆矩阵,就加大了就算机计算量。为了克服牛顿法的缺点,同时保持较快收敛速度的优点,就产生了拟牛顿法。拟牛顿法是牛顿法的直接推广,通过在试探点附近的二次逼近引进牛顿条件来确定线搜索方向,它主要有DFP 和BFGS 两种形式,拟牛顿法的一般步骤为: (1) 给定初始点(0)x ,初始对称正定矩阵0H ,(0) 0()g g x =及精度0ε>; (2) 计算搜索方向() k k k p H g =-; (3) 作直线搜索(1) ()()(,)k k k x F x p +=,计算(1)(1)11(),()k k k k f f x g g x ++++==, (1)()1,k k k k k k S x x y g g ++=-=- (4) 判断终止准则是否满足; (5) 令1k k k H H E +=+置1k k =+,转步骤(2); 不同的拟牛顿法对应不同的k E ,主要介绍DFP 和BFGS 两种拟牛顿法。 1. DFP 法 (1) 算法原理 DFP 算法中的校正公式为: 1k k k k T T k k k k k k T T k k k S S H y y H H H S y y H y +=+ - 为了保证k H 的正定性,在下面的算法中迭代一定次数后,重置初始点和迭代矩阵再进行迭代。 (2) 算法步骤 1) 给定初始点(0)x ,初始矩阵0n H I =及精度0ε>; 2) 若() (0) f x ε?≤,停止,极小点为(0)x ;否则转步骤3); 3) 取() (0)(0)0p H f x =-?,且令0k =; 4) 用一维搜索法求k t ,使得() ()()()0 ()min ()k k k k k k t f X t p f X tp α≥+=+,令 (1)()()k k k x x tp +=+,转步骤5); 5) ( ) (1) k f x ε+?≤,停止,极小值点为(1)k x +;否则转步骤6); 6) 若1k n +=,令(0) ()n x x =,转步骤3);否则转步骤7);

拟牛顿法及其相关解法

本文链接:https://www.wendangku.net/doc/bc4496652.html,/miaowei/52925.html 最近在看条件随机场中的优化算法。其中就设计到了无约束化的最优化方法,也就是牛顿法。在CRF (conditional random field)中,使用的是L-BFGS法。费了好大的劲把算法的原理及推导算是看明白了,可是到了具体实现上,又碰到问题了,比如在求搜索方向的时候,使用 但是程序中如何实现呢? 现在转载一篇文章,看过之后,会非常受益。 使用导数的最优化算法中,拟牛顿法是目前为止最为行之有效的一种算法,具有收敛速度快、算法稳定性强、编写程序容易等优点。在现今的大型计算程序中有着广泛的应用。本文试图介绍拟牛顿法的基础理论和若干进展。 牛顿法(Newton Method) 牛顿法的基本思想是在极小点附近通过对目标函数做二阶Taylor展开,进而找到的极小点的估计值[1]。一维情况下,也即令函数为 则其导数满足 因此 (1) 将作为极小点的一个进一步的估计值。重复上述过程,可以产生一系列的极小点估值集合。一定条件下,这个极小点序列收敛于的极值点。 将上述讨论扩展到维空间,类似的,对于维函数有 其中和分别是目标函数的的一阶和二阶导数,表现为维向量和矩阵,而后者又称为目标函数在处的Hesse矩阵。设可逆,则可得与方程(1)类似的迭代公式: (2) 这就是原始牛顿法的迭代公式。 原始牛顿法虽然具有二次终止性(即用于二次凸函数时,经有限次迭代必达极小点),但是要求初始点需要尽量靠近极小点,否则有可能不收敛。因此人们又提出了阻尼牛顿法[1]。这种方法在算法形式上等同于所有流行的优化方法,即确定搜索方向,再沿此方向进行一维搜索,找出该方向上的极小点,然后在该点处重新确定搜索方向,重复上述过程,直至函数梯度小于预设判据。具体步骤列为算法1。

最优化 多目标优化 惩罚函数法 梯度法 牛顿法

2008-12-08 12:30 利用梯度法和牛顿法编程求最优解(matlab) f(x)=x1^2+4*x2^2 x0=[2;2] e=0.002 利用梯度法和牛顿法编程求最优解 方法一.梯度法 function y=fun(x1,x2) y=x1^2+4*x2^2; %定义fun.m函数 clc syms x1 x2 d; f=x1^2+4*x2^2; fx1=diff(f,'x1'); fx2=diff(f,'x2'); x1=2; x2=2; for n=1:100 f0=subs(f); f1=subs(fx1); f2=subs(fx2); if (double(sqrt(f1^2+f2^2)) <= 0.002) n vpa(x1) vpa(x2) vpa(f0) break; else D=fun(x1-d*f1,x2-d*f2); Dd=diff(D,'d'); dd=solve(Dd); x1=x1-dd*f1; x2=x2-dd*f2; end end %结果n=10,x1=0.2223e-3,x2=-0.1390e-4,f0=0.5021e-7. 方法二.牛顿法 clc syms x1 x2 ; f=x1^2+4*x2^2; fx1=diff(f,'x1'); fx2=diff(f,'x2'); fx1x1=diff(fx1,'x1');fx1x2=diff(fx1,'x2');fx2x1=diff(fx2,'x1');fx2x2= diff(fx2,'x2'); x1=2; x2=2;

for n=1:100 f0=subs(f); f1=subs(fx1); f2=subs(fx2); if (double(sqrt(f1^2+f2^2)) <= 0.002) n x1=vpa(x1,4) x2=vpa(x2,4) f0=vpa(f0,4) break; else X=[x1 x2]'-inv([fx1x1 fx1x2;fx2x1 fx2x2]) *[f1 f2]'; x1=X[1,1]; x2=X[2,1]; end end %结果 n=2,x1=0,x2=0,f0=0. 惩罚函数法(内点法、外点法)求解约束优化问题最优值编程 matlab 1 用外点法求下列问题的最优解 方法一:外点牛顿法: clc m=zeros(1,50);a=zeros(1,50);b=zeros(1,50);f0=zeros(1,50);%a b为最优点坐标,f0为最优点函数值,f1 f2最优点梯度。 syms x1 x2 e; %e为罚因子。m(1)=1;c=10;a(1)=0;b(1)=0; %c为递增系数。赋初值。 f=x1^2+x2^2+e*(1-x1)^2;f0(1)=1; fx1=diff(f,'x1');fx2=diff(f,'x2');fx1x1=diff(fx1,'x1');fx1x2=diff(fx1 ,'x2');fx2x1=diff(fx2,'x1');fx2x2=diff(fx2,'x2');%求偏导、海森元素。for k=1:100 %外点法e迭代循环. x1=a(k);x2=b(k);e=m(k); for

单纯形法和拟牛顿法

拟牛顿法(Quasi-Newton Methods)是求解非线性优化问题最有效的方法之一,于20世纪50年代由美国Argonne国家实验室的物理学家W. C. Davidon所提出来。Davidon 设计的这种算法在当时看来是非线性优化领域最具创造性的发明之一。不久R. Fletcher和M. J. D. Powell证实了这种新的算法远比其他方法快速和可靠,使得非线性优化这门学科在一夜之间突飞猛进。在之后的20年里,拟牛顿方法得到了蓬勃发展,出现了大量的变形公式以及数以百计的相关论文。 拟牛顿法和最速下降法(Steepest Descent Methods)一样只要求每一步迭代时知道目标函数的梯度。通过测量梯度的变化,构造一个目标函数的模型使之足以产生超线性收敛性。这类方法大大优于最速下降法,尤其对于困难的问题。另外,因为拟牛顿法不需要二阶导数的信息,所以有时比牛顿法(Newton's Method)更为有效。如今,优化软件中包含了大量的拟牛顿算法用来解决无约束,约束,和大规模的优化问题。 拟牛顿法的基本思想如下。首先构造目标函数在当前迭代$x_k$的二次模型:m_k(p)=f_k+g_k^T p+p^T B_k p/2,这里f_k=f(x_k),g_k=▽f(x_k),B_k是一个对称正定矩阵。于是我们取这个二次模型的最优解p_k=-B_k^{-1} g_k作为搜索方向,并且得到新的迭代点x_{k+1}=x_k+a_k p_k,其中我们要求步长a_k满足Wolfe条件。这样的迭代类似与牛顿法,区别就在于用近似的Hesse矩阵B_k代替真实的Hesse矩阵。所以拟牛顿法最关键的地方就是每一步迭代中矩阵B_k的更新。现在假设得到一个新的迭代x_{k+1},并得到一个新的二次模型:m_{k+1}(p)=f_{k+1}+g_{k+1}^T p + p^T B_{k+1} p/2。我们尽可能地利用上一步的信息来选取B_{k+1}。具体地,我们要求g_{k+1}-g_k=a_k B_{k+1} p_k,从而得到B_{k+1}s_k=y_k,其中s_k=x_{k+1}-x_k,y_k=g_{k+1}-g_k。这个公式被称为割线方程。下面主要介绍这几种方法:DFP方法,BFGS方法,SR1方法,Broyden族方法。 纯形法,求解线性规划问题的通用方法。单纯形是美国数学家G.B.丹齐克于1947年首先提出来的。它的理论根据是:线性规划问题的可行域是n维向量空间Rn中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到。顶点所对应的可行解称为基本可行解。单纯形法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。如果问题无最优解也可用此法判别。根据单纯形法的原理,在线性规划问题中,决策变量(控制变量)x1,x2, (x) n的值称为一个解,满足所有的约束条件的解称为可行解。使目标函数达到最大值(或最小值)的可行解称为最优解。这样,一个最优解能在整个由约束条件所确定的可行区域内使目标函数达到最大值(或最小值)。求解线性规划问题的目的就是要找出最优解。 最优解可能出现下列情况之一:①存在着一个最优解;②存在着无穷多个最优解; ③不存在最优解,这只在两种情况下发生,即没有可行解或各项约束条件不阻止目标函数的值无限增大(或向负的方向无限增大)。 单纯形法的一般解题步骤可归纳如下:①把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基本可行解。②若基本可行解不存在,即约束条件有矛盾,则问题无解。③若基本可行解存在,从初始基本可行解作为起点,根据最优性条件和可行性条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可行解。④按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到问题的最优解。⑤若迭代过程中发现问题的目标函数值无界,则终止迭代。 用单纯形法求解线性规划问题所需的迭代次数主要取决于约束条件的个数。

matlab最优化-牛顿法

实验报告 日期:2013年6月2日 一、 实验概述 【实验名称】:牛顿法 【实验性质】:验证性 【实验目的及要求】:配合课堂教学,培养学生动手能力,根据牛顿法求极小值的思想设计程序。 【基本原理】:牛顿法的迭代公式:)()(12)()1(k k k k x f x f x x ??-=-+, 其中)(2k x f k ?是f(x)在k x 处的Hesse 矩阵。 【实施环境】: MATLAB 7.0 二、实验内容 【项目内容及要求】 用牛顿法求解以下问题: min z=(x1-1)4+x22 三、实验过程 【实验操作步骤】 function [x1 k]=newton(x1,j) %x1为初始点 x1=[8,8]';j=1e-10; hs=inline('(x-1)^4+y^2');

ezcontour(hs,[-10 10 -10 10]);hold on; syms x y f=(x-1)^4+y^2; grad1=jacobian(f,[x,y]);%求梯度 grad2=jacobian(grad1,[x,y]);%求Hesse矩阵 k=0; while 1 grad1z=subs(subs(grad1,x,x1(1)),y,x1(2));%求梯度值 grad2z=subs(subs(grad2,x,x1(1)),y,x1(2));%求Hesse矩阵 x2=x1-inv(grad2z)*(grad1z');%牛顿迭代公式 if norm(x1-x2)

相关文档
相关文档 最新文档